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Abstract 

The interplay of eustatic and isostatic factors causes complex relative sea-level (RSL) 

histories, particularly in paraglacial settings. In this context the past record of RSL is 

important in understanding ice-sheet history, earth rheology and resulting glacio-isostatic 

adjustment. Field data to develop sea-level reconstructions are often limited to shallow 

depths and uncertainty exists as to the veracity of modelled sea-level curves.  

We use seismic stratigraphy, 39 vibrocores and 26 radiocarbon dates to investigate the 

deglacial history of Belfast Lough (Northern Ireland) and reconstruct past RSL. A typical 

sequence of till, glacimarine and Holocene sediments, is preserved. Two sea-level lowstands 

(both max. -40 m) are recorded at c. 13.5k and 11.5k cal a BP. Each is followed by a rapid 

transgression and subsequent periods of RSL stability. The first transgression coincides 

temporally with a late stage of Meltwater Pulse 1a and the RSL stability occurred between c. 

13.0k and c. 12.2k cal a BP (Younger Dryas). The second still/slowstand occurred between c. 

10.3k and c. 11.5k cal a BP. 

Our data provide constraints on the direction and timing of RSL change during deglaciation.  

Application of the Depth of Closure concept adds an error term to sea-level reconstructions 

based on seismic stratigraphic reconstructions. 

 

 

Keywords: post-glacial relative sea-level change, , high-resolution seismics, glacio-isostatic 

adjustment (GIA), stillstand/slowstand, Younger Dryas,  
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1. Introduction 

 Modelled curves depicting sea-level changes since the Last Glacial Maximum (LGM), 

differ greatly around the world, as a result of glacio-isostatic adjustment (GIA), subsidence 

and tectonic activity (Bassett et al., 2005; Lambeck et al., 2014). With a few notable 

exceptions, observational records of former relative sea level (RSL) rarely extend beyond the 

late Holocene (before 8k a BP) and those that exist, have a greatly reduced temporal 

resolution. 

 In the Irish Sea, global and local influences interacted to produce one of the most 

complex deglacial sea-level histories on earth. For many decades, field data from around the 

Irish Coast have been studied to understand the impact of isostasy on RSL changes (e.g. 

Carter et al., 1989; Devoy, 1983; Devoy, 1991). Meanwhile, ice-sheet history in Great Britain 

and Ireland is actively being investigated (Clark et al., 2018) and despite recent advances 

(e.g. Chiverrell et al., 2013), uncertainties about the spatial extent and temporal thickness of 

ice hamper development of numerical models of RSL change. Consequently, GIA based 

reconstructions not only show high variability across the region (Brooks et al., 2008; Bradley 

et al., 2011; Kuchar et al., 2012), but there are also substantial differences between 

predicted RSL changes produced by different GIA models. Misfits between GIA model 

outputs and field data also create polarised views on the accuracy of such models (McCabe, 

2008; Edwards et al., 2008) and the paucity of observational data before ca. 8k a BP from 

the Island of Ireland (Edwards and Craven, 2017) hinders further progress.  

Here, new observational data based on multibeam bathymetry, 260 km of seismic 

reflection records, 39 vibrocores and 24 radiocarbon dates are used to develop a new 

reconstruction of RSL history for Belfast Lough, on the east coast of Northern Ireland (Figure 

1). As well as new data, previously collected offshore data from the same study area (Kelley 

et al., 2006) have been incorporated into the analysis. Belfast Lough occupies a significant 

location in the Irish Sea and its RSL history is key to understanding regional and local ice-

sheet history and GIA.  

 

2. Geological and oceanographic setting 

Belfast Lough is a meso-tidal marine embayment in the NW Irish Sea (Figure 1). The 

Lough and valley of the River Lagan, which drains into it, forms a broad trough underlain by 

soft Triassic marls and sandstones (Lamplugh et al., 1904). The region is mostly covered by 

widespread deposits of glacial origin which consist mainly of glacial diamict, with extensive 

spreads of sand interbedded or superimposed (Manning et al., 1970). Apart from being ice-

covered during the LGM, the region underwent two subsequent readvances: (1) the Killard 

Point Readvance of Irish Ice (17.3-16.6k cal a BP (McCabe and Clark, 1998; Ballantyne and Ó 

Cofaigh, 2017)) and (2) the East Antrim Coastal Readvance of Scottish Ice (occurring either 

at c. 16.5k cal a BP (Finlayson et al., 2014) or c. 15.6–15.0k cal a BP (McCabe and Williams, 

2012)). The latter shaped much of the drumlinised landscape. The city of Belfast is largely 

built on Holocene estuarine clays, which locally overlie freshwater peats that extend to -12 

m (OD Belfast) (Manning et al., 1970).    
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The river Lagan enters the head of the Lough. Some authors (Lamplugh et al., 1904; 

Manning et al., 1970) suggest ice-ponding during retreat of Scottish ice may have blocked 

the river, creating a “Glacial Lake Lagan”, with associated glacio-lacustrine sedimentation. 

None of these sediments, however, have been dated. 

A deglacial RSL reconstruction for NE Ireland, solely based on field observations 

along a stretch of 200 km of coastline and spanning 20 to 12k a BP (McCabe et al., 2007; 

Pink line Figure 2), suggests that, regionally, sea level was initially high due to isostatic 

depression. This is followed by a -30 m lowstand around 13.5k a BP, as derived from dated 

vibrocore samples collected in Belfast Lough by Kelley et al. (2006). Overall, this 

reconstruction suggests very rapid and large RSL changes. In contrast, more local RSL curves 

for the North Down area (centred around Belfast Lough) derived from GIA models (Brooks 

et al., 2008 (Model E); Bradley et al., 2011; Kuchar et al., 2012), show a monotonic drop in 

RSL from an early deglacial highstand (Figure 2). The three GIA model-derived 

reconstructions show successive RSL lowstands at ~14.5k and ~11k cal a BP, separated by a 

higher RSL inflection at ~13.5k cal a BP and followed by a Holocene highstand ~7k cal a BP. 

However, RSL predictions differs by up to 20 m between models, caused by differences in 

the choice of the regional ice-sheet reconstruction for the British-Irish ice sheet. The scarcity 

of data and lack of sea-level index points before 12k cal a BP hamper efforts to resolve these 

differences. 

  

3. Methods 

Seismic Pinger data and 39 vibrocores were acquired and analysed. Multibeam data 

were made available to the project. The methodology is similar to that discussed in Plets et 

al. (2015). Full details are provided in the supplementary section. All data are reduced to 

lowest astronomical tide (LAT), which is 2 m below Ordnance Datum Belfast, 1958 (OD). 

 

4. Results 

4.1. Seabed morphology 

Belfast Lough is a 40 km-long funnel-shaped embayment, 20 km wide at its mouth 

(Figure 1). It shallows rapidly landward from about 190 m to 10 m. Bedrock outcrops are 

common on the margins, but sediment occurs through most of the Lough.  

The mouth of the Lough contains three areas of complex seafloor morphology. Just 

northwest of the Copeland Islands are several flat-topped shoals in depths of 15 m - 20 m 

(Figure 1b, zone 1). Below 20 m depth, the shoal tops are rounded. Near the planed-off 

shoals, in a depth of about 30 m, a c. 500 m wide, c. 5 m high, arcuate ridge extends for 5 

km towards the north (Figure1b, zone 2). On the NW margin of the mouth of the Lough, the 

seafloor has an irregular topography, with ENE-WSW oriented ridges (usually less than 1 m 

in relief) (Figure 1a, zone 3). Further east, in water depths between 120 – 150 m, the 

hummocky terrain has been reworked by tidal currents, giving it a ‘smeared’ appearance 

(Figure 1a, zone 4).   
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4.2. Seismic stratigraphy 

Five units identified from seismo-stratigraphic analysis of the pinger data are described 

below (summarized in Table 1, Figure 3 and 4): 

 

Unit 1 (U1) is the deepest unit imaged. Reflectors within the unit are of medium amplitude 

and frequency and display a chaotic configuration. The surface, S1, overlying this unit is 

mostly continuous and is characterized by an irregular topography.  

 

Unit 2 (U2) overlies U1 in most areas. Reflectors within the unit are disrupted and mostly 

discontinuous, with relatively low amplitudes. The unit crops out on the northern side of the 

Lough as a hummocky terrain (Figure 1, zone 3). The lower reflectors onlap onto Surface S1, 

whilst the top reflectors are truncated by Surface S2. This latter surface is mostly 

discontinuous with an irregular topography. A grid of surface S2 shows that U2 forms a 

raised NNW-SSE ridge that divides the Lough into two sections: a western inner basin and 

eastern sloping surface (Figure 4a). 

