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Abstract
Although low-dimensionalS=1 antiferromagnets remainof great interest, difficulty in obtaininghigh-
quality single crystals of thenewestmaterials hinders experimental research in this area. Polycrystalline
samples aremore readily produced, but there are inherent problems in extracting themagnetic properties
of anisotropic systems frompowder data. Following adiscussionof the effect of powder-averagingon
variousmeasurement techniques,wepresent amethodology toovercome this issueusing thermodynamic
measurements. Inparticularwe focus onwhether it is possible to characterise themagnetic properties of
polycrystalline, anisotropic samples using readily available laboratory equipment.We test the efficacy of
ourmethodusing themagnets [Ni(H2O)2(3,5-lutidine)4](BF4)2 andNi(H2O)2(acetate)2(4-picoline)2,
whichhavenegligible exchange interactions, aswell as the antiferromagnet [Ni(H2O)2(pyrazine)2](BF4)2,
and show thatwe are able to extract the anisotropyparameters in each case.The results obtained from the
thermodynamicmeasurements are checked against electron-spin resonance andneutrondiffraction.We
alsopresent adensity functionalmethod,which incorporates spin–orbit coupling to estimate the size of the
anisotropy in [Ni(H2O)2(pyrazine)2](BF4)2.

1. Introduction

The investigation of low-dimensional quantummagnets is a key thrust of condensedmatter physics. Of
particular relevance here are quasi-one-dimensional and quasi-two-dimensional systems based on S=1
magneticmoments, which inspire a great deal of contemporary theoretical attention (e.g. [1–8]) and are
predicted to display vibrant phase diagrams arising from competing interactions and their interplay with single-
ion anisotropy. These diagrams encompass quantum critical points [1, 2], nematic and supersolid states
[5, 9, 10], as well as topologically interesting gapped and quantumparamagnetic phases [11–14]. By contrast,
because of the difficulty inmaking real examples of these systems, experimental work in this areamovesmore
slowly and several predictions remain untested.While recent advances have beenmadewithmolecule-based
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magnets [15–23], difficulties in obtaining high-quality single crystals of the newestmaterials continue to hinder
progress.

Detailed thermodynamic studies of single-crystal samples can be used tofind anisotropy parameters and the
size of the primarymagnetic interactions, and reveal the ground state of the system.Unfortunately, crystals of
sufficient size for suchmeasurements are often hard to come by, particularly in the case of the newestmaterials,
which are frequently synthesized initially as powders. Optimising the synthesis procedures for clean
crystallization of a particularmaterial typically requires considerable time and effort. It is therefore
advantageous to be able to characterise the basic properties of a powdered anisotropicmagneticmaterial using
simple, readily accessiblemeasurement techniques in order to identify the compounds thatmerit the additional
work required for crystal growth.However, the complication of powder-averaging leads to difficulties
interpreting the results of bulk thermodynamicmeasurements. This issue ismadeworse if themagnitude of the
anisotropy is on a similar energy scale to the strength of exchange interactions in the compound [18, 22, 24].

Here we discuss the interpretation of experiments on polycrystalline samples of S=1magnets under the
influence of uniaxial and rhombic single-ion anisotropywith energyD andE, respectively, andwith the
possibility of nearest-neighbourHeisenberg exchange J acting between spins.We describe the effect of powder
averaging and discuss towhat extent the parameters in theHamiltonian can be extracted fromdata, focusing
particularly on bulk thermodynamicmeasurements of susceptibility,magnetization and heat capacity that can,
in principle, be performed using commonly available laboratory apparatus without the need to access
equipment at a large user facility.Wewill start by showing that formaterials with anisotropic spins, but
negligible exchange interactions, a good estimation of the parameters can be readily extracted frompowder data
for both easy-plane and easy-axis systems, provided low enough temperatures and high enoughmagnetic fields
can be achieved.Wenext consider themore challenging situation inwhich antiferromagnetic exchange
interactions are finite and similar in energy to the single-ion anisotropy.We test the reliability of ourmethods by
comparing thefindings derived from thermodynamic probeswith additional facilitymeasurements of neutron
diffraction and high-frequency electron-spin resonance (ESR). Finally we describe an approach, using density
functional theory and spin–orbit coupling, to provide reliable estimates of single-ion anisotropy.

Wewill apply the analysis to three newmaterials inwhichNi(II) ions are separated fromone another by
organic ligands. These are (1) [Ni(H2O)2(3,5-lutidine)4](BF4)2 and (2)Ni(H2O)2(acetate)2(4-picoline)2, both of
whichwefind to be dominated by single-ion anisotropywith no evidence of a significant role for exchange
interactions at the temperaturesmeasured, and (3) the antiferromagnet [Ni(H2O)2(pyrazine)2](BF4)2. System
(1)was designed to haveNiN4O2 octahedra similar to that of (3), but without extended interaction pathways,
such that the effect of the local environment on the anisotropy could be elucidated in the absence of exchange,
andwewill discuss towhat extent this approach has been successful.

While a subset of themethods outlined have been preliminarily tested in studies by some of the same authors
[22, 23], we combine the fullmethodology here for the first time. This work follows from a related investigation
of how to extract exchange parameters in low-dimensional S=1/2 antiferromagnets [25].

The results presented here are of relevance not only to the study of low-dimensional S=1magnets, but also
to the growing field ofNi(II) single-ionmagnets [26–30]. And, while the calculations and simulations presented
are specific to the S=1Hamiltonians given, low-temperature features observed inmagnetometry and heat
capacity data can be analysed in a similarmanner to understand the anisotropy in systemswith S>1.

2. Systemswith negligible exchange

In the absence of exchange interactions, theHamiltonian that governs themagnetic properties in applied
magnetic field is

D S E S S B g S , 1
i

i
z

i
i
x

i
y

i
i

2 2 2
B å å åm= + - +ˆ ( ˆ ) [( ˆ ) ( ˆ ) ] · · ˆ ( )

wherewe apply the constraint (discussed below)

E D0 3 . 2< < ∣ ∣ ( )

Here z is defined by the local axial direction, g is the g-tensor=diag(gx, gy, gz) and S S SS , ,
x y z=ˆ ( ˆ ˆ ˆ ) are the S=1

spin operators. A negativeD corresponds to easy-axis anisotropy and positiveD is easy-plane anisotropy. The
Hamiltonian is readily solved and the energy eigenvalues for two values ofE are displayed infigure 1 in both the
easy-axis and easy-plane cases (assuming g to be isotropic). In the absence ofE anisotropy, the easy-axis system
(figure 1(a)) has a doubly degenerate ground state that splits with appliedfield, and has no ground-state level
crossing for anyfield direction. The degeneracy of x and y energy levels is lifted in the presence of a non-zero E
(figure 1(b)), and a ground-state energy level crossing appears for the field applied parallel to x. In contrast, for
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easy-plane anisotropy (figures 1(c) and (d)) a crossover from anon-magnetic tomagnetic ground state occurs
even ifE=0, but only for themagnetic field parallel to z. Features arising from these crossovers will be
observable in the polycrystallinemagnetization data.

Values ofE outside the constraint (equation (2)) can be encompassed by an exchange of coordinate axes,
without changing the systemproperties [31]. For example, it can be shown (see appendix A) that a permutation
of the coordinate axes leads to equivalentHamiltonians, whose eigenvalues differ only by a constant energy shift,
but whichwill have different values ofD andE. Thismeans that for experiments on polycrystalline samples,
where the correlation between the z-axis of equation (1) and the crystallographic directions is lost,fitting of
powder data (such asmagnetic susceptibility or heat capacity, as described below)without constraining

E D0 3< < ∣ ∣ can yield two apparently conflicting sets of anisotropy parameters, onewith a negative axial
parameter and one positive. However, only one of these sets will fulfil the constraint. The parameters can be
interconverted via the relations given in appendix A.

2.1. Effect of powder averaging onmagnetometry and heat capacitymeasurements
In a polycrystallinemeasurement of an anisotropicmagneticmaterial themixing of different crystal directions
with respect to the applied field leads to a blurring or loss of information as compared to single-crystal
experiments. However, at sufficiently low temperatures and highmagnetic fields, features visible in the results of
thermodynamicmeasurements can still yield quantitative data. Herewe discuss the problemofmeasuring
polycrystals and by looking at the results of powder-averaged simulations of isolated S=1 systemswe show
how to draw conclusions about themagnetic parameters.

