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Abstract

High Voltage Direct Current systems based on Voltage Source Converters (VSC-HVDC) are increasingly being
considered as a viable technology with advantages, above all when using underground or submarine cables for bulk
power transmission. In order to fully understand how VSC-HVDC systems can be best used within existing power
systems, it is necessary to adapt conventional tools to carry out system-wide studies including this technology.
Along this line, this paper proposes a simplified algorithm to solve optimal power flows (OPFs) in hybrid VSC-
based Alternating Current / Direct Current (AC/DC) grids with multi-terminal VSC-HVDC systems. The proposed
algorithm makes it possible to seamlessly extend a previous large-scale AC case to which several multi-terminal
VSC-HVDC systems must be added. The proposed approach combines two ideas used previously in two different
modelling approaches: each VSC is modelled as two generators with a coupling constraint; and DC grids are
modelled as notional AC grids, since, in per unit, the equations for the former are a particular case of the latter with
resistive lines and no reactive-power injections. In the proposed approach, the hybrid VSC-based AC/DC system is
transformed into an equivalent only-AC system. Therefore, the OPF solution of the AC/DC system can be found
with the same tool used for the previous AC problem and a simple extension of the original case.
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NOMENCLATURE

AG, Abus, Abranch, Aslacks : Sets of the generators, buses, branches and slack buses of the AC grids, respectively.
Avsc, Adcbus, Adcbranch : Sets of the VSC stations, buses and branches of the multi-terminal VSC-HVDC systems.
V̄i = Vi∠θi : Voltage at AC bus i
S̄G,i = PG,i + jQG,i : Active-(P) and reactive-power (Q) generation (bus i)
S̄D,i = PD,i + jQD,i : P/Q consumed by the loads (bus i)
S̄i = Pi + jQi : P/Q injections into the AC grid at bus i
Ȳbus,ik = Gik + jBik : Admittance matrix of AC line (i, k)

Iik : Current through AC branch (i, k) (leaving bus i) (magnitude)
S̄ik = Pac,ik + jQac,ik : P and Q flows through AC branch (i, k) (leaving AC bus i)
Z̄ac,ik = Rac,ik + jXac,ik : Series impedance of AC branch (i, k)

Bac,sh,ik : Shunt susceptance of AC branch (i, k)

V̄s,i = Vs,i∠δs,i : AC voltage at the PCC of VSC i

Ēc,i = Ec,i∠δc,i : Output AC voltage of VSC i

mi : Modulation index of VSC i (p.u.)
S̄s,i = Ps,i + jQs,i : P and Q injections of VSC i at the PCC
S̄c,i = Pc,i + jQc,i : Output P and Q injections of VSC i

Is,i : AC current of VSC i (magnitude)
Z̄s,i = Rs,i + jXs,i : Connection impedance of VSC i to the PCC (phase reactor + transformer)
Ploss,i : Losses of VSC i

Pdc,i, Idc,i : Power and current injection at DC bus i, respectively
Vdc,i : Voltage at DC bus i
Pcc,ik, Icc,ik : Power and current flow through DC branch (i, k) (leaving DC bus i), respectively
Rdc,ik : Resistance of DC branch (i, k)
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I. INTRODUCTION

Optimal Power Flow (OPF) calculations determine an optimal operating point of a power system with respect to
an objective function (economical or technical) subject to grid and operation constraints, and it has long become an
essential tool for Transmission System Operators (TSOs) [1]. Point-to-point high voltage direct current links based
on thyristors (LCC-HVDC) are already common elements in power transmission system analysis and planning but
more recently, plans to build multi-terminal HVDC grids based on Voltage Source Converters (VSC-HVDC) are
emerging in the European context [2]. Along this line, TSOs demand appropriate OPF tools for the operation and
planning of those hybrid HVAC/VSC-HVDC grids (HVAC refers to High Voltage Alternating Current systems).

Several OPF algorithms have been proposed for VSC-based hybrid AC/DC systems in the last few years [3]–[14]
with two main distinctive elements with respect to their only-AC counterparts:
• Modelling aspects: inclusion of the equations of the VSC stations, the DC grids and the AC/DC coupling into

the optimisation problem.
• Optimisation variables: active- (P) and reactive-power (Q) injections by the VSCs are control variables in the

optimisation problem.
The work in [3]–[5], [7], [9], [11] presented the guidelines for modelling VSC-HVDC multi-terminal systems

(VSC-MTDC, for short) in OPF problems. Those algorithms have been used succesfully for a wide range of
applications in VSC-based AC/DC systems, such as minimisation of generation costs [3], [4], [14], minimisation
of system losses [5], [11], [15], analysis of different objective functions [9], cost-benefit analysis of VSC-MTDC
installations with different topologies [7], optimal operation in multi-area systems with different TSOs [8], [10],
[16], analysis of the impact of VSC losses on OPF solutions [13] and optimisation in active distribution grids [17],
among others. Meanwhile, several security-constrained OPF models for hybrid AC/DC systems were proposed
in [6], [12], [18]–[21].

Regarding the modelling approach used, OPF algorithms for hybrid AC/DC systems published so far can be
classified into two types, that will be referred in this paper as type-1 [4]–[14] and type-2 [3], [17], [22]–[24]
models. Both approaches differ in the way in which VSC stations and DC grids are modelled. In type 1, DC grids
are represented by their DC power-flow equations and each VSC station is represented as two generators (one
connected to the AC side and the other one connected to the DC side) which are coupled by power conservation
principle. Meanwhile, in type 2, DC grids are represented as notional AC grids: the DC lines are modelled as
resistive AC lines (with null reactance), based on the fact that, in per unit, the power-flow equations of a DC grid
can be thought of as a special case of an AC grid with resistive lines and no reactive-power injections. Meanwhile,
VSC stations are modelled as complex-tap changing transformers. Two constraints are added to each VSC station,
one to ensure that the angle of the transformer is equal to the angle of the internal AC voltage of the VSC and
another one to ensure that no reactive power is injected by the VSC station into the DC side.

Although the formulation of OPF problems in hybrid AC/DC systems been reported in the literature [3]–[14],
[17], [23], the implementation of either type 1 or type 2 models in only-AC OPF tools is often troublesome (or
even impossible) due to lack of flexibility in those tools.

In type-1 models the power-flow equations of DC grids have to be included using equations different from those
used for AC grids. Since type-2 models represent DC grids as notional AC grids, power-flow equations of the
model do not need to be modified. However, equations of those complex-tap changing transformers that model
VSC stations must be adapted accordingly, by introducing additional constraints.

