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Abstract

In order to reconstruct tectonic evolution histofythe southern margin of Asia
(i.e., Lhasa terrane) before the India-Asia callisihere we present a comprehensive
study on the clastic rocks in the southern Lhasane with new perspectives from
sedimentary geochemistry, detrital zircon geochimmpand Hf isotope. Clasts from
the Jurassic-Early Cretaceous sedimentary sequdinees Yeba and Chumulong
Formations) display high compositional maturity axperienced moderate to high
degree of chemical weathering, whereas those flmmldte Early-Late Cretaceous
sequences (Ngamring and Shexing Formations) areractiesized by low
compositional maturity with insignificant chemioakathering. Our results lead to a
coherent scenario for the evolution history of thkasa terrane. During the
Early-Middle Jurassic (~192-168Ma), the Lhasa tegravas speculated to be an
isolated geological block. The Yeba Formation isthenderstood as being deposited
in a back-arc basin induced by northward subduabibthe Neo-Tethys ocean with
sediments coming from the interiors of the Lhaseatee. The Middle Jurassic-Early
Cretaceous Lhasa-Qiangtang collision resulted & fibrmation of a composite

foreland basin with southward-flowing rivers canyi clastic materials from the
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uplifted northern Lhasa and/or Qiangtang terrari@aring the late Early-Late
Cretaceous (~104-72Ma), the Gangdese magmatic aswplifted rapidly above the
sea level, forming turbidites (Ngamring Formatiam)the Xigaze forearc basin and
fluvial red beds (Shexing Formation) on the retro-aide. At the end of Late
Cretaceous, the Lhasa terrane was likely to hawn helifted to high elevation
forming an Andean-type margin resembling the modgonth America before the
India-Asia collision.

Keyword: geochemistry; detrital zircon geochronology; Hftigme; Lhasa terrane;

southern Tibet

1 Introduction

The theory of plate tectonics explains the way twsiographic features of the
Earth are shaped and evolve over time. Servingy achnetype of continent-continent
collision, the Tibetan Plateau is thought to hamfluenced global climate and
seawater chemistry (Molnar et al., 2010; Richtealet1992). It is widely accepted
that the Tibetan Plateau is a Cenozoic featurdtnegudrom the India-Asia collision
and subsequent subduction of the Indian lithosphereath Asia (e.g., Chung et al.,
1998; Harrison et al., 1992). However, recent itigations have proposed that the
southernmost portion of Asia (i.e., the Lhasa tejamight have attained high
elevation immediately before the collision (Kapgkf 2005, 2007; Leier et al., 20074a;

Murphy et al., 1997; Zhu et al., 2017). It is calcio ascertain the pre-collisional
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tectonic evolution history of the Lhasa terranelfetter understanding the mechanism
and time-scale of the plateau formation.

Chemical composition holds important informationtbe provenance of clastic
sedimentary rocks. Compared with petrographic nukthive geochemical approach
has been shown to be more effective in studyingirath sandstones and shales,
and in some cases can be used to quantify thereooar and/or extent of sedimentary
processes such as weathering, sorting and diagelfegiLennan et al., 1993).
Previous studies have correlated chemical weatheni@nsity of clastic rocks with
climate and relief of the source terranes (e.gdoFet al., 1997; Nesbitt and Young,
1982; Yan et al., 2010). Sediments having undergaga@ficant chemical weathering
are likely to be deposited in low-relief regionstiwivarm and humid climate (e.g.,
sediments of the Congo Rivers; Wronkiewicz and @Ganti987), whereas those less
affected by chemical weathering are supposed tdebieed from high-relief regions
with cold and arid climate (e.g., Pleistocene ghclays and tillites; Nesbitt and
Young, 1996). Existing paleomagnetic data show that southern margin of the
Lhasa terrane was close to the equator in the $mae from the Early Jurassic (~3.7
S; Li et al., 2016) to Late Cretaceous (345Sun et al., 2012). In this case, climate
change of the Lhasa terrane is largely relatecettohism-induced regional uplift,
which can be best addressed using sedimentary gexdcdl approaches.

During chemical weathering, unstable componentdy(d@ing volcanic fragments,

ferromagnesian minerals and feldspars) are lardebomposed but zircon survives
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and is enriched in the sediments due to its phieimical resistance. This makes
zircon a powerful tracer for studying provenancésearigenous sedimentary rocks
(e.g., Wu et al., 2010; Zhu et al., 2011b). As ptied provenance, the magmatic rocks
emplaced in the southern Lhasa terrane and sonadities in the northern Lhasa
terrane have zircons with positiwHf(t), whereas rocks from the central Lhasa
terrane have negatiwif(t) (Hou et al., 2015; Zhu et al., 2011a). Moregwetrital
zircons from the pre-Mesozoic rocks in the Lhasaate have a distinctive age
cluster of ~1170Ma, whereas those from the wes®@rangtang and Tethyan
Himalaya terranes define an age peak of ~950Ma €Zlal., 2011b). The differences
in detrital zircon age distribution and Hf isotogiemposition serve as a unique tool
for interpreting tectonic evolution history of thehasa terrane recorded in
sedimentary rocks.

In this paper, we present the results of our stigigg a such combined approach,
including bulk-rock geochemistry, detrital zirconRlb geochronology and Hf isotope
on different types of clastic rocks (sandstones anaistones) from the southern
Lhasa terrane. Although previous studies have megpoaumerous tectonic models for
the Mesozoic Lhasa terrane based on magmatism k&og. et al., 2015; Zhu et al.,
2011), tectonism (Yin and Harrison, 2000; Murphylet 1997) or stratigraphy (Kapp
et al., 2005; Leier et al., 2007a), this papemigjue to provide new constraints on the
changes of paleoclimate and sedimentary provendmoagh time. With these data,

we are able to reconstruct the evolution historythed Lhasa terrane prior to the
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India-Asia collision.