2.1.1.Magnetic susceptibility
It has been suggested previously that it is not possible to distinguish between easy-axis and easy-plane isolated
S=1magnets using polycrystallinemeasurements ofmagnetic susceptibility alone [32]. Revisiting this subject,
wefind that it is indeed possible to distinguish these two cases at sufficiently low temperatures and also extract

Figure 1.Energy eigenvalues normalized byD as a function of appliedmagneticfieldH for theHamiltonian of equation (1)with
isotropic g. In the absence ofE anisotropy, the levels withHPx and y are degenerate. (a)Easy-axis scenariowith E=0. There is no
ground state level crossing for anyfield direction. (b)Easy axis with E D0.1= ∣ ∣, there is a ground state crossing forHPx only. (c) and
(d) show the easy-plane scenariowith E=0 and D0.1∣ ∣, respectively. In both a ground state level crossing occurs forHPz. Three ESR
transitions forHPx are labelled and discussed later.
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reasonable estimates of bothD andE fromfitting polycrystalline data. It is true, however, that at high-
temperatures all anisotropy information is lost.

Magnetometrymeasurements performed in the high-temperature, paramagnetic limit show a linear
dependence of the inverse susceptibility on temperature. Extrapolating this linear dependence to obtain a
temperature-axis intercept (theWeiss temperature) in isotropicmagnetically-interacting systems can be used to
obtain an estimate of the size of the exchange energy via the familiar Curie–Weiss law. In exchange-free,
anisotropic systems the direction-dependentWeiss temperature reveals information regarding the crystal-field
parameters [33] and in particular, estimates forD andE could be deduced from single-crystalmeasurements.
For example, if E=0 and g is isotropic, then solving theHamiltonian above in the high-temperature region
yields theWeiss temperaturesΘxy≈D/6 andΘz≈−D/3 for thefield applied perpendicular and parallel to the
axial direction, respectively (see appendix B). However, in a polycrystalline experiment these valueswill be
averaged such that themeasuredWeiss temperature will approach zero, and it is necessary tomake
measurements at lower temperatures to characterize the anisotropy.

The eigenvalues of equation (1) are used to construct a partition function, fromwhich can be found the form
of the low-fieldmolar susceptibilities forfields applied along the three principal axes [23]:
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where k T1 Bb = . The expressions are in agreement with those previously published for the case withE→0
[32]. For these smoothly varying functions it is possible to obtain a reasonable approximation to the results of a
polycrystallinemeasurement from a simple average, x y zav

1

3
c c c c= + +( ). (This is in contrast to the

magnetization simulations presented below, which display step-like features for certainfield directions and so
require averaging overmore angles to reproduce the experimental data.)The success of the simple average used
herewill be inspected inmore detail later in comparisonwith experimental data. The functions above are plotted
togetherwithχav infigures 2(a) and (c) for the easy-axis and easy-plane cases, respectively, with D 10=∣ ∣ Kand
E=1K. For these values there is a clear distinction between the easy-axis and easy-plane datawhen kBT drops
below D∣ ∣, with the susceptibilities in the easy-plane case reaching a saturated value as temperature is reduced, in
contrast to the easy-axis case for which the susceptibility continues to rise down tomuch lower temperatures.
The insets to these figures show the values of the inverse susceptibilities extrapolated towhere they cross the
T-axis, highlighting the polycrystalline averaging to zero of theWeiss temperatures. The same effect can also be
seen in a plot ofχT versusT (figures 2(b) and (d)) inwhich, while the single-crystal data either strongly increase
or decrease on cooling depending on the direction ofmagnetic field and the sign ofD, the polycrystalline value
remains roughly constant down to temperatures of the order of the largest term in theHamiltonian. In principle,
it would be possible to obtain an indication of the size ofD from the temperature at whichχavT departs from its
high-temperature value.However,more reliable estimates can be obtained by direct fitting of experimental data
toχav as described below.

2.1.2.Magnetization
At sufficiently low temperatures themagnetizationMi forfields applied parallel to i=x, y and zwill be
dominated by the ground state energy level crossings seen infigure 1. As such, for easy-axis anisotropy a stepwill
be observed inMx at a criticalfield given by

g H E DE2 , 4B 0 c
2m m = -( ) ( )

which is zero forE=0, while for easy-plane anisotropy therewill be a step inMz at a critical field given by

g H D E . 5B 0 c
2 2m m = - ( )

The abrupt changes inM at the criticalfieldsmean that the simple average used above for susceptibility will not
reliably reproduce the result of ameasurement. Insteadwe perform a simulation of polycrystallineM(H)using a
full angular average overmany possiblefield directions15, the results of which are shown infigures 3(a) and (c)
for easy-axis and easy-plane cases respectively. The easy-axis (easy-plane) systemwill have a sharp increase inMx

(Mz) atH=Hc and hence a peak in the differential susceptibility. For a powder, this feature is reduced to a small
bump,which is hard to discern inM, but is readily observed in dM/dH or M Hd d2 2 as seen in the figures.

15
Supplementalmaterial is available online at stacks.iop.org/NJP/21/093025/mmedia for detailed information onmethods, calculations

and ancillary results.
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Figure 2.Temperature dependence ofmagnetic susceptibility for differentfield directions calculated using equations (3) for D 10=∣ ∣ K,
E=1Kand isotropic g=2.The simplepolycrystalline average x y zav

1

3
c c c c= + +( ) is also displayed. (a) and (b) showχ(T) and

χT(T), respectively, for easy-axis anisotropy. (c) and (d) show the samequantities for easy-plane anisotropy. The insets show the
extrapolated values of the high-temperature inverse susceptibility, indicating the zero value of theWeiss temperature for the averaged
data.

Figure 3. Simulated full polycrystallinemagnetizationM and associated gradients for D 10=∣ ∣ K E 1= Kand isotropic g=2.
(a) and (b) show the simulations for easy-axis anisotropy revealing a bump in dM/dH atHc given by equation (4), due to a ground state
level crossing forfields parallel to x. (c) and (d) show the simulations for easy-plane anisotropy. A feature is observed at a critical field
defined by equation (5). In both cases the feature can only be observed at thermal energies low compared to h g Hc B 0 cm m= . The data
in (b) and (d) are offset for clarity.
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Thermal occupation of excited states obscures the crossing of the ground state and the strength of the features
diminishes as temperature is raised. By simulating the differential susceptibility at different temperatures
(figures 3(b) and (d)), wefind that the peak indicating the level crossing atHc can be observed only if the
temperature is lowered below approximately g H k0.1 B 0 c Bm m´ / in both cases.

2.1.3. Heat capacity
The zero-fieldmagnetic heat capacityCmag (in units ofNAkB) resulting from solving equation (1) is found to be

C T
D E D E E D D

k T E

2e cosh 4 e sinh

e 2 cosh
, 6

D D

Dmag

2 2

B
2 2

b b
b

=
+ + -

+

b b

b
( ) ( ) ( )

( ) ( )
( )

and is in agreementwith the expression previously published for the case withE→0 [31]. As temperature is
reduced the function reproduces anomalies in the heat capacity resulting from the zero-field splittings shown in
figure 1, and can be used in combinationwith lattice heat capacitymodels tofitmeasured single or
polycrystalline data as shownby example later.

The evolution ofCmag(T)under applied field for a polycrystalline sample is distinct for the easy-axis and
easy-plane cases. Simulations ofCmag(T) for both situations are obtained via a full polycrystalline average at
various fields withE=0 (see footnote 15) and displayed infigure 4. For the easy-axis scenarioCmag(T)
(figure 4(a)) shows a single broadmaximumat a temperature set byD. In an applied field, the ground state
degeneracy is lifted, resulting in the emergence of a second narrowpeak at low temperatures. As the field is raised
the two peaksmerge andmove to higher temperatures while increasing in amplitude and breadth. For easy-
plane anisotropy (figure 4(c)) only a single broad peak is apparent, which initially drops in amplitude, gets
broader andmoves to higher temperatures as the field is applied. The shift inmagnetic entropy from low to high
temperatures caused by thefield-induced splitting of energy levels can been appreciated from the formof the
Cmag/T curves shown infigure 4(b) and 4(d).

Another estimate of the size ofD in systemswithE=0 can be obtained from the field dependence of the
position,Tmax, of the broadmaximumobserved inCmag(T). The values obtained from the simulated data are
plotted in dimensionless units infigure 4(e), and can be parametrised as follows

k T

D

g H

D
, 7B max 0 Bg d

m m
= +

⎛
⎝⎜

⎞
⎠⎟∣ ∣ ∣ ∣

( )

with twofield-dependent parameters, δ—the local gradient and γ—the local, extrapolated zero-field intercept.
The correspondence between δ and γ is shown infigure 4(f). Aswill be shown later for experimental data, an
estimate of γD and δ can be found from a linearfit to themeasured values ofTmax versus gμ0μBH, while the pre-
factor γ can be uniquely determined for a particular sign ofD by using thefitted value of δ andfigure 4(f).