 

Unit 3 (U3) can be divided into two facies, onlapping onto Unit 2: Fs3a in the inner basin to 

the west of the U2 ridge, and Fs3b to the east. Reflectors in Fs3a are higher amplitude, 

mostly wavy and parallel. Fs3b consists of medium amplitude reflectors that appear 

contorted and chaotic. Whilst Fs3a is truncated by surface S3, this truncation becomes less 

defined on the top of Fs3b. Below 40 m LAT depth, S3 can usually no longer be detected. The 

thickness map (Figure 4b) shows that this unit infills depressions seen in S2 (Figure 4a; top of 

U2), with the main depositional centre (up to 20 m thick) to the east of the U2 ridge. To the 

east, the unit is <10 m thick. U3 is thin to absent on top of the ridge. S3 is a regular, smooth 

and flat surface in the Inner Lough with an average depth between -16 and -17 m (LAT). The 

surface becomes irregular over the ridge, after which it drops off to a depth of -40 m (Figure 

4c).  

 

Unit 4 (U4) appears as a thin ‘fuzzy’-looking unit above U3 and dominates the inner lough 

area. It forms a chaotic, high amplitude band bounded by the erosional surface S3 at the 

bottom and S4 at the top. The top surface appears disconformable but its continuity is 

disrupted throughout. The depositional centre of this unit is to the west of the ridge (Figure 

4d) where it can reach up to 3 m. To the east of the ridge, U4 thins downslope. The thinning 

continues until S3 and S4 merge, before becoming indiscernible at depths around -40 m. S4 

(Figure 4e) forms a flat, smooth surface in the Inner Lough with a depth around -15 m -16 m 

(LAT), sloping down beyond the buried U2 ridge system.  

 

Unit 5 (U5) is divided into two facies: the bottom (Fs5a) is largely transparent; the top (Fs5b) 

has medium amplitude and frequency internal reflectors. The depositional centre of U5 is 
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seaward of the ridge, reaching thicknesses up to 10m (Figure 4f). In the Inner Lough, U5 is 

rarely >5m thick.  

 

4.3 Litho-biostratigraphy and radiocarbon dates 

Lithofacies description and dates 

Logging and sampling of the 39 cores, reveal 8 lithofacies assemblages based on 

texture and sedimentary structures. These are described below from bottom to top (Figure 

5, Figure S1; for detailed biostratigraphic detail see Table S1). Radiocarbon dates were 

obtained from shells and foraminifera in the cores to bracket the ages of distinct boundaries 

(Table 2; Figure 5b).  

 

Lithofacies A comprises a laminated reddish brown very fine sand with a minimum thickness 

of 1 m (Figure S1c). This unit was only retrieved in two cores (BL44 and 45) located in water 

depths below 40 m. Foraminifera were present are low abundance, hence, no counts were 

performed and no dates were obtained. 

 

Lithofacies B is a massive medium, well-sorted sand with few shell fragments.  In deep water 

(>40 m), the sand is fine-grained with fine laminations. It is at least 1.5 m thick and does not 

occur in the Inner Lough.  No foraminifera counts were performed due to the low abundance 

and no dates were obtained. 

 

Lithofacies C is a stiff, reddish-brown clay, with fine sand laminations or lenses (lenticular 

bedding) and disseminated organic material (Figure 5a, Figure S1a and b). The laminations 

predominantly occur at the top and are often contorted and, in some instances, sheared 

with a vertical offset of a few centimetres. A few rounded pebbles are present within the 

clay matrix. A high organic content is indicated by rapid oxidation of black clays to brown 

when exposed to the air – the black colour is more prominent at the bottom. The upper 

surface is usually erosional with bioturbation evident. The unit was never fully penetrated 

but reached a thickness of at least 80 cm. Seven foraminifera samples were taken, in which 

the glacimarine species Elphidium excavatum forma clavatum was found as dominant. Dates 

from this species range between 13.0-12.2k cal a BP, consistent with deposition during the 

Younger Dryas (ca. 12.9-11.5k cal a; Rasmussen et al., 2006).  

 

Lithofacies D is a mostly fine sand to silty-sand unit, characterised by large shells at the top 

(sometimes oysters) and smaller bivalves (mostly articulated) at the bottom. Occasional 

rounded pebbles (2-3 cm diameter) rest on the erosional surface (Figure 5a, Figure S1a and 

b). Rare rip-up clasts of the underlying Facies C are present. The unit is usually 30–40 cm 

thick. Seven foraminifera assemblage counts showed a mixed population with marine, 

estuarine/brackish and shallow glacimarine species all present in significant numbers (Table 

S1). Elphidium excavatum forma clavatum dominates in the inner Lough whilst the outer 
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Lough cores are dominated by the inner shelf species Cibicides lobatulus. Paired dating of 

foraminifera and bivalve shells was performed for two samples, with a further 6 dates from 

single whole shells (Table 2, Figure 5b). The dates for the foraminifera occur within the age 

range of the Younger Dryas (12.8-12.0k cal a BP), whilst the (paired) shells are much 

younger. In the inner Lough (BL9, 39), shell ages range between 11.5-10.3k cal a BP. Close to 

the U2 ridge (BL 17, 13), ages are c. 8.8k cal a BP at the top of the unit; in the deepest core 

sampled (BL29), the oldest age of 14,914±458 cal a BP was found for an unpaired bivalve 

while a younger shell sampled only 10 cm higher has an age of 12,340±235 cal a BP.  

 

Lithofacies E is a massive silty to sandy-silt unit containing abundant small bivalve shells 

(Corbula gibba), the concentration of which decreases upwards. The boundary with the 

overlying lithofacies F is gradual, whilst the boundary with the underlying lithofacies D is 

sharper (Figure 5a). The inner Lough shows an equal mix of marine, inner-shelf, estuarine 

and glacimarine foraminifera species (Elphidium excavatum, Elphidium excavatum forma 

clavatum and Ammonia becarrii; Table S1). The deeper cores contain fewer foraminifera, 

dominated by marine and inner-shelf species. Shells range in age between 7.8-9.0k cal a BP 

(Table 2, Figure 5b). 

 

Lithofacies F is a fining-upwards silty clay containing abundant gastropod Turritella sp. shells 

(Figure 5a). It is typically 2 m thick and occurs throughout the inner lough. In the inner 

Lough, the top of this unit is dominated by marine/inner-shelf and inner-shelf/estuarine 

species (Rosalinia anomala, Asterigerinata mamilla, Elphidium excavatum, Cibicides 

lobautuls, Quinqueloculina sp. and Elphdium gerthi; Table S1). In deeper water, foraminifera 

concentrations are very low and dominated by marine/inner-shelf and inner-shelf/estuarine 

species (Cibicides lobatulus and Asterigerinata mamilla; Table S1). In the inner Lough, a 

Turritella shell date suggests transition into this unit around 7.4k cal a BP (BL16) with an 

earlier transition around 9.1k cal a BP in deeper water (BL13). A paired foraminifera date 

yielded a Younger Dryas age, suggesting continued reworking of foraminifera. Towards the 

top of the unit, shell ages range between 4.9–5.4k cal a BP (BL9, BL39) (Table 2, Figure 5b). 

 

Lithofacies G comprises a massive, stiff brown/grey silt or clay with varying proportions of 

shell fragments. It is typically 30 cm thick and forms the modern seabed in only a few cores 

(BL12, 14, 17, 37) towards the inner reaches of the Lough. Foraminifera are present but were 

not analysed, and no dates were obtained. 

 

Lithofacies H comprises a coarsening upwards grey silty medium to fine sand with shell 

fragments in varying abundance (Figure 5a). It forms the surface unit in most cores, is 

typically 0.5 m thick and often rests on an erosional surface. One foraminifera count shows 

the assemblage to be dominated by inner-shelf marine species (Ammonia batavus and 

Cibicides lobatulus; Table S1).  
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As well as the dates obtained for this project, there are a further four published 

dates (Kelley et al., 2006; Table 2). Two further dates were obtained from Kelley et al.’s 

(2006) core BL03-04 in 2008 (unpublished) from a disarticulated infaunal bivalve and a 

Portlandia arctica shell (Table 2). The latter provides the oldest date from Belfast Lough 

(15,668±293 cal a BP) and was obtained in the red stiff clay found at the bottom of BL03-04 

(here labelled Lithofacies I; Figure S1). Shells from the unit above the red sediments date 

between 13.1-13.7k cal a BP. The Younger Dryas sediments which dominate the Inner Lough 

appear to be absent in the outer Lough. Kelley et al. (2006) also described a second core, 

taken 50 m to the SW of BL03-04. A date from a Spisula sp. shell recovered from the stiff red 

clay returned an age of 13.5k cal a BP. This is similar to dates found for the shells in the 

coarse sand layer above this unit, which is a more typical habitat for Spisula sp., and 

suggests the shell burrowed into the lower unit. 