2 Geological background and sampling

2.1 Geological setting

The Tibetan Plateau comprises a series of allocioiins Gondwanan continental
fragments that were accreted to Asia since theyHaleozoic (Yin and Harrison,
2000; Zhu et al., 2013). These fragments are, frmmh to south, Songpan-Ganzi
flysch complex, Qiangtang terrane, Lhasa terrarte tae Himalayas, separated by
Jinsha, Bangong and Indus-Yarlung Zangbo Suturég. (FA). Serving as the
southernmost tectonic unit of Asia, the Lhasa texrs an E-W trending geological
block that can be divided into the northern, cdrdrad southern subterranes due to
different magmatism and sedimentary covers (Hoal.et2015; Zhu et al., 2011a).
The ancient metamorphic basement of the Lhasanteria represented by the
Nyaingentanglha Group in the central Lhasa terrawbjch is covered with
widespread Permian-Carboniferous metasedimenteatagiZhu et al., 2011a, 2013).
The northern Lhasa terrane has extensive Cretacesttata and minor
Triassic-Jurassic strata (Kapp et al., 2005, 200Wj et al., 2011a). The southern
margin of Lhasa terrane is represented by the Gesggohagmatic arc (GMA, Fig. 1A,
also named as Gangdese batholith for the plutaqucvalents because of significant
erosion), from which volcanism since the MiddleaBsic has been well documented

(e.g., Liu et al., 2018; Mo et al., 2008; Wang let2016; Wei et al., 2017; Zhu et al.,
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2008, 2011a). In the southern Lhasa terrane, sedame strata predominantly of
Jurassic-Cretaceous age are well preserved (Zlal,e2013) and mainly comprise
Lower-Middle Jurassic back-arc sequence of the Yedanation (Liu et al., 2018;
Wei et al., 2017; Zhu et al., 2008) , Lower Cretarefluvial and marginal marine
clastic successions of the Linbuzong and Chumukorgnations (Leier et al., 2007a),
Upper Cretaceous shallow-marine deposits of theeakFormation (Leier et al.,
2007b) and fluvial red beds of the Shexing Forrma{isun et al., 2012) . There are
also small-scale and scattered exposures of Uppeassic limestones of the
Duodigou Formation showing fault contact with thedarlying Yeba Formation. To
the south of the Gangdese magmatic arc, a Cretademleogene forearc succession
was identified, i.e., Xigaze forearc basin (Anlet2014; Wang et al., 2012; Wu et al.,
2010). The Xigaze forearc succession is subdividamthe Chongdui, Sangzugang,
Ngamring, Padana and Qubeiya Formations from thtodnoto the top (Hu et al.,
2016). Representing the main turbiditic fill of tkegaze forearc basin, the Ngamring
Formation displays conformable contact with undagdydeep-water sediments of the
Chongdui Formation and the overlying Padana Foonaand locally in fault contact

with the Xigaze ophiolite in the south (An et 2014).

2.2 Sampling

2.2.1 Yeba Formation

Extending E-W trending for ~250km in the eastexgnsent of the southern Lhasa
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subterrane, the Yeba Formation volcano-sedimenstrgta comprise a bimodal
volcanic suite with interbedded fine-grained saodet calcic slate, and limestone
(Wei et al., 2017; Zhu et al., 2008). Two samplesercollected from the fine-grained
sandstones exposed ~30km north of the Sangri Cdéigy 1B). These samples are
guartzose sandstone and are composed of subamgatarcrystalline quartz, lithic

fragments and argillaceous cement with average Mmocamposition of

Q/F/L=88/2/10 (Table S1; Fig. 3), where Q, F andeler to quartz, feldspar and

lithics, respectively.

2.2.2 Chumulong For mation

Five mudstone samples were collected from the ChoumguFormation north of
Shannan city (Fig. 1B). The Chumulong Formationd@minated by dark-grey
mudstone with subordinate siltstone and sandsiime mudstone is interbedded with
very fine-grained bioturbated sandstone with oyBtagments and fossil wood debris
(Fig. 2). This lithofacies association is intergaktas being deposited in a lagoon

environment (Leier et al., 2007a).

2.2.3 Shexing For mation

Eight sandstone samples were collected from thexi89 Formation red beds
(Fig. 2) northwest of Lhasa city (Figs. 1B). Thedstone units sampled are part of

a >2km-thick, strongly folded fluvial clastic susseon which is covered by the
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undeformed Paleogene Linzizong Group volcanic ssioa (LVS; Mo et al., 2008).
These sandstones are feldspathic arenite and stigeviihodal composition variations

with average Q/F/L=35/27/38 (Table S1; Fig. 3).

2.2.4 Ngamring For mation

The flysch sequence of Ngamring Formation consistalternating beds of
sandstone and mudstone (Fig. 2) and is charaatieyg@ series of large channelized
conglomerates in the lower portion (Wang et al.120 Based on stratigraphy,
sandstone petrography and detrital zircon age ptipal the Ngamring Formation
can be further divided into three subsequences,the Lower, Middle and Upper
Ngamring Formations (An et al., 2014; Wu et al1@0 Eight samples were collected
from the sandstone beds, among which RK1601, RK1RBA603 and RK1605 are
from the Lower Ngamring Formation, RK1612 and RK3&re from the Middle
Ngamring Formation, and RK1614 and RK1615 are frira Upper Ngamring
Formation. The samples are litharenite to feldspa#inenite and contain a large
number of volcanic fragments (Table S1; Fig. 3)hwvaverage modal composition of

Q/F/L=12/23/65.

3 Methods

Modal composition analysis was carried out on @ghtsandstone samples with

300 points counted per thin section using Gazzkibson method (Ingersoll et al.,
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1984). The results are plotted in Fig. 3 and givefable S1.

Detrital zircons were extracted from crushed sasplsing heavy liquid and
magnetic separation techniques. Individual graiasevihandpicked, mounted in epoxy
resins and then polished to expose the interiorsod U-Pb ages were measured using
LA-ICPMS at State Key Laboratory of Geological Rrsses and Mineral Resources
(GPMR), China University of Geosciences, Wuhanfdipwing Liu et al. (2010a).
Cathodoluminescence (CL) images were not refereanddall analyzed grains were
selected randomly from all sizes and shapes ddin@@nalysis. The laser spot was 32
microns in diameter and always placed on the ceoftethe zircon grain. Zircon
standard 91500 was analyzed as external standardomeect for Pb isotope
fractionation. Offline data calculations were presed using the program
ICPMSDataCal_Ver8.0 (Liu et al., 2010b). The agessented in this study are
20%pp Y ages for zircons < 1000Ma afiPb7°°Pb ages for those >1000Ma. The
analyses with more than 20% discordance are omitted further discussion. The
kernel density estimation (KDE) plots were condidc using the software
DensityPlotter (Vermeesch, 2012). Analyzed as aknawn, the zircon standard
Plesovice yielded a medffPb7*®U age of 338+0.6Ma (2 n=117).

Maximum depositional age is determined using metifddickinson and Gehrels
(2009), who suggest both YSG (youngest single gage) and YC4(2+) (weighted
mean age of youngest detrital zircon cluster with 6r more grains overlapping in age

at Is) show similar compatibility with depositional agkut the former may be
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suspicious due to inherent lack of reproducibilithe YC2(3+) (weighted mean age
of youngest detrital zircon cluster with three arregrains overlapping in age at)2s

the most conservative measurement and considemtér than depositional age.
Generally, YC&(2+) is preferred as maximum depositional agehis study, the YSG

is suggested for those whose ¥{a+) are inconsistent with the depositional ages
determined via other samples/methods. Detritalonird-Pb data are summarized in
Table 1 and plotted in Fig. 4.