2.2. Experimental results for [Ni(H2O)2(3,5-lutidine)4](BF4)2
2.2.1. Crystal structure
[Ni(H2O)2(3,5-lutidine)4](BF4)2crystallizes in themonoclinic space groupP21/n. Figure 5(a) shows the
coordination environment deduced from single-crystal synchrotron x-ray diffraction performed at 100K, and
structural parameters are found in table 1. The crystallite usedwas of the order of 50×50×50 μm3; sufficient

Table 1. Structural parameters and local environment at temperatureT of the three
compounds discussed in this paper. Ni(lut)=[Ni(H2O)2(3,5-lutidine)4](BF4)2,
Ni(ace)=Ni(H2O)2(acetate)2(4-picoline)2, andNi(pyz)=[Ni(H2O)2(pyrazine)2]
(BF4)2. Atomic labels are shown infigures 5and 9.

Compound Ni(lut) Ni(ace) Ni(pyz)

T (K) 100 150 300

Crystal system Monoclinic Orthorhombic Tetragonal

Space group P n21 Pcab I 4/mcm

a (Å) 12.2611(8) 8.8996(3) 9.916 70(18)
b (Å) 17.0125(12) 12.3995(4) 9.916 70(18)
c (Å) 16.7006(11) 17.6516(7) 14.8681(4)
β (°) 103.416(1) 90.00 90.00

Ni—(Å) O1=2.099(2) N1=2.107(3) O1=2.050(7)
Ni—(Å) O2=2.08(2) N1=2.107(3) O2=2.050(7)
Ni—(Å) N1=2.110(3) O1=2.073(2) N1=2.172 4(18)
Ni—(Å) N11=2.105(3) O1=2.073(2) N11=2.172 4(18)
Ni—(Å) N21=2.094(3) O2=2.059(2) N21=2.172 4(18)
Ni—(Å) N31=2.115(3) O2=2.059(2) N31=2.172 4(18)
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for the structural studies, but too small for thermodynamicmeasurements. Thematerial ismade up of distorted
NiN4O2 octahedrawith four equatorial nitrogens donated by 3,5-lutidine, and two axial oxygens provided by
water. The three bond angles between opposite donor atoms in the nickel octahedra are within the range
176.95°–179.17°, and the cisN–Ni–Oangle ranges between 87.7° and 92.3°.

TheNi(II) ions in the [Ni(H2O)2(3,5-lut)4] complexes arewell-isolated by the non-bridging lutidine
molecules and adjacent complexes are kept apart by twoBF 4

- counter ions, which are hydrogen bonded to the
watermolecules. The nearestNi–Ni neighbours are separated by approximately 9.2Å along the [101] crystal
direction. As a result, the exchange interactions between the S=1Ni(II) ions are expected to be negligible and

Figure 4. (a) and (b) show simulationswithE=0 ofmagnetic heat capacityCmag andCmag/T as a function of temperature at various
fields for easy-axis anisotropy. (c) and (d) show the same simulated quantities for easy-plane anisotropy. (e)The positionTmax of the
broadmaximum in the simulatedCmag, plotted againstfield in dimensionless units. (f)Correlation between the parameters of
equation (7) resulting from local linearfitting of theTmax versusH data.

Figure 5. (a) LocalNi(II) environments determined by single-crystal x-ray diffraction of (a) [Ni(H2O)2(3,5-lutidine)4](BF4)2at
T 100= K, and (b)Ni(H2O)2(acetate)2(4-picoline)2atT=150K. In (a) lutidine hydrogens and BF4

- counter ions are omitted. The
stacking of themolecular units in bothmaterials is shown in supplementarymaterial.
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the low-temperaturemagnetic properties should be dominated by single-ion anisotropy. The breaking of four-
fold rotational symmetry by the equatorial ligands suggests thatEwill be non-zero.

2.2.2. Thermodynamicmeasurements
Themagnetic susceptibility of a polycrystalline sample of [Ni(H2O)2(3,5-lutidine)4](BF4)2measured at

H 0.10m = T is shown infigure 6(a) and resembles the data for an ensemble of S=1moments with single-ion
anisotropy, but no significant exchange interactions. The data arefittedwith the functionχ(T)=χav(T)+χ0,

under the constraint E D0 3< < ∣ ∣. Hereχav is the simple polycrystalline average x y z
1

3
c c c+ +( ) of the

susceptibility components defined by equation (3), andχ0 is a temperature-independent contribution.
Successfulfitting of the data requires using the approximation that gx=gy=gz=g in equation (3). In reality
this will not be the case; the presence of single-ion anisotropy suggests that the components of g are unequal, as
the same effects give rise to both. Perturbation theory predicts that gz−gxy=2D/λ and gx−gy=4E/λ,
whereλ is the spin–orbit coupling, which is∼−500K forNi(II) in octahedral environments [31]. However, in
the types of systemwe consider here, typical values areD∼10K andE∼1K, so thatΔg is expected to be∼0.01.
Thus the uniform g approximation is reasonable within the errors of the thermodynamicmeasurements. The
parameters resulting from the fit to16χ(T) are g=2.24(1), an easy-planeD=8.7(2)K,E=1.2(2)Kand
χ0=−8(1)×10−9m3mol−1.

M(H) datameasured at various temperatures are shown infigure 6(b). The data increase smoothly towards
to the saturated value of 2.21(2)μB perNi(II), which is consistent with the polycrystalline averaged value of the g
factor resulting from fittingχ(T). The lowest temperature curves show a kink inM(H) close to 5T. This ismore
clear on differentiating the 0.4Kdata (inset), where it appears as a small bump resembling the feature discussed
earlier that arises from a ground state energy level crossing. The position of the bump isμ0Hc=6.0(6)T.Using

Figure 6.Polycrystalline thermodynamic properties of [Ni(H2O)2(3,5-lutidine)4](BF4)2. (a)Magnetic susceptibilityχ(T)measured at
H 0.10m = T (circles). The line is afit to the simple polycrystalline average described in text. (b)Magnetizationmeasured at the

temperatures shown. The inset shows the differential susceptibility dM/dHmeasured at 0.4K.The critical fieldμ0Hc is indicated by
an arrow. (c)Measured heat capacity divided by temperature (circles). The solid red line is a fit to the lattice plusmagneticmodel
described in the text. The dashed green line is the lattice contribution and the dotted blue line is themagnetic part. (d)Themagnetic
heat capacityCmag(T) at various fields, obtained by subtracting the zero-field lattice contribution from themeasured data.

16
Note that a fit performedwithout constraining the upper limit ofE can also yieldD=−6.3(5)KandE=3.7(1)K,with g andχ0 similar

to the constrained fit. These values forD andE do not obey E D3 < ∣ ∣ and are the result of the permutation of the coordinate axes described
earlier. They reduce to the values obtained from the constrained fit under the transformations of equation (A4).
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the easy-planemodel (equation (5)) an estimate of D E 9.0 92 2- = ( )K is obtained, which is in agreement
with the susceptibility results17.

Zero-field heat capacitymeasurements of polycrystalline [Ni(H2O)2(3,5-lutidine)4](BF4)2 are shownasC/T
vsT infigure 6(c). The data exhibit twopeaks, one around40Kdue to thephonons, and a second at≈3Kwhich is
attributed to single-ion anisotropy. Theproximity of lattice andmagnetic contributions to theheat capacitymean
that dealingwith each separately is not possible. Insteadwefit the data to amodelC/T=Clatt/T+Cmag/T, where
Clatt approximates the lattice contributionusing amodelwith oneDebye and three Einstein phononmodes (see
footnote 15) [34], andCmag is given in equation (6). Thefit is shown in thefigure as a solid red line and is seen to
accountwell for the data across thewhole temperature range. Also shownare the separate lattice (dashed line) and
magnetic contributions to thefit. The anisotropyparameters resulting from thefit are easy-planeD=10.4(1)K
andE=2.6(2)K18. These values are in agreementwith D E 9.0 92 2- = ( )Kestimated from themagnetization
data. The size ofD is similar to that obtained from thefits of the susceptibility to the simple polycrystalline average
model, whileEdiffers by 50%from the susceptibility value.