In general, industry is very reluctance to use any new software for power system analysis. Among other reasons,
this is probably due to (a) their interest on dealing with large-scale cases they had already been using for some time
and (b) the experience already acquired by their personnel on the software used. Therefore, not having to modify
any previously-built cases is seen as an important implementation advantage. The current situation dominated by
large AC power systems with many OPF study cases already fully tested with software packages such as PSS/E [25]
or PowerFactory [26] raises the question of whether one can easily add, as a plug-in, a VSC-MTDC system without
having to write the whole problem from scratch. While this is not possible using either type-1 or type-2 models,
the main contribution of this paper is the proposal of a simple and unified algorithm to solve an OPF problem in
a hybrid AC/DC system with several VSC-MTDC systems starting from an existing only-AC case and using the
same traditional only-AC tool. To achieve this, it is necessary to combine the ideas of type-1 and type-2 models for
hybrid AC/DC systems. In the methodology proposed, each VSC station is modelled as two coupled AC sources
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(as in type-1 models): one connected to the AC grid and the other one connected to the DC grid, which is modelled
as a notional AC grid, representing the DC lines as resistive AC lines (as in type-2 models). Each VSC station
also needs a constraint equation to relate active power injections of the AC and DC sides taking converter losses
into account. Since converter losses are best represented by a nonlinear equation of the AC current [27], a linear
approximation of those losses at the operating point has been used and an additional iteration to calculate the
operating point for the converter current has been implemented to maintain a reasonable accuracy.

This paper describes how the VSC stations and the DC grids are modelled, the OPF problem formulation and
the implementation of the proposed algorithm in an only-AC OPF tool. A comparison of the results with two
algorithms already published is also detailed.

The rest of the paper is organised as follows. Section II describes OPF formulation for conventional AC systems.
Section III presents the guidelines of steady-state modelling of hybrid VSC-based AC/DC systems for power-flow
and OPF calculation, classifying current approaches into type-1 and type-2 models. Section IV presents the proposed
OPF model for hybrid VSC-based AC/DC systems. Section V presents the validation of the proposed approach
against two different OPF algorithms based on type 1 and 2 models used in previous publication. For this validation
the Stagg’s 5-bus test system with an embedded VSC-MTDC system has been used because it is reasonably small
and it is well documented in the literature. Section VI presents the validation of the proposed approach in a larger
system against an OPF algorithm (type 1 model) used in a previous publication. The IEEE 30-bus test system
with two embedded VSC-MTDC systems has been used. Section VII presents the OPF results obtained with the
proposed algorithm in a third case study (Cigré Nordic32A test system with an embedded VSC-MTDC system).
This last system is specially useful to illustrate the advantages of power transmission with VSC-HVDC systems.
Finally, Section VIII presents the conclusions of the paper.

II. OPF FOR AC SYSTEMS

The solution of the OPF of an arbitrary AC system, typically, minimises the generation costs and is formulated
as follows:

min
∑
i∈AG

(ca,i + cb,iPG,i + cc,iP
2
G,i) (1)

s. t.

PG,i − PD,i − Pi = 0, ∀i ∈ Abus (2)

QG,i −QD,i −Qi = 0, ∀i ∈ Abus (3)

θi = 0, ∀i ∈ Aslacks (4)

V min
i ≤ Vi ≤ V max

i , ∀i ∈ Abus (5)

PminG,i ≤ PG,i ≤ PmaxG,i , ∀i ∈ AG (6)

QminG,i ≤ QG,i ≤ QmaxG,i , ∀i ∈ AG (7)

0 ≤ Iik ≤ Imaxik , ∀(i, k) ∈ Abranch (8)

where the active- (P) and reactive-power (Q) injections into the AC grid at bus i (power-flow equations) are given
by:

Pi = Vi
∑

k∈Abus

Vj(Gik cos θik +Bik sin θik), (9)

Qi = Vi
∑

k∈Abus

Vj(Gik sin θik −Bik cos θik), (10)

and θik = θi − θk.
All variables in (1)-(10) are described in the Nomenclature Section, at the beginning of the paper. The objective

function (generation costs) of the OPF is (1). Equality constraints in (2)-(3) are the power-balance equations for
each bus, while equality constraints in (4) set the voltage angles of the slack buses to zero (there can be more than
one slack bus if the system contains asynchronous AC areas). Inequality constraints in (5)-(8) represent voltage
limits, P-Q capabilities of generators and thermal limits of AC lines.
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III. HYBRID VSC-BASED AC/DC SYSTEMS

Figure 1 depicts a hybrid AC/DC system with multi-terminal VSC-HVDC systems and Fig. 2 shows the single-
line diagram of a VSC station (in per unit system). The connection impedance Z̄s,i = Rs,i + jXs,i represents
the transformer and the phase reactor of the VSC station. It is assumed that the HVDC system has symmetrical
monopole configuration (see the Appendix section). Each VSC station is connected to an AC grid and to a DC
grid. The active-power injections at the AC and DC sides of the VSCs are coupled by (Fig. 2):

Pc,i + Pdc,i + Ploss,i = 0 (11)

Losses of every VSC-i in (11) can be calculated using a quadratic model as proposed in [27]:

Ploss,i = ai + bi · Is,i + ci · I2s,i (12)

where Is,i is the current injected at the AC side by VSCi.
The magnitude of the output AC voltage (Ec,i) and the DC voltage (Vdc,i) of a VSC station verify:

Ec,i = miVdc,i, 0 ≤ mi ≤ mmax
i (13)

where mi is the modulation index in p.u. The maximum modulation index can be found in [28], [29], and written
in per unit reads:

mmax
i =

√
3

2
·
Vdc,B
Vac,B

(p.u.) (14)

where Vdc,B is the nominal DC voltage (pole to ground, of a symmetrical monopole) used as DC-voltage base
value and Vac,B is the nominal AC voltage (phase to phase) used as AC-voltage base value (see the Appendix for
details of the per unit system used).

AC grid 1
DC grid 2

DC grid 1

AC grid 2

Fig. 1: Hybrid AC/DC grid based on VSCs.

Converters have two degrees of freedom for control: each VSC station can control (a) its active-power injection
into the AC grid (Ps,i) or its DC voltage (Vdc,i) and (b) its reactive-power injection into the AC grid (Qs,i) or
the magnitude of the AC voltage at the connection point (Vs,i). Meanwhile, each DC grid will have one DC-slack
converter that controls its DC voltage.

The modelling approach used for VSC stations and DC grids in type-1 and type-2 approaches are briefly described
in this section, since those ideas will be combined and used for the proposed OPF algorithm presented in Section IV.
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AC 

grid

Ps,i, Qs,i Pc,i, Qc,i
Pdc,i

Vdc,i

Vs,i

Ec,i

Idc,i
Rs,i + jXs,i

Rdc,ij

DC grid

Rdc,ik

Icc,ij

Icc,ik

Is,i

Pc,i + Pdc,i + Ploss,i =0

Pcc,ij

Pcc,ik

Fig. 2: VSC station.

A. Type-1 models

The guidelines of type-1 steady-state models for power-flow calculation have been describedin different publica-
tions for point-to-point [28], [30], [31] and multi-terminal [4], [32]–[43] VSC-HVDC systems. The same modelling
philosophy has been used for OPF calculation of hybrid VSC-based AC/DC systems [4]–[14].

