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Abstract  

It is widely agreed that hemispheric asymmetries in emotional face perception exist. However, 

the mechanisms underlying this lateralization are not fully understood. In the present study, we 

tested whether (a) these asymmetries are driven by the low spatial frequency content of images 

depicting facial expressions, and (b) whether the effects differed depending on whether the 

emotional facial expressions were clearly visible or hidden (i.e., embedded in low spatial 

frequencies). The manipulation sheds light on the contribution of cortical and subcortical routes 

to emotional processing mechanisms. We prepared both unfiltered (broadband) and ‘hybrid’ 

faces. Within the latter, different bands of spatial frequency content from images of two 

different expressions were combined (i.e., low frequencies from an emotional image combined 

with high frequencies from a neutral image). We presented these broadband and hybrid images 

using the free-viewing emotional chimeric faces task (ECFT) in which two images are 

presented above and below fixation and asked participants to report which of the two mirror 

reversed images appeared more emotional. As predicted, the results showed that only 

broadband expressions produced the well-known left visual field/right hemisphere (LVF/RH) 

bias across all basic emotions. For hybrid images, only happiness revealed a significant 

LVF/RH bias. These results suggest that low spatial frequency content of emotional facial 

expressions, which activates the magnocellular pathway in subcortical structures and bypassing 

cortical visual processing, is not generally sufficient to induce an LVF bias under free-viewing 

conditions where participants deny explicitly seeing the emotion, suggesting that the LVF bias 

in ECFT is primarily cortically mediated. 

 

Keywords: Emotion lateralization, Facial expression, Consciousness, Subcortical, Spatial 
frequency 
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Introduction  

A broad sweep of research results has demonstrated that the right hemisphere (RH) is 

dominantly involved in the perception of human faces (e.g., Burt & Perrett, 1997; McCarthy, 

Puce, Gore, & Allison, 1997). However, the extent to which one finds laterality effects may 

also depend on the route through which emotional information is processed in the brain.  It has 

been suggested that there are two routes through which information about emotional facial 

expressions affects behaviour (Ohman, Carlsson, Lundqvist, & Ingvar, 2007). One route is 

cortical, starting with information reaching the striate cortex via the retino-geniculo-striate 

pathway, while the other route is subcortical, reaching the amygdala via the superior colliculus 

and the pulvinar. There is clear evidence that emotional facial expressions can be discriminated 

very rapidly and probably unconsciously (Morris, Ohman, & Dolan, 1998; 1999; Ohman & 

Soares, 1994), and it has been suggested that this rapid response to emotional stimuli is 

mediated by the subcortical route. As it is possible that processing in this second route is not 

accompanied by conscious experience, it is valuable to assess decisions about emotional facial 

expressions using stimuli that are both visible and hidden (i.e., embedded in low spatial 

frequencies).   

Although the processing of faces in general is lateralized (Burt & Perrett, 1997; McCarthy, 

Puce, Gore, & Allison, 1997), a more controversial topic is the laterality associated with the 

perception of specific emotions from faces (Alves, Aznar-Casanova, & Fukusima, 2009; Burt 

& Hausmann, 2018; Najt, Bayer, & Hausmann, 2013; Prete, Marzoli, Brancucci, Fabri, Foschi, 

& Tommasi, 2014; Killgore & Yurgelun-Todd, 2007). Some researchers assert that, like face 

processing, perception of facial emotion is biased in favour of the RH (i.e., RH Hypothesis, 

e.g., Borod et al., 1998; Gainotti, 2012). An alternative model maintains that the valence of the 

stimulus (i.e., whether the expression represents a positive or negative emotion) is important 

in characterising the asymmetry (e.g., Reuter-Lorenz & Davidson, 1981; Silberman & 
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Weingartner, 1986; Stafford & Brandaro, 2010). Though alternative forms of the Valence-

Specific Hypothesis can differ slightly by which of Ekman, Friesen and Ellsworth’s (1972) six 

basic emotions (i.e., anger, disgust, fear, happiness, sadness and surprise) are considered 

positive or negative (Abbott, Cumming, Fidler, & Lindel, 2013; Harmon-Jones, 2004), they 

generally argue that negative emotions elicit a RH advantage and positive emotions elicit a left 

hemisphere (LH) advantage.  