In-situ zircon Hf isotope analysis was conductethgid A-MC-ICPMS in the
Institute of Geology and Geophysics, Chinese Acadeinsciences (IGGCAS). Zircon
grains were ablated using a 193nm excimer ArF l[§&&olLas Plus) with a spot
diameter of 45-60 microns. Ablated material wasiedrby helium and introduced into
a Neptune MC-ICPMS. The analytical details wereegiloy Wu et al. (2006). The
U-Pb dating and Hf isotope raw data are presehaioles S2 and S3.

Whole rock major and trace element analyses wereedaout at GPMR, Wuhan.
Major element oxide measurement was done using IMABZU sequential X-ray
fluorescence spectrometer (XRF-1800) following Maak (2012). The analytical
uncertainties are better than 3%. Trace elements determined using an Agilent
7500a ICP-MS by following Liu et al. (2008). Theadytical results are presented in the

Table S4.
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4 Results

4.1 Detrital zircon geochronology and Hf isotope

4.1.1 Yeba Formation

A total of 104 usable detrital zircon ages sholarge variation from 179+2 to
3520+20Ma (Figs. 4A, 4B). Pre-Mesozoic ages comepthe largest population (99 out
of 104 results), which form significant peaks ceatkeat 556 and 1170Ma. The
depositional interval age has been yielded to Bsliydle Jurassic (~168-192Ma) via
zircon geochronologic study on the volcanic segasnwithin the Yeba Formation
strata (Liu et al., 2018; Wei et al., 2017; Zhuakt 2008). Therefore, although the
YClo(2+) and YC2(3+) of sample D54 was yielded to 563.5£3.6 and.@485Ma,
respectively, the maximum depositional age is sapgoto be 179Ma using the

youngest single zircon grain age (YSG).

4.1.2 Chumulong For mation

The four Chumulong samples yield 327 usable aggs.(BC, 4D). Sample D47A
yields 103 usable ages ranging from 117+1 to 25954 with major peaks at 121 and
224Ma. Sample D47B yields 109 usable ages rangimm fLO5+1 to 2732+29Ma,
which form four peaks at 123, 143, 166 and 226Maly@7 usable ages are obtained
from sample D47E, among which the largest popuigtieaks at 231Ma. Among the 68

available analyses for the sample D47C, zirconk Raleozoic ages are predominant
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(63 out of 68 results) with significant age peakl@4 and 454Ma. The maximum
depositional age for the Chumulong Formation isnemended to be 121Ma using the
YC1o(2+) of sample D47A.

In-situ Hf isotope analysis was performed on 208arn grains that had not been
exhausted after the U-Pb age analysis. Zircon gmaith Mesozoic ages display a large
variation in*"®Hf/*""Hf ratios witheHf(t) ranging from -24.3 to +14.7, revealing the

source rock diversity (Fig. 5).

4.1.3 Shexing For mation

The four Shexing samples yield 377 usable ages (Big, 4F). Sample MX1102
yields 113 usable ages with the youngest being 84&2This sample contains a large
population of pre-Mesozoic zircons peaking at 5800, 1450, 1750 and 2600Ma,
whereas Mesozoic ages are subordinate (28 outfedlts) with peaks at 88 and
121Ma. Sample MX1104 yields 90 usable ages thab#xdmajor peak at 90Ma and a
subordinate at 112Ma. Sample MX1106 yields 86 wsabks with the youngest being
82+2Ma. Mesozoic zircons are predominant (71 o@6o$pots) showing a major peak
at 88Ma and a subordinate at 201Ma. Sample MX11€l83/88 usable ages, most of
which are pre-Mesozoic (82 out of 88 spots). Omyrfgrains are identified with
Cretaceous ages of 91+2Ma, 92+2Ma, 105+4Ma and &+ This sample yielded
numerous small clusters and scatters showing nafis@nt peaks. The maximum

depositional age for the Shexing Formation is sspddo be 88Ma using the Y&2+)
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of sample MX1106.

Mesozoic zircons from these samples exhibit varhgotope composition (Fig.
5). Zircons with ages <105Ma have higfHf/*""Hf ratios withey¢(t) ranging from -0.6
to +13.7, whereas those with ages between 109 28il2 show varyind’YHf/* "Hf

with g(t) ranging from -16.1 to +5.4.

4.2 Bulk-rock geochemistry

4.2.1 Major elements

The Yeba and Chumulong samples as a whole didpiglyer compositional
maturity than those of the Ngamring and Shexingnfations. In terms of major
oxides, the Yeba sandstones are potassiO/Ka,0=5.64-7.04) with higher SiQ
lower Al,O3, and NaO (Figs. 6B, 6D and 6F). The Chumulong mudstones ha
similar SIGQ (63.82+5.90wt.%) but higher AD; (19.06+2.26wt.%) relative to the
average composition of the upper continental qi5KD,~66.3wt.%, A}Os~14.9wt.%;
Rudnick and Gao, 2003). Compared with those ofYilea Formation, the Shexing
sandstones are typically sodic ,(]WNa0=0.16-0.57, except for sample MX1103
~1.14) and have a wider range of §i@l,0; and CaO abundances (Figs. 6B and 6E).
Similarly, the Ngamring samples display sodic chamastics (kO/Nga0=0.12-0.58)
with relatively low SiQ (55.9113.4wt.%). The high LOI values of the Ngamring
samples (4.37-10.29 wt.%) are attributed to thegee of detrital carbonate in terms

of petrographic observation and the positive CaQ-t@relation (r=0.97). Generally,
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in the sandstones, there are marked negative atores of SiQ with TiO,, Al,Os,
MgO+FeOs' (where FgOs' represents total Fe as,Bg) and NaO (Figs. 6A, 6B,
6C, 6E and 6F), reflecting increasing compositianaturity towards high Si© 1t is
noted that Mg, Fe, Ti and Na largely reside invbkanic lithic fragments, reflected
by the negative correlation of modal volcanic bkthiproportion with these elements

(Figs. 6G, 6H and 6l).

4.2.2 Trace e ements

All the samples have subparallel REE patterns. (FigThe Yeba and Chumulong
samples show smoothly fractionated patterns withvbg of 7.23 — 15.2 (where
subscriptN refers to chondrite-normalized values) and Eu/Bti0.55 — 0.72. The
former has loweEREE (refers to total REE) abundances (99428 ppi) the latter
(180+30 ppm) due to quartz dilution effect. The X8hg samples have similar REE
distributions  (La/YR=8.09-10.2) but weak or absent Eu anomalies
(Eu/Eu*=0.63-1.00) with loweZREE abundances (12544 ppm). The Ngamring
samples are characterized by relatively flat pastewith lowest La/YRQ ratios
(4.10-8.39),XREE abundances (74+21 ppm) and Eu/Eu* ranging foor7 to 1.05.

