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Abstract

The Born-Oppenheimer approximation constitutes a cornerstone of our understanding of
molecules and their reactivity, partly because it introduces a somewhat simplified
representation of the molecular wavefunction. However, when a molecule absorbs light
containing enough energy to trigger an electronic transition, the simplistic nature of the
molecular wavefunction offered by the Born-Oppenheimer approximation breaks down as a
result of the now non-negligible coupling between nuclear and electronic motion, often
coined nonadiabatic couplings. Hence, the description of nonadiabatic processes implies a
change in our representation of the molecular wavefunction, leading eventually to the
design of new theoretical tools to describe the fate of an electronically-excited molecule.
This Overview focuses on this quantity – the total molecular wavefunction – and the
different approaches proposed to describe theoretically this complicated object in
non-Born-Oppenheimer conditions, namely the Born-Huang and Exact-Factorization
representations. The way each representation depicts the appearance of nonadiabatic
effects is then revealed by using a model of a coupled proton-electron transfer reaction.
Applying approximations to the formally exact equations of motion obtained within each
representation leads to the derivation, or proposition, of different strategies to simulate the
nonadiabatic dynamics of molecules. Approaches like quantum dynamics with fixed and
time-dependent grids, traveling basis functions, or mixed quantum/classical like surface
hopping, Ehrenfest dynamics, or coupled-trajectory schemes are described in this Overview.
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1 Introduction – Nonadiabatic dynamics

A set of moving nuclei, held together by electrons – this can summarize a common and simple

depiction of a molecule. This vision, however, indirectly implies that nuclear motion can be

somehow separated from the electronic one, and that electrons quantum-mechanically glue

the nuclei in a specific way. Both are direct consequences of invoking the so-called Born-

Oppenheimer approximation (BOA). Massively successful when used to investigate the vast

majority of chemical reactivity (from reaction mechanisms to molecular properties), the BOA

has forged our vision of molecules [1].

But a molecule should in principle be considered as a fully quantum object, with its

quantum state defined by a molecular wavefunction. What the Born-Oppenheimer picture

allows us to do is to reduce the complexity of this molecular wavefunction, by considering

only the lowest-energy way of gluing the nuclei of a molecule together. More precisely, a

molecule can be depicted, within the BOA, by a single nuclear wavefunction, whose dynamics

is dictated by a single electronic eigenstate (often the lowest in energy, the ground electronic

state). Hence, the BOA permits to neglect the fact that the motion of the nuclei can trigger

a change in electronic eigenstate – we can consider that the nuclei evolve adiabatically in the

ground electronic state, that is, without the possibility for the nuclei to give energy to the

electrons to trigger an electronic transition. The reason for the success of the BOA when

applied to ground-state chemistry becomes clear: at room temperature, it is rather unlikely

(even if not impossible) that the motion of the nuclei is energetic enough to promote electrons

from one eigenstate to another, as several electron volts separate electronic eigenstates (and

1 electron volt is worth 11’600 K of thermal energy). Within this framework, replacing the

dynamics of a nuclear wavefunction by the one of classical particles would eventually bring

us to an ever simpler depiction of a molecule, that of classical nuclei held together by an

electronic cloud.

When, and how, is this picture offered by the BOA likely to break down? When the

motion of the nuclei can trigger an electronic transition! The simplest case is when elec-

tronic eigenstates are close in energy. For example, the excited-state nuclear dynamics of

a molecule, following its photoexcitation by light, is very likely to reach regions of the nu-
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clear configuration space where electronic states become close in energy, allowing electronic

transitions to take place mediated by nuclear motion: a nonadiabatic process 1. Describing

nonadiabatic processes in molecules forces us to step back and to reconsider our represen-

tation of the molecular wavefunction, accounting for the intricate coupling between nuclear

and electronic motion. Nuclear quantum effects are likely to play an important role too, as

nuclei can end up in a superposition of electronic states following a nonadiabatic event.

We propose here an Overview of the different strategies to simulate the dynamics of

molecules beyond the BOA, with a clear focus on the description of nonadiabatic processes

during the excited-state dynamics. As a starting point, we propose to visualize the time-

dependent molecular wavefunction for a simple system, when the BOA is valid, and when it

breaks down. Then, we will use this initial discussion to introduce two representations of the

molecular wavefunction, Born-Huang and the Exact Factorization, and will highlight how

each representation depicts the nonadiabatic dynamics of a molecule. A discussion follows

on a selection of successful strategies to simulate the excited-state dynamics of molecules.

We conclude by some outlooks of current developments in the field.

2 Stating the problem – the time-dependent molecular

wavefunction

In a quantum picture, the behavior of a molecule is described by its time-dependent molecular

wavefunction Ψ(r,R, t). In this notation, r and R are vectors of electronic and nuclear

coordinates, respectively. Hence, Ψ(r,R, t) is a complicated object encoding the coupled

dynamics of the electrons and nuclei. In a non-relativistic framework, the dynamics of the

molecular wavefunction is dictated by the time-dependent Schödinger equation,

i~
∂

∂t
Ψ(r,R, t) = Ĥ(r,R)Ψ(r,R, t) . (1)

Ĥ(r,R) is the molecular Hamiltonian and will be described in more details later (see Eq. (2)).

1The breakdown of the BOA is not restricted to nonadiabatic processes, and some chemical reactions

in the ground electronic state can necessitate a more accurate description of the coupled electron-nuclear

dynamics (see for example Refs. [2, 3, 4]).
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As Ψ(r,R, t) is the central quantity from which the different strategies for nonadiabatic

dynamics will branch, one shall probably start this Overview by asking ourselves the ques-

tion: how does this molecular wavefunction look like? The high dimensionality of Ψ(r,R, t)

makes it usually hard to visualize, but one can use here a simple molecular model of a

coupled proton-electron transfer reaction to understand the main features of the molecular

wavefunction [5]. In this one-dimensional model, depicted in Fig. 1, a proton (red circle) and

an electron (gray cloud) move between two fixed positive charges (gray circles, separated

by a distance L), and artificially altering the interaction between these two moving parti-

cles allows us to generate different physical conditions. For this one-dimensional system,

the molecular wavefunction becomes Ψ(r, R, t), where r is the position of the electron with

respect to the center between the two fixed charges (‘0’ in Fig. 1), and R is the one of the

moving proton.

Figure 1: Schematic representation of a one-dimensional model for a coupled proton-electron

transfer reaction. Two positive charges are fixed (grey) at a position Rfixed,1 = −10 bohr

and Rfixed,2 = 10 bohr, giving a fixed distance L = 20 bohr. A moving proton (red cir-

cle) and electron (e−) can evolve along the axis defined by the two fixed charges. Their

respective position is characterized by R (proton) and r (electron). This model is strictly

one-dimensional.

The time-dependent Schrödinger equation can be solved exactly for this model, and

we propose here to study what happens quantum-mechanically when the proton, originally

located in the vicinity of the left fixed charge (negative R), is kicked towards the fixed charge

on the right (positive R)2. To highlight the appearance of nonadiabatic effects, this dynamics

2The initial molecular wavefunction Ψ(r,R, t0) is given by the product of a Gaussian nuclear wavepacket
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will be performed for two cases: (a) the proton and the electron interact strongly and (b)

the interaction between the proton and the electron is artificially diminished3.

Figure 2: Snapshots of the modulus of the total molecular wavefunction, |Ψ(r, R, t)|, at

three different times during the quantum molecular dynamics of the coupled electron-proton

transfer model. The upper and lower panel give the snapshots for two different dynamics:

dynamics with a strong (a) or a weak (b) interaction between the moving proton and electron.

The top of each panel proposes a schematic representation of the studied dynamics. The

white horizontal dashed line gives the expectation value of the position of the moving proton.