 

Core stratigraphy 

The stratigraphy varies with position in the Lough (Figure 5b, 6, S2). In the inner 

Lough (c. 7-11 m water depth), the base of the cores consists of black, laminated stiff clay 

(Lithofacies C). It grades upwards into red/brown laminated stiff clay with a few sand lenses 

towards the top, and occasional small pebbles. The unit is truncated by an erosional surface, 

above which sits a bioturbated silty to sandy unit with bivalves and occasional pebbles 

(Lithofacies D). The top of Lithofacies D is usually capped by sediment containing large shells. 

Above this is a silty clay with abundant small articulated bivalve shells (Lithofacies E). It 

grades upward into a silty clay unit, with abundant Turritella sp., occasionally concentrated 

in shell lags (Lithofacies F). The top of the inner Lough cores consists of silty sand with 

abundant large shells and shell fragments (Lithofacies H). In a few locations in the innermost 

Lough, this is replaced by stiff grey mud or clay (Lithofacies G). 

Most of the slope cores (12-30 m water depth) consist of silty or silty-sand material 

at the bottom. The deeper the location of the core, the coarser the basal unit. In one slope 

core (BL16), the lithologies are similar to those found in the inner Lough with stiff reddish-

brown mud (Lithofacies C, at -19.9 m) at the base. In another (BL21), a red/brown clay rip-up 

clast from lithofacies C is included within the overlying silty facies, suggesting its extent to at 

least -24 m. Silty sand is succeeded by Turritella-rich silty clay (Facies F), with the modern 

seabed consisting of medium sand (facies H). 

The Outer Lough cores (>30 m water depth) consist of a well-sorted, generally 

structureless medium sand (Lithofacies B). Occasional pebbles and shell layers are present. 

In the deepest cores, the sand is fine-grained and laminated. In two cores acquired in >40 m 

water depth, the sand is distinctly red and laminated (Lithofacies A; Figure S1c). In the outer 

Lough, core BL03-04 described by Kelley et al. (2006) consists of massive red clay with 

pebbles at the base (here annotated as Lithofacies I; Figure S1d). A dipping boundary marks 

the top of this unit, above which 20-30 cm of red laminated muds and sands occur. The 

colour of this unit is like that of lithofacies A, albeit with higher clay content. It is noted that 

both the massive clay and sandy laminations are distinctly different in colour than the 
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red/brown clay cored in the inner Lough. A pebbly coarse sand with abundant shells, similar 

to lithofacies D, sits on the laminated red sands and clays, with a clear boundary between 

them. A rip-up clast of red mud was found at the top of this unit.  

 

5. Discussion 

5.1. Overall stratigraphy 

The combined data enable an interpretation of the nature and patterns of 

sedimentation and erosion in the embayment and provide insights into the associated RSL 

change. Starting with the oldest unit, the stratigraphy of offshore geology of Belfast Lough 

can be summarized as follows (for the interpretation of the seismic units, see Table 1): 

 

Seismic unit U1 represents the acoustic basement and S1 is the irregular upper surface 

of the bedrock (Permo-Triassic sandstones). 

Overlying the unconformity S1, U2 occurs mainly as a 15-20 m thick and 2.5 km wide 

NNW-SSE orientated ridge spanning across the Lough. U2 crops out on the NW margin of the 

Lough (Figure 1a, zone 3) and, with its irregular topography, is distinctly different from the 

surrounding seabed. It was not reached by cores but based on the seismic characteristics 

and appearance on the seabed, is consistent with till (Barnhardt et al., 1997). Based on its 

geomorphology and setting, the U2 ridge (Figure 4a) is tentatively interpreted as a moraine. 

SW of this ridge, near the Copeland Islands (Figure 1b, zone 1), the flat-topped shoals in 

water depths of 15–20 m are an extension of U2 and are interpreted as drumlins, planed off 

by wave erosion (Oldale et al., 1994; Shaw et al., 2011); below 20 m depth, the drumlins 

retain a rounded appearance. The hummocky terrain in deeper water (Figure 1a, zone 4) 

also resembles a drumlin field aligned along a NW-SE axis.  

U3 drapes the underlying bedrock and till, and is focused in two depocentres (Figure 4b) 

divided by the till ridge. It is more extensive and thicker in the inner (western) basin (Fs3a) 

and is mostly absent on top of the ridge. The laminated nature of the sediments, and lack of 

basal erosion, suggests suspension settling and is consistent with deposition in a 

glacilacustrine or glacimarine setting (Barnhardt et al., 1997). As none of the inner Lough 

cores reached this unit, it cannot be determined whether these sediments were deposited in 

a marine environment and/or an ice-ponded lake (Lamplugh et al., 1904; Manning et 

al.,1970) – the latter remaining a plausible hypothesis. Kelley et al. (2006) succeeded in 

penetrating the upper part of unit Fs3b in the outer Lough (Lithofacies I; Figure S1). A 

Portlandia arctica shell, obtained from massive red clay with occasional pebbles (interpreted 

as dropstones), was dated to 15,6685±293 cal a BP (Table 2). The sediments display all the 

characteristics of a glacimarine origin, with the arctic shell species suggesting a cold 

environment. Whilst there is disagreement about when Scottish ice left the area after the 

East Antrim Readvance (McCabe and Williams, 2012; Finlayson et al., 2014), these sediments 

indicate cold conditions continued until at least c. 15.7k cal a BP. 
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S3, an erosional unconformity, truncates U3 (glacimarine) and the top of the U2 till ridge 

(Figure 3). It is interpreted as a wave ravinement surface produced during a marine 

transgression (Catuneanu, 2006; Bache et al., 2014). The longitudinal profile of the 

ravinement surface shows it to be steep in the outer and near-horizontal in the inner Lough 

(Figure 4c). This surface was cored by Kelley et al. (2006) in the outer Lough and proved to 

be a 30 cm-thick sandy shell hash. Three radiocarbon dates obtained for these sediments 

yielded ages of 13.1-13.7k cal a BP (Table 2). These provide a date for the onset of the 

formation of the wave ravinement associated with a transgression phase. In one of the cores 

collected in this study (BL29; Figure 5b), a ravinement surface was encountered around -40.7 

m LAT and was overlain by approximately 40 cm of large shells in a sandy matrix, similar to 

those encountered by Kelley et al. (2006). A shell positioned within the shell hash, yielded a 

date of 12,340±235 cal a BP. On the seismic reflection profiles, the surface extends to c. -40 

m LAT. We discuss our interpretation of the depth of the wave ravinement surface in section 

5.2, but the depth of the traced unconformity suggests that the lowstand preceding 

transgression was no lower than ~-40 m. S3 becomes near-horizontal in the inner Lough at a 

depth of ca. -17 m, suggesting a prolonged period of sea-level stability after the initial 

transgression. 

U4 rests upon the erosional surface of S3 and is commonly 1.5 m thick (maximum 3 m). 

Its ‘fuzzy’ seismic signature (Figure 3) is similar to that found in gas-charged sediments (Judd 

and Hovland, 1992). In no core was its base reached. U4 is represented by lithofacies C 

which, with its lenticular bedding, bioturbation and sand lenses, is suggestive of deposition 

in a low energy, shallow water tidal environment (Davis and Dalrymple, 2012). The contorted 

bedding and occasional brittle deformation (Figure S1b) may reflect cold climate processes 

that caused freezing of the sediment (Allard et al., 1998). The occasional pebbles may 

represent dropstones. All radiocarbon ages indicate that this unit was deposited during the 

Younger Dryas between 13-12.2k cal a BP under cold conditions (Table 2). This was 

potentially initiated earlier since the unit was not cored in its entirety, and potentially lasted 

for longer, as the top has been eroded. The current consensus is that the Irish Sea and low 

ground in Ireland were free of (glacier) ice by 15k cal BP (Ballantyne and Ó Cofaigh, 2017), 

and that ice was limited to mountain cirque glaciation during the Younger Dryas (Gray and 

Coxon, 1991; Barr et al., 2017). However, sea loughs may have become seasonally frozen in 

winter with sea-ice incorporating material (sand and small pebbles) from the coastal zone 

and depositing it in the Lough (Lisitzin, 2002). U4/lithofacies C is mainly present in the inner 

Lough and does not occur much further offshore beyond the till ridge (Figure 4d). In the 

outer Lough transgressive sediments directly overly the glacimarine unit (Kelley et al., 2006).  