In type-1 models, VSC stations are seen as generators from, both, the AC and the DC sides, and their P injections
are coupled by constraint (11), as shown in Fig. 3a. Furthermore, specific power-flow equations of DC grids are
included very much in the same way as AC power-flow equations. In DC grids, voltages are real numbers and
there is no reactive power, which simplifies power-flow equations in comparison with typical AC systems. Power
flow through a generic DC line i− k, leaving DC bus i (see Fig. 2), is given by:

Pcc,ik =
Vdc,i
Rdc,ik

(Vdc,i − Vdc,k) (15)

+

VSC i

AC 

grid

Ps,i, Qs,i Pc,i, Qc,i Pdc,i

Vdc,iVs,i Ec,i

Idc,i

Rs,i + jXs,i

Rdc,ij

DC grid

=

+ Rdc,ik

Icc,ij

Icc,ik

Is,i

Pc,i + Pdc,i + Ploss,i =0

(a) Type-1 model

VSC i

AC 

grid

Ps,i, Qs,i

Qt,i =0 

Vdc,i

Vs,i

Ec,i Idc,iRs,i + jXs,i Rdc,ij

DC grid

Rdc,ik

Icc,ij

Icc,ik

Is,i

jBeq,i Gsw,i

icic
E

,,


1:
ii

m 

ici ,
 

Notional ‘AC’ grid

Pdc,i ,

Qdc,i =0

(b) Type-2 model

Fig. 3: Hybrid VSC-based AC/DC system.
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B. Type-2 models

Type-2 steady-state models for hybrid VSC-based AC/DC systems were proposed in [3], [22], [24], [44] and have
been used to incorporate models of STATCOMs [23], point-to-point [3], back-to-back [17] and multi-terminal [3]
VSC-HVDC systems into OPF problems.

In type-2 models,VSC stations are modelled as complex-tap changing transformers and the DC grids are rep-
resented as notional AC grids (i.e with resistive AC lines), as shown in Fig. 3b. Therefore, identical power-flow
equations are used for the AC and DC grids and VSCs are treated as branch devices. The angle of the complex-tap
of the transformer that models each VSC must be equal to the angle of the AC voltage of each VSC (Ēc,i): φi = δc,i.
Converter losses are prepresented by a variable shunt conductance (see Fig. 3b) proportional to the square of the
AC current of the VSC (Gsw,i) [17], [22], [23]:

Ploss,i = Gsw,iV
2
dc,i, Gsw,i = G0,iI

2
s,i. (16)

An additional variable susceptance (Beq,i) is used to ensure zero Q injection into the DC grid (see Fig. 3b). The
constraint that ensures Qdc,i = 0 at each VSC is given by [17], [22], [23]:

Im{Gsw,iV 2
dc,i + (Ȳ ∗m,i − jBeq,i)m2

iV
2
dc,i −mie

jφi Ȳ ∗m,iVdc,iV̄
∗
s,i} = 0 (17)

where Ȳm,i is defined as:

Ȳm,i =
Rs − jXs

R2
s +X2

s

(18)

DC grids can be represented as AC grids because the power-flow equations (written in p.u) of the former are a
particular case of the power-flow equations of the latter. One can go from an AC line to a DC line (Fig. 4) if:

Vi = Vdc,i, Vk = Vdc,k, θi = θk = 0, (19)

Z̄ac,ik = Rdc,ik + j0, Bac,sh,ik = 0. (20)

with the terms of the admittance matrix of the AC line being Gik = −1/Rdc,ik and Bik = 0 ∀i, j. Condition (20)
will be imposed by modelling DC lines as AC lines with resistances only, while condition (19) is a consequence
of the modelling approach: in an AC grid with only-resistive lines and with active-power injections, but without
reactive-power injections, all bus voltages will have the same angle, always.

Therefore, the power flow through AC and DC lines have the same expression:

Pac,ik = ViVk(Gik cos θik +Bik sin θik)−GikV 2
i

=
Vdc,i
Rdc,ik

(Vdc,i − Vdc,k) = Pcc,ik (21)

Qac,ik = ViVk(Gik sin θik −Bik cos θik) + (Bik −
Bac,sh,ik

2
)V 2
i = 0 (22)

Zac,ik = Rac,ik + j Xac,ikIikSik

Vi Vk

Ski

jBac,sh,ik/2jBac,sh,ik/2

AC line

Rdc,ikIcc,ikPcc,ik Pcc,ki

Vdc,i Vdc,k

DC line

Fig. 4: AC and DC lines.

and power-flow equations of an AC system need not be modified to include DC grids when formulating an OPF
problem.
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IV. PROPOSED ALGORITHM FOR OPF CALCULATION OF HYBRID VSC-BASED AC/DC SYSTEMS

A. Modelling approach

The simplified approach proposed is this work is shown in Fig. 5 (type 3, for short). It combines ideas of types
1 and 2, to ease the implementation. VSC stations and the DC grids are modelled in such way that the AC/DC
OPF can be written as an only-AC OPF (1)-(8). Therefore, a conventional OPF tool only valid for AC systems
could be used to solve an OPF of a hybrid VSC-based AC/DC system.

The algorithm can be summarised as follows:
• AC grids are modelled as usual and the VSC stations are seen by the AC grids as generators (as in type-1

models [4]–[14], [16]).
• DC grids are modelled as notional AC grids with resistive lines (as in type-2 models [3], [17], [22]–[24]) and

VSC stations are seen by the notional AC grids as conventional AC generators.
• A linear constraint is added for each VSC station, to ensure energy conservation in the VSCs. This constraint

is obtained by linearising (11), as proposed in [14]. The purpose is to obtain a linear constraint as a function
of the active-power injections at AC and DC sides, which are state variables of the optimisation problem. This
constraint can be implemented easily.

+

VSC i

AC 

grid

Ps,i, Qs,i Pc,i, Qc,i
Pdc,i ,

Qdc,i =0

Vdc,iVs,i Ec,i

Idc,i

Rs,i + jXs,i

Rdc,ij

DC grid

+ Rdc,ik

Icc,ij

Icc,ik

Is,i

Pc,i + Pdc,i + Ploss,i =0
Notional ‘AC’ grid

Fig. 5: Proposed OPF algorithm for AC/DC grids.

Operating limits of VSCs and voltage and thermal limits in DC grids are given by (see [9], for example):

Pminc,i ≤ Pc,i ≤ Pmaxc,i , ∀i ∈ Avsc (23)

Qminc,i ≤ Qc,i ≤ Qmaxc,i , ∀i ∈ Avsc (24)

0 ≤ Is,i ≤ Imaxs,i , ∀i ∈ Avsc (25)

0 ≤ Ec,i ≤ mmax
i Vdc,i, ∀i ∈ Avsc (26)

V min
dc,i ≤ Vdc,i ≤ V max

dc,i , ∀i ∈ Adcbus (27)

0 ≤ |Icc,ik| ≤ Imaxcc,ik , ∀i ∈ Adcbranch (28)

P and Q limits of VSC stations (at the AC side) are included in the model as P and Q limits of conventional
generators ((6) and (7), respectively); current limits of the VSCs are represented as current limits of AC branches
(8). Meanwhile, voltage limits of DC buses and current limits of DC lines are included as voltage and current limits
at buses and through branches, respectively, of the notional AC grids: (5) and (8), respectively. Maximum output
voltage of a VSC depends on maximum modulation index (mmax

i ) and its DC voltage (Vdc,i) (constraint (26)).
Initially, this limit is approximated by assuming a nominal DC voltage (Vdc,i = 1 p.u.):

0 ≤ Ec,i ≤ Emaxc,i = mmax
i , ∀i ∈ Avsc (29)

The exact constraint imposed by the maximum modulation index (26) will be implemented by using an external
iteration, which will be presented in Section IV-B.