(multiplied by a phase factor accounting for a non-zero initial average value of the nuclear momentum

operator) with the electronic ground eigenfunction of the model system.
3It is important to note that by modifying the interaction between the moving proton and the electron

one alters the electronic structure of the problem, and therefore the likelihood of nonadiabatic processes.

This is not the only way to enhance the nonadiabatic character of the dynamics for this model system.

Another strategy would have consisted in varying the initial momentum of the moving proton. For the

proposed system, larger momenta would lead to higher probabilities for nonadiabatic transitions.
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The upper panel of Figure 2 shows three snapshots of the total molecular wavefunction

modulus (|Ψ(r, R, t)|) for the dynamics in case (a), that is, when the interaction between the

electron and the proton is strong. In this representation, the nuclear coordinate R follows

the x-axis, while the y-axis is used for the electronic coordinate r. At the beginning of the

dynamics (t0), the proton (R) is centered at R = −4 bohr, close to the left fixed charge.

The electron (r) is located between the fixed charge centered at Rfixed,1 = −10 bohr and

the moving proton (note the larger delocalization of the light electron as compared to the

heavier proton). At a later time (t1), the proton is at an equal distance between the two fixed

charges (R = 0 bohr) and is more spread than at the initial time. More importantly, one can

observe that the electron closely follows the moving proton: the electron is centered around

the expectation value of the nuclear position, symbolized by a horizontal white dashed line in

Fig. 2a. The proton continues its journey towards the other fixed charge (t2), always closely

followed by the electron. A schematic representation for each time snapshot is provided on

top of the corresponding graphic to better illustrate the dynamics of the total system. To

summarize, the situation (a) leads to a coupled electron-nuclear dynamics where the electron

follows the moving proton. In other words, the electron instantaneously adapts to the nuclear

dynamics – a situation reminiscent to what motivates the BOA.

The situation differs dramatically when the interaction between the electron and the

proton is weakened (Fig. 2, panel b). At t0, the proton is at the same position as in case (a),

but the electron is now more localized around the left fixed charge (centered at −10 bohr)

due to the weaker interaction with the moving proton. The electron does not follow the

moving proton closely anymore when it departs from the negative R region (t1): it becomes

delocalized around both fixed charges. This process, which can be ascribed to an electron

transfer from the left fixed charge to the right one, is further amplified at later times (t2),

when the proton enters the positive-R region. Hence, the dynamics of the proton triggers a

substantial change in the electronic configuration of the system. This Overview will focus

on such phenomena, when a strong interplay between nuclear and electronic dynamics takes

place in a molecule.

The representation of the full molecular wavefunction is in general impractical for larger

molecular systems. Also, the coupled electron-nuclear dynamics presented above, and the
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complexity of Fig. 2, makes it clear that a strategy is required to better represent the

molecular wavefunction – ‘better’ meaning here that the representation should provide a

different, possibly simpler, understanding of the interplay between nuclear and electronic

dynamics. In the following Sections, we will introduce two different representations for

Ψ(r,R, t) and discuss how the dynamics of the coupled proton-electron transfer model can

be translated in the eyes of each of these representations.

3 Nonadiabatic Dynamics – the Born-Huang perspective

3.1 Theoretical formalism

The Hamiltonian Ĥ(r,R) of a molecular system, encountered earlier in the molecular Schrödinger

equation (Eq. (1)), is given by

Ĥ(r,R) =
Nn∑
ν=1

−~2

2Mν

∇2
ν + T̂e(r) + Vee(r) + Vnn(R) + Ven(r,R)

=
Nn∑
ν=1

−~2

2Mν

∇2
ν + ĤBO(r,R) . (2)

The first term on the right-hand side is the nuclear kinetic energy, with ∇ν = ∂
∂Rν

indicating

the spatial derivative with respect to the position of the nucleus ν (with massMν). ĤBO(r,R)

is the Born-Oppenheimer (BO) Hamiltonian, sometimes also called electronic Hamiltonian.

ĤBO(r,R) is defined as the sum of the electronic kinetic energy (T̂e), the electron-electron

(V̂ee), the nucleus-nucleus (Vnn), and the electron-nucleus (Ven) interactions.

Fixing the nuclei at a given nuclear configuration (or assuming that they have an infinite

mass) [6, 1, 7] sets the nuclear kinetic energy to zero, and the time-independent Schrödinger

equation for the ĤBO(r,R) Hamiltonian at this nuclear configuration can be solved:

ĤBO(r,R)ϕ
(l)
R (r) = ε

(l)
BO(R)ϕ

(l)
R (r) . (3)

Eq. (3) is referred to as the time-independent electronic Schrödinger equation. Its eigenfunc-

tions ϕ
(l)
R (r) are called electronic wavefunctions and depend parametrically on the nuclear

configuration R (indicated as a subscript). An eigenvalue of Eq. (3), ε
(l)
BO(R), corresponds to
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the electronic energy of the molecule in the electronic state l at a nuclear configuration R,

in the so-called adiabatic representation. Note that the electronic energy ε
(l)
BO(R), despite its

name, also includes the nucleus-nucleus interaction potential Vnn(R). If we compute these

electronic energies for a large number of different nuclear configurations, we can reconstruct

the potential energy surfaces (PESs) of a molecule.

Solving Eq. (3) gives access to a complete set of orthonormal electronic eigenfunctions.

The central idea of the Born-Huang representation [8] is to use these eigenfunctions as a

basis to express the time-dependent molecular wavefunction:

Ψ(r,R, t) =
∑
l

χ
(l)
BO(R, t)ϕ

(l)
R (r) . (4)

In Eq. (4), the χ
(l)
BO(R, t) are time-dependent and R-dependent expansion coefficients, linked

to the time-dependent nuclear density by |χ(R, t)|2 =
∑

l |χ
(l)
BO(R, t)|2 – as a result they are

often called nuclear amplitudes or nuclear wavefunctions.

The total molecular Schrödinger equation can be rewritten within the Born-Huang rep-

resentation by (i) inserting Eq. (4) into the time-dependent molecular Schrödinger equation

Eq. (1), (ii) left-multiplying the result by ϕ
(k)∗
R (r), and (iii) integrating over r (symbolized

by 〈· · · 〉r). The resulting set of equations of motion for the nuclear amplitude (one per

electronic state) reads

i~
∂

∂t
χ

(k)
BO(R, t) =

[
Nn∑
ν

−~2

2Mν

∇2
ν + ε

(k)
BO(R)

]
χ

(k)
BO(R, t) +

∑
l

Fkl(R)χ
(l)
BO(R, t) . (5)

The two terms in the square bracket are simply the nuclear kinetic energy and the electronic

potential term. The Born-Huang representation leads to the following picture of the coupled

electron-nuclear dynamics of a molecule: the electrons provide a time-independent PES on

which a nuclear amplitude can evolve. There is one time-dependent amplitude per electronic

state k, with corresponding PES ε
(k)
BO(R). But there is more: the last terms in Eq. (5),

Fkl(R), connect nuclear amplitudes between different electronic states. Fkl(R) includes

couplings between nuclear motion and electronic states, originating from the action of the

nuclear kinetic energy operator on the electronic wavefunctions:

Fkl(R) = −
Nn∑
ν

~2

2Mν

〈ϕ(k)
R |∇

2
ν |ϕ

(l)
R 〉r −

Nn∑
ν

~2

Mν

〈ϕ(k)
R |∇ν |ϕ(l)

R 〉r · ∇ν . (6)
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The first-order nonadiabatic coupling vectors, dkl(R) = 〈ϕ(k)
R |∇R|ϕ(l)

R 〉r (for k 6= l), and

second-order nonadiabatic couplings, Dkl(R) = 〈ϕ(k)
R |∇2

R|ϕ
(l)
R 〉r (∀k, l), bring all the nonadia-

batic effects in the molecular dynamics, i.e., they are responsible for the transfer of nuclear

amplitude between different electronic states.