In the sandstone samples, Eu/Eu* is most likelytradled by the enrichment of
plagioclase-rich volcanic lithic fragments (Fig.)6his suggests that these samples
were deposited in a volcanically active region wsthort transport distance of the

clastics.
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In the upper continental crust normalized multieat diagram (Fig. 7E),
patterns of the Shexing and Ngamring samples dopasallel to the unweathered
Yeba volcanic rocks (except for individual elementhich are concordant with
predominant magmatic provenances. The Yeba and Gloagn samples show
gradually reduced depletion in the order of Na,B&r,and K. Rb is enriched in the
Chumulong mudstones probably due to the adsorptyociays. The transition metals
(Co, Ni, Cr, and V) are largely inherited from t@canic lithic fragments (Fig. 6J) in
the sandstone samples. Th and U are generally eatheluring most magmatic
processes; however, they may be fractionated dusiegthering and sedimentary
recycling processes. The Ngamring, Shexing, Yeldh @humulong samples have
gradually increasing Th/U ratios of 34147, 4.6&1.09, 4.9%0.31 and 6.0#0.76,

respectively. See below for detailed discussion.

5 Influence of sedimentary processes on elemental variations

Chemical composition of terrigenous sedimentargksois the net result of
various factors, which includes provenance, weathersorting, diagenesis and
post-depositional metamorphism. Each of these pem=e should be taken into
account when speculating tectonic implications gisgeochemical data. It is
suggested that the Yeba Formation has undergonetoupyreenschist-facies
metamorphism (Wei et al., 2017; Zhu et al., 2008}his case, the unweathered Yeba

Formation volcanic rocks with greenschist-faciesam®rphism are introduced into
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the next discussion for estimating the influence mktamorphism on the

compositional variation of the clastic rock samples

5.1 Weathering and diagenesis

Chemical weathering modifies the composition of keocvia water-rock
interaction. With increasing intensity of chemisa¢athering, there is typically an
increase in clays at the expense of unstable coemgensuch as volcanic lithic
fragments, ferromagnesian minerals and feldspaeanwhile, the soluble alkali or
alkaline-earth metals (AAEM) with smaller ironicdras tends to be preferentially
leached from the soils than the larger one thahase readily retained on exchange
sites of clay minerals (McLennan et al., 1993). Meba and Chumulong clastic
samples show an increasing depletion tendency tsmire smaller AAEM cations
(Fig. 7E), indicating that their precursors werdjeated to significant chemical
weathering. Compared with the clastic rock samgles,Yeba volcanic rocks show a
distinct AAEM pattern with high Na and Sr abundas)csuggesting the regional
metamorphism has played no dominant role in madifythe AAEM composition of
the Yeba Formation. In contrast, the AAEM patteofidhe Shexing and Ngamring
clastic samples are similar to that of the Yebantation volcanic rocks (Fig. 7E),
revealing that the source rock disaggregation wasagpily controlled by physical
weathering with restricted chemical modification.

To better quantify the degree of chemical weattgeriChemical Index of
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Alteration (CIA) is used here (Nesbitt and Youn§382): CIA=ALOy/[Al ;O3 + K;O +
NaO + CaO*)100, where CaO* refers to that residing in silicatmerals only. In
this case, a correction should be made throughramilitg the CaO from carbonate
and apatite. In this study, the CaO is preferdgtiabrrected for apatite using
bulk-rock BROs abundance (mole Cag = mole CaO — mole ®s x10/3). If the
mole CaQy is less than N®, its value is adopted as the CaO*; otherwiseGh®*
value is assumed to be equivalent to@®l@McLennan et al., 1993; Yan et al., 2010).
The CIA value is directly related to chemical weathg intensity, from 50 in
unweathered igneous rocks to 100 in residual clagsording to the existing data
(Wei et al., 2017), the Yeba volcanic rocks witkegrschist-facies metamorphism
have a mean CIA value of ~50, confirming that tlstglepositional metamorphism
had not significantly increased the CIA valuesha Yeba Formation rocks. For better
visualizing the significance of CIA values, the sd@s are plotted on the A-CN-K
ternary diagram (Fig. 8A). The Yeba and Chumuloaigsles show moderate to high
degree of chemical weathering with CIA values raggirom 71 to 81, which are
significantly higher than the Yeba volcanic rocks Bimilar to that of the typical
shale (~70-75; Taylor and McLennan, 1985). The Blypand Ngamring samples
have lower CIA values of 49 to 59, revealing liditthemical modification and short
distance transportation of the clastics. All thengkes fall on a trend deviating from
that of diagenetic K-metasomatism (smectite-ititensformation; Fedo et al., 1995),

but consistent with weathering being the sole @drfivicLennan et al., 1993). When
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plotted in A-CNK-FM ternary diagram (Fig. 8B), tlsamples show trends that are
best understood as mixing sources. These resuttefundicate that the CIA values
of the clastic samples were decoupled from the amitipnal variation of their
precursors.

Another geochemical index, Th/U, is commonly usecdstimate the impact of
chemical weathering (McLennan et al., 1993; Tagiod McLennan, 1985). In most
cases, chemical weathering under oxidizing enviemnean transform tJ to more
soluble U*. The subsequent dissolution and loss $ffgsults in elevation of Th/U in
clastic rocks, especially for mudstones and shaléere heavy minerals are less
likely to be an interfering factor (McLennan et, d993). It appears that the data
follow the trend consistent with weathering beirige tprimary control (Fig. 9);
however, the Yeba samples show indistinguishablé) Tatios and Th abundances
from the Shexing counterparts, which contradicirtdestinct CIA values. It is also
noted that the Th/U ratios in the sandstone sampleslap with those of the Yeba
volcanic rocks (Fig. 5C) and are proportional te ttontent of volcanic lithics (Fig.
3K). Therefore, we suggest that Th/U ratios of Hamdstones largely reflect the

nature of the provenance rocks rather than thenegtechemical weathering.

5.2 Hydraulic sorting

The most commonly used approach to examine theienfle of sorting on

sedimentary rocks is to evaluate the textural nitgtusing characteristic grain sizes
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and shapes (McLennan et al., 1993). Sorting presease usually accompanied by
fractionation or enrichment of heavy minerals (bbta zircon), which can
significantly modify abundances of the elementst thie at trace levels in most
sedimentary rocks (e.g., Zr and Hf in zircon). Eifere, geochemical composition of
clastic rocks is also useful in evaluating the iotpaf sorting. Zr/Sc ratio is a
promising tracer for zircon accumulation, sinceiZmostly concentrated in zircon
whereas Sc is not enriched but generally inheffiteth the precursors. Th/Sc ratio is
suggested as a potential indicator of magmaticedfitiation, because Th behaves
conservative during sedimentary processes (McLembal., 1993). In most of the
samples, Zr/Sc covaries with Th/Sc, which can bebated to compositional
variation of the precursors. Note that the Chumglsamples show some variation in
Zr/Sc with unvarying Th/Sc (Fig. 10A). Generallind-grained clastic rocks such as
shales and mudstones are deposited in low-energyoament so that they are less
prone to accumulating zircon. In this case, thes@&n/ariations in the Chumulong
samples are best understood as a consequenceratilydorting. Considering that
zircon is a weathering-resistant mineral with hdgnsity, its fractionation during
sedimentary processes reveals a long-distanceptsetaion of the clastic materials
before deposition. The other sandstone sampleslibe trend that is consistent with
compositional variations of the source rocks, iatilg insignificant zircon
fractionation. In some sediments of mineralogicamiaturity, sorting can result in

accumulation of plagioclase and volcanic fragméhsLennan et al., 1993). In the
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Ngamring and Shexing sandstones, the Eu/Eu* is rhksly controlled by the
enrichment of plagioclase-rich volcanic lithic fragnts (Fig. 3L), suggesting that the
samples were deposited in a volcanically activeioregwith short distance

transportation of the clastic materials.

