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Post-translational modifications (PTMs) play a critical role in regulating plant growth and development 

through the modulation of protein functionality and its interaction with its partners. Analysis of the 

functional implication of PTMs on plant cellular signalling presents grand challenges in understanding 

their significance. Proteins decorated or modified with another chemical group or polypeptide plays a 

significant role in regulating physiological processes as compared to non-decorated or non-modified 

proteins. In the past decade, SUMOylation has been emerging as a potent PTM influencing the 

adaptability of plants to growth, in response to various environmental cues. Deciphering the SUMO 

mediated regulation of plant stress responses and its consequences is required to understand the 

mechanism underneath. Here, we will discuss the recent advances in the role and significance of 

SUMOylation in plant growth, development and stress response. 
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Introduction 

Being sessile organisms, plants are constantly exposed to a wide variety of environmental stresses such 

as biotrophic and necrotrophic infections, salinity, drought. In order to adapt to their immediate 

environment, plants have evolved different mechanisms that includes the initiation of complex 

signalling pathways that crosstalk with each other. Different phytohormones like auxins, gibberellins, 

brassinosteroids, abscisic acid, salicylic acid and jasmonic acid have been studied and play a significant 

role in plant growth and development. Additionally, phytohormones also play major roles in mediating 

plant defence responses against pathogens and abiotic stresses (Bari and Jones 2009). Different 

hormones are responsible for the regulation of different stress responses, for instance ABA is involved 

in regulating drought, salinity, cold and heat stress (Zhang et al. 2006). Salicylic acid and Jasmonic acid 

are known to be involved in providing responses in plant defence against biotrophic/hemibiotrophic 

and necrotrophic pathogens respectively (Wasternack and Hause 2013). The phytohormone auxin is 

involved in plant growth and patterning. Polar auxin transport has importance in various developmental 

aspects, such as vascular tissue development, tissue regeneration, apical dominance or flower and fruit 

development (Sorefan et al. 2009). It is important to remember that hormone responses in situ are not 

solely the result of linear pathways, but rather the output of multiple pathway integration and 

interdependence. These hormones imply an exchange of information between them, referred to as 

“cross-talk”, that directly or indirectly affects a wide variety of biological outputs (Mundy et al. 2006, 

Chandler 2009). The interaction between signalling components modulate the hormonal cross-talk and 

determine the plant response during biotic and abiotic stress. These responses need to be adjusted in 

reaction to the changing environment, this can be achieved by regulating the abundance and activity of 

proteins involved in the signalling pathways. These protein components might be the targets for post-

translational modifications.  

Posttranslational modifications of proteins are a central feature of the hormone signal transduction 

pathways that regulate the expression of target genes bringing about the response. Optimal regulation 

of protein activity, stability, localisation and its interactions are required for cellular homeostasis. To 

maintain the homeostasis post-translational modification (PTM) of proteins plays a critical role. PTMs 

are either through conjugation of small chemical group as is the case for phosphorylation, acetylation 

and methylation or via covalent attachment of another polypeptide such as ubiquitination and 

SUMOylation. Among the various post-translational modifications (PTMs), SUMOylation, a versatile 

regulatory process, has emerged as a major molecular process that participates in various biotic and 

abiotic stress responses (Chinchilla et al. 2007). SUMO conjugation (SUMOylation) and deconjugation 
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(deSUMOylation) is a dynamic and reversible PTM and is used to regulate many processes with central 

roles in development including signal transduction, protein subcellular localisation, protein aggregation 

and the epigenetic control of transcription (Conti et al. 2008, Park et al. 2010, Catala et al. 2007, Lois 

et al. 2003). These PTMs are known to work independently as well as cross talk with other PTMs. 

PTMs have been studied in great detail in animals but has been explored to a lesser extent in plants. In 

order to harness the potential of PTMs in crop improvement and generate stress tolerant crops that can 

withstand the rapidly changing global environment, better understanding of the process is essential. 

SUMOylation involves conjugation of approximately 100-115 amino acid polypeptides called Small 

Ubiquitin MOdifier (SUMO) to lysine residues of target proteins (Hanaina et al., 1999). It is an essential 

PTM in eukaryotes that provides a dynamic regulatory ability that enable plants to rapidly respond to 

environmental cues. SUMOylation affects the protein stability, subcellular localisation and protein-

protein interactions. 