Setting all the Fkl(R) with k 6= l to zero in Eq. (5) results in a dynamics where the

nuclear amplitude is constrained to a single electronic eigenstate k. This approximation

is known as the BOA, and corresponds to a full molecular wavefunction approximated by

Ψ(r,R, t) ≈ χ
(k)
BO(R, t)ϕ

(k)
R (r). Neglecting all the Fkl(R) in Eq. (5) is often referred to as the

adiabatic BOA and is perhaps the most commonly employed version of this approximation [9].

3.2 Dynamics of the total molecular wavefunction in a Born-Huang

picture

How does the dynamics of our coupled proton-electron transfer model look like in a Born-

Huang picture? The first step consists in obtaining for this model the electronic energies

for all possible nuclear configurations, forming the potential energy curve (PEC) ε
(k)
BO(R) for

each electronic state considered (upper panels of Fig. 3). In the case (a), the two electronic

states remain well separated over the entire range of R considered. Conversely, the energy

of the ground and first electronic states are coming closer in the case (b). The electronic

wavefunctions for both electronic states, ϕ
(S0)
R (r) and ϕ

(S1)
R (r), can also be represented as a

function of R (lower panels of Fig. 3). It is important to stress here that these electronic

wavefunctions are time-independent and that only the nuclear amplitudes have an explicit

time dependence. In case (a), the ground-state electronic wavefunction has its maximum

smoothly switching from the negative to the positive r-region as the value of R changes from

negative to positive. The corresponding S1 wavefunction shows the same trend as the one

of S0, but with the addition of a nodal line. The S0 and S1 electronic wavefunctions in the

case (b) exhibit a very different behavior. In S0, the electronic wavefunction remains mostly

located around the left fixed charged for any negative R, and abruptly changes localization

for positive R, being now centred around the right fixed charge. The S1 wavefunction, in

the range −4 < R < 4 bohr, is a mirror image of the S0 wavefunction: the electronic
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wavefunction in this first excited state is located around the right fixed charge at negative

R and around the left fixed charge for positive R. An electronic excitation from S0 to S1

at negative R would correspond to an electron transfer from the left fixed charge to the

right one. We note that for R < −4 bohr and R > 4 bohr, the electronic wavefunction

changes character and resembles more the one observed in case (a). Hence, the electronic

eigenfunctions and eigenvalues clearly translate the difference in electron-proton interaction

between the case (a) and (b).

Let us now focus on the nuclear dynamics resulting from the solution of Eqs. (5) (upper

panels of Fig. 3). The Born-Huang picture describes the initial state (defined above) as a

nuclear wavefunction χ
(S0)
BO (R, t0) localized at R = −4 bohr in S0 (blue curve, upper panel

of Fig. 3a), which evolves on the PEC ε
(S0)
BO (R). The initial wavefunction is given a small

positive momentum to trigger the dynamics of the proton from the left fixed charge towards

the right one.

For case (a), where the moving proton has a strong interaction with the electron (up-

per panel of Fig. 3a), the nuclear wavefunction simply travels along the S0 PEC, with no

amplitude transfer to S1. Hence, the Born-Huang representation shows that the nuclear

dynamics solely takes place on ε
(S0)
BO (R) without nonadiabatic effects: the electron closely fol-

lows the moving proton, and case (a) is a perfect example of a molecular quantum dynamics

for which the BOA is fully valid. One can rationalize this adiabatic dynamics by the large

energy gap between S0 and the other electronic states. As the nonadiabatic coupling vectors

are inversely proportional to the energy gap between the two electronic states considered,

all terms FS0l(R) in Eq. (5) are negligible in the case (a).

The picture becomes substantially more complex for the case (b). The initial state at

time t0 is the same as for (a). However, a transfer of nuclear amplitude takes place between

S0 and S1 by the time t1 (Fig. 3b, plain and dotted orange lines, respectively), when the

moving charge reaches R = 0 bohr. The electronic character of the molecular system can be

analyzed in terms of its contributions from S0 and S1, based on the region where the nuclear

amplitude is localized: (i) the nuclear wavefunction in S0 is centered around R = 0, thus

the electronic localization switches abruptly from the left fixed charge (for R < 0) to the

right one (for R > 0); (ii) the nuclear contribution in S1 is more on the positive R side, thus

12



Figure 3: Born-Huang representation of the molecular quantum dynamics described in Fig. 2,

for the two cases (a) and (b). Upper panels show the PECs, as well as the squared-modulus

of the time-dependent nuclear amplitudes at the three different times t0 (blue), t1 (orange),

and t2 (red). The middle and lower panels corresponds to the the modulus of the S1 and S0

time-independent electronic wavefunctions, respectively.

the electron is mainly localized around the left fixed charge. Hence, at time t1, the moving

proton is mostly around R = 0, while the electron is delocalized both around the left and the

right fixed charge, with more amplitude around the left one – as depicted by the molecular

wavefunction in the second panel of Fig. 2b. At time t2, the nuclear amplitudes in S0 and

S1 are both on the positive R side, implying that the electron is still delocalized around the
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two fixed charges. The molecular quantum dynamics in case (b) is highly nonadiabatic as

the nuclear dynamics does not follow a single electronic eigenstate and the coupling between

electronic and nuclear motion induces nuclear amplitude transfer between electronic states.

We should note, at this stage, that the concepts used in this paragraph are those employed

commonly to describe photochemical and photophysical processes, and therefore our under-

standing of these phenomena is deeply rooted in the Born-Huang representation: one often

thinks about excited-state molecular processes in terms of a molecule transferring between

coupled PESs during nonradiative relaxation processes.

4 Nonadiabatic Dynamics – the Exact-Factorization per-

spective

4.1 Theoretical formalism

The solution of the time-dependent Schrödinger equation (1) can always be written as the

product [10, 11, 12]

Ψ(r,R, t) = χ(R, t)ΦR(r, t). (7)

The time-dependent functions χ(R, t) and ΦR(r, t) are the nuclear wavefunction and the con-

ditional electronic wavefunction, respectively. The conditional electronic wavefunction de-

pends parametrically on the nuclear configuration, very much like the time-independent elec-

tronic wavefunctions introduced earlier. This Exact-Factorization idea is the time-dependent

generalization of earlier work [13, 14, 15, 16, 17], and extends the product form of the station-

ary joint probability |Ψ(r,R)|2 into marginal and conditional probabilities |χ(R)|2|ΦR(r)|2

to the probability amplitudes Ψ(r,R) = χ(R)ΦR(r). The interpretation of ΦR(r, t) as a

time-dependent conditional probability amplitude requires to impose a partial normaliza-

tion condition
∫
dr|ΦR(r, t)|2 = 1 ∀R, t.

The time evolution of Ψ(r,R, t) is dictated by the time-dependent Schrödinger equation

with Hamiltonian (2). Therefore, the nuclear and conditional electronic wavefunctions evolve
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according to the equations

i~
∂

∂t
χ(R, t) =

[
Nn∑
ν

[−i~∇ν + Aν(R, t)]
2

2Mν

+ ε(R, t)

]
χ(R, t) (8)

i~
∂

∂t
ΦR(r, t) =

[
ĤBO(r,R) + Ûen[ΦR, χ]− ε(R, t)

]
ΦR(r, t) , (9)

which are derived [18] by inserting the product form of the molecular wavefunction into the

time-dependent Schrödinger equation and imposing the normalization condition on ΦR(r, t).

