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Abstract 38 

The North Atlantic, extending from the Charlie Gibbs Fracture Zone to the north Norway-39 
Greenland-Svalbard margins, is regarded as both a classic case of structural inheritance and an 40 
exemplar for the Wilson-cycle concept. This paper examines different aspects of structural 41 

inheritance in the Circum-North Atlantic region: 1) as a function of rejuvenation from 42 
lithospheric to crustal scales, and 2) in terms of sequential rifting and opening of the ocean and 43 
its margins, including a series of failed rift systems. We summarise and evaluate the role of 44 
fundamental lithospheric structures such as mantle fabric and composition, lower crustal 45 
inhomogeneities, orogenic belts, and major strike-slip faults during breakup. We relate these 46 

to the development and shaping of the NE Atlantic rifted margins, localisation of magmatism, 47 

and microcontinent release. We show that, although inheritance is common on multiple scales, 48 

the Wilson Cycle is at best an imperfect model for the Circum-North Atlantic region. 49 
Observations from the NE Atlantic suggest depth dependency in inheritance (surface, crust, 50 
mantle) with selective rejuvenation depending on time-scales, stress field orientations and 51 
thermal regime. Specifically, post-Caledonian reactivation to form the North Atlantic rift 52 
systems essentially followed pre-existing orogenic crustal structures, while eventual breakup 53 

reflected a change in stress field and exploitation of a deeper-seated, lithospheric-scale shear 54 
fabrics. We infer that, although collapse of an orogenic belt and eventual transition to a new 55 
ocean does occur, it is by no means inevitable. 56 
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1 Introduction  149 

Structural inheritance has been invoked as an important influence on plate-tectonic processes 150 
including rifting, and rifted-margin end-member style (i.e., magma-rich or magma-poor) (e.g. 151 
Vauchez et al. 1997; Bowling and Harry 2001; Manatschal et al. 2015; Chenin et al. 2015; 152 
Schiffer et al. 2015b; Svartman Dias et al. 2015; Petersen and Schiffer 2016; Duretz et al. 153 
2016), the formation of oceanic fracture zones, transform faults, and transform margins 154 

(Bellahsen et al. 2006; Gerya 2012; Doré et al. 2015; Peace et al. 2018b) , magmatism (Hansen 155 
et al. 2009; Whalen et al. 2015), and intraplate deformation (Stephenson et al. this volume; 156 
Sutherland et al. 2000; Gorczyk and Vogt 2015; Audet et al. 2016; Heron et al. 2016; Tarayoun 157 
et al. 2018; Heron 2018).  158 

The inspiration for major concepts of large-scale structural inheritance, such as the “Wilson 159 
Cycle” lies in the Circum-North Atlantic region (CNAR) (Wilson 1966; see review by Wilson 160 
et al. 2019), where at least two oceans have opened and closed along broadly similar trends 161 

(Cawood et al. 2007; Bingen et al. 2008a; Li et al. 2008; Lorenz et al. 2012; Thomas 2018). 162 

The CNAR comprises the North Atlantic Ocean, Labrador Sea-Baffin Bay, Iceland and the 163 
surrounding continental landmasses, including Greenland, Scandinavia, the British Isles and 164 
northeastern Canada. The lithosphere comprises stable Precambrian continental cores in the 165 

interior of Greenland, North America and Scandinavia, while the geology along the continental 166 
margins and northern Europe was mainly reshaped in the Phanerozoic (e.g. Peace et al. this 167 
volume; Cocks and Torsvik 2006, 2011; St-Onge et al. 2009). The continental margins host a 168 

number of failed rift systems, such as the North Sea, the Rockall-Hatton Basins and the Møre-169 

Vøring Basins (Figure 1) (Péron-Pinvidic and Manatschal 2010; Peace et al. 2019). In detail, 170 
continental breakup did not always follow earlier rift systems or known orogenic structures and 171 
has in some cases broken through seemingly undisturbed cratonic lithosphere. Several aspects 172 

of North Atlantic geology remain enigmatic, such as the nature and significance of the North 173 
Atlantic Igneous Province (NAIP) and the Greenland-Iceland-Faroes Ridge (GIFR) (Vink 174 