5.3 Two-component mixing model

Elements having conservative behavior in sedinmgnf@rocesses and low
residence time in seawater, such as Th, Nb, Zr,S€oand LREES, are promising
indicators for the source rock signature (Bhatid @nook, 1986). In the Th-Sc-Zr/10
ternary diagram (Fig. 10A), most of the samplesashompositional similarity to the
clastic rocks from oceanic or continental arcs. Themulong samples show a linear
trend away from the Zr/10 apex, consistent withfdet that mudstones are depleted
in zircon due to sorting. In the Fig. 10B, the s&wplotted in the array of Gangdese
magmatic arc, likely signifying mixing of two endmébers (mafic and silicic source
rocks). A diagram of La/Sc vs. Co/Th (Fig. 11) wsnstructed to further test the
two-component mixing model. All the data points die the mixing curve and show
good agreement with the bimodal mixing model. Thgairing samples display
largest compositional variations, among which RK&&@th lowest SiQ abundance
(46.7 wt.%) and highest Co/Th ratio (21.2) require80% mafic component
contribution. This result is concordant with therpgraphic observation showing a

large proportion of basaltic lithic fragments irtNgamring samples, and reveals that
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the low SiQ abundances of the Ngamring samples are not attdbio the presence
of carbonate characterized by low Co/Th ratio. Biexing samples have overall
intermediate to silicic provenance with >50% sdi@omponent contribution. The
Yeba and Chumulong sediments have most acidic peomee with >80% silicic

component.

6 Sedimentary provenances and tectonic implication

6.1 Yeba For mation (~192-168M a)

The Yeba sandstones are characterized by high v@lAes and significant
negative Eu/Eu* anomalies (Fig. 7) with strong @éph in alkali and alkaline earth
metals (Fig. 7E), indicating a low-relief provenaneith tropical climate. According
to the mixing model (Fig. 11), the Yeba sandstoaes best interpreted as being
sourced from silicic provenance. Petrographic olm&n shows that the modal
compositions of the Yeba samples fall into the oty orogen region in the Q-F-L
plot (Fig. 3). Detrital zircon data reveal that teba Formation sediments were
recycled from the pre-Jurassic strata in the Lhi@seane without exotic clastic
addition, because: (1) the Mesozoic ages arevelgtiare (~5.7%, 6 out of 104 results)
in the sample D54, suggesting a limited supplyuokjile materials; and (2) the age
spectrum is subparallel to those of the Paleozioit Eiassic metasedimentary rocks
(notable age peak of ~1170Ma; Figs. 13B, 13C, lihe Lhasa terrane but distinct

from those of the western Qiangtang clastic rocksi@acterized by significant peak
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of ~950Ma; Fig. 13G). These results suggest thatltimasa terrane was an isolated
geological block drifting in the Tethyan ocean ahdd not collided with the
Qiangtang terrane during the Early Jurassic.

Previous research has suggested that subductimes 2eere developed on both
northern and southern sides of the Lhasa terrane €Z al., 2013; 2016). Substantial
Triassic-Jurassic subduction-related volcanism {233Ma) occurred in the southern
Lhasa subterrane (e.g., Kang et al., 2014; Lid.e2818; Tafti et al., 2014; Wang et
al.,, 2016; Wei et al., 2017) indicates that the tmward subduction of the
Neo-Tethyan oceanic lithosphere beneath the Lieasane should initiate prior to the
Middle Triassic (Wang et al., 2016). An alternatmew presumed that the Early
Mesozoic magmatism was induced by southward sulmtu@nd rollback of the
Bangong Tethyan oceanic lithosphere (Zhu et all3R0It is noted that the
Triassic-Jurassic subduction-related volcanism sggan the area ~250-300km south
of the Bangong Suture without considering ~60% tafushortening occurring during
the Late Jurassic — Cretaceous (Murphy et al., 199@wever, the mean distance
from arc volcanoes to trench in the modern subdoctiones is 16860km (Stern,
2002). In this case, it is more reasonable thavtheanisms in southern Lhasa terrane
were associated with northward subduction of the-Rethyan oceanic lithosphere.

In the southern Lhasa terrane, the subductiorteclXiongcun porphyry Cu
deposit with ore-bearing country rocks of the EdMigdle Jurassic Xiongcun

Formation volcano-sedimentary sequence was dewklopehe west of the Yeba



464 Formation (Lang et al., 2014, 2018; Tafti et al02; 2014; Tang et al., 2015). Sillitoe
465 (1998) favored the compressional regime for themédron of subduction-related
466 porphyry Cu deposits in terms of the statistic gtad global Cu deposits; however,
467 no Cu deposits have been found in the Yeba Formatihich was previously
468 considered to be formed in continental arc set(digu et al., 2008). The Xiongcun
469 sandstones are classified as lithic arenite ande henodal composition of
470 Q/F/L=21:11:68 (Fig. 3) with positive detrital zinc Hf isotopic fingerprints (+10.5
471 to +16.2) (Lang et al.,, 2018). These results indidhat the Xiongcun and Yeba
472 sandstones were deposited in different tectonitingst The high proportion of
473 volcanic lithic fragments reveals that the Xiongcsandstones were sourced from
474  uplifting volcanic arcs, while the high degree dlemical weathering (CIA =77-85)
475 suggests a tropical climate (Lang et al., 2018) ¥eba sandstones, however, are
476 predominated by recycled quartz and underwent tiggmical weathering, indicating
477 that they were gradually deposited in the basih wetatively subdued uplift and low
478 elevations (Fig. 14A). A reasonable explanationthat the Yeba Formation was
479 deposited in the back-arc basin close to the dehtnasa terrane, whereas the
480 Xiongcun Formation represents the Gangdese vol@nifront. The southern margin
481 of the Lhasa terrane most likely resembles thegmteday Ryukyu-Okinawa arc-basin
482 system in the Early-Middle Jurassic. This propasakinforced by the study on the
483 volcanic rocks suggesting the Yeba Formation wenaéd in extensional setting (Liu

484 et al., 2018; Wei et al., 2017).
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6.2 Chumulong Formation (~121-105M a)

In this study we calculate a maximum depositiongé af 121Ma for the
Chumulong Formation, which is ~22Myrs younger thaported in Leier et al.
(2007c). The Chumulong samples have similar geowaneharacteristics to the
Yeba Formation counterparts (i.e., high CIA valdes; Na&O/K,0, strong depletion
in Na" and Sf* and significant negative Eu anomalies; Figs. 7& &), revealing a
high degree of chemical modification during weaithgrand clastic transportation
processes. Taking into account that the Chumuloagn&tion is dominated by
mudstones and subordinate fine-grained sandstarwsmganied with fossil wood
debris, we suggest that the climate and relief weremarkedly changed from the
Jurassic and the southern Lhasa terrane maintairled elevations (Fig. 13C).