The RH Hypothesis is reliably supported by the Emotional Chimeric Face Task (ECFT, 

Sackheim & Gur, 1978) in neurotypical individuals (Levy, Heller, Banich & Burton, 1983). In 

the classic example of this task, participants are presented with graphically manipulated faces 

which display an emotion (e.g., happiness) only in the left hemiface with the right hemiface 

being neutral. The mirror image of such a chimeric face is used to present emotional stimulus 

to the right hemiface. Participants explore these images before deciding on which is most 

emotional. Over a number of trials, a reliable bias emerges whereby participants indicate the 

left-hemiface emotion is more salient, despite the identical composition of the faces. This is 

thought to result from the left hemiface being processed primarily by the RH. One critical 

feature of the task is that lateralized effects are reliably found when stimuli are presented 

without any time restrictions and without maintaining fixation. In fact, Levy et al. (1983) 

assumed that the LVF/RH bias typically found was due to selective dominant activation of the 

RH, and thus should be found regardless of the time spent looking at the stimuli. These results 

are in line with findings of a meta-analysis which suggested that free-viewing laterality tasks, 

such as the ECFT task, are reliable and easy to administer tool for the assessment of RH 

integrity (Voyer, Voyer, & Tramonte, 2012). The LVF/RH bias consistently found in ECFT 

does not appear to differ according to stimulus valence (Bourne, 2010, 2011; Christman & 

Hackworth, 1993; Hausmann & Burt, 2018; Innes, Burt, Birch, & Hausmann, 2016; Workman, 

Peters, & Taylor, 2000). Given also that studies consistently report left hemiface biases using 
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only expressions of happiness (Bourne & Gray, 2011; Levy et al., 1983), this is taken as strong 

evidence against the Valence-Specific Hypotheses in favour of the RH Hypothesis.  

Processing emotional facial expressions may be particularly sensitive to information carried in 

specific bands of spatial frequencies within an image. It is therefore possible that laterality 

effects arise because the two hemispheres differ in the effectiveness with which they process 

different bands of spatial frequencies. The Spatial Frequency Hypothesis (Sergent, 1982, 1987) 

assumes that while both cerebral hemispheres are broadly equivalent in their ability to detect 

the full range of spatial frequencies, for more perceptual tasks, an asymmetry arises with the 

RH being dominant in the processing of low frequencies, providing information about the 

global structure of the image. In contrast, the LH is superior in processing high spatial 

frequency content, providing information about the ‘local’ detail of the image.  So, what might 

first appear as hemispheric specialization in processing emotional expressions could in fact 

simply be a consequence of putative differences in spatial frequency processing. If the 

importance of different spatial frequencies differs between emotions then we might expect to 

find differences in emotion lateralization. For example, it has been suggested that for fearful 

faces, low spatial frequencies are the most important for rapid detection (Mermillod, 

Vuilleumier, Peyrin, Alleysson, & Marendaz, 2009; Vuilleumier, Armony, Driver, & Dolan, 

2003), although Smith and Schyns (2009) also observed that lower spatial frequency 

information is used to discriminate happiness, surprise, anger, and disgust, but expressions of 

sadness, or fear, were more reliant on high spatial frequency content.  

Only a few studies have directly manipulated emotional faces for spatial frequency content in 

conjunction with laterality measures in free viewing. As low spatial frequencies are thought to 

be processed before high frequencies (e.g., Goffaux et al., 2011; Kauffmann et al., 2014), this 

might explain why positive facial expressions, like happiness, sometimes demonstrate a left 

visual field (LVF) advantage when presented tachistoscopically (e.g., Alves et al., 2009; 
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Schweinberger et al., 2003). A divided half-field study by Kumar and Srinivasan (2011), which 

used short (150 ms) stimulus presentation, investigated whether filtering spatial frequency 

content affected participants’ ability to identify facial expressions. Low spatial frequencies 

were important for correctly identifying happiness, while high spatial frequencies were 

important for identifying sadness (as in Smith & Schyns, 2009). A more comprehensive study 

of the effect of spatial frequency filtering on basic emotions is therefore necessary.  