1984; White and McKenzie 1989; Foulger and Anderson 2005; Meyer et al. 2007; Foulger et 175 
al. 2019), the development of a spectrum of rifted continental margins (Geoffroy 2005; Franke 176 
2013; Clerc et al. 2018), and the development of the Jan Mayen Microplate Complex (JMMC) 177 

(Foulger et al. 2003; Gaina et al. 2009; Gernigon et al. 2015; Blischke et al. 2017, 2019; 178 
Schiffer et al. 2018). 179 

Whether rifting, continental breakup and associated magmatism were related to deep, active 180 

mantle upwelling (White and McKenzie 1989; Hill 1991) or plate tectonic processes (Nielsen 181 

et al. 2007; Ellis and Stoker 2014; Foulger et al. 2019) (the bottom-up and top-down views) is 182 
still under debate (Peace et al. this volume; van Wijk et al. 2001; Foulger et al. 2005, 2019; 183 
Lundin and Doré 2005). Despite the often-proposed deep, active, buoyant upwellings beneath 184 
the CNAR, factors like the thermal state and composition of the crust and mantle, small-scale 185 
convection, upwelling, volatile content, and general, pre-existing (inherited) lithospheric and 186 

crustal structure may play major roles in the magmatic and tectonic evolution (e.g. King and 187 
Anderson 1998; Asimow and Langmuir 2003; Korenaga 2004; Foulger et al. 2005, 2019; 188 
Meyer et al. 2007; Simon et al. 2009; Hole and Millett 2016; Petersen et al. 2018; Hole and 189 
Natland 2019). 190 

In this contribution, we aim at defining the most important concepts of structural inheritance 191 

and review how they may have influenced the structural evolution of the CNAR as a whole. 192 
We then take five segments of the CNAR that differ markedly in structural style as examples 193 
(Fig. 1) and describe and discuss these further: namely, the Norwegian-Greenland Sea (segment 194 
1), where early rifting followed Caledonian crustal trends, but breakup occurred obliquely, is 195 
in contrast to the SE Greenland-Rockall-Hatton margins (segment 2), where rifting and breakup 196 
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occurred through seemingly undisturbed cratonic lithosphere, but parallel to the Caledonian 197 
trends in the British and Irish Isles, some 500 km to the east. The enigmatic GIFR, a large 198 
physiographic high crossing the North Atlantic (segment 3) forms a buffer between segments 199 
1 and 2. The North Sea (segment 4) forms a major failed intracontinental rift system influenced 200 

by Variscan, Caledonian and Precambrian inheritance, but never developed into a new ocean. 201 
Lastly, in the Labrador Sea and Baffin Bay rifting broke through cratonic lithosphere but 202 
seafloor-spreading was abandoned after ~30 Ma (segment 5). 203 

 204 

2 The Wilson Cycle and the North Atlantic  205 

Tuzo Wilson’s famous question of 1966, “Did the Atlantic close and then re-open?” gave rise 206 
to the “Wilson Cycle” concept (Wilson 1966; Dewey and Spall 1975; see review by Wilson et 207 
al. 2019). In its simplest form, this hypothesis envisages closure and reopening of oceans along 208 
former orogens that represent the weakest zones in a disintegrating continent. Applied stresses 209 

exploit inherited weaknesses during later rifting events, rather than breaking up continents 210 
through their stronger, stable interiors. 211 

This paradigm works well in the Central Atlantic, where the new ocean closely tracks the 212 
parallel Appalachians (Thomas 2018). Similarly, breakup between Scandinavia and Greenland 213 

generally follows the Caledonian Orogen, but farther south the Iapetus suture is preserved and 214 
runs through northern England and central Ireland (McKerrow and Soper 1989; Soper et al. 215 
1992). The rifting thus left significant pieces of Laurentian cratonic crust on Europe’s 216 

northwestern seaboard including the Rockall-Hatton margin. The Labrador Sea and Baffin Bay 217 

cut through pre-existing cratons (the Archaean North Atlantic and Rae cratons) and almost 218 
orthogonally across Precambrian orogenic belts (Buchan et al. 2000; Bowling and Harry 2001; 219 
St-Onge et al. 2009; Peace et al. 2018b). 220 

It is becoming increasingly clear that the age of inherited structures prone to rejuvenation 221 
extends much further back in time than simply the most recent Wilson Cycle. Accordingly, 222 