Eq. (8) is a time-dependent Schrödinger equation with nuclear Hamiltonian defined in square

brackets. Here, the time-dependent vector potential Aν(R, t) = 〈ΦR(t)| − i~∇νΦR(t)〉r and

time-dependent potential energy surface (TDPES) ε(R, t) = 〈ΦR(t)|ĤBO+Ûen−i~ ∂
∂t
|ΦR(t)〉r

express the coupling of nuclear and electronic motion4. Eq. (9) yields the evolution of the elec-

tronic wavefunction, where the coupling to the nuclear dynamics is encoded in the electron-

nuclear coupling operator Ûen =
∑

ν
1
Mν

[ [−i~∇ν−A(R,t)]2

2
+ (−i~∇νχ(R,t)

χ(R,t)
+ A(R, t)) · (−i~∇ν −

A(R, t))
]
. Since Ûen acts on the parametric dependence of the electronic wavefunction, and

the vector potential and TDPES depend on ΦR(r, t), Eq. (9) is not a Schrödinger equation

and is non-linear.

The product in Eq. (7) is invariant upon multiplication of ΦR(r, t) by a R, t-dependent

phase factor and χ(R, t) by its complex conjugate. Hence, the factorization appears as not

uniquely defined. However, this is the only freedom in the definition of χ(R, t) and ΦR(r, t),

if the partial normalization condition is imposed, and uniqueness can be ensured upon fixing

the gauge: once the R, t-dependent phase factor is chosen, the wavefunctions at all times

are uniquely determined by Eqs. (8) and (9). The choice of gauge does not affect either the

form of the evolution equations or the observables.

4.2 The Exact Factorization ‘beyond the equations’

What interpretation of the coupled electron-nuclear dynamics of a molecule results from the

Exact Factorization? This representation seems to complicate the problem by translating

the time-dependent Schrödinger equation into two coupled partial differential equations, one

4Even though Ûen depends on χ, this dependence disappears in 〈ΦR(t)|Ûen|ΦR(t)〉r. Therefore, the

nuclear Hamiltonian does not depend on χ.
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of which is non-linear. So, why should one be interested in the Exact Factorization?

First of all, the Exact Factorization represents nuclear dynamics in terms of a nuclear

wavefunction propagating under the effect of a single driving potential independently of the

adiabatic or nonadiabatic character of the problem. The potential is time-dependent and

expressed in the form of a vector-potential and a scalar-potential (the TDPES) contribution

in the nuclear time-dependent Schrödinger equation (8). Why is this important? Having

a single potential allows one to uniquely introduce the concept of a classical force, that

can be used in an approximate form of the nuclear evolution equation, for instance by

using classical-like trajectories. Conversely, the Born-Huang framework invokes multiple

static electronic PESs driving the motion of nuclear amplitudes and nonadiabatic couplings

inducing amplitude transfers between states. A single potential is recovered only within

the BOA. Therefore, Born-Oppenheimer molecular dynamics can be performed by simply

computing the force from the PES that corresponds to the single electronic state populated

during the whole dynamics. This simple picture is lost in nonadiabatic situations within the

Born-Huang framework.

Second, the electronic dynamics is expressed in a representation-free form. While the

Born-Huang framework relies on a basis expansion, the Exact Factorization is merely a

rewriting of the Schrödinger equation for the molecular wavefunction. Conceptual and/or

numerical issues related to the definition of the electronic basis set chosen for the expan-

sion are naturally circumvented. In particular, this feature allows one to rethink molecular

dynamics at conical intersections [19, 20] and phenomena related to geometric phases [21],

which can be grounded in the Born-Huang representation and sometimes (mis-)interpreted as

observable effects. Despite this intriguing possibility, practical numerical applications of the

Exact Factorization (see Section 5.1.2 and Refs. [22, 23, 24]) still rely on a Born-Huang-like

expansion of the electronic wavefunction, in order to employ standard quantum-chemistry

approaches to compute electronic properties along the nuclear dynamics. A question arises,

as to whether one can employ the representation-free nature of the Exact Factorization for

excited-state molecular dynamics without the support of quantum-chemistry calculations to

determine electronic-structure properties. Recent works [25, 26] have set the first basis for

such a developments.
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4.3 Dynamics of the total molecular wavefunction in the Exact-Facto-

rization picture

We analyze here how the Exact Factorization depicts the dynamics of our coupled proton-

electron transfer model discussed in previous Sections5. As this particular example is one-

dimensional in the nuclear configuration space, the gauge can be chosen such that the time-

dependent vector potential is identically zero (see Ref. [27] for the details of this procedure).

While this choice of gauge cannot be generalized to higher dimensions, it allows for a simple

identification of the key features of the Exact Factorization.

In case (a), where the electron and moving ion are strongly interacting, the dynamics

described by the Exact Factorization is the same as in the Born-Huang picture: at time t0

the nuclear density is localized around the position R = −4 bohr and has a Gaussian shape;

at time t1 the density broadens while crossing the maximum of the S0 PEC; at time t2 the

nuclear density is mainly located in the positive R region, even more delocalized. We point

out that there is no difference between the Born-Huang and the Exact-Factorization nuclear

density, because the latter, thanks to the partial normalization condition on the conditional

electronic wavefunction, yields the exact nuclear many-body density as |χ(R, t)|2.

Let us now focus on what drives the nuclear dynamics: the time-dependent potential

energy curve (TDPEC) ε(R, t) (upper panel of Fig. 4a and 4b). In the following, we focus on

the so-called gauge-independent (GI) contribution to the TDPEC, εGI(R, t), as it exhibits

some specific features connecting to our earlier discussion on the Born-Huang representation.

The second contribution to the TDPEC is gauge-dependent (εGD(R, t)). In case (a) εGD(R, t)

is just a constant function ofR, while in case (b) it is either constant or stepwise constant with

steps appearing at the same positions as the steps in εGI(R, t) but with opposite sign. The

interested reader is referred to Refs. [28, 27] for more information on these two contributions

to the TDPEC.

5In the following, the Exact-Factorization quantities are obtained from the numerically exact solution

of the full time-dependent Schrödinger equation presented in Section 2. Based on this result, the time-

dependent electronic and nuclear wavefunctions are computed from the resulting time-dependent molecular

wavefunction and inserted into the expression for the TDPES (discussed in Section 4.1). For more information

on the numerical procedure to compute Exact-Factorization quantities, the reader is referred to Ref. [27]
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In the case (a), εGI(R, t) follows exactly the shape of the S0 PEC, and it evolves from

time t0 to time t2 only because it is calculated in the region of non-negligible nuclear den-

sity6. This result is somehow striking, because the time-dependent Schrödinger equation, or

equivalently the Exact-Factorization equations (8) and (9), do not have any knowledge of

the adiabatic PECs (or PESs) or the adiabatic states. Nevertheless, the ground-state PEC

naturally emerges as the potential driving the nuclear dynamics in adiabatic conditions. The

same observation can be applied to the conditional electronic wavefunction (lower panels of

Fig. 4a). As for εGI(R, t), the quantity |ΦR(r, t)| is shown only for the values of R where the

nuclear density is non-zero. The Exact Factorization also represents the dynamics as purely

adiabatic: no difference can be seen between |ϕ(S0)
R (r)| in the lowest panel of Fig. 3a and the

snapshots at times t0 to t2 of |ΦR(r, t)| in Fig. 4a.