One interesting approach to this problem has been the use of ‘hybrid’ stimuli (Schyns & Oliva, 

1999). These faces contain a typical range of spatial frequency information. However, low and 

high frequency components are extracted from faces with emotional and non-emotional content 

and then combined into a single image. Laeng et al. (2010) have shown that information from 

emotional expressions (i.e., anger, fear, happiness, sadness) presented only in the lower spatial 

frequencies of an otherwise neutral face can significantly influence participants’ judgements 

of friendliness, although the emotional content in these emotional hybrid faces was largely 

‘invisible’ and not consciously perceived by the observers (Burns, Martin, Chan, & Xu, 2017; 

Laeng et al., 2010; Prete, Laeng, & Tommasi, 2018). 

Prete, Laeng and Tommasi (2014) presented hybrid stimuli (i.e., low frequency emotional, high 

frequency neutral hybrids) in a visual half-field paradigm. Specifically, they presented hybrids 

of happy/neutral, angry/neutral and neutral facial expressions and asked participants to judge 

their friendliness foveally or in the LVF or RVF. Across all expressions, participants indicated 

that hybrid faces in the RVF were friendlier than those in the LVF, regardless of short (125 ms, 

preventing saccadic eye movements) or longer (250 ms) presentation times. There are however 

two main limitations of this study: (1) only two basic emotions were assessed (i.e., anger and 

happiness), and (2) the measure of emotion discrimination was not direct and instead had to be 

inferred from judgements of friendliness. Also, (3) it is unclear to what extent the results 
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depend specifically on the VHF paradigm or whether they could be replicated under free-

viewing. 

In the present study we aimed to investigate whether the results of Prete et al. (2014) generalise 

across all basic emotional facial expressions (i.e., anger, disgust, fear, happiness, sadness, and 

surprise) and under free-viewing in an ECFT. As we tested the full range of emotional facial 

expressions rather than using an indirect task of judgements of friendliness instead, we simply 

asked our participants to judge which of a pair of chimeric faces (i.e., carrying exactly the same 

emotional information but in a chimeric mirror image) appeared more emotional. For 

broadband stimuli, we predicted a consistent left hemiface bias – a bias towards perceiving 

face expressions carrying the emotion in the left hemiface to be more emotional (Hypothesis 

1). This was expected regardless of the emotional valence of the facial expression (following 

the RH Hypothesis, Hypothesis 2). In contrast, for hybrid stimuli, we predicted that the low 

spatial frequency content alone would not be sufficient to produce a RH bias when time 

restrictions that may favour fast low spatial frequency processing were removed. Therefore, 

we predicted the well-established left hemiface bias in the ECFT to be significantly reduced 

under free-viewing conditions, when the emotional expression was only present in the low 

spatial frequency content of the image and participants were not aware of the emotion 

(Hypothesis 3).    

Method  

Participants 

Forty right-handed individuals (20 women, 20 men) from the Durham University student 

population participated in the present study, which was approved by the local research ethics 

committee. Participants were recruited either through online advertisements (in exchange for 

course credits) or via opportunity sampling. The sample size was determined by examination 
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of Prete et al. (2014) who used hybrid faces in a visual half-field study with 33 participants in 

each presentation time condition, and Innes et al. (2016) who tested 59 participants in their 

ECFT study. Female participants’ ages ranged from 18-24 years (M ± SD = 19.45 ± 1.43), 

while male participants’ ages ranged from 18-33 years (22.15 ± 3.34). Hand preference was 

measured using the Edinburgh Handedness Inventory (Oldfield, 1971). For each participant, a 

Laterality Index (LI) was calculated based on the number of activities for which the left or right 

hand was typically used, expressed as ([R–L] / [R+L]) × 100. LIs thus ranged between -100 

and 100, with positive LIs indicating right-handedness and negative LIs indicating left-

handedness. The mean handedness LI for the entire sample was 83.87 (SD = 18.33, range: 

33.33 - 100). An independent t-test revealed that handedness LIs for women (84.92 ± 16.46) 

and men (82.81 ± 20.41) did not differ significantly, t(38) = .36, p = .721.  

Apparatus  

All experimental tasks were displayed on a computer monitor with a 1024 × 768 resolution and 

a refresh rate of 60 Hz. A chin rest was also used to maintain viewing distance at 57 cm from 

the display.  

Emotional Face Stimuli  

The broadband chimeric face stimuli used in this experiment were identical to Innes et al. 