Archaean-to-Palaeoproterozoic structures also guided fragmentation and segmentation of 223 
onshore and offshore areas during rifting and continental breakup in the NE Atlantic 224 
(Gabrielsen et al. 2018; Rotevatn et al. 2018; Schiffer et al. 2018) and Labrador Sea-Baffin 225 

Bay (Peace et al. 2018a; Heron et al. 2019). Recent attempts to formally extend the Wilson 226 
Cycle concept have been made, for example by including reactivation of long-lived intraplate 227 

inheritance (Heron et al. 2016), by systemising the role of mantle plumes in the Wilson Cycle 228 
(Heron, 2018), or by adding systematic “short-cuts” through the Wilson Cycles, such as the 229 

closure of failed rift basins (Chenin et al. 2018).  230 

Current understanding of the precise mechanisms that govern rifting and breakup is hindered 231 
by ambiguous observations, interpretations, concepts and definitions. The exact location and 232 
definition of the continent-ocean “boundary” is often not known due to the presence of 233 
magmatic or sedimentary cover and, in many cases, continental margins have wide transition 234 

zones (Eagles et al. 2015). High velocity lower crust (HVLC, see Foulger et al., this volume, 235 
and Gernigon et al., this volume for discussion) underlying continental margins can have 236 
different pre-, syn-, and post-rift/breakup origins, knowledge of which is crucial to 237 
understanding thinning, magmatism and the role of structural inheritance during rifting. Local 238 

mantle upwellings associated with small-scale convection or diapirism and magmatic 239 

intrusions prior and during continental extension and breakup may have a crucial role in 240 
changing the lithospheric rheology and localising strain (e.g. Gernigon et al. this volume; 241 
Geoffroy 1998; Geoffroy et al. 2007; Gac and Geoffroy 2009; Ebinger et al. 2013). The nature 242 
of the crust can be ambiguous in highly thinned areas of “transitional” crust that appears to 243 
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show neither classic oceanic or continental crustal properties. Finally, terms such as 244 
‘continental suture’ are difficult to define and can have complex, three-dimensional geometries 245 
and do not represent a simple lineament. Such a suture zone could reactivate, not where it 246 
appears at the surface, but where it is weakest at depth.  247 

The imperfect fit of the Wilson Cycle concept to observations (e.g. Krabbendam 2001; Buiter 248 
and Torsvik 2014; Dalziel and Dewey 2018) shows that the process of opening an ocean is 249 
more complex than a simple 2D-unzipping of continental sutures. 250 

3 What is structural inheritance? 251 

Continents contain broad zones of active deformation that extend deep into their interiors 252 
(Gordon 1998; Nielsen et al. 2007, 2014; Şengör et al. 2018). Such non-rigid behaviour departs 253 

significantly from the original paradigm of rigid plate tectonics. It results from the presence, 254 
preservation and repeated deformation of crustal and mantle-lithospheric mechanical 255 
weaknesses (Thatcher 1995; Holdsworth et al. 2001). The buoyancy of continental crust means 256 

that it, and its underlying lithospheric mantle, are not subducted in the same way as oceanic 257 
crust. As a result, zones of pre-existing weakness are preserved in the continental lithosphere 258 
and can be rejuvenated many times during successive phases of deformation over geologic time 259 
(Sutton and Watson 1986). Structural inheritance is a property of the continental lithosphere 260 

that guides deformation along pre-existing rheological heterogeneities at all scales. When this 261 
occurs under a given stress regime, the resulting process is known as (structural) rejuvenation.  262 

Rejuvenation (Figure 5a) includes (i) reactivation, the repeated focussing of deformation along 263 

discrete pre-existing structures, e.g., faults, shear zones or lithological contacts and (ii) 264 

reworking, the repeated focussing of metamorphism, ductile deformation, recrystallisation, 265 
metasomatism and magmatism into the same lithospheric volume. Reactivation is primarily 266 
controlled by the compositional and mechanical properties of pre-existing structures, whilst 267 

reworking is primarily influenced by the thermal history of the lithosphere (Holdsworth et al. 268 
2001).  269 