Heat capacitymeasurements were also performed atfixed values of applied field H0 90 m T. The lattice
contribution determined from the fit to the zero-field data is subtracted from each trace to yieldCmag(T) at
differentfields, which are shown infigure 6(d). It is seen that the broad humpdue to energy level splitting
initially drops in amplitude as the field is turned on, and at higherfields broadens and shifts to higher
temperatures. This is very similar to the behaviour of the simulated data shown infigure 4(c), further confirming
the easy-plane nature of thismaterial.

2.2.3. Electron-spin resonance
Inorder to check the validityof ourproposedmethodology fordetermining anisotropyparameters fromthermo-
dynamicmeasurements onpolycrystallineS=1 systems,we also investigated [Ni(H2O)2(3,5-lutidine)4](BF4)2using
high-frequencyESR.Arguably, ESR is the techniquebest suited to the evaluationof single-ion anisotropy in a
powdered sample.However, for all but the smallest zero-field splittings, the frequency andfield regimesneeded to
observe the crucial transitions requireshighly specialised,non-standard equipment.Ourmeasurementswere
performedat theNationalHighMagnetic FieldLaboratory,Tallahassee, Florida (see footnote 15).

In a polycrystalline S=1 samplewith single-ion anisotropy,multiple ESR transitions are expected between
the split triplet energy levels. At a given frequency, for the field applied parallel to the local i-axis (i=x, y or z),
there are two transitions possible that obey the ESR selection rule,Δms=±1: one at lowfield and one at high
field, whichwe labelβi and γi, respectively. In addition, it is also possible to see an excitationwithΔms=±2,
this so-called half-field transition is labelledαi. Formally such transitions are forbidden, but when the Zeeman
energy is comparable to the zero-field splitting strongmixing betweenms states occurs and the selection rule is
relaxed. Examples of theαx,βx and γxESR transitions are indicated infigure 1(d). Additional linesmay also be
observed at positions that do not correspond to one of theCartesian axes. These off-axis resonancesmay be
present at the half-field transitions and have been known to dominate the polycrystalline spectra [35–37].

ESR spectrawere recorded infirst derivativemode at frequencies in the range 100<ν<630 GHz at 5K
and representative data are shown infigure 7(a). A broad feature is observed around 1T in the 156.0 GHz data
that drops infield as the frequency is raised and is attributed to the γz transition. At higher frequencies a large
double resonance is observed (e.g. near 5 T at 412.8 GHz), which sharpens andmoves to high fields with
increasing frequency. The larger of these two peaks is attributed to the off-axis half-field transitionαoff, and is
expected to lie very close to theαx transition. The broad hump at slightly higher fields is ascribed toβy
transitions. At yet higher fields smaller features are seen that can be attributed to theβx and γx transitions.

Transitions are labelled in the temperature-dependent spectra recorded at 412.8GHz and shown in
figure 7(b). Both theαoff line and theβx line increase in amplitude as temperature is reduced, identifying them as
excitations from the ground state. The γx transition is seen to be smaller thanβx at low temperatures and
diminishes in amplitudewhen the temperature falls, which is expected for a transition between excited states.
These observations identify the energy-level splitting as easy plane.

The frequency and field positions of the transitions aremodelled with an easy-plane energy-level scheme
in figure 7(c). Fitting is performed as described in [38] and the best fit to the data is found for the parameters
gx=2.21(1), gy=2.17(1), gz=2.16(3),D=10.40(1)K and E=2.11(4)K. The fit successfully reproduces
most of the peak positions and, as shown in panel (b), a simulation of the 412.8GHz spectrum arising from
these parameters compares reasonably well with themeasured data. Note that gx>gz, which is consistent

17
Wenote that, while theseM(H) data are collected using pulsedmagnetic fields, the location ofHc in this case is within thefield and

temperature range ofmore conventionalmagnetometers equippedwith a 3He refrigerator.
18

The fit of the lattice contribution yields the following characteristic amplitudes,Ai(JK
−1 mol−1), and temperatures, θi (K), of theDebye

(i=D) and Einstein (i=E) phononmodes:AD=53(3), θD=50(1), A 128 5E1 = ( ), 87 3E1q = ( ), A 199 5E2 = ( ), 195 7E2q = ( ),
A 388 6E3 = ( ) and 540 9E3q = ( ).
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with the results of perturbation theory for aNi(II) ion with easy-plane anisotropy [31]. The observed splitting
of the off-axis half-field transition is not explained by the simulations. One possible reason for the extra peak
could be the presence of a secondNi(II) site in the ESR sample with slightly different anisotropy parameters19,
however no evidence of a significant impurity fraction is observed in the synchrotron x-ray diffraction
measurements. Another possible explanation is the presence of small spin-spin couplings between theNi(II)
ions. The crystal structure does not show any evidence for significant exchange pathways and anymagnetic
interactionsmust be less than∼1Kor their effect would be observed in themagnetometrymeasurements, but
very small couplings have previously be found to lead to ESR peak splitting inmolecular systems, even at
elevated temperatures [39].

Whatever the explanation for the extra peak, the bestfitD andE parameters account for themajority of the
ESR resonances and are in excellent agreementwith the values derived from the heat capacity analysis and the
position ofHc in the low temperatureM(H)data.

2.2.4. Discussion
In light of the high-frequency ESRdatawe can judge the effectiveness of the analysismethodology for
magnetometry and heat capacity. The thermodynamicmeasurements are all strongly indicative of an easy-plane
anisotropy in thismaterial, which is confirmed by ESR. TheD andE parameters derived fromfitting to the zero-
field heat capacity agree closely with those obtained fromESR. The agreement is less good for the parameters
deduced from fitting susceptibility data. Thefitting function in this casemakes use of the elementary

polycrystalline average x y zav
1

3
c c c c= + +( ), which simplifies thefitting procedure, but perhaps does not

sample enough field angles to fully account for the data. Nevertheless, the estimate of the size of the parameters
obtained from the susceptibilitymatches the ESR and heat capacity values towithin less than 20% forD and 50%
forE.

Owing to the polycrystalline nature of the sample, it is not possible to identify the easy plane of
[Ni(H2O)2(3,5-lutidine)4](BF4)2from the thermodynamic or ESRmeasurements alone.However the symmetry
of theNiN4O2 octahedrawould strongly suggest that the hard z-axis is perpendicular to theNiN4 equatorial
plane.

Figure 7.High-frequency ESR results for polycrystalline [Ni(H2O)2(3,5-lutidine)4](BF4)2. (a)Representative spectra infirst derivative
mode collected at 5Kwith various frequencies. (b)Temperature dependence of the 412.8GHz spectra. The transitions are labelled
according to the description in the text. The black line is a simulation at 5Kusing the parameters derived from thefit in the next panel.
(c) Frequency versusfield plot showing peak positions (circles) observed at 5K. The lines are expected locations of the resonances
deduced from a fit to the experimental data described in the text, with the grey lines and circles arising fromoff-axis resonances.

19
gx=gy=2.20, gz=2.16,D=9.2 K andE=2.08K.
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2.3. Experimental results forNi(H2O)2(acetate)2(4-picoline)2
2.3.1. Crystal structure
Having introduced the analysismethodswith the previous easy-planematerial, we now test themon aNi(II)
material with a different local environment. Ni(H2O)2(acetate)2(4-picoline)2crystallizes in the orthorhombic
space group Pcab. Figure 5(b) shows the coordination environment deduced from single-crystal x-ray
diffraction performed at 150Kon amicrocrystal, and structural parameters are found in table 1. Thematerial
contains distortedNiO4N2 octahedra, as compared to theNiN4O2 octahedra in the systemdiscussed above. In
the present case, the local environment ismade up of two axial nitrogen atoms donated by 4-picoline and four
equatorial oxygen atoms, two donated by acetate and two fromwater. The three bond angles between opposite
donor atoms in the nickel octahedra are all 180◦, and the cisO–Ni–Nangle ranges between 87.3° and 92.7°.

The individual Ni(H2O)2(acetate)2(4-picoline)2molecular units are well-separated in the c-direction by the
4-picolinemolecules. The closest Ni–Ni distance is approximately 7.6Åwithin the ab-plane, butwith no
apparent exchange pathway between nearest neighbours. Hence themagnetic properties are again expected to
be that of an ensemble ofmagnetically isolated S=1moments with single-ion anisotropy.