Every DC grid will have a slack bus (ns) that will set its voltage angle to zero: θdc,ns
= 0, using constraint (4).

Since converters will not inject reactive power into DC grids (Qdc,i = 0, see Fig. 6) and branches of DC grids
are resistive, the voltage angle of DC buses other than the slack will also be zero: θdc,i = 0,∀i ∈ Adcbus. Notice
that there is no need to add a constraint to ensure Qdc,i = 0, because, since there will be nothing such as Q
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generation/consumption in the notional AC grids, the optimal solution will always produce Qdc,i = 0, to reduce
ohmic losses and therefore to reduce generation costs.

The general model of the converter losses in (12) is a non-linear function of the converter AC current (Is,i).
Constraints that are linear functions of the state variables of the OPF are the ones that are easier to implement.
Constraint (12) is also a non-linear function of the active-power injection of the converter (Pc,i), which is a state
variable of the optimisation problem, and needs further manipulation before (11) can be used as a linear constraint
coupling the AC and DC sides. Using xi = I2s,i in (12), as suggested in [14], converter losses are:

Ploss,i = ai + bi ·
√
xi + ci · xi (30)

where,
√
xi can be linearised around an operating point:

√
xi '

√
x0i +

( 1

2
√
x0i

)
(xi − x0i ), (31)

Replacing (31) in (30) and undoing the change of variable:

Ploss,i '
(
ai +

biI
0
s,i

2

)
+
(
ci +

bi
2I0s,i

)
I2s,i (32)

Quadratic coefficients ci and bi/(2I
0
s,i)can be modelled as resistances (Rloss,c,i = ci and Rloss,b,i = bi/(2I

0
s,i),

respectively) by adding a ficticious branch [14], as shown in Fig. 6. Hence, the equation of power balance at each
VSC station (11) can be written now as a linear constraint relating the active-power injections at both sides of each
VSC:

P ′c,i + Pdc,i + ai +
biI

0
s,i

2
= 0 (33)

Notice that if I0s,i = 0, the linearisation is not needed since converter losses would be Ploss,i = ai.

+

VSC i

AC 

grid

Ps,i, Qs,i Pc,i, Qc,i
Pdc,i ,

Qdc,i =0

Vdc,iVs,i Ec,i

Idc,i
Rs,i + jXs,i

Rdc,ij

DC grid

+ Rdc,ik

Icc,ij

Icc,ik

Is,i

P’c,i + Pdc,i + ai + bi Is,i /2 =0
Notional ‘AC’ grid

E’c,iRloss,c,i Rloss,b,i 0

P’c,i, Q’c,i

c c’s
dc

0

Fig. 6: VSC station: ficticious branch c− c′.

Since the generator that models the AC side of a VSC i will be connected to fictitious bus ci′ instead of bus
ci (Fig. 6), a correction for the active-power limits in (23) is required:

P corr,maxc,i = Pmaxc,i + γi(Rloss,b,i +Rloss,c,i)(I
0
s,i)

2 (34)

P corr,minc,i = Pminc,i + γi(Rloss,b,i +Rloss,c,i)(I
0
s,i)

2 (35)

where γi = 1 if Pc,i ≥ 0 and γi = −1 if Pc,i < 0. Parameter γi is fixed for each OPF solution and it is only
updated for each external iteration (IV-B).

Notice that the approximation of (31) depends on the current of the VSC at the operating point, which is indeed
an unknown of the problem. To start with, a current obtained from a previous solution could be used, or I0s,i = 0, if
starting from scratch. Although the effect of having this inaccuracy in the model of the converter losses may have
a small impact on the OPF solution, it would be desirable to be able to use the exact loss value in VSC stations.
The way in which this problem has been tackled is explained in Section IV-B.

After these modifications, the resulting AC/DC system will contain asynchronous AC grids only (true AC grids
+ notional AC grids in place of the DC grids) with some extra constraints coupling some generators of each of
the two systems (those that model the VSCs). Therefore, a conventional only-AC OPF problem (1)-(8) with the
additional linear constraints provided by (33) can now be solved.
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B. External iteration to improve the accuracy of the algorithm

The final algorithm has been implemented with an external iteration, to take into account the exact loss value
and the exact maximum modulation index of every VSC station:

1) Make k = 0 and choose an initial guess for the currents of VSCs at the operating point (I0s,i(k = 0) in (32 )).
Choose I0s,i(k = 0) = 0 if there is no clue about the current values. Choose an initial guess for the maximum
output AC voltage of the converter: Emaxc,i (k = 0) = mmax

i .
2) Solve the AC/DC OPF problem using the algorithm described in Subsection IV-A, using I0s,i(k).
3) Use the DC voltage obtained from the OPF (Vdc,i(k)) and the maximum modulation index (mmax,i) to compute

the true maximum output AC voltage for each converter i: Emaxc,i (k + 1) = mmax
i Vdc,i(k) in (29).

4) Use the current obtained from the OPF in I0s,i(k + 1)), for each converter i.
5) Convergence test: If maxi{|I0s,i(k + 1) − I0s,i(k)|, |Emaxc,i (k + 1) − Emaxc,i (k)|} < ε: stop and if not, make

k = k + 1 and return to step 2.
With this iteration, the proposed simplified model captures all details of state-of-the-art OPF models for hybrid

VSC-based AC/DC systems.

C. Implementation

The proposed OPF algorithm has been implemented in Matpower [45], which is a Matlab-based open-source
tool for power flow and optimal power flow calculation of AC systems, but it cannot deal with AC/DC systems.
The algorithm described in Subsections IV-A and IV-B has been implemented in Matlab scripts which manipulate
the input data and call Matpower to solve the OPF of the resulting equivalent only-AC system. The linear equality
constraints in (33) have been implemented in Matpower following the guidelines of [46].

MatACDC [47] is another open-source tool based on Matlab + Matpower for power-flow calculation of hybrid
AC/DC systems, but it cannot solve optimal power flows. MatACDC extended the comprehensive data format of
Matpower for AC/DC grids. To take advantage of this structure of the input data, the OPF tool developed in this work
and implemented in Matpower has been linked with MatACDC. In this way, the input data will be in MatACDC
format and at the end of the algorithm described in Subsection IV-B a power flow is solved with MatACDC, aiming
to have the resulting operating point in MatACDC format and use it for other steady-state studies with that tool, if
desired.

Finally, the requirements for the implementation of the proposed algorithm are summarised below:
1) The tool must be capable of solving OPFs of conventional AC systems.
2) The tool mustbe able to handle linear constraints of the state variables (to include constraints (33)).
3) The tool must have the possibility of using scripts (to implement the proposed algorithm described in sec-

tions IV-A and IV-B).

V. VALIDATION OF THE PROPOSED ALGORITHM IN 5-BUS STAGG’S TEST SYSTEM

To start with, the OPF algorithm proposed in Section IV (type 3), implemented in Matpower, has been validated
against two OPF algorithms of type 1 and 2 already published in the literature. Type-1 models were used in [13]
and were coded with GAMS [48]. Meanwhile, type-2 models were used in [17] with AIMMS [49].