At shallow depths, brittle fracturing or frictional sliding occurs, with slip facilitated by low-270 
friction minerals such as talc, serpentinite and smectite (e.g., Escartín et al. 2003; Moore et al. 271 
2004; Schroeder and John 2004). The transition between brittle and ductile deformation in 272 

crystalline rocks is dependent on temperature, composition and strain-rate and typically occurs 273 
at crustal depths of 10-15 km (Figure 5b; Sibson 1977; Gueydan et al. 2014). Movement along 274 

deformation zones is characterised by diffusion-accommodated viscous creep in phyllosilicate-275 
rich rocks in this depth range. In the viscous regime, deformation is typically plastic and 276 

distributed over broader, more diffuse zones (Holdsworth 2004; Jefferies et al. 2006; Imber et 277 
al. 2008) (Figure 5b), but strain localisation here is still widespread at different scales (Braun 278 
et al. 1999; Precigout et al. 2007). 279 

It is important to emphasise that, although reactivation controlled by structural inheritance is 280 
widely recognised along the NE Atlantic margin, this process should not always be assumed to 281 

be the primary control on lithosphere-scale rifting. A coincidence in rift-related structural 282 
trends with those of older basement structures may be a good indicator for reactivation, but is 283 
not in itself actual proof (see discussions in Holdsworth et al. 1997; Roberts and Holdsworth 284 
1999), especially when structures are mapped at depth in the offshore. The most conclusive 285 

test for inheritance in offshore rift systems is the recognition of reactivation in correlative 286 

onshore regions (e.g. Wilson et al. 2006; Peace et al. 2018b). 287 

 288 
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4 Structural inheritance and rejuvenation at different scales 289 

 290 

The lithospheric and basin evolution of the CNAR was likely governed by a complex 291 
combination of rejuvenation of different inherited structures and fabrics with different scales 292 
and orientations, alongside other processes such as magmatism. Lithosphere-scale rejuvenation 293 
includes almost every conceivable process that affects lithospheric rheology, locally or as a 294 

whole. These include changes in crustal and lithospheric thickness, thermal state and 295 
composition, sedimentary basin processes (faulting, sedimentation) and the mechanical 296 
heterogeneities of metamorphic and intrusive fabrics (Dunbar and Sawyer 1989a; Krabbendam 297 
and Barr 2000; Nagel and Buck 2004; Yamasaki and Gernigon 2009; Tommasi et al. 2009; 298 

Huismans and Beaumont 2011; Brune et al. 2014; Manatschal et al. 2015; Tommasi and 299 
Vauchez 2015; Petersen and Schiffer 2016; Duretz et al. 2016). 300 

4.1 Bulk lithosphere structure, composition and thermal history 301 
Post-Archaean orogenic processes generally led to lithospheric volumes that are weaker and 302 

warmer compared to stable cratonic lithosphere (Cloetingh et al. 1995; Krabbendam and Barr 303 
2000; Rey et al. 2001; Corti et al. 2007). This may not always be the case, as, Krabbendam 304 
(2001) hypothesise that orogens with low heat flow (and “cold” crustal geotherms) have strong 305 
lithosphere, impeding reactivation. Nevertheless, the alignment of new structures with old 306 

weaknesses is persuasive, and has historically led many authors to postulate that reactivation 307 
is a major factor in breakup (e.g. Dunbar and Sawyer 1989a).  308 

Numerical modelling suggests that discrete pre-existing lithospheric heterogeneities localise 309 
strain and control rift distribution (Dunbar and Sawyer 1989b) and asymmetric conjugate 310 

margin geometries (Yamasaki and Gernigon 2009; Petersen and Schiffer 2016; Beniest et al. 311 
2018). Therefore, rifts generally localise at the boundaries of lithospheric blocks of varying 312 

rheology (Pascal and Cloetingh 2002; Beniest et al. 2018). The relative strength between crust 313 
and mantle lithosphere is strongly influenced by crustal thickness and this also governs depth-314 
dependent extension and thinning (Huismans and Beaumont 2011; Petersen and Schiffer 2016)  315 

(Figure 6). Thickened, warm and weak crust can undergo delocalised thinning, whilst the 316 
mantle lithosphere is more abruptly thinned (Buck 1991; Huismans and Beaumont 2011). 317 

Preferential thinning of mantle lithosphere leads to decompression melting of the 318 
asthenosphere which can occur while the crust remains intact (Petersen and Schiffer 2016) 319 