2.3.2. Thermodynamicmeasurements
The polycrystallinemagnetic susceptibility ofNi(H2O)2(acetate)2(4-picoline)2measured atμ0H=0.1 T is
shown infigure 8(a) and resembles that of an S=1 anisotropicmagnet with negligible interactions between the
spins. Similar to the previous case, the data are fitted to x y zav

1

3
c c c c= + +( ) using the expressions in

equation (3), with an isotropic g and under the constraint E D0 3< < ∣ ∣. Thefitted line reproduces the data well
and yields the parameters g=2.20(1),D=−5.7(3)K andE=1.36(3)K20.

Themagnetization datameasured up to 7T at various temperatures are shown infigure 8(b). All traces show
a smooth rise towards saturation, with the 0.6Kdata approaching amoment of 2.12μB perNi(II) ion by 7T.
There is no clear sign of any feature due a ground state energy level crossing either inM(H) or dM/dH (inset) at

Figure 8.Polycrystalline thermodynamic properties ofNi(H2O)2(acetate)2(4-picoline)2. (a)Magnetic susceptibility Tc( ) measured
at H 0.10m = T (circles). The line is a fit to the simple polycrystalline average described in the text. (b)Magnetizationmeasured at the
temperatures shown. (c)Differential susceptibility dM/dHmeasured at 0.6K. (d)Measured heat capacity divided by temperature
(circles). The solid red line is a fit to the lattice plusmagneticmodel described in the text. The dashed green line is the lattice
contribution and the dotted blue line is themagnetic part. (e)Themagnetic heat capacityCmag(T) at various fields, obtained by
subtracting the zero-field lattice contribution from themeasured data.

20
Note, without the E D3 < ∣ ∣ constraint, thefit alsoworkswell with g=2.20(1),D=4.9(2)KandE=2.2(2)K. This is accounted for by

the reverse permutation of crystallographic axes described earlier and the parameters can bemapped back on to those above via the inverse
relations of equation (A4).
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the lowest temperatures. This is consistent with the expectation of an easy-axis system. Although, asmentioned
earlier, a level crossing occurs forfields parallel to x for easy-axismaterials, a feature in the polycrystalline

magnetization data is only expected to be observed for k T E DE0.1 2B
2 ´ -( ) . The estimate ofD andE

obtained from susceptibility suggests this condition is notmet in ourmeasurements.
Figure 8(d) shows the zero-field heat capacity of polycrystallineNi(H2O)2(acetate)2(4-picoline)2. On

cooling, the data exhibit a broad humpbetween 40 and 50Kdue to phonons followed by a steep rise at low
temperatures caused by single-ion anisotropy. To extract estimates of the anisotropy parameters it is necessary
tofit the data below 18K to the sumof aDebye phononmode (see footnote 15) and themagnetic term given in
equation (6). The resultingfit is displayed as a solid red line in thefigure and is seen to comparewell with the data
at low temperatures. The separateDebye andmagnetic terms in the fit are shown as dashed green and dotted
blues lines, respectively. The anisotropy parameters resulting from the fit are easy-axisD=−6.7(1)Kand
E=1.54(1)K21, and are within 10%–15%of the values obtained from fitting themagnetic susceptibility.

Additional low-temperature heat capacitymeasurements aremade infixedmagnetic fields. Thefitted zero-
field lattice term is subtracted from these data and the results are plotted asCmag(T) infigure 8(e). In small
appliedfields the data exhibit the low-temperature rise due to the anisotropy. At higher fields this featuremoves
to higher temperatures and reveals itself to be a peakwhose amplitude, width and position increase with
increasingfields. This is consistent with the simulated data shown infigure 4(a), further confirming the easy-axis
nature of thismaterial.

2.3.3. Discussion
Low-fieldmagnetic susceptibility,magnetization and heat capacitymeasurements all indicate the presence of
easy-axis anisotropy inNi(H2O)2(acetate)2(4-picoline)2 where theNi(II) ion is surrounded by four equatorial
oxygens and two axial nitrogens. Judging from the local structure, it would be expected that the easy axis lies
parallel or close to the axial N–Ni–Nbond direction. The parameters taken from the heat capacity analysis,
which on the evidence of the previousmaterial offers themost accurate results, areD=−6.7(1)KandE=1.54
(1)K. In contrast, [Ni(H2O)2(3,5-lutidine)4](BF4)2, whereNi(II) is surrounded by four equatorial nitrogens and
two axial oxygens, is an easy-plane systemwithD=10.4(1)KandE=2.6(2)K (also fromheat capacity).

3. Systemswith significant exchange

As detailed above, it is possible frompolycrystalline thermodynamicmeasurements alone to obtain good
estimates for the parameters governing themagnetic properties of S=1 systems in the absence of effective
exchange pathways. Nowwe turn to systems containing antiferromagnetic interactions between the spins. The
Hamiltonian in this case is

J D S E S SS S B g S , 8
i j

ij i j
i

i
z

i
i
x

i
y

i
i

,

2 2 2
B å å å åm= + + - +

á ñ

ˆ ˆ · ˆ ( ˆ ) [( ˆ ) ( ˆ ) ] · · ˆ ( )

where the sum in thefirst term is over unique nearest-neighbour exchange pathwayswithHeisenberg exchange
strength Jij. In the two extreme cases, where the exchange term ismuch stronger than the anisotropy termor
vice versa, then polycrystalline data can be used to parameterize the system.However, in the case where the two
are similar in size then interpretation of the data can be problematic, as some of the present authors have
discussed previously [18, 22].

In this situation, there is a paucity of theoreticalmodels that can be used infitting either low-fieldmagnetic
susceptibility or zero-field heat capacity to obtain reliable estimates of themagnetic parameters. To some extent
the application ofmagnetic field can help. Thefield both suppresses antiferromagnetism and shifts the features
in heat capacity due to the anisotropy to higher temperatures, permitting them to be analysed. Features that
provide useful information can also be discerned in polycrystallinemeasurements ofM(H), specifically the spin-
flopfield (in easy-axis systems) and the saturation fields in the easy and hard directions. Here we illustrate these
methods using experimental data collected on aNi(II) coordination polymer.

3.1. Experimental results for [Ni(H2O)2(pyrazine)2](BF4)2
3.1.1. Crystal structure
[Ni(H2O)2(pyrazine)2](BF4)2crystallizes in the tetragonal space group I mcm4 . Figure 9 shows the structure
of thismaterial as determined at 300Kusing powder synchrotron x-ray diffraction. The coordination
environment consists ofNiN4O2 octahedrawith a small axial compression, but no distortion in the octahedral
bond angles. The equatorial nitrogens are from the pyrazinemolecules, which bridge theNi(II) ions in the

21
The fit of the lattice contribution yields the following characteristic amplitude andDebye temperature,AD=79(1) J K−1 mol−1,

θD=90(1)K.
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ab-plane forming a square planar array. The axial oxygens are provided by thewatermolecules that tether
adjacent nickel-pyrazine sheets along c via a network ofHLF bondswith the charge-balancing BF 4

-

counter ions.
The nearest neighbourNiLNi distance is 6.98Åthrough the pyrazinemolecules, andmetal ions in

adjacent planes are separated by 7.40Å. Both pyrazine andHLF bonds have been shown to bemediators of
antiferromagnetic exchange strengths of the order of 1–10K inNi(II) complexes [21, 22]. It is not possible to tell
from the structure alonewhich pathwayswill support significant exchange interactions, therefore we define the
average nearest-neighbour exchange strength, Já ñ, as a sumof the exchange through pyrazine, Jpyz, andwater,
JH O2

, such that n J J J4 2pyz H O2
á ñ = + , where n is the total number of effective nearest-neighbour exchange

pathways.
The comparison of structural parameters in table 1 can be used to judge the extent towhich the

[Ni(H2O)2(3,5-lutidine)4](BF4)2 systemdiscussed earlier can be considered an exchange-free analogue of
[Ni(H2O)2(pyrazine)2](BF4)2, as was anticipated at the design stage.While both haveNiN4O2 coordination
environments and overall theNi-ligand distances are comparable, [Ni(H2O)2(pyrazine)2](BF4)2 has four equal
equatorial bond lengths and ideal octahedral bond angles, whereas [Ni(H2O)2(3,5-lutidine)4](BF4)2 has four
distinct equatorial bond lengths and bond angles that depart somwhat fromoctahedral symmetry. Thus, in
contrast to theNi-lutidine system,E is expected to be zero in the high-symmetryNi-pyrazinematerial.
Nevertheless, the comparison suggests thatD should have the same sign in the two systemswith a similar order
ofmagnitude, i.e. we anticipate that [Ni(H2O)2(pyrazine)2](BF4)2 has easy-plane anisotropy andD∼10K.