The test case used for the validation is shown in Fig. 7, which correspond to cases case5_stagg.m (AC
grid) and case5_stagg_MTDCslack.m (DC grid) of MatACDC. Total losses of the system are the objective
function of the problem to be minimised. Constraints of the AC system are detailed in Tables I-II. Data of the VSC
stations and the DC grid are provided in Table III.

Models type-1 and type-3 use (11) to compute converter losses, while model type-2 represents losses at each
VSC station as a shunt conductance at the DC side, proportional to the square of the converter current [17] given
by (16). For comparison purposes, loss coefficients of (11) and (16) have been adjusted to obtain 1 % losses at full
load of the VSCs (Table III).

Results of the OPF problem obtained with each approach are compared in Tables IV-VI. Results obtained with
the three models are almost the same. Total losses obtained with the three models are 4.14 MW. Results obtained
with model type-2 differ slightly from the results obtained with modelstype-1 and type-3, due to the different model
used for the converter losses.
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Fig. 7: 5-bus Stagg’s test system with an embedded VSC-MTDC, used for comparison of OPF results.

TABLE I: 5-bus Stagg’s system + VSC-MTDC. Generator constraints.

Gen Pmax
G /Pmin

G Qmax
G /Qmin

G

(MW) (MVAr)
Gen1 250.00 / 10.00 100.00 / -100.00
Gen2 40.00 / 0.00 40.00 / -40.00

TABLE II: 5-bus Stagg’s system + VSC-MTDC. AC-grid constraints. Nominal voltage of the AC grid: 345 kV.

AC bus V max/V min (p.u)
i = 1, 2 1.02 / 1.00
i = 3, 4, 5 1.10 / 0.90
AC lines Imax

ij = 1.00 p.u (rating of the line)

TABLE III: 5-bus Stagg’s system + VSC-MTDC. Converter and DC grid parameters

Parameters
Converter rating are base values for p.u. Values
Rating VSC, DC voltage 100 MVA, ±345 kV
Configuration Symmetrical monopole
Max. active (reactive) power ±100 MW (±100 MVAr)
Max. current 1 p.u
Max. DC voltage (V max

dc,i / V min
dc,i ) 1.10 / 0.90 p.u

Max. modulation index (mmax
i ) 1.22 p.u

Connection imp. (Z̄s,i = Rs,i + jXs,i) 0.0016 + j0.2764 p.u
(345/345 kV transformer)
VSCs’ loss coefficients ai = bi = 0
(models 1 and 3) and ci = 0.01 p.u
VSCs’ loss coefficient G0,i = 0.01 p.u
(in model 2)
DC-line series resistance (Rdc,ij)
lines 1-2 and 2-3 0.0520 p.u
line 1-3 0.0365 p.u
V max
dc,i / V min

dc,i (VSC2, DC slack) 1.02 / 1.02 p.u
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TABLE IV: 5-bus Stagg’s system + VSC-MTDC. Comparison of OPF results. AC buses and generators.

Type 1 Type 2 Type 3
( [13]) ( [17]) (proposed)

bus V (p.u) θ (deg) V (p.u) θ (deg) V (p.u) θ (deg)
1 1.020 0.00 1.020 0.00 1.020 0.00
2 1.006 -3.15 1.006 -3.15 1.006 -3.15
3 0.992 -4.92 0.992 -4.92 0.992 -4.92
4 0.991 -5.28 0.991 -5.29 0.991 -5.28
5 0.991 -5.48 0.991 -5.49 0.991 -5.48

Gen PG QG PG QG PG QG

(MW) (Mvar) (MW) (Mvar) (MW) (Mvar)
1 129.14 -8.37 129.14 -8.38 129.14 -8.37
2 40.00 15.00 40.00 15.09 40.00 15.00

TABLE V: 5-bus Stagg’s system + VSC-MTDC. Comparison of OPF results. Converters.

Type 1 Type 2 Type 3
( [13]) ( [17]) (proposed)

VSC 1, 2, 3 1, 2, 3 1, 2, 3
AC bus 2, 3, 5 2, 3, 5 2, 3, 5
Ps (MW) -37.88, 12.54, 24.86 -37.55, 12.34, 24.72 -37.90, 12.54, 24.86
Qs (MVAr) 0.00, 9.07, 6.16 0.00, 9.02, 6.12 0.00, 9.07, 6.16
Vs (p.u) 1.006, 0.992, 0.991 1.006, 0.992, 0.991 1.006, 0.992, 0.991
δs (deg) -3.15, -4.92, -5.48 -3.15, -4.92, -5.49 -3.15, -4.92, -5.48
Pc (MW) -37.88, 12.55, 24.87 -37.53, 12.34, 24.73 -37.87, 12.55, 24.87
Qc (MVAr) 3.93, 9.74, 8.01 3.85, 9.68, 7.98 3.93, 9.74, 8.01
Ec (p.u) 1.010, 1.019, 1.011 1.010, 1.018, 1.011 1.010, 1.019, 1.011
δc (deg) -9.07, -2.96, -1.55 -9.01, -3.00, -1.58 -9.07, -2.96, -1.55
m (p.u) 0.995, 1.009, 1.003 0.995, 1.008, 1.003 0.995, 1.009, 1.003

TABLE VI: 5-bus Stagg’s system + VSC-MTDC. Comparison of OPF results. DC grid.

Type 1 Type 2 Type 3
( [13]) ( [17]) (proposed)

DC bus Vdc Pdc Vdc Pdc Vdc Pdc

(p.u) (MW) (p.u) (MW) (p.u) (MW)
1 1.015 37.90 1.015 37.38 1.015 37.73
2 1.010 -12.54 1.010 -12.37 1.010 -12.57
3 1.008 -24.86 1.008 -24.80 1.008 -24.93

DC line Pcc,ij Pcc,ji Pcc,ij Pcc,ji Pcc,ij Pcc,ji

(MW) (MW) (MW) (MW) (MW) (MW)
1-2 19.27 -19.18 19.07 -18.98 19.27 -19.18
1-3 18.46 -18.34 18.31 -18.20 18.46 -18.34
2-3 6.61 -6.60 6.61 -6.60 6.61 -6.60

Finally, the optimality of the solution obtained with the proposed OPF algorithm is investigated numerically. The
optimal P and Q injections of the VSC stations (P ∗s,i and Q∗s,i, respectively) are perturbed as:

P ps,i = P ∗s,i + ∆Pp (36)

Qps,i = Q∗s,i + ∆Qp (37)

where ∆Pp and ∆Qp are the amplitudes of the perturbation for P and Q injections of the VSCs, respectively.
Parameters ∆Pp and ∆Qp are changed from -40 MVA to 40 MVA with a step of 1 MVA. An AC/DC power
flow is run (with MatACDC) for each perturbed injections of the VSCs (36)-(37). VSC2 is the DC slack in the
power-flow calculation. The perturbation on the active-power and reactive-power injections are analysed separately.
Total losses obtained when perturbing P injections, ∆Pp, (and ∆Qp = 0) are plotted in Fig. 8. Meanwhile, total
losses obtained when perturbing Q injections, ∆Qp, (and ∆Pp = 0) are plotted in Fig. 9. In addition, the relative
difference of total losses in comparison with losses obtained in the optimal solution is also showed in Figs. 8 and 9
(for perturbation on P and Q injections, respectively). The relative difference (γloss) is defined as:

γloss =
Ptot,loss − P ∗tot,loss

P ∗tot,loss
(38)
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where Ptot,loss are the total system losses and P ∗tot,loss are the total system losses obtained in the solution of the
OPF.