(2016). These were averaged expressions produced with images taken from the Ekman and 

Friesen (1976) Pictures of Facial Affect series. Full-faced emotional expression stimuli were 

constructed by warping the individual expressions of 8 posers (4 women, 4 men) to a 

symmetrical average for each basic emotion and a neutral face (for details on averaging, see 

Perrett et al., 1999; Tiddeman, Burt, & Perrett, 2001). Stimuli were constructed by fitting these 

full-faced emotional stimuli to a ‘mask’ which took the average shape and pixel luminance 

from the left hemiface of one stimulus and the right hemiface of another. Stimuli were blended 
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across the vertical midline to produce the effect of a typical face (for full details on chimeric 

stimuli production see Burt & Perrett, 1997). Prior to spatial frequency manipulations, all 

source (i.e., broadband) stimuli were resized to 180 × 256 pixels. All source images were 

adjusted so that the mean luminance of each image matched the mean luminance of the stimulus 

set.  

Image Manipulation  

Filtered images were prepared in MATLAB using a custom-written function. In a similar 

manner to that described by Laeng and colleagues (Laeng et al., 2010; Prete et al., 2014), a 

low-pass filter was used to extract frequencies < 7 cycles per image (cpi) for each emotional 

image, and a high-pass filter was used to extract frequencies > 7 cpi from the full-faced neutral 

image. These two images were then combined in the Fourier domain before being transformed 

to produce a real hybrid image containing emotional low spatial frequencies and neutral high 

spatial frequencies (see Figure 1). Broadband and hybrid chimeric faces were then constructed 

as described above (see Figure 2).  
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Figure 1. Hybrid face production method. An emotional (A) and a neutral (B) expression were 

first specified. A low-pass filter (< 7 cpi) was applied to the emotional image to produce a 

stimulus containing only low spatial frequencies (C). A high-pass filter conversely extracted 

only high frequencies (> 7 cpi) from the neutral face (D). The hybrid stimulus (E) is the sum 

of low emotional (C) and high neutral (D) frequencies. Face images were designed by 

averaging individual face images. Individuals who went into making these average face stimuli 

cannot be identified. Copyrights: Dr Mike Burt and Dr Robert W. Kentridge. Reprinted with 

permission. 
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Figure 2. Stimuli used within the ECFT task. The upper row shows broadband stimuli 

(identical to Innes et al., 2016). The lower row are chimeric images constructed by combining 

the low spatial frequencies of the broadband chimeric faces with the high spatial frequencies 

of a full-faced neutral expression. In all cases, the upper image of each pair shows emotion in 

the left hemiface, and the lower image shows emotion in the right hemiface. Face images were 

designed by averaging individual face images. Individuals who went into making these average 

face stimuli cannot be identified. Broadband stimuli (upper panel) reprinted from “A Leftward 

Bias However You Look At It: Revisiting the Emotional Chimeric Face Task as a Tool for 

Measuring” by Bobby R. Innes, D. Michael Burt, Yan K. Birch, & Markus Hausmann, 2016, 

Laterality, 21, Figure 1. Copyright 2016 by Taylor & Francis Group. Reprinted with 

permission. Copyright of hybrid stimuli (lower panel) reprinted from Dr. Mike Burt and Dr. 

Robert W. Kentridge. Reprinted with permission. 
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Emotional Chimeric Face Task  

In the ECFT, an initial central fixation cross was presented against a white background for 

2000 ms at the start of each trial. A pair of mirror-reversed chimeric faces then appeared one 

above the other. In one of the pair, the emotional component of the chimeric face was on the 

left and in the other, it was on the right (top/bottom randomised, equal numbers across trials).  

The individual faces were presented 0.5° visual angle above/below central fixation. Each face 

stimulus measured 4.5° × 6.5° visual angle and the pair remained onscreen for 4000 ms. 

Participants responded via keyboard within this period whether they believed the upper or 

lower face appeared ‘more emotional’ (‘1’ indicating the upper face, ‘2’ indicating the lower 

face).  Response hand was counterbalanced across conditions with half of the trials using the 

left hand. If no response was received within 4000 ms, the next trial was initiated and the no-

response trial was repeated at the end of the presentation set. If this trial also received no 

response, the trial was marked as having no-response. 