3.1.2. Thermodynamicmeasurements
The susceptibility of polycrystalline [Ni(H2O)2(pyrazine)2](BF4)2 taken at H 0.10m = T is shown infigure 10(a).
Thedata rises smoothly on cooling and exhibits a broadmaximumaround4K, followedby a cusp and a reduction
down to 1.8K.The inverse susceptibility (inset) isfit to aCurie–Weissmodel across the range 100<T<300K,
yielding g=2.19(1) and a temperature-independent contributionχ0=1.3(1)×10−9m3mol−1. The samedata
are plotted as d(χT)/dT infigure 10(b). This quantity is known to resemble thebehaviour of the heat capacity of
simple antiferromagnets in the regionof a transition to long-range order [40]. The data showa lambda-like peak
close to the cuspobserved inχ, indicative of an antiferromagnetic transition at 3.0(1)K.

Figure 10(c) shows pulsed-fieldmagnetization data taken at various fixed values of temperature. As thefield
is swept, the data display a slightly concave rise followed by a rounded approach to saturation, distinctive of an
S=1 antiferromagnet with single-ion anisotropy. Above 15T at the lowest temperatures themoment
approaches a saturated value of 2.10(1)μB perNi(II), which suggests a low-temperature value of g=2.10(1).
There is no indication of a spinflop in the data, which is consistent with the expectation of easy-plane anisotropy
in thismaterial. Following reference [22], we expect to see two characteristic fields in a polycrystalline
measurement ofM(H) of an easy-plane system: one at the point wheremoments saturate forfields lying in the
easy-plane, and the other wheremoments saturate forfields parallel to the hard axis . These occur at

H n J g2x
0 sat Bm m= á ñ and H n J D g2z

0 sat Bm m= á ñ +( ) , respectively. A change in curvature is observed in the
low-temperature data between 5 and 6T,which appears as a peak in dM/dH (as shown infigure 10(d)).We
associate this featurewith fields within the easy-plane and find H 5.7 3x

0 satm = ( )T. Furthermore, we define the

Figure 9.Room-temperature crystal structure of [Ni(H2O)2(pyrazine)2](BF4)2 determined using powder synchrotron x-ray
diffraction. (a) LocalNi(II) environment and atomic labelling scheme. (b)Unit cell showingNi-pyrazine square lattices sheets.Water
hydrogens can occupy four equally probable positions, one ofwhich is shownhere. Pyrazine hydrogen are omitted for clarity.
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hard-axis saturation as the point at which M Hd d2 2 first approaches zero, hence H 15.7 5z
0 satm = ( )T. From

these two valueswe estimate n J 4.0 2á ñ = ( )K andD=7.1(6)K22.
Zero-field heat capacitymeasurements performed on [Ni(H2O)2(pyrazine)2](BF4)2 (plotted asC/T in

figure 11(a)) reveal a broad humpdue to phonons located around 50–70Kand a lambda peak indicating a
transition to long-range antiferromagnetic order centred atTN=3.0(1)K, in agreement with the susceptibility
value. To extract the lattice contribution, afit ismade to the data in the range T24 300  Kusing amodel of
oneDebye and three Einstein phononmodes (see footnote 15) [34] 23. The result, shown as a red line, agrees well
with the data across the fitted temperature range. Themagnetic part of the heat capacity,Cmag, is isolated by
subtracting the lattice contribution. Themagnetic entropy is calculated by integration and found to approach
the expected value of R ln 3 at temperatures in excess of 10K.Cmag(T)measured infixed applied fields is shown
infigure 11(c). The lambda peak associatedwith antiferromagnetic ordering is seen to be suppressed as the field
is increased, while a broad shoulder appears to the high-temperature side of the peak and shifts to higher
temperatures with increasing field. This broad feature is associatedwith the single-ion anisotropy and its
temperature evolutionwithfield is shown inmore detail in the left-hand inset. The right-hand inset shows the
position of the hump,which can only be discerned at the highestmeasuredfields, plotted against gμ0μBH/kB.
Following the discussion of equation (7), we perform a linearfit of these data tofind δ=0.20(7) and

D k 2.5 8Bg =∣ ∣ ( )K.Using these values together withfigure 4(f), and assuming an easy-plane scenario, we
estimateD=7(2)K,which agrees with the result from themagnetization data.

3.2.Muon-spin relaxation
In order to confirm the presence of long-rangemagnetic order suggested by the heat capacity data,muon-spin
relaxation (μ+SR)measurements weremade on [Ni(H2O)2(pyrazine)2](BF4)2. Example spectra are shown in
figure 12(a). At temperaturesT<3.2 K the asymmetry shows heavily damped oscillations at two distinct
frequencies whosemagnitudes decrease with increasing temperature. At temperaturesT>3.2 K, oscillations
are seen at lower frequency, but show little variation as the temperature is further increased. The oscillations
measured forT<3.2K are characteristic of a quasistatic localmagnetic field at themuon stopping site usually
attributable to long-rangemagnetic order, which causes a coherent precession of the spins of thosemuonswith a
component of their spin polarization perpendicular to this localfield. The frequencies of the oscillations are
given by fi=γμBi/2π, where γμ is themuon gyromagnetic ratio (=2π×135.5 MHzT−1) andBi is the average

Figure 10.Magnetometry data for [Ni(H2O)2(pyrazine)2](BF4)2. (a)Magnetic susceptibilityχ(T)measured atμ0H=0.1 T. Inset:
1/χ(T) (circles) and linear fit (red line). (b) d(χT)/dT exhibits a lambda-like peak at 3.0(1)K. (c)Pulsed-fieldmagnetizationM(H)
measured at various temperatures. (d) dM/dH datawith the positions of the characteristic fieldsmarked by arrows. The inset shows

M Hd d2 2 at 0.6K. H z
0 satm is defined as thefield at which the M Hd d2 2 curvefirst approaches zero.

22
If an E termwere also present then in principle one could detect three criticalfields in themagnetisationmeasurements, in which case

n Já ñ,D andE could be all be determined.
23

The fit yields the following characteristic amplitudes,Ai(JK
−1 mol−1), and temperatures, θi (K), of theDebye (i=D) and Einstein

(i=E)phononmodes:AD=98(13), θD=116(9), A 109 6E1 = ( ), 208 21E1q = ( ), A 234 10E2 = ( ), 509 20E2q = ( ), A 247 27E3 = ( )
and 1287 128E3q = ( ).
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magnitude of the localmagnetic field at the ithmuon site. The oscillations forT>3.2 K are caused by dipole–
dipole coupling between themuon and fluorine nuclei and are typically resolved in the paramagnetic regime.
Detailedmodelling of these two regimes is described in the supplementalmaterial. This allows us to conclude
that thematerial undergoes a transition to long-range order throughout its bulk atTN=3.2(1)K,which is in
excellent agreement with the heat capacity data.

3.2.1. Neutron diffraction
To check the reliability of the easy-plane attribution, we performed neutron powder diffraction on a deuterated
sample of [Ni(D2O)2(d4-pyz)2](

11BF4)2 at theWISHdiffractometer (ISIS, Rutherford Appleton Laboratory, UK)
(see footnote 15) [41].

Figure 11.Heat capacitymeasurements of [Ni(H2O)2(pyrazine)2](BF4)2. (a)Zero-field data plotted asC/T (circles). The red line is a fit
of the lattice contribution extrapolated to low temperatures. (b)Magnetic entropy up to 20K,which approaches the expected value of
R ln 3. (c)Magnetic heat capacityCmag(T) at variousfixed values of appliedfield. Left-hand inset: the region T4 8  Kat high
fieldswhere the broad humpdue to single-ion anisotropy becomes apparent. Right-hand inset: the field-dependent position of the
hump (circles) and associated linear fit (red line).