The nonadiabatic case (b) shows how the GI part of the TDPEC is capable of encoding

different characters of the electronic wavefunction, and this information is translated here

into a Born-Huang framework. εGI(R, t) is identical to the S0 potential at time t0 (blue

curve, upper left panel of Fig. 4b): the nuclear wavefunction evolves initially under the

effect of the ground-state potential. At time t1, the shape of the GI-TDPEC (orange curve,

upper center panel of Fig. 4b) deviates from a purely adiabatic shape: it follows S0 for

R < 0, but lies between S0 and S1 for R > 0. At time t2, the GI-TDPEC (red curve,

upper left panel of Fig. 4b) (i) smoothly connects S0 to S1 in the region around R = 0,

(ii) is purely adiabatic for R > 3 bohr, and (iii) presents a smooth step in the region

1.5 < R < 3 bohr, connecting the shapes of (i) and (ii). Let us analyze further the right

panels in Fig. 4b. In the region R > 3 bohr, the nuclear dynamics is governed by S0, and

as shown in the Born-Huang formulation, the nuclear density contribution in this region

arises only from the projection on S0 (plain red curve, upper panel of Fig. 3b). In the step

region (1.5 < R < 3 bohr), instead, the GI-TDPEC changes character, switching from S1

to S0. The question is then: can one observe such a switch of character in ΦR(r, t2)? The

answer is yes: in the region 1.5 < R < 3 bohr, |ΦR(r, t2)| has maxima in both positive and

negative regions of r. However, if one looks at the adiabatic states of Fig. 3b, |ϕ(S0)
R (r)|

is nearly zero in the region R > 0, r < 0, whereas|ϕ(S1)
R (r)| has a non-zero contribution.

6This limitation is only due to numerical reasons, as the TDPEC is defined everywhere in space.
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The opposite situation can be observed for R > 0, r > 0. The conclusion is that the GI-

TDPEC, for 1.5 < R < 3 bohr, switches from the ground to the excited PEC because

the character of ΦR(r, t2) mimics a change from the ground to the excited adiabatic state.

However, this is not always true, because at t0 |ΦR(r, t0)| ' |ϕ(S0)
R (r)| is purely adiabatic.

The time dependence of the potential that drives the nuclear dynamics is clearly essential

to encode all changes in the character of the conditional electronic wavefunction over time.

Conversely, the Born-Huang representation pictures such changes of character as nuclear

amplitude transfers among electronic adiabatic states.

Before concluding this Section, it is instructive to compare |ΦR(r, t)| of Fig. 4 with

|Ψ(r, R, t)| of Fig. 2 in the r-direction. By virtue of the Exact Factorization Eq.(7), the

conditional electronic wavefunction contains all the information about the dependence of

the molecular wavefunction on the electronic coordinate. Therefore, it is easy to compare

the two functions along the r-direction, and identify, for instance, the regions of larger prob-

ability of finding the electron: |ΦR(r, t)| has clearly the same features as |Ψ(r, R, t)|, and this

is evident at all times. In the Born-Huang framework, instead, the analysis of the adiabatic

eigenfunctions |ϕ(S0)
R (r)| and |ϕ(S1)

R (r)| does not give access to this information in such a

straightforward way.

5 Simulating the nonadiabatic dynamics of molecules

Even though being only one-dimensional, the model system and scheme introduced above

highlight the different components introduced by a Born-Huang description of nonadiabatic

phenomena and their complex interplay. In general, one needs to account (i) for more than

one electronic state, (ii) for transfer of nuclear amplitude between electronic states, and (iii)

for possible quantum-interference effects between the nuclear amplitudes on different states.

Simulating the nonadiabatic dynamics of a molecular system can therefore be split into two

different contributions : the electronic-structure contribution – how can I obtain ε
(k)
BO(R),

dkl(R), or Dkl(R) for all the electronic states? – and the nuclear dynamics contribution

– how shall I describe the nuclear dynamics, or, how can I approximate nuclear quantum

effects? As this Overview intends to present an aperçu of the different strategies to perform
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Figure 4: Exact-Factorization representation of the molecular quantum dynamics described

in Fig. 2, for the two cases (a) and (b). For each case, the gauge-independent (GI) part

of the TDPES (εGI(R, t)) is plotted on the upper panels and compared to the PECs of the

corresponding model, along with the nuclear density. From left to right, snapshots along

the dynamics for times t0 (blue curves), t1 (orange curves), and t2 (red curves) are shown.

The modulus of the conditional electronic wavefunction is showed in the lower panels. The

white dashed boxes highlight the regions of non-negligible nuclear amplitude, where the

Exact-Factorization quantities are computed.
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nonadiabatic dynamics on molecules, the following section will focus exclusively on the latter

question related to nuclear dynamics. The use of electronic structure theory for excited

electronic states is, for example, discussed in great detail in Refs. [29, 30, 31, 32, 33, 10,

34, 35, 36, 37]. Furthermore, we discuss here only a selected number of methods from this

very fertile field of research, and further insights can be gained by consulting the referenced

reviews and book chapters.

5.1 Different strategies for the nuclear dynamics

Armed with all the required electronic structure quantities, let us focus on the propagation of

the nuclear amplitudes (in a Born-Huang framework, Eq. (5)) or of the nuclear wavefunction

(in an Exact-Factorization framework, Eq. (8)). In the following, we highlight a selection

of important strategies to perform nonadiabatic nuclear dynamics that have been applied

to the study of molecular systems and range from highly-accurate grid-based techniques to

more approximate – yet computationally-tractable for complex systems – trajectory-based

strategies. In addition to the selected references in each Section, the reader seeking more

general information can consult Refs. [38, 39, 40, 41, 42, 43]. Here, we restrict the discussion

to some of the methods designed to solve the time-dependent Schrödinger equation for the

molecular wavefunction. Methods aiming at describing the evolution of the density matrix

or at the calculation of thermal correlation functions will not be described. The interested

reader is referred to the abundant literature on this subject [44, 45, 46, 47, 48, 49, 50].

5.1.1 Quantum dynamics

Time-independent grid and basis set approaches. A numerically-exact solution of the

time-dependent Schrödinger equation is possible, but only for a small number of nuclear

degrees of freedom. The strategy consists first in discretizing the nuclear amplitudes, but also

the different operators, on a numerical grid (Fig. 5), before performing the actual propagation

of the nuclear wavefunctions. Such a discretization can be performed on a set of fixed grid

points for each degree of freedom considered. While being rather straightforward, the use

of a simple grid implies, among others, the use of finite differences to evaluate the effect of
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differential operators.

Figure 5: Schematic representation of a grid-based quantum dynamics version of the nona-

diabatic dynamics presented in Fig. 3b. The PESs as well as the nuclear wavefunctions at

three different times (t0 = blue, t1 = orange, and t2 = red) are represented on a fixed grid

(dots).

A more general approach to the quantum dynamics (QD) problem employs a time-

independent basis, which means that the nuclear amplitudes are discretized, i.e., each nuclear

degree of freedom (1, . . . , f) is expressed in basis containing a certain number of functions

(N1, . . . , Nf , respectively). The choice of the time-independent primitive basis functions de-

pends on the problem investigated, and more information can be found in Refs. [51, 43].

Considering that each of the f degrees of freedom is expressed by N basis functions, the

computational cost scales as N f . Such an exponential scaling intrinsically restrains the ap-

plication of numerically-exact quantum dynamics simulations to systems with a maximum

of 10 degrees of freedom. As a result, a careful selection of the essential nuclear modes

is required for studying the nonadiabatic dynamics of a molecule. Another critical step is

the precalculation (plus fitting) of all the necessary electronic-structure information. The

diabatic representation, in which the matrix of the kinetic energy operator is diagonal, is
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preferred to the adiabatic one due to the smoothness of its PESs and couplings. Last but

not least comes the final challenge of integrating the time-dependent Schrödinger equation,

which takes a matrix-vector form when expressed in a basis [43]. Different integrators are

available for this task like the split operator or Lanczos [52, 53].

As an example of the techniques described above, the quantum dynamics simulations

presented in Figs. 2 were obtained by discretizing the molecular wavefunction on a grid

(both for the electron and the moving proton), and integrating the Schrödinger equation

using the split-operator integrator.