A total of 112 (56 standard, 56 hybrid) face pairs were presented in two test blocks. Each test 

block contained either only broadband faces or only hybrid faces. Within each of these 56 trial 

blocks each of the six emotional expression trial types (i.e., anger, disgust, fear, happiness, 

sadness, surprise) and one neutral expression trial type were presented 8 times pseudo-

randomized and counterbalanced for hemiface arrangement. Trials with neutral face 

expressions were used as catch trials to uncover a potential top-bottom response bias. The 

statistical analysis on catch trials was not presented because no such bias was found. Laterality 

Quotients (LQs) were computed for emotional chimeric faces by first subtracting the number 

of trials where the emotional expression presented on the right was reported as more emotional 

from the number of trials where the emotional expression on the left was reported as more 

emotional. Second, this score was then divided by the total number of trials. The resulting LQs 
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range between -1 and 1, where negative LQ scores indicate a stronger right hemiface bias and 

positive LQs indicate a stronger left bias, with 0 indicating no bias.  

Procedure  

Participants read the information sheet, signed the consent form, and completed the Edinburgh 

Handedness Inventory (Oldfield, 1971). The experimenter then read aloud the instructions for 

the chimeric face task. Participants were informed that some blocks of trials might be more 

difficult than others, and that on some trials, the faces had been manipulated to appear ‘blurry’ 

or ‘cloudy’. Participants were not explicitly told that the stimuli had been manipulated in spatial 

frequency content. After half of the trials had been completed for each block, the program 

paused and participants began responding with the opposite hand. Response hand was changed 

after half of the trials. 

Results  

In the repeated-measures ANOVAs, if the sphericity assumption was violated, the degrees of 

freedom were subjected to Greenhouse-Geisser correction. Post hoc tests were Bonferroni 

corrected.  

Experiment 1 

LQs for broadband and hybrid chimeric faces (Figure 3) were submitted to a 2 × 6 ANOVA, 

with Spatial frequency manipulation (broadband/hybrid) and Emotion as the within-subject 

factors. In line with Hypothesis 1, the ANOVA revealed a significant intercept effect, F(1, 39) 

= 28.37, p < .001, ηp2 = .42 indicating an overall LVF/RH bias (0.18 ± 0.03). As predicted in 

Hypothesis 3, the main effect of Spatial frequency manipulation was significant, F(1, 39) = 

34.21, p < .001, ηp2 = .47, indicating a larger LVF/RH bias for broadband stimuli (0.34 ± 0.06) 

than hybrid stimuli (0.02 ± 0.03). The main effect Emotion did not approach significance, F(5, 
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195) = 0.58, n.s., ηp2 = .02. The Spatial frequency manipulation by Emotion interaction was 

also significant, F(5, 195) = 2.28, p < .05, ηp2 = .06. To elucidate the nature of the interaction 

six separate paired t-tests were performed, comparing LQs between broadband and hybrid 

stimuli for each emotion. The analysis revealed significant LQ differences (i.e., stronger 

LVF/RH bias) for all negative emotions (i.e., anger, disgust, fear and sadness), all t(39) > 3.62, 

p < .001. For happiness, no significant LQ difference between broadband and hybrid stimuli 

was found, t(39) = 1.39, ns. For surprise, the LQ difference between broadband and hybrid 

stimuli revealed a non-significant trend, t(39) = 2.28, p = .028, which did not survive 

Bonferroni correction. In addition, we conducted one-sample t-tests on the LQ for each 

individual condition. For the broadband condition, one sample t-tests revealed significant 

LVF/RH biases for all emotions (all t(39) > 3.54, all p ≤. 001) (Hypothesis 2). For all hybrid 

stimuli, except one (happiness), no significant bias was found (all t(39) < 0.51, n.s.). In contrast 

to our prediction, a significant LVF/RH bias was found for the hybrid condition with happy 

face expression, t(39) = 3.09, p = .004. Although the left bias for happy facial expression was 

numerically smaller for the hybrid condition (0.18 ± 0.06, M ± SE) compared to the broadband 

condition (0.29 ± 0.06), as predicted, the effect did not approach significance, t(39 = 1.39, p = 

.17, ns. The results for the hybrid stimuli suggest that happiness is processed differently from 

other low spatial frequency content stimuli (Figure 3). 
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Figure 3. Mean Laterality Quotients (LQs) for each individual (A) broadband and (B) hybrid 

chimeric emotional face (**p ≤ .01, ***p ≤ .001, according to two-tailed one-sample t-test, 

Bonferroni-corrected). Positive LQs indicate a left hemiface (RH) bias.  