Results of Figs. 8 and 9 confirm that total losses increase as the optimal solution is perturbed and the error shows
an upward trend as the amplitude of the perturbation increases.
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Fig. 8: 5-bus Stagg’s system + VSC-MTDC. Total system losses obtained changing P injections of the OPF solution.
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Fig. 9: 5-bus Stagg’s system + VSC-MTDC. Total system losses obtained changing Q injections of the OPF solution.
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VI. VALIDATION OF THE PROPOSED ALGORITHM IN IEEE 30-BUS TEST SYSTEM

Given the reduced size of the test system in Fig. 7, a larger system has also been used for validation, namely, the
IEEE 30-bus test system [50] with two embedded VSC-MTDC systems, shown in Fig. 10. This test system was
chosen because it is a typical IEEE benchmark, it was previously used in [4] with a type-1 model OPF approach
and results could, therefore, be compared.
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Fig. 10: IEEE 30-bus system + two VSC-MTDC systems [4].

Data of IEEE 30-bus test system can be found in [50]. Most data of the two embedded VSC-MTDC systems of
Fig. 10 can be found in [4] and [51]. However, not all data are available in these references. Specifically,
• Values of connection impedances of the VSCs (phase reactor + transformer) are not provided.
• Values of resistances of the DC lines are not provided.
• Converter losses are assumed to be proportional to active-power injections of VSCs in [4]: Ploss,i = βiPc,i.

However, values of coefficients βi are not provided.
For the implementation of the test system of Fig. 10 in the proposed OPF model, these data related to the VSC-
MTDC systems have been completed by assuming realistic values. Here, data for the OPF problem, including
parameters provided in [4] and parameters which were assumed, are provided in tables VII-X, for completeness. It
is worth pointing out that, in the proposed model, converter losses are represented by the quadratic function (12).

TABLE VII: IEEE 30-bus system + VSC-MTDCs. Generator constraints.

Gen Pmax
G /Pmin

G Qmax
G /Qmin

G

(MW) (MVAr)
Gen1 160.00 / 0.00 100.00 / 0.00
Gen2 140.00 / 0.00 50.00 / -40.00
Gen5 40.00 / 0.00 40.00 / -40.00
Gen8 40.00 / 0.00 40.00 / -10.00

Gen11 30 .00/ 10.00 24.00 / -6.00
Gen13 30.00 / 0.00 24.00 / -6.00

TABLE VIII: IEEE 30-bus system + VSC-MTDCs. AC-grid constraints. Nominal voltage of the AC grid: 138 kV.

AC buses V max = 1.06 p.u., /V min = 0.94 p.u
AC branches Smax

ij = 100 MVA (rating of the branch)
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TABLE IX: IEEE 30-bus system + VSC-MTDCs. Generation costs.

Gen ca (e) cb (e/MWh) cc (e/MW2h)
Gen1 0.00 20.00 0.00
Gen2 0.00 20.00 0.00
Gen5 0.00 40.00 0.00
Gen8 0.00 40.00 0.00

Gen11 0.00 40.00 0.00
Gen13 0.00 40.00 0.00

TABLE X: IEEE 30-bus system + VSC-MTDCs. Converter and DC grid parameters

Parameters
Converter rating are base values for p.u. Values
Rating VSC, DC voltage 100 MVA, ±320 kV
Configuration Symmetrical monopole
Max. active (reactive) power ±100 MW (±100 MVAr)
Max. current 1 p.u
Max. DC voltage (V max

dc,i / V min
dc,i ) 1.06 / 0.94 p.u

Max. active power, DC lines (Pmax
cc,ij ) 100 MW

Max. modulation index (mmax
i ) 1.19 p.u

Connection imp. (Z̄s,i = Rs,i + jXs,i) 0.00 + j0.30 p.u
(VSCs 1, 2, 3, 4: 330/132 kV transformer)
(VSCs 5, 6: 330/33 kV transformer)
VSCs’ loss coefficients ai = 2 × 10−3, bi = 8 × 10−3

and ci = 6 × 10−3 p.u
DC-line series resistance (Rdc,ij) 0.005 p.u

Tables XII and XII compare the OPF results obtained with the proposed model (type-3), implemented in
Matpower, with the ones obtained in [4] (type-1), implemented in GAMS. Variables which were not provided
in [4] are left in blank. Results show good agreement: active-power injections of generators and VSCs obtained
with both models are very close. Reactive-power injections of generators and VSCs match in almost all cases.
However, it should be highlighted that reactive-power injections in some generators and VSCs present important
differences (Generator 5, VSC 3 and VSC 4). This is due to the difference in parameters of the test system which
were assumed in the proposed model (connection impedances of the VSCs, resistances of DC lines and coefficients
of converter losses), and also due to the different converter-loss models. For example, VSC 4 is placed at the same
bus of Generator 1 and, therefore, the relevant Q injection for the OPF solution is the net Q injection at the bus
(Generator 1 + VSC 4). Since the model for converter losses in [4] is proportional to the P injection of the VSC,
an additional Q injection in the converter, it does not produce additional losses. However, since the model for
converter losses in the OPF algorithm proposed in this work depends on the converter current (12), an additional
Q injection produces additional losses and the OPF algorithm should move any Q injection to the synchronous
generator, instead of using the VSC. This means that, in the OPF solution of the latter, Generator 1 produces more
reactive power than VSC 4. This result is consistent with the findings in [13] where the impact of converter losses
on OPF solutions was highlighted. All variables of the VSC stations obtained with the proposed model are shown
in Table XIII.

Finally, the optimality of the solution obtained with the proposed OPF algorithm in the test system of Fig. 10 is
proved numerically. The optimal P and Q injections of the VSC stations (P ∗s,i and Q∗s,i, respectively) were perturbed
as in the previous section ( see (36)-(37)). Parameters ∆Pp and ∆Qp were changed from -20 MVA to 20 MVA with
a step of 1 MVA. An AC/DC power flowwas run (with MatACDC) for each pair of perturbedP & Q injections of
the VSCs (36)-(37). VSC1 and VSC4 where set as DC slack converters of the two VSC-MTDC systems of Fig. 10,
for power-flow calculation. Total operating costs obtained for each perturbation on the P injections, ∆Pp, (and
∆Qp = 0) are showed in the upper plot of Fig. 11. Meanwhile, total operating costs obtained for each perturbation
on the Q injections, ∆Qp, (and ∆Pp = 0) are showed in the lower plot Fig. 11.

Results of Fig. 11 confirm that total system operating costs increase as the optimal solution is perturbed. Therefore,
the proposed OPF algorithm obtains the optimal solution of the hybrid AC/DC system successfully.
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TABLE XI: IEEE 30-bus system + VSC-MTDCs. Comparison of OPF results. AC generators.