Note that detrital zircon data indicate that sousggons of the Early Cretaceous
sediments were inconsistent with the pre-Cretacsansples. Firstly, detrital zircon
age peak of ~950Ma appears in the Early Cretaceanmples (Fig. 12E). Secondly,
the Early Cretaceous samples show insignificant @gaulation around ~1170Ma,
which differs from those of the pre-Cretaceous damprhese results strongly imply
a Middle-Late Jurassic tectonic event that coulilitein the change of source region
of the sediments in the Lhasa terrane. One of thst significant tectonic events for
the Lhasa terrane prior to the India-Asia collisisnts collision with the Qiangtang
terrane, which was speculated to initiate as easlthe Middle Jurassic (Lai et al.,

2019; Li et al., 2019; Sun et al., 2019) and congaleluring the Late Jurassic to Early
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Cretaceous (Zhu et al., 2016). The discrepanciegfnital zircon age spectra between
the pre-Cretaceous and Cretaceous samples arentagpteted as resulting from the

Lhasa-Qiangtang collision. As a consequence, dafiodebasin was probably formed

in the Lhasa terrane (Figs. 13B) and clasts fromn@iang were transported to the
Lhasa terrane by south-directed rivers. This prapmssupported by the appearance
of the Berriasian-Valanginian (~145-134Ma) forelamblasse association in the

central Lhasa terrane with paleocurrent directiorénly toward the south (Zhang et

al., 2012).

However, a simple foreland basin model is probabsyfficient to explain the
sedimentary records in the northern Lhasa terr@nging the Early Cretaceous,
extensive volcanism (i.e., Zenong Group; Zhu et2fl11a) occurred in the northern
Lhasa terrane and overprinted the foreland basisoime localities. Subordinate
basins (e.g., Cogen and Selin Co basins; Sun,e2@l7; Zhang et al., 2011) were
consequently formed with deposition of the Duonirrkation. Sun et al. (2017)
suggested that the Duoni Formation was mainly sslfcom the Zenong volcanic
rocks and basement rocks from the southern podtficghe northern Lhasa subterrane.
It is also noted that the detrital zircons from Engoni clastic rocks exhibit significant
age peaks of 950 and 1170Ma (Leier et al., 200fang et al., 2011), similar to those
of the Early Cretaceous samples in the southersd.texrane (Fig. 12E). Furthermore,
the detrital zircons are characterized by negati¥f¢t) (Fig. 5), implying no sediment

supply from the Gangdese magmatic arc to the sddleocurrents measured from
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Duba section of the Duoni Formation and Linzhoutieacof the Chumulong

Formation are overall south-directed, although f&whem indicate north-directed

flows (Leier et al., 2007a). Considering all thelggical evidences, we suggest that
clastic contribution from the Qiangtang terrane ncdnbe precluded in the Early
Cretaceous sedimentary basins of the northern Ltemsane, and the Lhasa terrane
was still a south-dipping foreland basin as a wholeés model is consistent with the
study of Wang et al., (2017b) on Damxung conglomesran the central Lhasa terrane,
who suggested the initial topographic growth tod&kce in the northern part of the
Lhasa terrane by the early Albian time. A compo®iteland basin model (Fig. 14C)
is suitable, where multiple subordinate sedimentaagins were developed with
clastic materials coming from both the Qiangtangatge and the interiors of the

Lhasa terrane.

6.3 Ngamring For mation (~104-83M a)

As the first and main turbiditic fill of the XigazZerearc basin (An et al., 2014;
Wang et al.,, 2012), the Ngamring Formation is imfoanable contact with
underlying deep-water sediments of the Chongdumiation (Wang et al., 2017a).
The change of lithofacies association from deepnsgdiments to turbidites indicate
a late Early Cretaceous tectonic event occurredgalbe southern margin of the
Lhasa terrane. Overall, the Ngamring sandstoneshamcterized by low CIA values,

high NgO/K,;0 and weak to absence of Eu anomalies, displayigiy ¢dompositional
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and textural immaturity (Fig. 12). The Lower NgangiFormation is supposed to
have a maximum depositional age of 104Ma (An et28l14). The Lower Ngamring
samples are characterized by low Si@hd high NgO/K,O, from which detrital
zircons are predominately of Cretaceous age wititige ¢Hf(t) values (An et al.,
2014; Wu et al., 2010). According to the two-comg@anmixing model (Fig. 11),
significant contribution of mafic component (40-92% required for the Ngamring
sandstones. These results reveal that the Gangusgmatic arc was in a period of
strong volcanic activities, consistent with the rpgtaphic observation showing
abundant volcanic lithic fragments in the Ngamrgagnples. Therefore, we advocate
that the Gangdese magmatic arc was quickly uplifibove sea level (Fig. 14D) and
changing the shelf and submarine canyon morphdaowe the late Early Cretaceous.
Leier et al. (2007b) drew a similar conclusion \eadressing the sandstone
provenance of the age-equivalent Takena Formatiothe north of the Gangdese
magmatic arc. Samples of the Middle Ngamring Foloma{~99-88Ma; An et al.,
2014) have higher Siand lower NgO/K,0O than the Lower Ngamring counterparts
indicating an additional supply of dissected magenatc materials. This inference
can be verified by the appearance of older detritalons peaking at ~157Ma with
positiveeHf(t) values in the Middle Ngamring sandstones @ral., 2014; Wu et al.,
2010). This means that by this time the south-fimyrivers had penetrated the
Gangdese magmatic arc. Samples of the Upper NggrRormation (~88-84Ma; An

et al., 2014; Wu et al., 2010) are the most acwditr lowest NaO/K,O, showing
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diversity of the source rocks. Abundant pre-Cratasedetrital zircons with large
variation ofeHf(t) values in the Upper Ngamring sandstones ssigipe sediments be
transported from the northern portion of the Lhiseane or even from the Qiangtang
terrane. The expansion of river catchments was hikesdy to be the result of regional
uplift of the northern Lhasa and Qiangtang terradaang the Late Cretaceous.
Above all, the Ngamring Formation turbidites rectind denudation of the Gangdese
magmatic arc, which reflects uplifting history dfet southern margin of the Lhasa

terrane.