The top of U4 is marked by a high amplitude reflector (S4), indicated in cores to be an 

erosional surface above lithofacies C (Figure 5a, Figure S1b). This is interpreted as a second 

wave-cut ravinement surface created during a second transgression. S4 can be traced on the 

seismic data to depths of -40 m (Figure 4e), suggesting a second lowstand that reached no 

lower than -40 m. The sediments of Lithofacies D are interpreted as shallow water estuarine 

sediments, subject to higher energy conditions than lithofacies C. Concentrations of large 
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shells in the unit likely represent lag deposits. Paired dating shows that the foraminifera 

were reworked from the underlying Younger Dryas sediments, while the shells are distinctly 

younger (Table 2). The foraminifera assemblage counts contain species from different 

environments (Figure 5b, Table S1), pointing towards a dynamic setting with substantial 

reworking.  

Seismic unit Fs5a (bottom U5) appears to coincide with lithofacies D as well as 

lithofacies E, representing the transition into a fully estuarine sedimentary environment. 

Lithofacies E lacks the Turritella sp. shells which are abundant in the overlying unit, but 

instead has a large concentration of small bivalves (Figure 5). The lack of Turritella sp. could 

indicate a large supply of sediment at that time, which would be disadvantageous to 

stationary feeders. The foraminifera counts show an increase in estuarine species compared 

to the underlying Lithofacies D (Figure 5b, Table S1), but show little distinction between 

Lithofacies E and F. Dating of the shells in Lithofacies E (7.8-9.0k cal a BP) points towards a 

potential erosional event in the inner Lough, with the underlying Lithofacies D likely to be 

older than 10.3k cal a BP (Figure 5b, Table 2).  

The contact with the thicker overlying unit Fs5b (top U5) is a gradational, fining upwards 

into fine silts, interpreted as shallow subtidal estuarine sediments (Lithofacies F). The 

abundant Turritella shells are characteristic of such environments (Poirier et al., 2009) and 

high concentrations potentially mark changes in environmental conditions (Baltzer et al., 

2015) or storm events. The mix of silt and sand suggests deposition in a low energy 

environment with pervasive bioturbation. All of this records a period of transgression and 

increasing water depths, confirmed by the foraminifera which show an increase in deeper 

marine species towards the top (Table S1). The radiocarbon dates also confirm the gradual 

transition with no indication of a time hiatus (c. 9.1k cal a BP for deeper parts; 7.4k cal a BP 

for the inner Lough; Figure 5b)).  

The thin surface Lithofacies H and G are barely discernible in the seismic records, but a 

strong reflector underneath the seabed could indicate the change into more sandy 

sediments (Figure 6). This is ascribed to an increase in wave reworking as sedimentation 

and/or sea-level fall brings the sediment surface within the zone of increased wave action. 

Lithofacies H forms the modern seabed and is characteristic of the estuarine setting of the 

modern Belfast Lough. Lithofacies G is distributed in the upper reaches of the modern Lough 

and represents a proximal subtidal mudflat environment exposed to low wave energy and 

more fluvial influences. Two dates from the top of the underlying unit indicate that this unit 

is younger than c. 5.2k cal a BP (Table 2). 

 

5.2. Late Quaternary evolution and the record of sea-level change 

The combined seismic-, litho- and bio- stratigraphy and associated chronology point to 

a temporal succession of events that record relative sea-level changes during the early 

period of deglaciation through to the mid-Holocene. The sequence of events is outlined as 

follows and represents a minimum RSL reconstruction (i.e. sea level must have been above 

this (light grey line Figure 7b&c)): 



12 
 

1. Deposition of till, forming a ridge across the Lough. This could have happened 

during the LGM retreat or later re-advance phase (most likely the Killard Point 

Readvance (17.30-16.6 ka BP (McCabe and Clark, 1998; Ballantyne and Ó Cofaigh, 

2017).   

2. Drumlinisation during a subsequent phase of west-east ice movement tentatively 

linked to the East Antrim readvance (c. 16.5 ka (Finlayson et al., 2014) or c. 15.6 – 

15.0 ka cal BP (McCabe and Williams, 2012)), evidenced by onshore and submerged 

offshore drumlins near the Copeland Islands (Figure 1b zone 1). 

3. Flooding of the basin and deposition of glacilacustrine/marine sediments. This is 

linked to high sea-levels associated with the glacio-isostatically depressed land 

immediately after ice retreat. The marine Portlandia arctica shell dated to c. 15.7k 

cal a BP (point (30) Figure 7a) correlates with a high RSL at that time, recorded at 

Rough Island in Strangford Lough, some 20 km south of the study area, where 

marine muds drape drumlins (15.0k cal a BP at +2.72 m OD (+4.72 m LAT) (McCabe 

and Clark, 1998; Brooks and Edwards, 2006; point (o) Figure 7a).  

4. Subsequent land uplift caused RSL fall with the maximum depth of the (wave-cut) 

erosional unconformity represented by deepest occurrence of S3 around -40 m LAT 

(dashed yellow line Figure 7a). As this surface is wave cut, we tentatively put the 

maximum depth of the lowstand 2 m above this at -38 m. Dating of the topmost 

unit of the underlying sediment and the base of the overlying coarse transgressive 

sediments (Kelley et al. 2006; point (28) on Figure 7a), place the timing of this 

lowstand before c. 13.5k cal a BP but after the Rough Island date (15.0k cal a BP) 

(indicated as ‘Maximum lowstand I’, Figure 7b).  

5. The subsequent transgression formed the erosional wave ravinement surface (S3), 

truncating the till ridge and glacimarine sediments. Three marine shell dates from 

the transgressive unit from the outer part of the Lough (Kelley et al. 2006; points 

(25, 26, 27) Figure 7a) suggest RSL had reached c. -30 m between c. 13.1 and 13.6k 

cal a BP. Landward of the till ridge, the flat nature of the surface suggests a period 

of RSL stability after transgression, with the unconformity sitting at about -17 m 

(dashed light green line Figure 7a). This RSL still-stand is consistent with the 

planation of the offshore drumlins at water depths between -15 m and -20 m 

(Figure 1b zone 1). Owing to the wave cut nature of the surface, the height of RSL is 

tentatively put at c. -15 m LAT (Light grey line Figure 7b&c).  

6. On surface S3, tidally influenced sediments of U4/Lithofacies C accumulated in the 

inner part of the Lough (points (8, 18, 19, 24, 23) Figure 7a). This unit records a 

period of RSL stability (indicated as ‘Stillstand I’ Figure 7b) and rapid sediment 

accumulation, during the colder Younger Dryas. Joining the suggested position of 

RSL, as shown by the transgressive sediments in the outer Lough (points (25, 26, 27) 

Figure 7a), and the oldest date for the tidal sediments (c. 12.8k cal a BP (point (19) 

Figure 7a), provides a tentative indication of the rate of RSL rise prior to this 

stillstand.  
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7. The overlying erosional surface (S4) extends to -35-40 m LAT (dashed yellow line 

Figure 7a) and indicates RSL fell to a depth somewhat above that (tentatively placed 

at -38 m). Based on the dates of Lithofacies C and the overlying Lithofacies D, this 

occurred after c. 12.5 ka cal BP and prior to c. 11.3 ka cal BP (indicated as 

‘Maximum lowstand II’ Figure 7b). These dates and the position of the maximum 

lowstand give a first indication of the possible rates of regression and transgression. 