Figure 12. (a)Examplemuon-spin relaxation data for [Ni(H2O)2(pyrazine)2](BF4)2 at selected temperatures. Solid lines are fits
described in supplementarymaterial. (b) and (c)Neutron diffraction results for [Ni(D2O)2(d4-pyz)2](

11BF4)2. (a)Magnetic diffraction
pattern (red points) obtained by subtracting data collected at 10K from that collected at 1.5K (see supplementalmaterial for detailed
information onmethods, calculations and ancillary results.). Note that the artefacts that arise in the subtraction of the brightest
nuclear reflections in the presence of a slight lattice contraction have beenmasked. Thefitted spectrum (black line) has theNi(II)
moments lying perpendicular to the c-axis. Bragg peaks are indicated by ticks and the blue line is the difference between the data and
the fit. The insets show a comparison of themodel calculatedwith themoments perpendicular and parallel to the c-axis. (b)
Temperature dependence of the orderedNi(II)magneticmoment (circles) and the power-law fit (red line) described in the text.
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A full quantitative structural refinement of the data ismade difficult by the dynamics of thewatermolecules.
A LeBailfit of the nuclear Bragg peaks observed at 10K is fully consistent with the reflection conditions of the
space group I mcm4 and yields lattice parameters a=9.8859(2)Å, b=9.8859(2)Å, c=14.6625(4)Å, which
are in good agreementwith the results of the structural refinement of the room-temperature x-ray diffraction
data taken on the non-deuteratedmaterial. To account for the fact that the reflections with a sizeable projection
on the c* reciprocal lattice vector were found to be broader than others, the fit to the neutron data includes a
strainmodel that represents a small degree of decoherence along the crystalline c-axis.

Taking the difference in scattered neutron intensity obtained at 1.5 and 10K reveals threemagnetic
diffraction intensities (see footnote 15), the positions of which can be indexed by the propagation vector k=(0,
0, 0)with respect to the reciprocal lattice of the paramagnetic unit cell (see figure 12(b)). The three peaks
correspond to the following families of reciprocal lattice vectors: {1, 0, 1}, {1, 0, 3}, and {2, 1, 1} and are
attributed to long-rangemagnetic order ofNi(II) ions as observed usingμ+SR.None of the observedmagnetic
reflections violate the I-centring reflection condition, whichmeans thatmagneticmoments related by I-centring
(corresponding to a translation of [1/2, 1/2, 1/2])must align parallel to one another. The reflections {1, 0, 1}
and {1, 0, 3} do violate the c-glide reflection condition of the nuclear structure, hencemagneticmoments of
atoms related by the c-glidemust align anti-parallel to one another [corresponding to a translation of [0, 0, 1/2]
for theNi(II) sublattice]. No evidence for canted antiferromagnetism is observed in either the neutron or
magnetometry data and so a collinearmagnetic structure is imposed. There are fourNi(II) ions in the unit cell at
positions [0, 0, 1/4], [0, 0, 3/4], [1/2, 1/2, 1/4], and [1/2, 1/2, 3/4]. Thus, from the positions of themagnetic
diffraction peaks alone, we can conclude that these atoms have relativemagneticmoment directions up-down-
down-up, respectively. Considering the full Ni(II) sublattice, this is theG-typemagnetic structure with all
nearest neighbours aligned antiferromagnetically.

Themagneticmoment directions are determined byfitting the relative intensities of themagnetic diffraction
peaks in the subtracted data. Because of the difficulties with the nuclear refinement, themagnetic intensity could
not be calibrated and the scale of themagnetic phasewas left free to refine. As can be seen in the insets to
figure 12(b), the relative diffraction intensities were consistent withmagneticmoments aligned in an
undetermined direction perpendicular to c, confirming the presence of easy-plane anisotropy consistent with
the results of thermodynamicmeasurements.

The square root of the integrated intensity of the {1, 0, 1}magnetic peak, which is proportional to the
orderedmoment, is plotted as a function of temperature infigure 12(c). Afit to a simple power-law dependence,
m T m T T0 1 c= - b( ) ( ) ( ) , yields an estimate ofTc=2.91(2)K,which is in reasonable agreementwith the
values extracted fromμ+SR and heat capacity.While the sparseness of the data in the vicinity ofTc limits the
sensitivity of the fit, we note that thefitted value of the exponentβ=0.25(2) is consistent with values found for
experimental realizations of the 2DXYmodel [42].

3.3.Discussion
Thermodynamicmeasurements on [Ni(H2O)2(pyrazine)2](BF4)2 are all consistent with easy-plane anisotropy,
which is verified by neutron diffraction. Isothermalmagnetization suggestsD=7.1(6)Kand n J J4 pyzá ñ = +
J2 4.0 2H O2

= ( )K.The value ofD agrees with the analysis of the high-field heat capacity and is within 32%of the
value found above for the non-interacting system [Ni(H2O)2(3,5-lutidine)4](BF4)2. Previouslymeasured values
of Jpyz in relatedNi(II) compounds are∼1K [22], whichmight suggest that J JH O pyz2

 and that ourmaterial is
a highly two-dimensional antiferromagnet. This would be consistent with the analysis of the critical exponent
extracted from the neutron data.

4.Using density functional theory to obtain single-ion parameters

Tomodel theHamiltonian parameters in [Ni(H2O)2(pyrazine)2](BF4)2weperformed a sequenceof density
functional theory (DFT) total energy calculations.Calculationswere performedwithin theDFTplanewave
formalism as implemented in the CASTEP code [43, 44]. The exchange-correlation interactionswere describedwith
thePBE generalised gradient functional [45], andultrasoft pseudopotentials [46]were used for the core-valence
interactions.Numerical convergence of the planewave basis set (planewave cut-off and k-point sampling)was set
at a tight tolerance such that total energydifferenceswere converged to better than 0.01meV/cell to obtain
accurate results for coupling constants [47]. Geometry optimisationswere performedusing a BFGS energy
minimisation algorithmuntil themaximim residual force onatomswere all below0.05 eVÅ−1.

Spin–orbit coupling, implemented in CASTEPwith the formalism ofDal Corso et al [48]was also used, where
j=l±1/2-resolved pseudopotentials are obtained from a fully relativistic radial atomicDirac-like equation.
This is needed because the strongest part of the spin–orbit interaction is within the core and so, in a plane-wave
calculation, itmust be dealt with via the construction of a j-dependent pseudopotential.We then use a
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4-component spinor as a pseudowavefunction, rather then the usual 2 component spin up/down formalism.
The 4-componentwavefunction allows for local spin orientations and permits inclusion of spin–orbit coupling,
which is closely related to non-collinearmagnetism. At each point in space there is a local direction to the spin
polarisation and this is used to evaluate the exchange-correlation interaction using standard functionals. The
magnetic structure is not the same as the crystallographic structure and hence in the electronic structure
calculations we do not impose a predetermined symmetry on the electronic charge densities.

To extract theHeisenberg coupling constants, we employ themethod described in the supplemental
material involving comparing several collinear spin configurations. After geometry optimisation of the system,
there are two different pairs ofNi–Ni interactions. The structure therefore suggests two exchange constants: J1
within theNi-pyz planes and J2 between them. In spin-polarised systems each energyminimum in an electronic
structure calculation corresponds to amagnetic structure. To investigate likelymagnetic structures (collinear in
thefirst instance) the electronic structure is initializedwith various spin configurations and energyminimized to
the nearest localminimumelectronicmagnetic state. The spin structure of the lowest energy state is shown in
figure 13. It forms an antiferromagnetic state within each of theNi-pyz planes, offset by (1/2, 1/2) in
neighbouring planes. To evaluate the intraplane J1 coupling and the interplane (next nearest neighbour) J2
coupling, differences in energy of spin configurations are taken giving J1=0.64(1)meV and J2=0.65(1)meV,
where the uncertainty is that of numerical noise in the calculation [49]. Our calculations therefore predict an
antiferromagnetically ordered ground state with an isotropic exchange J1≈J2≈8K. The calculations
overestimate the J-couplings compared to the experimental results. This is likely due to the use of the PBE
functional whichmay underestimate the localisation of theNi d electrons, allowing slightlymore neighbour–
neighbour overlap and increasing the apparent strength of themagnetic coupling. (Such a systematic effect has
been noted previously inGGA+Ucalculation inNi-pyz-based systems [18]). It is alsoworth noting that in
previous calculations of exchange effects in a coordination polymermagnet [23], we found that a similar
overestimate resulted from the neglect in the calculations of the effects of structural disorder, which acted to
strongly reduce the exchange coupling. As noted above (figure 9), thewatermolecules thatmediate the
interplane exchange in thismaterial exhibit a degree of positional disorder. This then could act to suppress the
interplane coupling, leading to a quasi-two-dimensionalmagnet, whichwould be consistent with the critical
exponent extracted from the neutron data.