 

SUMO and its machinery 

Several ubiquitin related proteins have been identified. Depending on their identities with ubiquitin they 

have been divided into two groups: closely related to ubiquitin (>35% identities) and remotely related 

to ubiquitin (<20% identities). SUMO belongs to the second group of proteins and has the ability to 

conjugate to other proteins in a ubiquitin like fashion (Loeb and Haas 1994). In 1995, first SUMO 

homologue, suppressor of mif two 3 (Smt3) was identified in a screen for suppressors of a temperature-

sensitive allele of MIF2 in yeast (Meluh and Koshland 1995). Later on, several human and mouse 

homologs were identified (Chen et al. 1998). In 1996, Matunis and Blobel discovered that RanGAP1 

covalently attaches to a novel ubiquitin related protein named GAP modifying protein 1 (GMP1; 

Matunis et al. 1998) and later it was called SUMO1 (Mahajan et al. 1997). In plants, SUMO was first 

identified in tomato. Eight highly conserved orthologs of SUMO have been identified in Arabidopsis 

using bioinformatic approaches among which only SUMO 1, 2, 3 and 5 are expressed, although only 

under specific conditions and at specific times.  Among the various isoforms SUMO1 and 2 are the 

most closely related isoforms sharing 83% amino acid sequence identity, whereas SUMO 9 is 

considered to be a pseudogene. Besides Arabidopsis, SUMO families have been identified in many 

different crop plants such as rice, maize, wheat, sorghum, and poplar spp. SUMO plays a critical role 

during plant growth and development and regulates plant responses (Ross et al. 2002, Stade et al. 2002, 

Kurepa et al. 2003, Lois et al. 2003, Gill  2005, Miura et al. 2005, Catala et al. 2007, Conti et al. 2008, 

Reed et. al. 2010, Park et al. 2010, van den Burg et. al. 2010). 
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Similar to ubiquitination, SUMO is covalently attached to the proteins through an ATP dependant 

cascade of sequential reactions. It involves the action of E1- SUMO activating enzyme (SAE1/2), E2- 

SUMO conjugating enzyme (SCE) and E3 SUMO ligase enzymes (Geiss-Friedlander and Melchoir 

2007, Jentsch and Psakhye 2013, Ulrich 2009). SUMO interacts non-covalently with E1 and E2 

enzymes during the process of SUMO conjugation (Louis and Lima 2005). This process results in the 

linking of SUMO to its substrate on the lysine residue through a diglycine motif (Fig. 1). E3 SUMO 

ligases are not always required for conjugating SUMO to its targeting proteins. Therefore, it raises the 

question on the functional significance of SUMO E3 ligases (Wilkinson and Henley 2010). In 

Arabidopsis, only two E3 ligases have been identified named as HIGHPLOIDY2 (HPY2) and SAP and 

Miz1 (SIZ1). Depending on the SUMOylation consensus site at the SUMO N-terminal, target proteins 

can be SUMO conjugated with a single SUMO in most cases or with multiple SUMOs to build a poly-

SUMO chain on the target protein (Aguilar-Martinez et al. 2015, Bylebyl et al. 2003, Knipscheer et al. 

2007, Capili and Lima et al. 2007). SIZ1, SP-ring finger protein, has been shown to be involved in 

flowering (Jin et al. 2008, Son et al. 2014), seed germination (Kim et al. 2016), epigenetic regulation 

(Kim et al. 2016), nutrient utilisation (Park et al. 2011), freezing tolerance (Miura et al. 2007, Gou et 

al. 2017), defence response (Lee et al. 2006, Hammoudi et al. 2018), photomorphogenesis (Lin et al. 

2016), iron deficiency (Zhou et al. 2019) and phosphate deficiency (Miura et al. 2005). Recent studies 

showed that SIZ1 plays an important role in the accumulation and stability of seed storage proteins 

through its E3 ligase activity and mediates methylation of histone proteins (Kwak et al. 2019, Miura et 

al. 2020). Overexpression of SIZ1 can regulate heat/drought tolerance and responses to phosphate and 

nitrogen in rice, tomato and cotton (Mishra et al. 2018, Zhang et al. 2017, Zhang et al. 2018). The 

diverse potential of SUMO conjugating enzymes can be utilised in crop improvement. SUMO 

conjugation and deconjugation both are highly dynamic and well-balanced during normal cellular 

activities.  