MultiConfiguration Time-Dependent Hartree. The MultiConfiguration Time-Dependent

Hartree (MCTDH) [54, 55] introduces the use of time-dependent basis functions, called

single-particle functions (SPFs), which are themselves written in a time-independent basis.

Applying the Dirac-Frenkel variational principle within this definition gives a set of coupled

equations of motion for both the complex amplitudes and the SPFs. The possibility for the

SPFs to adapt in time usually results in a reduced number of basis functions, allowing to treat

a larger number of nuclear degrees of freedom than with the time-independent basis approach.

Additional strategies further allow to lower the computational cost of MCTDH [55], based

for example on mode combination (dynamics with up to 30 modes) or multiple MCTDH

layers (dynamics with > 100 modes) [56].

Trajectory basis functions. Another possible strategy to represent the nuclear wavefunc-

tions consists in expressing them as linear combinations of so-called trajectories basis func-

tions (TBFs), which are often taken as 3Nn-dimensional Gaussians. The distinctive feature

of the TBFs is that they can move in position and momentum space, following the nuclear

wavefunctions and always offering a proper support for their propagation. In other words,

one could picture the TBF as a moving grid. Using this representation for the nuclear am-

plitudes leads to a set of equations of motion for the complex expansion coefficients of the

linear combination, that couples all the TBFs together – this is nothing but a Schrödinger

equation in the basis of the TBFs. In the limit of a large number of TBFs, this representa-

tion would tend towards numerically-exact quantum dynamics. The idea, however, is that
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we can reduce the number of TBFs to a small, tractable value under the condition that

the TBFs closely follow the nuclear wavefunctions (thus reducing the number of Gaussians

necessary to describe the dynamics as compared to a fixed grid). The challenge resides now

in the definition of a set of equations of motion for the TBFs, which will fulfill this condition

of a proper support for the nuclear wavefunctions, but at the lowest computational cost

possible. The method called variational MultiConfiguration Gaussian (vMCG) [57] uses a

Dirac-Frenkel variational principle, which ensures that the TBFs remain as close as possible

to the nuclear wavefunctions during the dynamics [58]. In MultiConfiguration Ehrenfest

(MCE) [59, 60], TBFs follow Ehrenfest trajectories (see below for more details on Ehrenfest

dynamics) and have a frozen width, as proposed originally in the seminal work on TBFs by

Heller [61, 62, 63]. Thanks to these two simplifications, the equations of motion for the TBFs

are greatly simplified in MCE. Last but not least, Full Multiple Spawning (FMS) [64, 65]

proposes to represent the nuclear amplitudes by a linear combination of frozen, classically-

driven multidimensional Gaussians (Fig. 6). To overcome the challenge of having enough

TBFs to support the nuclear dynamics, FMS introduces a spawning algorithm that allows

for the addition of TBFs during the dynamics, i.e., an adaptive size of the Gaussian basis,

when the system reaches a region of strong nonadiabaticity [66, 67] (Fig. 6).
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Figure 6: Schematic representation of the nonadiabatic dynamics presented in Fig. 3b using

a method based on trajectory basis functions (here, Full Multiple Spawning). The nuclear

wavefunctions (thin dashed lines) at three different times (t0 = blue, t1 = orange, and t2 =

red) are expressed on a basis of coupled TBFs (Gaussians with center indicated by a dot).

New TBFs can be created in region of strong nonadiabatic couplings, and amplitude can be

exchanged between the TBFs.

Importantly, vMCG, MCE, and FMS can formally reproduce a numerically exact solution

of the time-dependent Schrödinger equation in the limit of a large number of TBFs (and

an accurate calculation of their matrix elements). However, approximations can be devised

to simplify the equations and allow for the nonadiabatic dynamics of molecules on-the-fly,

leading to direct dynamics vMCG (DD-vMCG) [68, 58], Ab Initio MCE (AIMCE) [69], or

Ab Initio Multiple Spawning (AIMS) [70, 71]. All three methods were successfully applied

to problems in photochemistry and photophysics (see Ref. [67] for a list of the different

molecular applications).
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5.1.2 Mixed quantum/classical dynamics

The methods described before try to preserve the quantum nature of the nuclear degrees of

freedom as much as possible. A pragmatic approach would consist in invoking a classical

approximation for the nuclei while keeping a quantum, time-dependent, description of the

electrons and an approximate description of nonadiabatic transitions. Such a mixed quan-

tum/classical strategy propagates the nuclei as classical particles, i.e., employing Newton’s

equation, but the potential energy from which the nuclear forces are derived can be different

from the simple single adiabatic electronic state employed in Born-Oppenheimer molecular

dynamics [72] to accommodate nonadiabatic effects [73, 74, 75].

A trajectory will be denoted Rα(t), symbolizing the α realization of the nuclear configu-

ration (position of all the nuclei of a molecule) at time t. The force Fα(t) felt by the classical

nuclei of the molecule at time t along the trajectory α is

Fα(t) = −∇Rε(R)|R=Rα(t) , (10)

in which the form of the potential energy ε(R) still needs to be defined. The dynamics of

the electrons will be dictated by the solution of a time-dependent electronic Schrödinger

equation for the (time-dependent) electronic wavefunction ΦRα(t)(r, t), propagated on the

support of the trajectory Rα(t).

At this stage, the question is: what should we choose for the electronic potential energy in

Eq. (10) to drive the nuclear dynamics and incorporate nonadiabatic effects? The following

paragraphs introduce two possible answers to this question.

Ehrenfest dynamics. A first choice is to use the force

Fα(t) = 〈ΦRα(t)(t)| −∇RĤBO(Rα(t))|ΦRα(t)(t)〉r, (11)

meaning that the classical trajectory follows a mean-field potential energy. Propagating

a trajectory using Eq. (11) defines the mixed quantum/classical method called Ehrenfest

dynamics [76, 77, 78, 79]. The electronic wavefunction ΦRα(t)(r, t) is propagated according

to a time-dependent Schrödinger equation where an implicit dependence on time appears in

the Hamiltonian via Rα(t). From a more fundamental point of view, Ehrenfest dynamics
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emerges from a classical limit applied on the nuclear degrees of freedom in the time-dependent

self-consistent field method (TDSCF) [77, 72, 80].

The mean-field nature of Ehrenfest dynamics can lead to an artificial nuclear dynam-

ics whenever the shapes of the PESs involved in the process under study strongly differ.

However, when the different electronic states that can become coupled during the dynamics

exhibit similar character, Ehrenfest dynamics can provide good results for short-time dy-

namics, in particular when the electronic dynamics can be solved efficiently, for example

using TDDFT (see Refs. [81, 10] for examples).

Trajectory surface hopping. Another strategy to perform mixed quantum/classical dy-

namics would consist in propagating the trajectory on a given adiabatic PES, but offering

it the possibility to hop between surfaces in case of strong nonadiabaticity. This idea is at

the heart of the Trajectory Surface Hopping (TSH) method that was first proposed in the

seventies [82, 83]. In TSH, the nuclear forces are computed from a stochastically-selected

adiabatic PES after each nuclear integration time step:

Fα(t) = −∇Rε
(∗)
BO(R)|R=Rα(t) . (12)

In Eq. (12), ε
(∗)
BO(R) indicates that the adiabatic PES used to propagate the trajectory α at

time t needs to be defined. Hence, a hopping criterion is required, and the most commonly

used approach is coined fewest-switches algorithm [84]. As in the case of Ehrenfest dynamics,

a TSH run (there will be many, see below) consists in integrating a time-dependent elec-

tronic Schrödinger equation on the support of a classical trajectory. Conversely to Ehrenfest

dynamics, though, in TSH the time-dependent electronic wavefunction is not directly used

to produce forces on the classical nuclei, but mostly to detect regions of strong nonadiabatic-

ity and to allow for hops between electronic states by changing the label (∗) of ε
(∗)
BO(R) in

Eq. (12). An important point of the TSH algorithm is that it requires a large number of

independent trajectories, or independent TSH runs, to converge the hopping algorithm, as

well as the sampling of initial conditions7.