In addition to exchange, the energy scales of single-ion anisotropy effects can be investigated by examining
the dependence of the energy on the direction of the spin configurations. This requires that the spin–orbit
interaction is taken into account in the electronic structure calculations and that the spins are allowed to adopt
non-collinear configurations. Spin anisotropy,D, of the system can be found by examining energy differences

Figure 13. Spin density of the lowest energy spin state of [Ni(H2O)2(pyrazine)2](BF4)2 obtained from the density functional
calculations. The blue spin isosurface shows one spin channel while yellow shows the other.
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for the spin configurations that are possible in various orientations. For this the atomic anisotropic energy
expression H DS E S Sx x y

2 2 2= + -( ) is used. Electronic structure calculations are carried out, initialising the
spins to be aligned along the x, y and z directions.WefindD=8.5(2)K andE�0.2K. The prediction forD is in
good agreement with the value of 7.1(6)K established usingmagnetometry above. The value ofE falls within the
limits of resolution of the calculation itself [49], and so can be considered zerowithin the errors, which agrees
with the expectation that E=0 in this tetragonal system. Lastly, we note that, in computing these values, it is
important to include spin–orbit coupling since this contributes significantly to the anisotropy coefficient.
Similar calculations without spin–orbit coupling greatly underestimateD, giving D 0.2∣ ∣ K.

5. Conclusions

In this paper we have presented an experimentalmethod for extracting the anisotropy parameters of
polycrystalline S=1magnets from thermodynamic data and applied it to the situation ofmagnetically-isolated,
exchange-free systems aswell as an extendedmaterial with antiferromagnetic exchange pathways.We have
sought to determine towhat extent quantitative information can be achieved using readily accessible
measurement techniques.

[Ni(H2O)2(3,5-lutidine)4](BF4)2 was shown to be an exchange-free, easy-plane systemwithD=10.4(1)K
andE=2.6(2)Kwith coordination environmentNiN4O2. In contrast, Ni(H2O)2(acetate)2(4-picoline)2 has
environmentNiO4N2 and is easy axis with parametersD=−6.7(1)KandE=1.54(1)K. Based on the
experimental data, [Ni(H2O)2(pyrazine)2](BF4)2 is an easy-plane antiferromagnet formed from square planarNi
—pyrazine sheets separated byH2O and BF4

-molecules, withD=7.1(6)K, E=0 and n J 4.0 2á ñ = ( )K,where
n is the number of active exchange pathways. The systemorders antiferromagnetically below 3.2(1)K.

More generally, in the case of the exchange-freemagnets, we have found that fitting zero-field heat capacity
data yields reliable values forD andE, and confirmed this using high-frequency ESR. Thefield-dependence of
the heat capacity is a useful check on the sign of theD and themagnitudes of the parameters can be further
confirmed by features in the isothermalmagnetization. Low-fieldmagnetic susceptibility is a relatively quick
and available technique.We find thatfitting the results of suchmeasurements using the expressions described
can provide rough estimates ofD andE. For the antiferromagnetic systemwewere unable to extract quantitative
information about the anisotropy from low-field susceptibility and heat capacity data. Instead, low-temperature
magnetization infields up to the hard-axis saturation is required tofind this information. The results can be
checked bymeasuring heat capacity infields sufficiently high to separate the antiferromagnetic ordering peak
and the anomalies that arise due to energy level splittings.

In all cases, the experiments require temperatures lowcompared to the anisotropy energy. For the exchange-free
systems, successfulmagnetization andfixed-fieldheat capacitymeasurements also dependuponapplyingmagnetic
fieldswhich are on the scale of the anisotropy energy.The values of anisotropy foundabove for ourmaterials are
representative of those inoctahedrally coordinatedNi(II) compounds [31], suggesting that themeasurements canbe
performed in standard, commercially available equipment.On theotherhand, themagnetizationmeasurements
needed tofinduseful information in the caseof the antiferromagneticmaterials requiresfields n J D Bm~ á ñ +( ) . In
the case of [Ni(H2O)2(pyrazine)2](BF4)2, Já ñ is small and sofields<16Twere sufficient,which canbe achievedusing
superconductingmagnets. In othermolecule-basedNi(II) systems,fields in the rangeof pulsedmagnets (∼70 T)may
be required.

For the six-coordinateNi(II) complexes described here, we have observed a correlation between the Pauling
electronegativity (EN) value of the ligand donor atoms and themagnetic ground state. In the case of
[Ni(H2O)2(3,5-lutidine)4](BF4)2 andNi(H2O)2(acetate)2(4-picoline)2, trans -NiO2N4 andNiO4N2 octahedra
are found forwhichN andOdonor atoms have EN values of 3.04 and 3.44, respectively. The difference in EN
values determines the resultantNi(II)magneticmoment direction. Thus, theNi(II)moment lies in the direction
that includes the donor atoms of lower EN; i.e., either along theN–Ni–Naxis (Ising-like) orwithin theNiN4

plane (XY-like). This observation is fully consistent with all of the thermodynamic data. Further studies are
underway to clarify the nature of this correlation in awider range ofmolecule-basedmagnets.

Finally, we have described density functional theory calculations that incorporate spin–orbit coupling in
order to estimate single-ion anisotropy parameters. The calculated values for [Ni(H2O)2(pyrazine)2](BF4)2 agree
well with the experimentally derived results. Further calculations on othermaterials are underway to verify the
wider applicability of this approach.
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AppendixA. Single-ion anisotropy calculations

In zerofield, theHamiltonian of an S=1 exchange free systemmay bewritten

DS E S S
D E

E D

0
0 0 0

0
, A1z x y

2 2 2
 = + - =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ˆ ˆ ( ˆ ˆ ) ( )

wherewe have used the S=1 spinmatrices. Asmentioned in themanuscript, equivalent ways towrite this
Hamiltonian can be obtained by permutation of the coordinate axes. For example, we canmake the
transformation x y z z x y, , , , ¢ ¢ ¢( ) ( ).
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In a powdermeasurement, all information about the identity of zwith respect to the crystallographic axes is lost.
In this case we can shift theHamiltonian by a constant energy andwrite it in the standard form

D E

E D
D E

0
0 0 0

0
, A32

2 2

2 2

1 1 = + -
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ˆ ( ) ( )

where  is the 3×3 identitymatrix. The two sets of anisotropy parameters can thus be interconverted via the
relations

D E D

E D E

1

2
3

1

2
. A4

2 1 1

2 1 1

= -

=- +

( )

( ) ( )

Only one set of parameters will fulfil the constraint E D0 3 i i< < ∣ ∣.
The other cyclic permutation x y z y z x, , , , ¢ ¢ ¢( ) ( ) is also possible. In this case theHamiltonianmust be

shifted by (D1+E1) and the transformed parameters are given by

D D E

E D E

1

2
3

1

2
. A5

3 1 1

3 1 1

=- +

= -

( )

( ) ( )

Wenote that the full derivation of theHamiltonian (equation (1)) treats the spin–orbit andZeeman
interactions as perturbations to the ground state of a single ion [50]. This leads to an expression for the
anisotropyHamiltonianwritten in terms of thematrix elements of the orbital angularmomentumoperator L

mˆ .
We define
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L n n L

E E

0 0
, A6

n n 0
åL =

á ñá ñ
-

m
m m∣ ˆ ∣ ∣ ˆ ∣ ( )

where 0ñ∣ is the unperturbed ground state of the systemwith energyE0 and nñ∣ are the excited states with energies
En. The anisotropyHamiltonian is then given by

H
S S S

1

2

1

2
, A7z x y z x y x y x y

2
2 2 2

^
^ ^ ^

l-
= L - L + L + L - L - + L + L
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⎤
⎦⎥( ) ( ) ( )[( ) ( ) ] ( ) ( )

whereλ is the spin–orbit interaction constant. Onmaking the permutations of the coordinate axes it can be
verified that the originalmatrix elements are recovered bymaking the substitutions given above.

Appendix B. Curie–Weiss temperatures

The expressions for themagnetic susceptibility along the principal axes of the exchange-free S=1 system are
given in equation (3). Evaluating the expressions in the limitE→0 and gx=gy=gz=g yields
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as found elsewhere (e.g. [32]). Inverting these expressions and expanding in the limit of k T DB  gives the
high-temperature susceptibility in the planar and axial directions:
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which resemble aCurie–Weiss behaviourwith apparentWeiss temperaturesΘxy≈D/6 andΘz≈−D/3,
respectively. Taking a simple approximation to a powder average x y zav

1

3
c c c c= + +( ) of these expressions

again yields aCurie–Weiss form in the high-temperature limit, but with a zeroWeiss temperature. The
simulations shown infigure 2 also indicate that θav≈0 for systemswith non-zero E.
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