 

One previous study (Bourne, 2005) reported sex/gender effects in ECFT in a sample of 276 

participants, showing larger LVF/RH biases in men than women. However, the present study 

did not include sex/gender because (a) sex/gender effects were not in the focus of the present 
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study, and (b) this analysis would require a larger sample size. If sex/gender had been included 

in the ANOVA, however, no main effect or interaction with sex/gender would have approached 

significance (all F < 2.80, ns). 

Experiment 2 

The present study was based on the assumption that emotional facial expressions are largely 

invisible when presented in the low spatial frequency range, whereas emotions are easily 

detectable when presented as broadband stimuli. To test this assumption directly, we added a 

control experiment in which a small sample of 20 different participants (10 men, 10 women) 

was tested. Mean age was 28.30 years (SD = 4.14) and mean handedness LI was 70.92 (SD = 

40.27, range: -73.30 - 100). In this control experiment, participants saw broadband and hybrid 

emotional chimeric faces presented centrally on the screen (one single stimulus per trial). 

Participants were asked to indicate by button press whether the left or right hemiface of the 

chimeric stimuli displayed the emotion. Stimulus size, timing of presentation and number of 

trials (8 trials for each emotion) were identical to the main experiment. Broadband and hybrid 

stimuli were again presented in separate blocks. Percentages of correct responses for each 

emotion/hemiface combination were tested against chance level with one-sample t-tests (test 

score: 50%). Significance level for one-sample t-tests was set to 1% due to multiple testing.  

For broadband stimuli, mean percentage of correct responses averaged across all 

emotion/hemiface combinations was 93.44% (SD = 6.67). One-sample t-tests revealed 

performances for each emotion/hemiface combination significantly above chance level, all 

t(19) ³ 4.35, all p < .0001. For hybrid faces, mean percentage of correct responses averaged 

across all emotion/hemiface combinations was significantly lower, 58.33% (SD = 13.04), t(19) 

= 11.22, p < .0001. One-sample t-tests revealed performances above chance level only for 

happy right (75.00%, SD = 32.44, t(19) = 3.45, p = .003) and fearful right hemifaces (73.75%, 
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SD = 23.61, t(19) = 4.50, p = .002). For all other emotions, and in line with our assumption, 

performances did not differ from chance level, all t(19) £ 2.48, ns, suggesting that the emotion 

in hybrid stimuli was largely invisible. 

Data are publicly available in SPSS format (v22) at  

https://www.dropbox.com/sh/mqv5w1t3r7ms48d/AACho3OmUd619D3aORngmu4wa?dl=0    

 

Discussion 

The present study sought to investigate whether low spatial frequency components in images 

of emotional facial expressions induce a RH bias across all basic emotions. We tested this under 

free-viewing with ECFT. For broadband stimuli, the results replicated numerous previous 

studies showing a consistent LVF/RH bias in ECFT (Hypothesis 1), and regardless of the 

emotional facial expression (Hypothesis 2) (Bourne, 2010, 2011; Innes et al., 2016; Workman 

et al., 2000). In addition, and in line with our Hypothesis 3, we found significant differences 

between broadband and hybrid stimuli, suggesting that low spatial frequency components alone 

are not carrying emotional information disproportionately to one hemifield over another. The 

exception was the emotional facial expression of happiness. This may indicate that happiness 

unlike other basic emotional facial expressions has specific low level visual characteristics in 

low spatial frequency components of the image. This interpretation is supported by the control 

experiment which revealed for hybrid faces an above-chance discrimination only for happy 

(and fearful) right hemifaces. The fact that these two emotions were detected only when the 

emotion was shown in right hemifaces suggests a LH-dominant feature-detection strategy 

based on low level visual characteristics (e.g., Rhodes, 1985).  However, this interpretation 

should be considered with caution because the results of broadband stimuli in the control 

experiment did not reveal any laterality bias, if single emotional chimeric faces were presented 
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foveally and for several seconds. Overall, the results may suggest that, in order to show a 

consistent LVF/RH bias in emotion lateralization using facial expressions, we require 

conscious access to the percept. This is in contrast to a previous studies (Prete et al., 2014) 

suggesting that emotion lateralization can be driven by low spatial frequencies even when this 

information is effectively ‘invisible’ to participants. 

In order to understand the inconsistencies between the present and previous studies using 

hybrid faces, it is important to consider the methodological differences arising from the 

different paradigms (ECFTs versus visual half-field stimulation) used in these studies. The key 

differences that might explain these inconsistencies are in (1) presentation times, (2) the range 

of emotional facial expressions tested, and (3) the specific instructions given to participants. 