8. Surface S4 was then cut into U4/Lithofacies C during ongoing transgression. Wave 

reworking incorporated clasts and foraminifera (points (1, 3, 15, 17) Figure 7a) from 

Lithofacies C into the overlying silty sands of Lithofacies D. A second period of RSL 

stability, tentatively put at -13 m LAT, is inferred by the extensive wave-cut 

erosional surface in the Lough at -15 m LAT marking the top of unit U4/Lithofacies C 

(dashed dark green line Figure 7a). Shell dates above the transgressive surface 

suggests that this planation occurred between c. 10.3 and 11.5k cal a BP (points (16, 

21, 22) Figure 7a; indicated as ‘Stillstand II’ on Figure 7b). The youngest date 

coincides with development of a freshwater peat deposit throughout the Belfast 

Lough area, dated to c. 10.3k cal a BP at -11.5 m LAT (Manning et al., 1970; 

minimum limiting date point (e) Figure 7a), whilst the older date matches that of a 

freshwater peat (11.4k cal a BP) from -8.6 m LAT (Carter, 1982; minimum limiting 

date point (g) Figure 7a). Peat is not preserved in the energetic environments of the 

Lough but is ubiquitous in the inner Lough and under Belfast City (Manning et al., 

1970).   

9. Continued transgression after c. 10k cal a BP, led to deeper water and less wave-

influenced environments first characterised by bivalve-rich sands and silts 

(Lithofacies E; points (6, 7,  9, 10, 14) Figure 7a), followed by the appearance of 

Turritella sp. (Lithofacies F, point 5). This continued to the ca. +2 m mid-Holocene 

RSL highstand at c. 6.5k cal a BP (Carter, 1982).   

10. A fall to the present sea level caused a lowering of wave base post c. 5.1k cal a BP, 

resulting in the deposition of fine sand seabed sediments (Facies A and B) and the 

disappearance of abundant Turritella sp. (youngest dated Turitella sp., points (13 

and 20) Figure 7a).  

 

Whilst our sedimentary data do not provide primary RSL change evidence, they do 

provide, together with the ravinement surfaces data, constraints on the trajectory and 

timing of RSL. The ravinement surfaces are interpreted to be wave cut and are indicative of 

the depth at which the waves interact with the seabed. As a first estimate, our minimum 

RSL reconstruction placed RSL 2 m above any wave cut feature (light grey line Figure 7b&c). 

However, wave-induced sediment transport and morphological change potentially extends 

to wave base or Depth of Closure (DoC), defined as the depth at which wave-induced 

sediment transport and morphological change cease to be significant (Nicholls et al., 1998). 

The DoC is a concept routinely used in coastal and navigation engineering projects where 

sediment mobility needs to be calculated in the planning stage (e.g. Brutsché et al., 2016). 
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This concept has not yet been explored in sea-level reconstruction studies but can add an 

error estimate to offshore ground-truth data. The present-day DoC for the region is c. 7 m 

below mean water (Loureiro, pers. com., based on Hallermeier (1981); dark grey line Figure 

7b). Ortiz and Ashton (2016) argue that the conventional techniques for calculating DoC are 

only valid for short (decadal) time scales. Their Morphodynamic Depth of Closure (MDoC) is 

representative of the maximum depth of wave influence at 102-103 year timescales. In the 

study area this could be as much as 14 m (black line Figure 7b). Applying these vertical 

error margins to our RSL reconstruction shows how these add a large potential sea-level 

range to the reconstruction. The (M)DoC calculation assumes that the wave regime and 

tidal range have not changed throughout the examined period. Palaeo-tide modelling 

around the British Isles (Scourse et al., 2018) suggests that a meso-tidal regime has 

persisted in the area since c. 16 ka BP. Despite these caveats, and because there is a lack of 

primary limiting dates, the reconstruction presented using the DoC is an important step 

forward in constraining RSL.  

In Figure 7c this RSL reconstruction is compared against regional GIA model 

reconstruction outputs (Brooks et al., 2008; Bradley et al., 2011; Kuchar et al., 2012) and 

McCabe et al.’s (2007) reconstruction. The GIA models vary from each other in that their 

earth models, global and regional ice-sheet reconstructions differ. Comparison is therefore 

important in that it provides a yardstick against which modellers can test their outputs. 

Three main observations can be made: 

1. All three GIA-model-derived predictions and our RSL reconstruction indicate two 

lowstands after the East Antrim Readvance. However, the timing and depths differ. The 

earliest lowstand, caused by glacio-isostatic rebound after ice unloading, is represented by 

the erosional (transgressive) surface cored by Kelley et al. (2006). This is dated to between 

c. 13.4 and 15.0 cal ka BP, based on material dated above this surface and the Rough Island 

date. The observations made in this study suggest that the transgression potentially started 

somewhat later than the time shown by GIA-model-derived predictions and earlier than 

McCabe et al.’s (2007) reconstruction, but we lack further dates to narrow this down. The 

latest possible occurrence is displayed on the reconstruction. The second erosional 

(transgressive) surface was only cored in the inner Lough, but its offshore extension is 

evident in the seismic data. Our dates suggest that the associated lowstand occurred after 

c. 12.5 but before c. 11.3k cal a BP, putting it potentially up to 1000 years earlier than the 

second lowstand of the GIA model outputs. The maximum DoC lowstand (dashed dark grey 

bars) places these lowstands significantly lower (c. 20 m) than the lowest modelled 

lowstand (Brooks et al., 2008). Even the MDoC puts the depth of the lowstand (black 

dashed bars) over 10 m lower than the Brooks et al. (2008) curve. In McCabe et al.’s (2007) 

reconstruction, the first lowstand is close to MDoC’s maximum lowstand.  

2. Two clear transgressive events follow the lowstands. These are preserved as coarse 

shell-rich material, including pebbles, overlying a distinct erosional boundary. The start of 
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the rapid RSL as seen in the models corresponds to the inclusion of a meltwater pulse 

(MWP-1A) in the eustatic component of the GIA models between 14.5 and 13.5k cal a BP 

(Figure 7c, purple bar). Our suggested later start of the transgression is slightly out of sync 

with the onset of this event. However, recent results (Yokoyama et al., 2018) suggest that 

MWP-1A happened as a series of steps with the last pulse coinciding closely with the latest 

possible onset of the first transgression (Figure S3).  

The start of the second transgression appears to correspond temporally with the initiation 

of MWP-1B around c. 11.5k cal a BP (Liu and Milliman, 2004), an event which is heavily 

contested (Bard et al., 2016) and is not included in the global GIA models. In Belfast Lough, 

the magnitude of this transgression is potentially of the same order as the first 

transgression. Whilst there is still discussion and uncertainty about the timing, magnitude 

and existence of MWP-1B, our field data suggest an increased rate of RSL rise between 

12.5-11.3k cal a BP. This is in general agreement with an increased rate in RSL rise in the 

global eustatic curve at that time (Figure S3). 

3. Our data indicate two RSL still/slowstands which do not appear in regional GIA-model-

derived reconstructions. A Younger Dryas stillstand has also been recognised in the 

Western Pacific (Liu and Milliman, 2004) and the Barbados coral record (Abdul et al., 2016), 

although the latter is contested (Bard et al., 2016). Major shoreline complexes developed 

during this ‘slowstand’, have been recognised in the south Atlantic (Cooper et al., 2017) 

and Indian Ocean (Green et al., 2014). In Belfast Lough, the sediments (resembling 

glacimarine sediments with dropstones and brittle deformation), foraminifera (glacimarine 

species Elphidium excavatum forma clavatum), radiocarbon dates and seismic data confirm 

a cold climate coupled with a stable RSL during the Younger Dryas. Dates for the second 

slowstand were obtained from the transgressive unit sitting on a clear, mostly flat, 

erosional surface as seen on the seismics and cored in the inner Lough. After this final 

still/slowstand, minimum limiting dates are available for the area (Brooks et al., 2008) and 

suggest a RSL rise until the mid-Holocene maximum. 

 

6. Conclusion 

The data from this study record a typical glacial-deglacial sedimentary sequence of 

infilling of a marginal marine embayment. The presence of drumlins and a potential moraine 

at the entrance of Belfast can aid in the reconstruction of the glacial history, indicating a 

potential readvance or stillstand. Unfortunately, the glacimarine sediments were not cored 

in the inner part of the Lough. A distinct Younger Dryas deposit was imaged and cored, 

indicating cold conditions with potential seasonal sea-ice, as well as a RSL still/slowstand. It 

is the first time this has been encountered in a shallow marine environment in Ireland and it 

forms an important marker for future seismic and coring work.  

From a sea level’s perspective, this paper potentially presents the most complex 

published record of local RSL changes. The data show evidence for two wave cut erosional 
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surfaces, suggestive of two lowstands, followed by two transgressions and two slowstands. 