 

SUMO proteases 

Ubiquitin-like proteases (ULPs) and ULP-like proteases are cysteine family proteases that are 

responsible for SUMO maturation and for the release of SUMO from their targets, the process is called 

deSUMOylation, via their endopeptidase and isopeptidase activities respectively. (Benlloch and Lois, 

2018, Yates et al. 2016, Garrido et al. 2018, Verma et al. 2018). These ULPs recognise a carboxyl-

terminal diglycine (GLyGly) motif in SUMO proteins and remove about ten amino acids after the 

GlyGly motif, thereby exposing the motif for conjugation to target proteins (Jonson, 2004, Melchoir et. 
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al. 2003, Park et. al. 2011). The SUMO proteases also function to cleave the terminal glycine of SUMO 

conjugates and the substrate, releasing free SUMO from the target protein, which is then ready for 

further SUMO conjugation cycles (Muller et. al. 2001, Yates et. al. 2016). SUMO proteases constitute 

the most numerous family among members of the SUMOylation machinery and display specificity for 

SUMO isoform and substrate (Chosed et. al. 2006, Colby et. al. 2006). The Arabidopsis genome has 

identified seven SUMO-specific proteases, namely EARLY IN SHORT DAYS 4 (ESD4), ULP1a/ 

ESD4 LIKE SUMO PROTEASE (ELS1), ULP1b, ULP1c/ OVERLY TOLERANT TO SALT 2 

(OTS2), ULP1d/OTS1, ULP2a and ULP2b (Kurepa et. al, 2003, Colby et. al. 2006, Miura et. al. 2007, 

Miura and Hasegawa 2010, Hermkes et. al. 2011, Kong et al. 2016, Liu et al. 2017). All the SUMO 

proteases identified to date have peptidase activity that cleaves SUMO1/2/3 isoforms in vitro (Chosed 

et al. 2006, Conti et al. 2008).  

 As evident, the number of identified SUMO proteases is higher than the number of SUMO conjugating 

enzymes. (Yates et al. 2016, Garrido et al. 2018, Castro et al. 2018). Due to the subcellular localisation, 

spatial restriction and regulatory domains with in proteases they are thought to provide specificity to 

maintain the pool of SUMO conjugated and deconjugated form of target proteins.  

All identified ULPs are cysteine proteases with a conserved histidine (H), aspartic acid (D) and cysteine 

(C) catalytic triad (Kurepa et al. 2003, Rawling et al. 2008, Morrell and Sadanandom 2019). They are 

classified into three different classes: the ULP/SENP (Ubiquitin-like protease/sentrin-specific protease) 

family, the Desi (deSUMOylating isopeptidase) family, and USPL1 (Ubiquitin specific peptidase-like 

protein). The first SUMO protease identified was ubiquitin-like specific protease1 (ULP1) from yeast 

(Saccharomyces cerevisiae) (Li and Hochstrasser 1999). Later on, by comparing the amino acid 

sequence from the catalytic domain of ULP1, a second yeast SUMO protease (ULP2) was identified 

(Li and Hochstrasser 2000). SUMO proteases have been identified based on amino acid sequence 

conservation to yeast ULP1 or ULP2, eight consensus group have been found and six have been 

characterised (Hickey et al. 2012, Kurepa et al. 2003, Lois 2010, Conti et al. 2008, Hermkes et al. 2011, 

Liu et al. 2017). The Desi proteases belong to the evolutionary distinct family of cysteine proteases 

(Shin et al. 2003). Recently, we have characterised the role and significance of Desi SUMO proteases 

in Arabidopsis during pathogen triggered immunity (PTI; Orosa et al. 2018) but its orthologs have not 

been identified in lower eukaryotes such as yeast. The USPL1 class of SUMO protease, has only been 

identified in metazoan vertebrates and invertebrates.  

Different members of the ULP family exhibit substrate specificity for SUMO processing as well as 

cleavage of SUMO conjugates. Analysis with both full length and the catalytic core of ULP1 reveals 
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variability in the regulatory N-terminal domain of the proteases (Chosed et al. 2006) and their role 

varies from one protein to the other. The regulatory (N-terminal) domain of the SUMO protease is 

required for both peptidase and/or isopeptidase activities and the regulatory domain also plays a 

significant role in activity of the catalytic (C-terminal) domain by either inhibiting or activating the 

catalytic activity (Chosed et al. 2006).  