In contrast to the long presentation times used in the present study, Prete et al. (2014) used 

brief presentation times in the visual half-field paradigm. Specifically, Prete et al. (2014) 

presented hybrid happy, hybrid angry and neutral faces for 250 ms and shorter foveally or in 

the LVF or RVF to control for saccadic eye movements, suggesting that the effects of the low 

spatial frequency components of images on emotion lateralization only becomes apparent at 

such short presentation times. Presentation times of 250 ms were also used in ECFT paradigm 

by Prete, D’Ascenzo, Laeng, Fabri, Foschi, and Tommasi (2015) in which chimeric faces 

consisted of two identical or different emotional (happy and angry) and neutral hybrid 

hemifaces (e.g., happy/happy, happy/angry, happy/neutral, angry/happy, etc.), and participants 

were asked to rate ‘friendliness’ of single chimeric faces, assuming that happy facial 

expressions were judged as more friendly than angry looking faces, especially when happy face 

expressions were displayed on the left of the chimeric face. However, in contrast to broadband 

face stimuli which showed significant modulation in friendliness ratings, depending on the face 

expression being happy, neutral or angry, Prete, D’Ascenzo et al. (2015) found no modulation 

in friendliness ratings for hybrid stimuli. All friendliness ratings for hybrid stimuli were 
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numerically slightly below the score of 3 (“neutrality point”), suggesting that participants were 

unable to detect the emotion in hybrid stimuli. This might also explain why no laterality biases 

(i.e., no differences between happy/neutral and neutral/happy, and angry/neutral and 

neutral/angry) were found for hybrid stimuli, which is in line with the results of the present 

study. The results are partly in line with Prete, Laeng, Fabri, Foschi, and Tommasi (2015, 

Experiment 2) which used the same ECFT as Prete, D’Ascenzo et al. (2015) but with shorter 

presentation times of 128 ms. Significant increases in friendliness ratings were particularly 

found for hybrid stimuli carrying happy expressions in the left hemiface or in both hemifaces. 

Unfortunately, however, Prete, Laeng et al. (2015, Experiment 2) did not compare hybrid 

versus broadband stimuli directly, because broadband stimuli were not included in a control 

condition. However, other findings such as those of Laeng and colleagues (Laeng et al., 2010, 

2013; Leknes et al., 2013) suggest that participants were affected by the low spatial frequency 

content in a hybrid face presented for several seconds when tested in paradigms that did not 

probe lateralization. The present study was the first investigating the LVF/RH bias in emotional 

facial expression processing with hybrid stimuli under free-viewing.  

It is important to acknowledge that emotional facial expressions differ in their basic visual 

properties. Some facial expressions, particularly positive expressions, like happiness, have 

single features, such as changes in the mouth, which are utilized for recognition in addition to 

the configural information which usually defines negative expressions like sadness (Bombari 

et al., 2013). Therefore, it may be that for hybrid stimuli, the laterality bias for happy facial 

expressions differs from other basic emotional facial expressions because of some salient 

features. Featural face processing is thought to be left lateralized and configural processing 

right lateralized (Bourne, Vladeanu, & Hole, 2009). This suggests that emotion lateralization 

could potentially be explained by asymmetries in processing featural and configural 

information. Featural changes can particularly affect the spatial frequency composition of the 
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face (Goffaux & Rossion, 2006; Keenan, Whitman, & Pepe, 1989). The characteristic changes 

in the mouth region associated with expressions, such as happiness, produce significant 

changes in the low spatial frequency content of the image of the face (Smith & Schyns, 2009). 

It is well known that low spatial frequency information carried by the magnocellular channel 

of the visual system is processed more rapidly than high spatial frequency components carried 

in the parvocellular system (e.g., Nowak, Munk, Girard, Bullier, 1995). As a consequence, it 

is plausible that rapid tachistoscopic presentation of emotional facial expressions dominated 

by low spatial frequency characteristics is more likely to produce a RH bias in visual half-field 

studies. However, the results of the present ECFT study suggest that a RH bias for happy facial 

expressions can still persist with longer presentations.  