Type 1 Type 3
( [4]) (proposed)

Operating cost
e/h 5808.80 5822.80
Gen PG QG PG QG

(MW) (MVAr) (MW) (MVAr)
Gen1 150.44 0.00 151.14 0.00
Gen2 140.00 4.72 140.00 5.66
Gen5 0.00 6.24 0.00 23.23
Gen8 0.00 27.62 0.00 28.04

Gen11 0.00 9.53 0.00 9.80
Gen13 0.00 12.43 0.00 13.02

TABLE XII: IEEE 30-bus system + VSC-MTDCs. Comparison of OPF results. VSCs and DC grid.

Type 1 Type 3
( [4]) (proposed)

VSC Pc Qc Pc Qc

(MW) (MVAr) (MW) (MVAr)
1 -79.96 17.31 -79.56 17.43
2 25.74 2.68 23.38 1.63
3 52.53 26.89 54.83 8.34
4 -59.91 -17.45 -58.78 1.71
5 40.44 10.07 40.92 12.98
6 18.45 3.49 16.77 0.98

DC bus Vdc Pdc Vdc Pdc

(p.u) (MW) (p.u) (MW)
1 1.060 - 1.060 79.05
2 1.050 - 1.059 -23.66
3 1.040 - 1.057 -55.23
4 1.060 - 1.060 58.37
5 1.050 - 1.058 -41.26
6 1.050 - 1.059 -17.02

DC line Pcc,ij Pcc,ji Pcc,ij Pcc,ji

(MW) (MW) (MW) (MW)
1-2 - - 23.68 -23.66
1-3 - - 55.36 -55.23
4-5 - - 33.23 -33.18
4-6 - - 25.14 -25.11
5-6 - - -8.08 8.09

TABLE XIII: IEEE 30-bus system + VSC-MTDCs. OPF results obtained with the proposed model. Converters.

Converter 1 2 3 4 5 6
AC bus 2 6 5 1 15 30
Ps (MW) -80.14 23.33 54.55 -59.10 40.76 16.74
Qs (MVAr) 0.00 0.12 0.00 -7.78 8.27 0.18
Vs (p.u) 1.052 1.038 1.035 1.060 1.049 1.060
δs (deg) -1.66 -4.52 -5.74 0.00 -5.57 -4.60
Pc (MW) -79.56 23.38 54.83 -58.78 40.92 16.77
Qc (MVAr) 17.43 1.63 8.34 1.71 12.98 0.98
Ec (p.u) 1.069 1.042 1.052 1.046 1.083 1.063
δc (deg) -14.02 -0.81 2.91 -9.17 0.56 -2.05
m (p.u) 1.009 0.984 0.995 0.987 1.024 1.004
Ploss (MW) 0.51 0.28 0.40 0.42 0.35 0.25
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Fig. 11: IEEE 30-bus system + VSC-MTDCs. Operating cost obtained changing P injections only (upper plot) and
Q injections only (lower plot) of the OPF solution.
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VII. ADDITIONAL CASE STUDY

The use of the OPF algorithm proposed in Section IV (type 3), implemented in Matpower, is further illustrated in
the Cigré Nordic32A system with an embedded VSC-MTDC system, similar to the one used in [52].This system,
depicted in Fig. 12, has heavy power flows from the north and south parts to the central one and it is an attractive
problem to be tackled with HVDC-VSC technology. All data of the AC system can be found in [53], [54] and a
comprehensive description of the system can be found in [55]. AC-voltage limits are set to ± 7 % and upper bound
of the magnitude of the current through AC lines is set to their thermal limits. Data of the VSC-MTDC system
to be used here are provided in Table XIV. Rating values of VSC stations were chosen similar to the ones used
in [56].
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Fig. 12: Nordic 32A system + a VSC-MTDC system.

A. Minimisation of generation costs

Total generation cost is used as the objective function of the OPF. Coefficients of the generation-cost function
have been obtained from Table IV of [7]. An OPF using the proposed algorithm has been run and results are
shown in Tables XV-XVI. The optimal solution is when the VSC-MTDC system carries a large amount of active
power from the northern area to the southern area (from VSC1 to VSC3). This is due to the fact that the North
has cheaper generation. The biggest consumption points are located in the central area. The VSC-MTDC transmits
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TABLE XIV: Nordic 32A system + VSC-MTDC. Converter and DC grid parameters

Parameters
Converter rating are base values for p.u. Values
Rating VSC, DC voltage 1000 MVA, ±320 kV
Configuration Symmetrical monopole
Max. active (reactive) power ±1000 MW (±450 MVAr)
Max. current 1 p.u
Max. DC voltage (V max

dc,i / V min
dc,i ) 1.07 / 0.93 p.u

Max. modulation index (mmax
i ) 1.19p.u

Connection imp. (Z̄s,i = Rs,i + jXs,i) 0.002 + j0.17 p.u
(400/330 kV transformer)
VSCs’ loss coefficients (a/b) 5.25/1.65 ×10−3 p.u.
VSCs’ loss coefficients (crec/cinv) 2.10/3.14 ×10−3 p.u.
DC-line series resistance (Rdc,ij) 2.05 Ω

V max
dc,i / V min

dc,i (VSC2) 1.01 / 1.00 p.u

part of the generated active power to the Southern area, which switches off its expensive generation. The rest of
the active power consumption in the central area is transmitted through the HVAC corridors. The operation cost in
the optimal solution is 340,008.00 ($/h).

TABLE XV: Nordic 32A system + VSC-MTDC. OPF results. VSC stations.

Converter 1 2 3
AC bus 4012 4044 4062
Ps (MW) -984.63 2.26 948.99
Qs (MVAr) 106.54 299.58 12.74
Vs (p.u) 0.990 1.07 1.07
δs (deg) -3.45 -67.66 -68.15
Pc (MW) -983.03 2.39 950.25
Qc (MVAr) 276.54 312.91 146.57
Ec (p.u) 1.021 1.118 1.084
δc (deg) -12.99 -67.66 -60.15
m (p.u) 1.008 1.107 1.077
Ploss (MW) 10.05 5.88 8.37

TABLE XVI: Nordic 32A system + VSC-MTDC. OPF results. DC grid.

DC bus Vdc (p.u) Pdc DC line Pdc,ij Pdc,ji

(p.u) (MW) (MW) (MW)
1 1.013 -972.98 1-2 327.09 -326.05
2 1.010 8.27 1-3 645.89 -641.83
3 1.007 958.62 2-3 317.78 -316.79

The dispatch of generators and VSCs given by the OPF is compared with a base case, in which generators have
the same data as the operating point described in [53] and power-flow calculation carried out with:
• VSC1: Ps,1 = −500 MW, Qs,1 = 0 MVAr.
• VSC2: Ps,2 = 700 MW, Qs,2 = 0 MVAr.
• VSC3: Vdc,3 = 1 p.u, Qs,3 = 0 MVAr (DC slack).
Results obtained in the base case and by the optimal power flow algorithm are compared in Table XVII. In the

OPF solution, operation costs are reduced from 463,461.00 ($/h) to 340,008.00 ($/h), by increasing the cheaper
generation in the North, switching off reducing to zero the more expensive generation in the South and increasing
the power-flow transfer from the northen to the southen areas through the VSC-MTDC system.