6.4 Shexing Formation (~87-72M a)

It is suggested that deposition of the Shexing Faion likely initiated by ~87Ma
constrained by detrital zircon geochronology instistudy, and ended by ~72Ma
yielded by the volcanic rocks interbedded in thparmost Shexing sequence (Sun et
al., 2012). Characterized by low CIA,®/N&O, weak to absence of Eu anomalies
and large proportion of lithic grains, the Shexisgndstone samples illustrate a
tectonically active source region that was rapidiglifting with surface rocks
disintegrated by physical weathering. Consider thatLhasa terrane located at low
latitudes (~15N) during the Late Cretaceous, a high altituded@bimate) is required
to keep the chemical weathering intensity of thex8tg sandstones to a low level. A
counter example is the Xiongcun lithic arenite witigh chemical weathering

intensity, which indicates the Lhasa terrane wdswatelevation during the Jurassic. A
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possible mechanism for the Late Cretaceous udlithe Gangdese magmatic arc is
the Neo-Tethyan mid-ocean ridge subduction (Zhadrad.£2010). The positiveHf(t)
values of young detrital zircons (<105Ma) indic#tat the Gangdese magmatic arc
serves as a main provenance. This inference isdugupported by the paleocurrents
recording locally northward-flowing rivers durinpet Late Cretaceous (Leier et al.,
2007b). Considering that there are also abundardokik®c detrital zircons with
eHf(t)<0 (Fig. 5), more sources in addition to thaf@dese magmatic arc are required
for the Shexing sandstones. Detrital zircon agectsp@ of the Late Cretaceous
samples (Fig. 13F) shows more evident peaks of M80#hd ~950Ma than the Early
Cretaceous samples, revealing an increasing setisugply from the Qiangtang
terrane during the Late Cretaceous.

These results reconcile that the Lhasa and Qiaggtamanes were uplifted
simultaneously during the Late Cretaceous (Fig.)1AEthe end of the Cretaceous,
the crust of the Lhasa terrane was likely thicketmedpproximately twice the normal
thickness prior to the India-Asia collision (Kapp a., 2005, 2007; Murphy et al.,

1997; Zhu et al., 2017).

7 Summary

(1) Twenty-Three Jurassic-Cretaceous clastic rankpes from the southern
Lhasa terrane were analyzed for petrology and naajdrtrace elements composition

with the aim of illustrating the possible tectoregolution of the Lhasa terrane.
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Overall, the samples from the Yeba and ChumulongmBtons show higher
compositional maturity than those of the Ngamring &hexing Formations. All the
samples display smooth REE patterns with LREE brment and varying Eu
anomalies.

(2) Sediments from the Jurassic-Early Cretaceoupiesees (i.e., Yeba and
Chumulong Formations) show high textural and contiposl maturity and
experienced moderate to high degree of chemicalhegag, whereas those from the
Late Cretaceous sequences (i.e., Ngamring and i@h&wrmations) are characterized
by low textural and compositional maturity and leffected by chemical weathering.

(3) Maximum depositional ages of the strata in sbathern Lhasa terrane are
estimated to be 179Ma for the Yeba Formation, 12iddahe Chumulong Formation
and 87Ma for the Shexing Formation. In-situ Hf og data show either positive or
negative ¢Hf(t) for the detrital zircons with Mesozoic agesevealing a joint
contribution of juvenile (from the Gangdese magmaiic) and recycled (from the
Qiangtang terrane and the interiors of the Lhasaarie) components to the
Cretaceous sediments in the southern Lhasa terrane.

(4) During the Early-Middle Jurassic (~192-168Mac-basin system was
developed in the southern Lhasa terrane. The Middiessic-Early Cretaceous
Lhasa-Qiangtang collision has resulted in the faionaof a composite foreland basin
with southward-flowing rivers carrying clastic madés from the uplifted northern

Lhasa and/or Qiangtang terranes.



629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

(5) From the late Early Cretaceous to Late Cretase(-104-72Ma), the
Gangdese magmatic arc was uplifted rapidly aboeesta level, forming turbidites
(Ngamring Formation) in the Xigaze forearc basirm dluvial red beds (Shexing
Formation) on the retro-arc side. At the end of lthée Cretaceous, the entire Lhasa
terrane was likely to have been uplifted to highvations forming an Andean-type

margin in the south before the India-Asia collision
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Figure Captions

Fig. 1 (A) Schematic tectonic framework of the Tibetaat®au (modified after Wu et

al., 2010) and (B) simplified geological map shogvgample locations.

Fig. 2 Outcrops show (A) mudstone interbedded with fin@rged sandstone in the
Chumulong Formation; (B) red beds of the Shexingrasion and (C) alternating
beds of sandstone and shale in the Ngamring Favmadicrophotographs show: (D)
the Chumulong Formation mudstone (D47D), (E) Shgxiormation sandstone
(MX1105) and (F) Ngamring Formation sandstone (RED6 Q, quartz; PI,

plagioclase; Kfs, potassic feldspar; Lv, volcaiiieit fragment; Ls, sedimentary lithic

fragment.

Fig. 3 The Q-F-L ternary plot (Dickinson, 1985) showingstic composition of
samples from the Yeba, Xiongcun, Chumulong and ®igexormations. The
Xiongcun Formation data are from Lang et al., (3018, quartz; F, feldspars; L,
lithic fragments; RO, recycled orogen; UMA, undideel magmatic arc; TMA,
transitional magmatic arc; DMA, dissected magmatic; BU, basement uplift; TC,

transitional continental; Cl, craton interior.

Fig. 4 Kernel density estimation plots of detrital zircohPb ages for clastic rocks
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from the Yeba (A and B), Chumulong (C and D) anéx@hg (E and F) Formations

Fig. 5 Hf isotope composition of detrital zircons fronet@humulong and Shexing
Formations. The field of GMA and Lhasa basement camestructed based on the
dataset in Hou et al., (2015) and references theata of the Duoni Formation from
Sun et al., (2017). GMA, Gangdese magmatic arc; [d®pleted mantle; CHUR,

chondritic uniform reservaoir.

Fig. 6 (A-F) Plot of SiQ vs. abundances of major element oxide for the Sand
and mudstone samples; (G-L) plots of modal volcalilcics proportion vs.

concentrations or ratios of selected elementsh®isandstone samples.

Fig. 7 (A-D) Chondrite-normalized REE and (E) UCC-normeatl multielement
diagrams for the sediments in the southern Lhasane. Chondrite and UCC (upper
continental crust) data from Sun and McDonough 9)98nd Rudnick and Gao

(2003), respectively. Unweathered Yeba volcani¢a ttam Wei et al. (2017).