Prete et al. (2014, Prete, D’Ascenzo et al., 2015; Prete, Laeng et al., 2015) only included facial 

expressions of happiness and anger as stimuli, whereas the present study included all six basic 

emotions. Surprisingly, the inclusion of all six basic emotions has not commonly been the 

practice in studies on emotion lateralization (e.g., Najt et al., 2013). This leads us to consider 

further whether emotional facial expressions of happiness or anger differ from the other four 

basic emotions in the laterality biases they elicit.  

In line with the broadband results of the present study, the few ECFT studies that have used all 

six basic emotions (e.g., Bourne, 2010, 2011; Innes et al., 2016; Workman et al., 2000) revealed 

rather consistent LVF/RH biases across all emotions, supporting the RH Hypothesis (Borod et 

al., 1998), rather than the Valence model of emotion lateralization (e.g., Silberman & 

Weingartner, 1986; Stafford & Brandaro, 2010) and corroborating other studies which have 

used less than six emotions (e.g., Christman & Hackworth, 1993). Support for the RH 

hypothesis from visual half-field studies is less consistent. For example, Najt et al. (2013) 

reported consistent LVF/RH biases only for a subset of negative emotions, including anger, 

fear and sadness, rather suggesting a “negative (only) valence model”.  
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For the hybrid chimeric faces, however, no overall hemiface bias emerged. This is inconsistent 

with the assumption that biases within the chimeric face task rely on the same mechanisms as 

for VHF tasks, and demonstrates that the processing of spatial frequency differs between 

paradigms. This might be expected given that higher spatial frequencies processing increases 

with exposure duration (Goffaux et al., 2011).  

Sergent’s (1982; 1987) Spatial Frequency Hypothesis predicts that low-pass filtered faces 

would be better categorized as emotional in the RH, maybe promoting an LVF bias for emotion 

lateralization. However, we only find evidence for this with the expression of happiness in the 

hybrid condition. In fact, the laterality bias for hybrid faces with masked happy facial 

expressions revealed an LVF/RH bias in both Prete et al. (2014) and the present study. This 

suggests that low spatial frequencies components are important, and sufficient, for identifying 

happy facial expressions. This finding is also in line with recent observations suggesting that 

low spatial frequencies appear to be more useful for identifying happiness compared to other 

emotions (Kumar & Srinivasan, 2011; Smith & Schyns, 2009).  

Related to the issue with differences in the range of emotional facial expressions tested, the 

present study differed from previous ones in the instructions given to participants. As noted 

earlier, Prete et al. (2014, Prete, D’Ascenzo et al., 2015; Prete, Laeng et al., 2015) did not ask 

participants to make decisions about the emotional content of hybrids, but rather asked them to 

rate their ‘friendliness’, assuming that happy facial expressions were judged as more friendly 

than angry looking faces. In contrast, in the present study participants were asked about which 

of two (identical, but mirror reversed) chimeric faces appears more emotional. In the present 

study the response required is less specific in terms of emotions than that required by Prete et 

al. (2014, Prete, D’Ascenzo et al., 2015; Prete, Laeng et al., 2015). It would be hard to argue 

that the task used in the present study is more demanding of discrimination abilities than that 

of Prete et al. In addition, of course, the much more relaxed timing demands of the present 
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study are also likely to make the task easier. This makes it unlikely that the consistent laterality 

bias in our experiment was missing because ECFT was too demanding or more demanding 

than the visual half-field task by Prete et al. (2014) or the ECFTs by Prete, D’Ascenzo et al. 

(2015) and Prete, Laeng et al. (2015).  

The present study is one of the very few that examined effects of spatial frequencies on the 

laterality of emotional face perception using hybrid faces. It also appears to be the only study 

to include all six basic emotions, and thus provided an opportunity to assess the generality of 

hypotheses concerning the lateralization of processing emotions in the context of spatial 

frequencies. The results presented here are generally consistent with the idea that emotional 

face perception is RH lateralized. However, the results of the present hybrid faces experiment 

showed that emotion lateralization is not entirely driven by low spatial frequency content in 

the ECFT. It is clear, therefore, that these two tasks should not be regarded as equivalent 

measures of emotion lateralization, and selection of either task should take into account 

differences in the sensitivity to spatial frequency content. Finally, the present study suggests 

that consistent lateralization effects for unconsciously processed emotional facial expressions 

may only become evident in paradigms which use short presentation times. These findings 

have important implications for our understanding of the relationship between consciousness 

and the perception of emotion and the extent to which these processes show hemispheric 

specialization. 
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