Currently, such surfaces are disregarded by RSL modellers, as they represent marine limiting 

dates only, which cannot constrain more precisely the position of RSL. To enhance the utility 

of these surfaces in RSL reconstruction, the concept of the Depth of Closure has been 

explored for the first time. Whilst the technique requires knowledge of the past wave and 

tidal regime, it is an important step towards addressing depth uncertainties associated with 

marine data. This concept has not been explored elsewhere for past RSL reconstructions 

and further validation of the technique could lead to significant progress.  
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Figure 1. Location of the study area. (a) Multibeam data of the offshore region and onshore 

digital elevation model, with a broad overview of the underlying bedrock. (b) Detailed map 

showing the core sampling locations and acquired seismic data; blue star shows location of 

the core described by Kelley et al. (2006); red line shows pinger line illustrated in Figure 3. 

Zones 1-4 are geomorphological features discussed in the text. 
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Figure 2. Three recent GIA model-derived RSL curves (Brooks et al., 2008 (Model E); Bradley 

et al., 2011; Kuchar et al., 2012) and McCabe et al.’s (2007) reconstruction with limiting sea-

level index points extracted from Brooks and Edwards’ (2006) database.  Limiting date type 

1 points have a known age and environment but no quantifiable sea level position; limiting 

date type 2 points contain material whose source environment is contested or unclear. OD 

Belfast refers to mean sea level; LAT refers to lowest astronomical tide (2 m below mean sea 

level). 
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Figure 3. Interpreted seismic Pinger line showing core locations. For position of the line, see 

figure 1b; for the description of the seismic facies, see Table 1. 
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Figure 4. Interpolated and gridded depths of the main unconformities S2 (a), S3 (c) and S4 

(e) with profiles lines for the latter two, and thickness maps of seismic units U3 (b), U4 (d) 

and U5 (f). The dotted line outlines the location of a raised ridge system dividing the Lough 

into the inner basin and the outer Lough. 
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Figure 5. (a) Typical core collected from the inner Lough with the description, assigned 

lithofacies and dated samples. (b) Transect of cores for which radiocarbon dates were 

acquired, together with lithofacies interpretation and relative palaeo-environmental 

abundance of foraminifera. For the location of the cores, see Figure 1b.  
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Figure 6. Core stratigraphy along the Lough and correlation with the seismic data. For the 

location of the seismic line and cores, see Figure 1b. Core BL39 has been selected as a  

representative core for the inner Lough to correlate the seismo- and lithostratigraphy. 
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Figure 7. (a) Summary plot of limiting dates (Brooks et al., 2008) and marine radiocarbon 

dates described in this paper. The bracketed numbers refer to the radiocarbon samples as 

numbered in Table 2. No y-axis terms are defined – depths were defined from MBES depths 

projected using core coordinates – we estimate a maximum vertical error of +/- 5 m. (b) 

Radiocarbon dates combined with a proposed minimum relative sea level curve (light grey); 

the Depth of closure (dark grey) and Morphodynamic Depth of Closure (black) are 

annotated. (c)  Comparison of the proposed relative minimum, DoC and MDoC sea-levels 

curve with GIA model derived reconstructions (Brooks et al., 2008; Bradley et al., 2011; 

Kuchar et al., 2012) and McCabe et al.’s (2007) reconstruction. The purple bar illustrates the 

interval between 14.5 and 13.5k cal a BP during which MWP-1A is introduced in the GIA 

model approach. 
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Table 1. Description and interpretation of the seismic facies, with corresponding lithofacies. 
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Table 2. Selected species and depths for radiocarbon dating 

No Core Lab code Sample 
depth (cm) 

Total depth (m 
below LAT) 

Lithofacies Species dated d13C 14C Age 
yrs BP ± 
1σ) 

Calibrated 
age: median 
probability yrs 
BP 

Calibrated age: 
mean (Marine13) 
yrs BP ± 2SD 

1 BL13  SUERC-
45964 

420-421 19.0-19.01 F Foraminifera 
(Quinqueloculina 
seminulum) 

0.3 10647 ± 
62 

12083 
 

12118 ± 291 
 
 

2 BL13  SUERC-
45951 

420-421 19.0-19.01 F Marine shell 
(Abra sp.) 

1.0 8392 ± 60 9051 
 

9067 ± 184 
 
 

3 BL13  SUERC-
45962 

440-441 19.2-19.21 D Foraminifera 
(Quinqueloculina 
seminulum) 

0.3 10714 ± 
63 

12212 
 

12226 ± 259 
 
 

4 BL13  SUERC-
45952 

440-441 19.2-19.21 D Marine shell 
(Abra sp.) 

1.4 8245 ± 66 8835 
 

8811 ± 192 
 
 

5 BL16  SUERC-
51625 

252-253 19.22-19.23 F Shell (Turritella 
communis) 

3.5 6887 ± 61 7441 
 

7437 ± 117 
 
 

6 BL16  SUERC-
51626 

285-286 19.55-19.56 E Shell (Corbula 
gibba) 

1.2 8202 ± 60 8779 
 

8780 ± 185 
 
 

7 BL16  SUERC-
51627 

305-306 19.75-19.76 E Shell (Corbula 
gibba) 

1.5 7941 ± 59 8446 
 

8455 ± 118 
 
 

8 BL16  UCIAMS-
139024 

324-325 19.94-19.95 C Foraminifera 
(Elphidium 
excavatum 
forma clavatum) 

2.2 
 

10970 ± 
110 

12535 
 

12455 ± 288 
 
 

9 BL17  SUERC-
51630 

143-144 25.43-24.44 D Shell (Corbula 
gibba) 

1.8 8199 ± 59 8775 
 

8778 ± 184 
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10 BL17  SUERC-
51631 

175-176 25.75-25.76 D Shell (Corbula 
gibba) 

1.5 8232 ± 59 8821 
 

8805 ± 180 
 
 

11 BL29  
 

SUERC-
45950 

176-177 40.46-40.47 D Marine shell 
(Abra sp.) 

0.3 10819 ± 
63 

12378 
 

12340 ± 235 
 
 

12 BL29  
 

SUERC-
46370 

185-186 40.55-40.56 D Marine shell 
(Tellina sp) 

-8.5 
 

13022 ± 
103 

15027 
 

14914 ± 458 
 
 

13 BL39  
 

SUERC-
51633 

81-82 11.01-11.02 F Shell (Turritella 
communis) 

3.4 
 

4859 ± 58 5219 
 

5217 ± 189 
 
 

14 BL39  
 

SUERC-
51632 

355-356 
 

13.75-13.76 E Shell (Corbula 
gibba) 

1.9 7436 ± 58 7940 
 

7945 ± 136 
 
 

15 BL39  SUERC-
45961 

394-400  
 

14.14-14.2 D Foraminifera 
(Elphidium 
albiumbilicatum) 

-0.4 11107 ± 
64 

12657 
 

12666 ± 112 
 
 

16 BL39  
 

SUERC-
45953 

394-400 14.14-14.2 D Marine shell 
(Abra sp.) 

0.7 10060 ± 
62 

11108 
 

11077 ± 159 
 
 

17 BL39  
 

SUERC-
48869 

415-416 14.35-14.36 C Foraminifera 
(Elphidium 
excavatum 
forma clavatum) 

0.4 11088 ± 
64 

12646 
 

12654 ± 111 
 
 

18 BL39  
 

UCIAMS-
139025 

445-446 14.65-14.66 C Foraminifera 
(Elphidium 
excavatum 
forma clavatum)  

0.9 11050 ± 
64 

12623 
 

12627 ± 112 
 
 

19 BL39  
 

UCIAMS-
139026 

489-490 15.09-15.1 C Foraminifera 
(Elphidium 

2.5 11320 ± 
64 

12825 
 

12829 ± 161 
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excavatum 
forma clavatum) 

20 BL9  SUERC-
51636 

82-83 10.72-10.73 F Shell (Turritella 
communis) 

3.4 
 

4766 ± 59 5101 
 

5093 ± 184 
 
 

21 BL9  SUERC-
51634 

325-332 13.15-13.22 D Shell (Artica 
islandica) 

1.9 10219 ± 
60 

11258 
 

11303 ± 188 
 
 

22 BL9  SUERC-
51635 

350-351 13.4-13.41 D Shell 
(Circomphalus 
casina) 

-0.4 9570 ± 60 10496 
 

10475 ± 178 
 
  