Fig. 8 Ternary plots of (A) A-CN-K and (B) A-CNK-FM shomgy sandstones and
mudstones from the Jurassic-Cretaceous strataeirsahthern Lhasa terrane (after
Nesbitt and Young, 1989; McLennan et al., 1993 Kiongcun Formation data are

from Lang et al., (2018). A = AD3;, C = CaO*, N = NgO, K = K;O, F = total Fe as
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FeO, M = MgO.

Fig. 9 Plot of Th vs. Th/U for the clastic rocks from theuthern Lhasa terrane (after
McLennan et al., 1993). Yeba Formation volcanickrdata from Wei et al. (2017)

and Zhu et al. (2008).

Fig. 10 Ternary plots of Th-Sc-Zr/10 and La-Th-Sc for teediments from the
southern Lhasa terrane, where GMA = Gangdese magraet, ACM = active

continental margin, PCM = passive continental mmarglA = continental arcs, OA =
oceanic arcs (After Bhatia and Crook, 1986). GMA&ris defined using data of the

Yeba volcanic rocks (Wei et al., 2017).

Fig. 11 Binary diagram of La/Sc-Co/Th showing two-companixing trend. Mafic
endmember is represented by the Yeba Formatiorit fsample YB1307 in Wei et al.,
2017) with Co0=39.3ppm, Th=1.18ppm, La=10.9ppm antk33.8ppm. Silicic
endmember is represented by the Yeba Formatioritdysample YB1318 in Wei et

al., 2017) with Co=3.1ppm, Th=8.89ppm, La=27.3pprd &c=6.4ppm.

Fig. 12 Stratigraphic columns showing compositional vaoia of the sediments and
detrital zircon sample location in different lith@igraphic units. Columns after An

et al. (2014); Leier et al. (2007a); Leier et a0@7b); Wang et al. (2012); Zhu et al.
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(2013). CIA serves as an indicator of chemical Wweahg intensity. Eu/Eu* reflects
enrichment of volcanic lithics. N@/K,O measures compositional maturity.
Thicknesses of different units are not to scaleneBcale in Ma from Cohen et al.
(2013). The average composition of upper continerdaist (Eu/Eu*=0.65,

NaO/K,0=1.2) are introduced for reference.

Fig.13 Summary of detrital zircon age spectra of sediamgntocks of this study and
previous work. Important age peaks are shown iroredl bands. The red line
represents kernel density estimation. Data of tA¢ \Western Australia, (B)

Permo-Carboniferous Lhasa and (G) western Qiandiamy Zhu et al., 2011b and
references therein; (C) Late Triassic Lhasa fromefal. (2016); (D) Early Jurassic
Lhasa from this study; (E) Early Cretaceous LhasefLeier et al. (2007c) and this
study; (F) Late Cretaceous Lhasa from Kapp et28l07), Leier et al. (2007c), Pullen

et al. (2008) and this study.

Fig. 14 Schematic illustrations showing tectonic evolutajrthe Lhasa terrane during

the Jurassic-Cretaceous time (not to scale). S¢éoredetails.

Table Caption

Table 1 Summarized characteristics of detrital zircon Udgjes for clastic samples



Journal Pre-proof

932 from the southern Lhasa terrane



Table 1 Summarized characteristics of detritalarirt)-Pb ages for samples from southern Lhasa trran

Maximum

. Number of » YSG? YClo(2+)* YC25(3+)* Percentage of Mesozoic zircons
Formation Sample depositional ) )
analyses (Ma, Io) (Ma) (Ma) Mesozoic ages  with gHf(t)>0
age (Ma)
563.5+3.6 248.0+3.5 4.8%
Yeba D54 104 17 179+2
(n=6) (n=3) (5 out of 104)
121.1+1.1 121.1+1.1 24%
D47A 103 121 117+1
(n=4) (n=4) (25 out of 103)
122.4+1.3 123.3+0.9 34%
D47B 109 122 105x1
(n=4) (n=7) (37 out of 109) 41%
Chumulong
394.0+4.2 401.442.2 1.4% (18 out of 44)
D47C 68 118 11942
(n=4) (n=11) (1 out of 68)
231.5+2.8 247.9+2.6 32%
D47E 47 108 109+1
(n=2) (n=3) (15 out of 47)
88.5+1.4 88.8+1.3 25%
MX1102 113 88 84+2
(n=2) (n=3) (28 out of 113)
89.9+0.7 89.7+0.6 52%
MX1104 90 90 85+1
(n=15) (n=18) (47 out of 90) 67%
Shexing
87.7+0.5 87.1+0.5 83% (70 out of 104)
MX1106 86 88 82+2
(n=30) (n=35) (71 out of 86)
213.3+3.5 213.3+¥3.5 6.8%
MX1108 88 of 9112
(n=3) (n=3) (6 out of 88)

& Youngest detrital zircon age measurement aftekiBson and Gehrels (2009). YSG, youngest singldtdezircon age; YCa&(2+),
weighted mean age of two or more youngest graiatsaterlap in age ais] YC25(3+), weighted mean age of three or more youngest
grains that overlap in age at.2

P YSG is suggested due to the inconsistency ofdr®@h the depositional ages determined via othempdas/methods.
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Wei et al. Fig.2 W132mm - H149mm (2-column fitting image)




Wei et al. Fig.3 W77mm - H75mm (1-column fitting image)
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Kernel Density Estimation

Wei et al. Fig.4 W174mm - H151mm (2-column fitting image)
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Wei et al. Fig.5 W90mm - H69mm (1-column fitting image)
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Wei et al. Fig.6 W179mm - H188mm (2-column fitting image)
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Sample/Chondrite

Wei et al. Fig.7 W158mm - H179mm (2-column fitting image)
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CIA

Wei et al. Fig.8 W170mm - H74mm (2-column fitting image)
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Wei et al. Fig.9 W77mm - H60mm (1-column fitting image)
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Wei et al. Fig.10 W168mm - H76mm (2-column fitting image)
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Wei et al. Fig.11 W78mm - H59mm (1-column fitting image)
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Wei et al. Fig.12 W150mm - H143mm (2-column fitting image)
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Number

Wei et al. Fig.13 W156mm - H174mm (2-column fitting image)
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Wei et al. Fig.14 W121mm - H223mm (2-column fitting image)
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Highlights

+ Jurassic-Cretaceous tectonic evolution of the Lhasa terrane was reconstructed.

+ Maximum depositional ages of strata in the southern Lhasa terrane were
constrained.

+  Sedimentary processes were quantified using sedimentary geochemistry approach.

+ Two-component mixing model was constructed to evaluate the sedimentary
provenances.

+ The Lhasaterrane received clasts from Qiangtang since the Early Cretaceous.