 

Potential of SUMO proteases in regulating plant growth and development 

Understanding how plants quickly respond to environmental cues is an important question in plant 

biology to develop biotic or abiotic stress resilience in crops. As global climate change brings more 

frequent and extreme weather, plants also need to quickly adapt to the environmental conditions. 

Contrary to animals, plants cannot escape from these environmental constraints. To overcome these 

environmental stresses, plants have developed biochemical and molecular mechanisms. Phytohormones 

such as auxin, gibberellin, jasmonic acid, salicylic acid and abscisic acid play a pivotal role and 

coordinate with different signalling pathways during response to environmental stimuli. These 

hormones are important in nearly every aspect of plant growth and development from embryogenesis 

to senescence. They are small endogenous signalling molecules which are fundamental to plant 

phenotypic plasticity. SUMO has gained huge attention over the last decade after the discovery of its 

ability to modulate the function of protein without affecting its kinetics. Recent studies show that 

SUMOylation enables plants to respond through either modulating hormone signalling pathways or by 

rapidly moderating protein function.  

Aforementioned studies demonstrate that cellular localisation of SUMO proteases take part in 

regulation of different SUMOylated proteins. Additionally, it is observed that SUMO proteases provide 

another layer of specificity through substrate recognition and cleavage (Orosa et al. 2018, Orosa-Puente 

et al. 2018, Srivastava et al. 2020). These proteases are responsible to maintain the cellular level of 

SUMOylated and nonSUMOylated form of proteins. During biotic stress, the cellular levels of these 

SUMO proteases are altered and change the balance between SUMO modified and non-modified 

proteins. Recent studies implicated the role of different SUMO proteases in various signalling cascades 

that are involved in regulating both directly or indirectly plant responses to different biotic and abiotic 

stresses (Fig. 2).  

The SUMOylation status of proteins regulate protein stability and its interaction ability with their 

partners. It also alters the subcellular localisation of proteins. It is also involved in chromatin 

remodelling and conformational changes in target proteins. Recent studies suggest that SUMO 
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proteases play a critical role in various aspects of plant growth and defence. SUMO1 and SUMO2 have 

been linked to the regulation of salicylic acid mediated defence signalling against biotrophic infection 

in Arabidopsis thaliana. Salicylic acid has been studied to induce the degradation of the SUMO protease 

OTS1/2 that results in accumulation of SUMO1/2 conjugates (Bailey et. al., 2016). SUMO has been 

established to have a role in mediating the FLS2 mediated innate immunity responses. Flagellin induces 

the degradation of plasma membrane localised SUMO protease Desi3a thus enhancing FLS2 

SUMOylation to promote BIK1 dissociation and trigger intracellular immune signalling (Orosa et. al., 

2018). SUMO also mediates necrotrophic infections as these Arabidopsis pathogens have been shown 

to promote degradation of the nuclear localised SUMO protease OTS1/2  and hence increase 

SUMOylation of JAZ proteins resulting in its accumulation, thereby inhibiting JA signalling (Srivastava 

et. al., 2018). SUMOylation has been studied to influence plant responses to abiotic stress as well. Salt 

stress causes degradation of the SUMO protease OTS1 in Arabidopsis (Conti et. al., 2008) as well as in 

rice (Srivastava et. al., 2016) but causes accumulation of the cytoplasm localised SUMO protease 

ULP1a (Srivastava et. al., 2020). SUMOylation not only affects plant’s responses to stresses but also 

regulates plant growth. Roots branch when in contact with water by using the hydropatterning response. 

Hydropatterning is dependent on the auxin response factor ARF7. ARF7 induces asymmetric 

expression of its target gene LBD16 in lateral root founder cells. This differential expression pattern is 

regulated by posttranslational modification of ARF7 with the SUMO protein. SUMOylation negatively 

regulates ARF7 DNA binding activity. ARF7 SUMOylation is required to recruit the Aux/IAA 

repressor protein IAA3. Blocking ARF7 SUMOylation disrupts IAA3 recruitment and hydropatterning. 