7The interested reader can consult for Refs. [41, 85, 36, 86, 87] for discussions on the importance of

adequately selecting initial conditions for nonadiabatic dynamics.
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Figure 7 shows schematically a swarm of independent TSH trajectories for our nonadia-

batic model system. All the trajectories are initiated in S0 at time t0, evolving in the early

time of the dynamics with nuclear forces (Eq. (12)) obtained from ε
(∗)
BO(R) = ε

(S0)
BO (R). At

later time (t1), some trajectories hop to S1 and now feel the forces for this adiabatic state,

while others carry their dynamics in S0. The nuclear density can be reconstructed from the

spatial distribution of classical trajectories, while counting the fraction of trajectories in each

electronic state provides information about the electronic-state population.

Figure 7: Schematic representation of the nonadiabatic dynamics presented in Fig. 3b using

Trajectory Surface Hopping dynamics. A swarm of independent classical trajectories (circles)

are initiated in S0 at time t0 (blue circles) and follow the adiabatic ground electronic state

until the region of strong nonadiabaticity is reached (t1, orange circles, and t2, red circles)

where hops between surfaces can be observed. The nuclear amplitudes (dashed and dotted

lines) and adiabatic PECs (thick plain lines) are given for references.

The independent trajectory approximation inherent to TSH greatly simplifies the algo-

rithm, but it also produces trajectories that are intrinsically overcoherent. In other words,

TSH might suffer from a decoherence problem if a nuclear wavepacket branches after a

nonadiabatic region, forming different wavepackets on different states that crosses the same
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nonadiabatic regions again at later times. Due to the independent nature of the swarm of

TSH trajectories, such decoherence is not accounted for in TSH [88, 89, 90, 91, 92, 93, 94, 95]

at the level of the single trajectory8. Different corrections have been proposed to improve

the overall result of TSH [96, 97, 98, 99, 100, 101, 102, 95, 103, 104], and we note that other

approaches to surface hopping were discussed in the literature [105, 106].

Coupled-trajectory mixed quantum-classical algorithm. The coupled-trajectory mixed

quantum-classical (CT-MQC) algorithm is the strategy that has been devised to solve the

nuclear and electronic evolution equations (8) and (9) of the Exact Factorization employ-

ing an approximate trajectory-based description of the nuclei. The idea is to propagate

trajectories based on the force computed from the time-dependent vector potential and the

TDPES as schematically shown in Fig. 8. Tests on model systems have shown that those

trajectories are able to follow, at least for short times, the evolution of the nuclear den-

sity [28, 27, 107, 108, 109, 110]. Furthermore, it has been proven that the trajectories

evolved according to this exact force can be used to reconstruct the nuclear wavefunction

χ(R, t), i.e., the solution of the nuclear time-dependent Schrödinger equation (8) [18], and

numerical tests have confirmed the validity of this property even for an approximate form of

the force. The major difficulty resides in introducing suitable approximations to solve the

electronic equation (9) in order to compute the conditional electronic wavefunction (a recent

work proposed a detailed study of the mathematical and numerical stability properties of the

Exact-Factorization equations [111]). For practical reasons, with the aim to exploit standard

quantum-chemistry methods, a Born-Huang-like expansion is introduced for the conditional

electronic wavefunction (rather than for the total wavefunction as discussed in Section 3).

The CT-MQC algorithm evolves classical-like trajectories in a way that looks similar to

Ehrenfest dynamics (a time-dependent electronic wavefunction guides a classical trajectory),

but with new terms that are typical of the Exact Factorization. In particular, the quantum

momentum [22], derived from the term −i~[∇νχ(R, t)]/χ(R, t) in the expression of the

electron-nuclear coupling operator in Eq. (9), tracks the delocalization of the modulus of the

8Methods employing coupled trajectories, as those described in Section 5.1.1 for example, or methods

based on TBFs would naturally include such decoherence effects.
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nuclear wavefunction (or equivalently of the nuclear density). Therefore, the nuclear density

has to be reconstructed at each time step of dynamics from the distribution of trajectories, to

allow for the calculation of the quantum momentum [22, 112, 23, 113, 114]. This step in the

algorithm requires that the trajectories are propagated simultaneously, somehow indirectly

coupling them. If the quantum momentum is neglected, the trajectories are independent and

the Ehrenfest algorithm is recovered [115, 116]. However, the coupling among the trajectories

is essential to capture effects such as quantum decoherence [22, 23, 113].

While this brief description provides the general philosophy that led to the derivation of

CT-MQC, a few additional approximations have been introduced to finalize the algorithm

in a form that can be efficiently implemented in a molecular-dynamics code. Therefore, we

refer to the literature on this topic for a detailed discussion [22, 112, 18, 10, 117, 118, 113].
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Figure 8: Schematic representation of the nonadiabatic dynamics presented in Fig. 4b in

the framework of the Exact Factorization. Classical trajectories (filled circles, at times t0

(blue), t1 (orange) and t2 (red)) propagated according to the CT-MQC algorithm follow

the TDPES (colored plain lines), and are localized in the regions where the nuclear density

(colored dashed lines) is large. The trajectories are coupled, and the coupling is indicated

as the green area around each circle. The thin dotted lines are the adiabatic PECs shown

as reference.

Other approaches to nonadiabatic molecular dynamics. Other alternative strategies

were proposed to simulate nonadiabatic processes for molecules, and we reference some of

them here for the interested reader. Semiclassical methods, which aim at approximating a

quantum propagator in position space, have been extended to problems with multiple elec-

tronic states [119, 120, 121, 122, 123, 124, 125, 126]. Quantum (or Bohmian) trajectories

were also proposed as a mean to go beyond the independent trajectory approximation of

TSH [127, 128, 129, 91, 130]. Algorithms have also been proposed exploiting the idea of

conditional electronic wavefunctions [130, 131, 132].
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6 Applications of nonadiabatic molecular dynamics

The different methods for nonadiabatic dynamics introduced above have been successfully

employed to simulate the excited-state dynamics of molecular systems. This section aims at

offering some selected examples of the types of photophysical and photochemical processes

described by these techniques. For a more extended list of applications, the reader can refer

to Refs. [133, 41] (for quantum dynamics), Ref. [133, 58, 60, 67] (for travelling Gaussian

techniques), or Refs. [134, 133, 135, 41, 36] (for mixed quantum/classical methods).

Most methods described above have been employed to study different types of processes

like photoexcitation, internal conversion, and intersystem crossing processes. The com-

plex photodissociation dynamics of the organometallic compound CpMnCO5 triggered by

an optimal laser pulse was rationalized by means of quantum dynamics simulations in a

reduced number of dimensions [136]. Quantum dynamics simulations also provide access

to vibronically resolved photoabsorption and photoelectron spectra. In a recent work, the

photoelectron spectrum of phenol was accurately reproduced using MCTDH combined with

a vibronic-coupling Hamiltonian composed of 7 vibrational modes and constructed based on

CASSCF data, further allowing for the identification of a conical intersection between the

ionized states [137]. AIMS is a powerful method to investigate the nonadiabatic dynamics

of medium-size molecules in their full configuration space. For example, AIMS has been

successfully used to compute and interpret experimental observables [138, 139], and even

predict them [140] years before their actual experimental measurement [141]. The mecha-

nism of photoinduced energy transfer between the building blocks in a phenylene ethynylene

dendrimer was identified by using a special variant of AIMCE, employing a time-dependent

diabatic basis [142]. The complex excited-state dynamics of formamide, comprising eight

coupled electronic states, was investigated using DD-vMCG dynamics. This method was

also employed to study the electron wavepacket dynamics of paraxylene and modified bis-

methylene-adamantane following their ionization [143]. Among its numerous applications,

TSH was for example used to understand the dynamics of the retinal chromophore through

a conical intersection, using a QM/MM formalism, or to investigate the role the intersystem

crossing of Ru[bpy] 2+
3 in gas phase [144] and water [145]. Ehrenfest dynamics is particularly
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well suited to study the early dynamics of an approximate electronic wavepacket dynam-

ics generated by collisions with heavily charged ions [146], or following a photoionization

triggered by attosecond (broadband) pulses [147]. CT-MQC is well-suited to describe pro-

cesses where decoherence effects are significant and has been recently applied to study the

photoinduced ring-opening process in oxirane [23, 24].