23 BL9  UCIAMS-
139027 

398-400 13.88-13.89 C Foraminifera 
(Elphidium 
excavatum 
forma clavatum) 

0.0 11165 ± 
64 

12697 
 

12710 ± 127 
 
 

24 BL9  UCIAMS-
139028 

450-451 14.4-14.41 C Foraminifera 
(Elphidium 
excavatum 
forma clavatum) 

-1.7 11215 ± 
61 

12735 
 

12748 ± 133 
 
 

25 Kelley et 
al., 2006; 
BL3 

203000 153 26.0 D Shell (Mytilis sp)  11670 ± 
61 

13204 
 

13206 ± 136 
 
 

26 Kelley et 
al., 2006; 
BL3 

202999 153 26.0 D Shell (Balanus 
sp) 

 12000 ± 
61 

13488 
 

13503 ± 163 
 
 

27 Kelley et 
al., 2006; 
BL3 

202998 153 26 A? Shell (Nuncula 
sp) 

 11990 ± 
61 

13477 
 

13492 ± 161 
 
 

28 Kelley et 
al., 2006; 
BL4 

203001 255 27 I Shell (Spisula sp)  12030 ± 
61 

13521 
 

13532 ± 166 
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29 Kelley et al, 
unpublishe
d; BL3 

UB9217 130-140 25.8 E Shell (infaunal, 
unidentified) 

 9437 ± 55 10331 
 

10345 ± 140 
 
 

30 Kelley et al, 
unpublishe
d; BL3 

UB9216 225 26.7 I Shell (Portlandia 
arctica) 

 13449 ± 
72 

15695 
 

15667.5 ± 292.5 
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Supplementary information 

Methodology 

High-resolution seismic data were collected, onboard RV Celtic Voyager, with an SES 5000 

(3.5 kHz) hull-mounted Pinger system (200 ms pulse length). All data were recorded in CODA and 

imported into SMT Kingdom 8.8 software for processing and interpretation. This processing 

included: tidal correction to lowest astronomical tide (LAT), Bandpass filter (2700– 3000–5500–

6000Hz), automatic gain control (10ms) and envelope application. Where reflectors and surfaces 

were gridded, a Flex Gridding algorithm was used with a 10 x 10 m cell size. Core logs were 

superimposed onto the seismic data using a linear velocity model of 1550 – 1700 m/s over a core 

length of 6 m. To convert the two-way travel time, an average acoustic velocity of 1600 m/s was 

assumed 

Multibeam bathymetric data were acquired by the Royal Navy and the Agri-Food and 

Biosciences Institute in 2009 using an EM1002 and EM3002. All data were supplied in processed 

form at 2 m resolution, referenced to LAT. 

Based on the seismic data acquired in 2011, a subsequent cruise on 17th and 18th June 2012 

onboard the RV Celtic Explorer collected 39 vibrocores, using a 6m long Geo-Vibrocorer (6m barrel, 

11cm diameter PVC liner). The recovery of sediment ranged from 0.86 to 5.24 m, in water depths 

ranging from -7.8 to -54.4 m LAT. Cores were stored horizontally in refrigerated facilities (4°C) after 

disembarkation. They were split, photographed and described (lithology, texture, contacts, 

sedimentary structures and Munsell colour). Twenty-four samples were dated using accelerator 

mass spectrometry (AMS) radiocarbon dating from stratigraphically significant horizons from six 

cores. Target material included whole bivalves, gastropods or monospecific benthic foraminifera 

samples. Monospecifc foraminifera samples were wet sieved using 500 and 63 μm sieves. 

Foraminifera in the fine fraction were wet picked, identified, and dried in an oven at 40 °C. The shell 

samples were washed in deionised water and dried at 40 °C. Samples with the prefix SUERC were 

analysed at the SUERC Radiocarbon Dating Laboratory at East Kilbride, with five small samples of 

monospcific Elphidium excavatum forma clavatum sent to Keck C cycle AMS Lab, University of 

California (prefix UCAIMS). The conventional ages were calibrated using the Marine13 curve (Calib 

v.7.04, Reimer et al., 2013), and corrected for the local reservoir effect of δR of − 45 ± 46 (based on 

Blake, 2005). Dates are reported as mean (2 sigma range) calibrated calendar years before present 

(cal a BP) (Table 2). A further twenty-two foraminifera samples from four cores were analysed for 

assemblage counts. Where possible, a minimum of 300 benthic foraminifera were handpicked from 

a 3 cc volume of sample, although foraminifera concentrations were too low for the 300-minimum 

count in some samples (minimum number counted being 117 specimens). Identifications were based 

on various taxonomic references (e.g. Haynes, 1973, Murray, 1971, Murray, 1979, Murray, 2003, 

Murray, 1991, Nooijer et al., 2008). Whilst benthic and planktonic species were counted, only 

benthic species were used for percentage calculations. 
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Supplementary Table 1. Detailed foraminifera analysis; red: marine/inner shelf species, orange: inner 

shelf to estuarine species, green: estuarine to brackish lagoon species, blue: shallow glacimarine 

species. 

 

Core BL39 BL39 BL39 BL39 BL39 BL39 BL39 BL39 BL39 BL39 BL39 BL39 

Depth (cm 20-21 80-81 

175-

176 

340-

341 

365-

366 

389-

390 

393-

394 

409-

410 

411-

412 

413-

414 

450-

451 

484-

485 

Lithofacies H F F E D D D D C C C C 

Adelosina type 0.2 0.0 0.5 0.7 0.0 2.9 2.3 3.5 0.3 0.0 0.5 0.0 

Ammonia 

batavus 29.3 4.7 1.4 1.4 0.3 0.0 1.0 0.3 0.0 0.0 0.0 0.6 

Asterigerinata 

mamilla 5.5 11.0 3.6 2.1 1.0 1.6 2.0 0.9 1.3 0.5 0.0 0.0 

Brizalina 

difformis 0.5 0.3 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Brizalina 

variabilis 0.5 3.3 0.2 0.0 0.0 0.4 0.0 0.0 0.8 0.0 0.0 0.0 

Bulimina type 2.1 2.1 5.2 4.6 6.0 6.6 2.6 0.9 2.1 0.0 0.0 0.0 

Cyclogyra 

involvens 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Elphidium 

crispum 0.2 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.0 0.0 0.0 0.0 

Elphidium 

gerthi 9.0 6.8 5.2 3.9 9.6 16.5 15.7 5.4 7.2 0.0 0.0 0.0 

Elphidium 

incertum 0.2 1.2 0.7 1.1 1.0 2.1 2.3 2.5 0.5 0.0 1.4 2.3 

Elphidium 

margaritaceum 1.0 2.1 0.2 1.8 2.0 3.7 4.6 1.3 1.6 0.0 0.0 0.0 

Fissurina lucida 0.2 2.4 0.2 0.4 0.3 1.6 2.0 0.0 0.5 0.5 0.0 0.0 

Fissurina 

marginata 1.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Lagena striata 0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Nonionella 

turgida 0.0 1.5 0.5 1.1 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 

Nonionella type 0.5 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Oolina melu 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Oolina 

williamsoni 1.6 0.0 0.7 0.0 0.7 0.4 0.3 0.0 0.3 0.0 0.0 0.0 
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Patellina 

corrugata 3.4 2.4 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Procerolagena 

clavata 0.2 0.0 0.5 0.4 0.0 0.4 0.0 0.0 0.5 0.0 0.0 0.0 

Pyrgo elongata 0.0 0.0 0.2 0.7 0.3 0.4 0.3 0.3 0.3 0.0 1.9 11.6 

Pyrgo 

williamsoni 0.0 0.3 0.5 0.0 0.0 0.8 0.0 0.0 1.1 1.1 3.8 8.1 

Quinqueloculina 

type 5.5 6.8 3.1 3.2 6.3 11.1 7.8 7.3 10.7 0.5 3.3 1.7 

Rosalina 

anomala 1.4 8.0 1.9 0.4 1.3 0.0 1.0 0.0 0.8 0.0 0.0 0.0 

Spirulina 

vivipara 0.0 1.5 1.2 0.7 0.0 0.4 0.0 0.0 0.0 0.0 1.9 0.6 

Spiroloculina 

type 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.8 0.0 0.0 0.0 

Stainforthia 

fusiformis 0.0 1.2 0.2 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Textularia 

sagittula 0.9 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Textularia 

truncata 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Trifarina 

angulosa 1.2 0.0 0.0 0.0 0.0 0.4 0.3 0.0 0.0 0.0 0.0 0.0 

Trochammina 

ochrea 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Bolivinellina 

pseudopunctata 0.2 0.6 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cassidulina 

laevigata 2.9 0.3 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.5 0.9 0.6 