SUMO-dependent regulation of the auxin response controls root branching patterning in response to 

water availability (Orosa et. al., 2018). The SUMO pathway regulates these responses by cross-talking 

with different hormonal signalling pathways that include gibberellic acid signalling (Conti et al. 2014), 

jasmonic acid signalling (Srivastava et al. 2018), auxin signalling (Orosa-Puente et al. 2018), 

brassinosteroid signalling (Srivastava et al. 2020) and ABA signalling (Wang et al. 2018). Recent 

studies have been carried out in studying the role of SUMO proteases in light signalling pathways. It 

has been shown that SUMOylation of PHYB is enhanced by red light and displays a diurnal pattern in 

plants grown under light/ dark cycles and inhibits binding to PIF5. SUMOylation of phyB negatively 

regulates light signalling and is partly mediated by the SUMO protease OTS1 (Sadanandom et al. 2015). 

SUMO has also been studied to modulate the activity of COP1, master repressor of 

photomorphogenesis. The SUMO E3 ligase SIZ1 physically interacts with COP1 and mediates the 

SUMOylation of COP1. Thus, SUMO helps in maintaining the homeostasis of COP1 activity, ensuring 
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proper photomorphogenic development in changing light environments (Lin et al. 2016). The FAR 

RED ELONGATED HYPOCOTYL 1 (FHY1) is also SUMOylated in response to far-red light (FR). 

FR exposure promotes SUMOylation of FHY1, accelerating its degradation. ARABIDOPSIS SUMO 

PROTEASE 1 (ASP1) interacts with FHY1 in the nucleus under FR and facilitates its deSUMOylation. 

Continuous FR inhibits ASP1 accumulation, perhaps contributing to the desensitization of FR signalling 

(Qu et al. 2020). Red light and far red light promote the SUMOylation of phyB and FHY1 respectively, 

that modulates their interaction with their key interacting partner(s) and their stability (Sadanandom et 

al. 2015; Qu et al. 2020).  

 

Conclusions and further perspectives 

Post-translational modification, especially SUMOylation, of proteins has been receiving a lot of 

attention in the last decade. A wide range of proteins that are involved in varied physiological process 

have been identified to be SUMOylated and this knowledge is still expanding. SUMOylation displays 

functional diversity, ranging from roles in plant development, growth, fertilisation, cellular signalling 

and biotic and abiotic responses to regulating the fate of proteins. Nonetheless, a lot of factors still need 

to be investigated. Conclusively, by bringing together the cutting-edge techniques to answer biological 

questions, especially in relation to SUMOylation, such as how SUMO proteases identify substrates and 

how they attain the substrate specificity, is still lacking in the field. Various studies have been carried 

out to identify the significance of SUMO conjugating and deconjugating enzymes but the underlying 

mechanism in substrate selection is still lacking. Proteomic strategies to identify specific SUMO 

protease targets and their SUMO isoforms needs to be explored and studied in Arabidopsis SUMO 

research. The SUMO proteases identified to date act only on SUMO 1 and 2. SUMO proteases that 

target other SUMO proteins are yet to be discovered. Additionally, there is limited studies about SUMO 

proteases in crop plants, hence there are potentially many SUMO proteases in crops yet to be 

discovered. As SUMOylation plays a role in a variety of physiological processes and influences 

multiple hormones, the studies need to be replicated in crop plants. Although some work has already 

been done in crops, there is much to be explored and the field needs to be studied more, so that the 

SUMO machinery can be utilised for generating more resilient crops that might improve crop 

productivity. This new information will open novel avenues in the crop improvement program.  

Answering these questions in the field of SUMO research will expand our understanding. 
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Figure Legends 

Fig. 1. A schematic representation of protein SUMOylation. SUMO proteases cause SUMO 

maturation followed by SUMO conjugation using E1, E2 and E3 conjugating enzymes. The 
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final/crucial step is deSUMOylation where SUMO proteases cleave off the SUMO, setting the 

substrate and the SUMO free, where the latter starts another cycle of SUMO conjugation. 

 

Fig. 2. A schematic interpretation of the recent discoveries of the role of SUMOylation 

controlling different hormone signaling pathways. SUMOylation has an impact on jasmonic 

acid, gibberellic acid, auxin signalling, light signalling, brassinosteroid signalling, salicylic acid 

and abscisic acid signaling. 

This article is protected by copyright. All rights reserved.



This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e


	Binder7.pdf
	PPL_13204_Figure 1
	PPL_13204_Figure 2