6.1 Box: Experimental observation of ultrafast dynamics through con-

ical intersections

The recent development of novel experimental techniques like ultrafast X-ray diffraction or

ultrafast electron diffraction (UED) has opened new doors to observe experimentally the

ultrafast processes following photoexcitation of molecules. In particular, they offer time-

resolved structural information that can directly be compared with the result of nonadia-

batic quantum dynamics, as exemplified by the excited-state dynamics of I2 [148] (QD and

UED), the photodissociation and dynamics through a conical intersection of CF3I (UED and

AIMS) [149], or the photoinduced ring-opening of cyclohexadiene [150] (UED and AIMS).

7 Summary and Outlook

In this Overview, we have discussed the theoretical description of nonadiabatic dynamics

from the perspective of the time-dependent molecular wavefunction. The Born-Huang rep-

resentation of the molecular wavefunction gives rise to our current vision of photochemical

and photophysical processes, with nuclear wavefunctions evolving on (time-independent)

electronic states and exchanging amplitudes due to nonadiabatic couplings. The Exact

Factorization of the molecular wavefunction introduces a different vision, where a nuclear

wavefunction evolves under the influence of a single time-dependent potential energy surface

and vector potential. Based on these representations, various strategies were introduced to

perform, or approximate, the nuclear dynamics of molecules in nonadiabatic conditions.

Nonadiabatic dynamics is a very active field of research, and we outline here some recent

new directions. A recently developed method, SQC/MM [151], combines a Meyer-Miller
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classical representation of both the electronic and the nuclear degrees of freedom [152] with

a symmetrical quasi-classical Meyer-Miller (SQC) windowing model [153, 154] to describe

nonadiabatic dynamics. New developments merging the ideas of vMCG, Ehrenfest dynam-

ics, and the Exact Factorization are ongoing [155]. The idea of moving beyond the use of a

purely adiabatic electronic basis with traveling Gaussian functions has triggered interesting

new work in the last years [156, 157, 158, 159]. Considerable efforts have been invested

more recently in developing a robust algorithm for performing MCTDH on-the-fly [160].

Nonadiabatic molecular dynamics combined with machine-learning strategies for the cal-

culation of electronic-structure quantities has recently emerged [161, 162, 163]. Quantum

electrodynamics effects have been introduced in nonadiabatic dynamics, like for example

molecular dynamics in an optical cavity [164, 165] or the description of stimulated emission

processes [166].

The recent advancements in ultrafast spectroscopy combined with the importance of

light-triggered phenomena in chemical applications will surely further amplify the interest

for the development of techniques for nonadiabatic molecular dynamics.
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JP Cryan, M Gühr, K Hegazy, et al. Imaging the photochemical ring-opening of 1,

3-cyclohexadiene by ultrafast electron diffraction. arXiv preprint arXiv:1810.02900,

2018.

[151] W H Miller and S J Cotton. Classical molecular dynamics simulation of electronically

non-adiabatic processes. Faraday Discuss., 195:9–30, 2016.

[152] H-D Meyer and W H Miller. A classical analog for electronic degrees of freedom in

nonadiabatic collision processes. J. Chem. Phys., 70(7):3214–3223, 1979.

[153] S J Cotton and W H Miller. Symmetrical windowing for quantum states in quasi-

classical trajectory simulations. J. Phys. Chem. A, 117(32):7190–7194, 2013.

[154] S J Cotton and W H Miller. Symmetrical windowing for quantum states in quasi-

classical trajectory simulations: Application to electronically non-adiabatic processes.

J. Chem. Phys., 139(23):234112, 2013.

[155] A J Jenkins, K E Spinlove, M Vacher, G A Worth, and M A Robb. The ehrenfest

method with fully quantum nuclear motion (qu-eh): Application to charge migration

in radical cations. J. Chem. Phys., 149(9):094108, 2018.

[156] D V Makhov, W J Glover, R J Martinez, and D V Shalashilin. Ab initio multiple

cloning algorithm for quantum nonadiabatic molecular dynamics. J. Chem. Phys., 141

(5):054110, 2014.

[157] G A Meek and B G Levine. The best of both reps—diabatized gaussians on adiabatic

surfaces. J. Chem. Phys., 145(18):184103, 2016.

[158] L Joubert-Doriol, J Sivasubramanium, I G Ryabinkin, and A F Izmaylov. Topologically

correct quantum nonadiabatic formalism for on-the-fly dynamics. J. Phys. Chem. Lett.,

8(2):452–456, 2017.

49



[159] L Joubert-Doriol and A F Izmaylov. Variational nonadiabatic dynamics in the moving

crude adiabatic representation: Further merging of nuclear dynamics and electronic

structure. J. Chem. Phys., 148(11):114102, 2018.

[160] G W Richings and S Habershon. MCTDH on-the-fly: Efficient grid-based quantum

dynamics without pre-computed potential energy surfaces. J. Chem. Phys., 148(13):

134116, 2018.

[161] P O Dral, M Barbatti, and W Thiel. Nonadiabatic excited-state dynamics with ma-

chine learning. J. Phys. Chem. Lett., 9:5660–5663, 2018.

[162] W-K Chen, X-Y Liu, W Fang, P O Dral, and G Cui. Deep learning for nonadiabatic

excited-state dynamics. J. Phys. Chem. Lett., 9:6702, 2018.

[163] I Polyak, G W Richings, S Habershon, and P J Knowles. Direct quantum dynamics

using variational gaussian wavepackets and gaussian process regression. J. Chem.

Phys., 150(4):041101, 2019.

[164] M Kowalewski, K Bennett, and S Mukamel. Cavity femtochemistry: Manipulating

nonadiabatic dynamics at avoided crossings. J. Phys. Chem. Lett., 7(11):2050–2054,

2016.

[165] H L Luk, J Feist, J J Toppari, and G Groenhof. Multiscale molecular dynamics

simulations of polaritonic chemistry. J. Chem. Theory Comput., 13(9):4324–4335,

2017.

[166] T E Li, A Nitzan, M Sukharev, T Martinez, H-T Chen, and J E Subotnik. Mixed

quantum-classical electrodynamics: Understanding spontaneous decay and zero-point

energy. Phys. Rev. A, 97(3):032105, 2018.

50


	Introduction – Nonadiabatic dynamics
	Stating the problem – the time-dependent molecular wavefunction
	Nonadiabatic Dynamics – the Born-Huang perspective
	Theoretical formalism
	Dynamics of the total molecular wavefunction in a Born-Huang picture

	Nonadiabatic Dynamics – the Exact-Factorization perspective
	Theoretical formalism
	The Exact Factorization `beyond the equations'
	Dynamics of the total molecular wavefunction in the Exact-Factorization picture

	Simulating the nonadiabatic dynamics of molecules
	Different strategies for the nuclear dynamics
	Quantum dynamics
	Mixed quantum/classical dynamics


	Applications of nonadiabatic molecular dynamics
	Box: Experimental observation of ultrafast dynamics through conical intersections

	Summary and Outlook
	Acknowledgements
	Conflict of interest