Cassidulina 

neoteretis 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.9 0.5 0.0 0.0 0.0 

Cassidulina 

obtusa 1.4 3.3 0.0 0.0 0.3 0.0 0.0 0.6 0.0 2.2 0.9 1.2 

Cibicides 

lobatulus 18.6 6.5 1.7 0.7 0.7 2.9 15.7 3.5 2.9 2.2 2.3 2.9 

Elphidium 

excavatum 3.1 14.2 14.7 24.8 14.6 7.8 5.9 3.2 1.6 3.3 3.8 0.6 

Haynesina 

depressa 0.0 5.6 0.0 0.0 0.0 0.0 0.3 1.3 0.3 0.0 0.0 0.0 

Miliolinella sp 2.2 1.5 1.4 0.7 1.3 5.8 4.6 11.1 10.4 0.0 0.0 1.2 
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Planorbulina 

mediterranensis 2.1 0.0 0.9 0.0 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 

Elphidium 

albiumbilicatum 0.0 0.0 0.0 0.4 0.3 0.4 1.3 24.1 14.1 18.0 16.9 15.1 

Elphidium 

excavatum 

forma clavatum 0.0 5.3 20.1 23.8 49.7 31.7 25.2 27.2 35.5 69.9 61.5 50.6 

Nonionella 

labradorica 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ammonia 

beccarii type 3.6 3.9 31.5 24.1 1.0 0.4 0.3 1.9 1.3 0.0 0.0 0.0 

Elphidium 

williamsoni 0.3 1.2 0.2 1.1 0.0 0.0 0.7 1.9 1.3 0.5 0.0 0.6 

Haynesina 

germanica 0.0 0.6 1.2 2.1 0.7 1.2 3.3 1.3 2.1 0.5 0.9 2.3 

 

Core BL9 BL9 BL9 BL9 BL9 BL16 BL16 BL16 BL16 BL17 BL17 

Depth (cm) 82-83 

325-

326 

350-

351 

398-

400 

450-

451 

255-

256 

285-

286 

305-

306 

325-

326 

148-

149 

175-

176 

Lithofacies F D D C C F E E C F D 

Adelosina type 0.3 0.0 0.0 0.0 0.0 0.0 2.0 2.2 0.3 1.1 0.4 

Ammonia 

batavus 2.7 0.9 0.9 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.4 

Asterigerinata 

mamilla 11.9 0.9 1.7 0.2 0.1 24.6 15.7 19.3 1.2 14.9 2.7 

Brizalina 

difformis 1.8 0.0 0.0 0.0 0.0 2.9 2.5 1.5 0.0 1.1 0.9 

Brizalina 

spathulata 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.4 

Brizalina 

variabilis 0.3 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.3 0.4 1.3 

Bulimina type 4.3 5.1 0.9 0.1 0.1 0.0 1.0 3.0 1.4 1.9 0.4 

Cyclogyra 

involvens 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 

Cyclogyra 

involvens 0.3 0.0 0.0 0.1 0.2 0.7 0.5 0.7 0.2 0.0 0.0 

Elphidium 

gerthi 5.5 11.1 0.9 0.4 0.1 1.4 2.5 6.7 0.0 3.1 0.9 

Elphidium 

incertum 0.0 6.0 7.7 1.9 1.3 0.0 0.5 0.0 6.2 0.0 1.8 
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Elphidium 

margaritaceum 3.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.3 0.0 1.8 

Fissurina lucida 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.4 

Fissurina 

marginata 0.9 0.0 0.0 0.0 0.0 1.4 0.5 0.7 0.2 0.4 0.0 

Lagena type 0.0 0.0 0.0 0.2 0.1 0.0 0.5 1.5 0.3 0.0 0.0 

Nonionella 

turgida 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.4 0.0 

Oolina melu 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 

Oolina 

williamsoni 0.6 0.0 0.0 0.0 0.2 0.0 2.0 2.2 0.7 0.8 0.0 

Patellina 

corrugata 2.4 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.4 0.0 

Procerolagena 

clavata 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.2 0.0 0.0 

Pyrgo elongata 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 

Pyrgo 

williamsoni 0.6 0.0 0.0 2.8 3.6 0.0 1.5 0.0 4.2 0.4 0.4 

Quinqueloculina 

agglutinus 0.0 0.9 0.0 1.0 0.3 0.7 0.0 0.0 1.6 0.0 0.0 

Quinqueloculina 

sp 6.4 12.0 0.0 1.2 2.7 9.4 8.3 17.0 5.7 8.8 6.6 

Rosalina 

anomala 14.6 0.0 0.0 0.0 0.0 6.5 10.3 8.1 0.2 9.2 2.7 

Spirulina 

vivipara 1.2 0.0 0.0 0.0 0.1 3.6 1.0 0.0 0.0 0.8 0.0 

Spiroloculina 

type 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 

Stainforthia 

fusiformis 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Textularia 

sagittula 0.0 0.0 0.0 0.0 0.0 4.3 1.5 1.5 0.0 2.7 0.4 

Textularia 

truncata 3.6 0.0 0.0 0.0 0.0 1.4 3.4 0.0 0.0 1.9 0.4 

Trifarina 

angulosa 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 

Bolivinellina 

pseudopunctata 1.2 0.9 0.0 0.0 0.0 0.0 0.0 0.7 0.3 0.4 0.4 

Cassidulina 

laevigata 0.9 0.0 2.6 0.1 0.0 0.7 0.5 0.0 0.3 1.1 0.4 
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Cassidulina 

obtusa 4.0 0.9 1.7 0.3 0.9 0.7 6.4 2.2 1.9 5.7 12.8 

Cibicides 

lobatulus 7.3 0.0 13.7 0.9 1.5 12.3 10.8 4.4 11.8 27.5 25.7 

Elphidium 

excavatum 8.5 6.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.4 1.3 

Haynesina 

depressa 4.6 0.9 0.0 0.0 0.2 0.7 0.0 0.7 0.3 0.0 0.9 

Miliolinella sp 2.7 8.5 0.0 0.2 0.2 1.4 5.4 5.2 5.0 3.1 5.3 

Planorbulina 

mediterranensis 1.2 0.0 0.0 0.0 0.0 2.9 2.5 3.0 0.0 3.8 0.4 

Elphidium 

albiumbilicatum 0.0 0.0 35.9 16.2 10.2 0.0 0.0 0.0 11.8 0.0 1.8 

Elphidium 

excavatum 

forma clavatum 3.0 44.4 20.5 67.1 72.3 7.2 6.4 10.4 40.7 3.1 21.2 

Hyalinea  

baltica 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.4 0.0 

Nonionella 

labradorica 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

Ammonia 

beccarii type 3.0 1.7 4.3 0.3 0.4 12.3 12.3 8.9 0.7 5.3 5.3 

Elphidium 

williamsoni 0.6 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.2 0.0 0.4 

Haynesina 

germanica 0.3 0.0 9.4 6.7 5.3 0.0 0.5 0.0 3.3 0.0 0.4 
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Supplementary Figure S1. Photos showing details of some of the lithofacies. In particular, (a) 

shows the contrast and erosional contact between Lithofacies C and D as well as the change 

in colour from black to red/brown throughout lithofacies C; (b) shows the shearing present 

in Lithofacies C; (c) and (d) illustrate the similarity in colour and the laminated structure of 

Lithofacies A observed in BL45 and the core described by Kelley et al., (2006). (d) Also shows 

the core section described by Kelley et al. (2006) with dated samples and interpreted 

lithofacies.   
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Supplementary Figure S2. Overview of the lithology of all acquired cores, with indication of 

dated samples. For the core locations, see Figure 1b. 
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Supplementary Figure S3.  Comparison between proposed, GIA derived and McCabe et al.’s 

(2007) reconstructions (see Figure 7c). The bottom graph shows Bradley et al.’s (2011) 

eustatic component versus Yokoyama et al.’s (2018) global mean sea level. The purple bar 

illustrates the interval between 14.5 and 13.5k cal a BP during which MWP-1A is introduced 

in the GIA model approach. Yokoyama et al.’s (2018) curve shows the possible stepped 

nature of MWP-1A with the potential timings of periods with rapid sea-level rise. 

 

 

 