Finally, Table XVIII reports nodal marginal prices at a set of AC buses in North, Centre and South, as well as
the nodal marginal prices at the AC and DC buses of the VSC stations (obtained from Matpower output). Nodal
marginal price at one bus (λi) measures the increment of total generation cost (CT , objective function) if the demand
at that bus (PD,i) increases 1 MW [57]:

λi =
∂CT
∂PD,i

(39)
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TABLE XVII: Nordic 32A system + VSC-MTDC. OPF results (minimisation of the generation costs).

Base Case Optimal Solution A
Operation costs ($/h) 463461 340008

Generation / Load (MW)
North 6927.40 / 900.00 8694.20 / 900.00
Centre 2850.00 / 6350.00 2880.30 / 6350.00
South 1590.00 / 1390.00 0.00 / 1390.00

P / Q of the VSCs
(Ps,i (MW) / Qs,i (MVAr))

VSC1 -500.00 / 0.00 -984.63 / 106.54
VSC2 700.00 / 0.00 2.26 / 299.58
VSC3 -223.97 / 0.00 948.99 / 12.51

Table XVIII shows that nodal marginal prices at buses located at the North (e.g. at bus 4011 and at AC bus of
VSC1) are lower than the ones at the South (e.g. at buses 4043, 4063 and at AC buses of VSCs 2 and 3). This is
because cheaper generation is located at the North. Nodal marginal prices at DC buses are close to 55 $/MW-h,
including DC bus of VSC1, which is located at the North. The nodal marginal price at VSC1 is remarkable higher
at its DC bus than at its AC bus because if demand at the DC bus increases, the increase in generation must supply
the losses at the converter station, too. Notice, however, that nodal marginal prices at DC buses are for illustration
purposes, since, typically, DC buses will not have demand.

TABLE XVIII: Nordic 32A system + VSC-MTDC. OPF results. Nodal marginal prices.

Bus λi ($/MW-h)
Bus 4011 (North) 32.16
Bus 4043 (Centre) 55.44
Bus 4063 (South) 57.36
VSC1, AC bus (4012) 32.43
VSC2, AC bus (4044) 55.59
VSC3, AC bus (4062) 56.47
VSC1, DC bus (dc, 1) 55.24
VSC2, DC bus (dc, 2) 55.59
VSC3, DC bus (dc, 3) 55.94

B. Minimisation of system losses

Another realistic application of OPF calculation is to minimise the total losses of the system, given a pre-defined
generation dispatch (in practice, obtained from market rules). Therefore, in this case, P and Q injections of VSC
stations and Q injections of generators are dipatched by the OPF, but P injections of generators are fixed. Therefore,
the value of total losses of the system is used as objective function. The generation dispatch of the base case in
Section VII-A is considered.

OPF results using the proposed algorithm are compared with the base case in Table XIX. The VSC-MTDC
system transmits the active power from the North (VSC1) to the Centre (VSC2), reducing the total losses from
321.12 MW to 250.81 MW.
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TABLE XIX: Nordic 32A system + VSC-MTDC. OPF results (minimisation of the system losses).

Base Case Optimal Solution B
Total losses (MW) 321.12 250.81

Generation / Load (MW)
North 6927.40 / 900.00 6750.81 / 900.00
Centre 2850.00 / 6350.00 2850.00 / 6350.00
South 1590.00 / 1390.00 1590.00 / 1390.00

P / Q of the VSCs
(Ps,i (MW) / Qs,i (MVAr))

VSC1 -500.00 / 0.00 -966.58 / 50.00
VSC2 700.00 / 0.00 998.45 / -90.61
VSC3 -223.97 / 0.00 -65.63 / -33.08

VIII. CONCLUSIONS

Although several OPF algorithms for AC/DC systems have been proposed in the past, the user has to code the
whole model and power-flow equations of the system in most of them, without having the possibility of solving
an OPF with a conventional only-AC OPF tool. This can be a problem in practice, since it would require the
development of new models to be able to solve OPFs in AC/DC systems, only possible if the only-AC OPF tool
is open source. In most commercial only-AC tools for power system analysis, the user can not change power-flow
equations and, therefore, OPF in hybrid AC/DC systems cannot be carried out.

To tackle this obstacle, a simplified algorithm to solve optimal power flows in hybrid VSC-based AC/DC systems
has been proposed, emphasising the possibility of using an OPF tool only valid for AC systems. The proposed
algorithm combines two characteristics of two different types of models proposed in previous work: (a) each VSC
station is modelled using two conventional AC generators (one for the AC side and another one for the DC side)
coupled by a linear constraint to ensure energy conservation in the VSC station and (b) DC grids are modelled as
notional AC grids (DC branches are modelled as conventional resistive AC branches, due to the equivalence of their
power-flow equations, in p.u.). Therefore, in the proposed approach, a VSC-based AC/DC system is transformed
into an equivalent AC system, which can be plugged into a conventional only-AC tool to solve and OPF.

The proposed algorithm has been validated against two OPF algorithms proposed previously for AC/DC systems,
showing good agreement. Results obtained in Cigré Nordic32A test system with an embedded multi-terminal VSC-
HVDC systems have illustrated the potential of the proposed OPF approach. Results show that OPF problems in
hybrid AC/DC systems can be tackled starting from available only-AC case studies with the addition of a DC
plug-in.

Results have shown that generation costs or system losses can be reduced significantly by manipulating the
opreating point of a VSC-MTDC system embedded in a meshed HVAC grid.

APPENDIX: AC/DC PER UNIT SYSTEM USED

The per-unit (p.u) system for AC/DC grids used in this work has followed the guidelines presented in [58].
The AC systems use the traditional three-phase p.u. system: a power base value (Sac,B) and an AC-voltage base
value (phase to phase) (Vac,B).

The DC p.u. base values are defined as:
• Power base value: Sdc,B = Sac,B .
• DC-voltage base value (pole to ground): Vdc,B .
• Current (Idc,B) and impedance (Zdc,B) base values:

Idc,B =
Sdc,B
2Vdc,B

, Zdc,B =
2V 2

dc,B

Sdc,B
. (40)

Using this p.u. system, the steady-state equations of a symmetrical monopolar HVDC link (Fig. 13), are:

Vdc,1 − Vdc,2 = Rdc,12Icc,12 (real) ⇔ Vdc,1 − Vdc,2 = Rdc,12Icc,12 (p.u) (41)

Pcc,12 = 2Vdc,1Icc,12 (real) ⇔ Pcc,12 = Vdc,1Icc,12 (p.u) (42)
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where Vdc,i is the voltage at DC bus i (pole to ground), Pcc,ij is the total power leaving DC line ij (through both
poles), Icc,ij is the current through DC line ij (through each pole) and Rdc,ij is the resistance of DC line ij (of
each pole).

VSC 1 VSC 2Icc,12

Pcc,12

Vdc,1 Vdc,2

VSC 1 VSC 2Icc,12

Pcc,12 

Vdc,1 Vdc,2

Icc,12

Rdc,12

Rdc,12

Rdc,12

real

p.u.

-Vdc,1 -Vdc,2

Fig. 13: Steady-state equivalent circuit of a DC line.
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