(Figure 6). Increasing obliquity to the extension direction and curvature of the zone of 320 

thickened crust produce more asymmetric and segmented rift zones (Van Wijk 2005; Corti et 321 
al. 2007). In contrast, a thinned crust with a shallow Moho prior to extension and/or longer 322 
periods of thermal relaxation (>30-50 Ma) can produce a cold and strong lithosphere, impeding 323 
rift localisation (Harry and Bowling 1999; van Wijk and Cloetingh 2002; Guan et al., 2019). If 324 
the mantle is weaker than the crust, it flows laterally whilst the crust is locally thinned, forming 325 
narrow necking zones and impeding pre-breakup melt generation (Petersen and Schiffer 2016) 326 

(Figure 6).  327 

The lithosphere beneath stagnated rifts may cool and harden, leading to rift jumps away from 328 
the stronger lithosphere of the old rift, producing asymmetric continental margins (van Wijk 329 
and Cloetingh 2002; Naliboff and Buiter 2015). Such a process has been proposed to explain 330 

the formation of the volcanic margins in the NE Atlantic off-axis from previously thinned crust 331 
and failed rifts hosting Palaeozoic and Jurassic sedimentary basins (Gernigon et al. this volume; 332 
Guan et al. 2019). The zone of rheological contrast of such cooled/re-equilibrated rift zones 333 

and associated sedimentary infill may be reactivated during later episodes of extension, or may 334 
partition deformation (Odinsen et al. 2000; Frederiksen et al. 2001; Brune et al. 2017). 335 
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Armitage et al. (2010) demonstrated that thinned lithosphere from prior rift phases can enhance 336 
melt productivity in a subsequent rift phase.  337 

Lithospheric delamination has been suggested to have a major impact on rift evolution and 338 
magmatism (Bird 1979; Kay and Kay 1993; Meissner and Mooney 1998; Elkins-Tanton 2005; 339 

Meier et al. 2016; Petersen et al. 2018). Şengör et al. (2018) suggested that rejuvenation of pre-340 
existing structures may be linked to removal of the lithospheric mantle, which would weaken 341 
the entire remaining lithospheric column. Subsequently, extensive magmatism would inhibit 342 
thermal re-equilibration of the lithosphere and allow rejuvenation to continue for a long time. 343 
Liu et al. (2018) and Wang et al. (2018) propose models where a “Mid-Lithospheric 344 

Discontinuity” or the lower crust can act as a sub-horizontal weakness zone along which the 345 

lithosphere may delaminate.  346 

 347 

4.2 Discrete lithospheric structures 348 
Discrete structures include regional-scale features such as sutures, shear zones, igneous bodies 349 
and other large features found at depth within the lithosphere.  350 

Pre-existing rheological heterogeneities such as suture, fault and shear zones, possibly 351 

incorporating preserved eclogite and hydrated peridotite within the continental lithosphere may 352 
influence rifting, location of breakup and margin architecture (e.g. Petersen and Schiffer 2016).  353 

Pre-existing mafic or ultramafic magmatic rocks are known to increase crustal strength and 354 
viscosity (Burov 2011). For example, the development of continent-dipping bounding faults of 355 

SDRs at magma-rich passive margins requires increased lower crustal viscosities (Geoffroy et 356 
al. 2015). Syn-rift magmatic systems such as crustal intrusions (Ebinger and Casey 2001; Keir 357 

et al. 2006), crustal magma chambers (Geoffroy 1998; Doubre and Geoffroy 2003) or 358 
instabilities at the lithospheric thermal boundary layer (Geoffroy et al., 2007; Gac and 359 

Geoffroy, 2009) weaken the lithosphere and can accommodate and localise deformation (Buck 360 
and Karner 2004) at different lithospheric levels during the rifting process.  361 

In the North Atlantic rifting and breakup-related magmatism was typically focussed in igneous 362 

centres. Some of those igneous centres are located along pre-existing inherited fault and shear 363 
zones (e.g., the Great Glen Fault) (Bott and Tuson 1973; Geoffroy et al. 2007; Gueydan et al. 364 

2014). The spacing, location, size and magmatic budget of these igneous centres are governed 365 
by complex interactions between pre-existing discrete structures, pre-existing lithospheric 366 

thickness variations and mantle composition, as well as the timing and degree of melting 367 
(Gernigon et al. this volume; Gouiza and Paton 2019). 368 

High-velocity lower crustal bodies (HVLCBs) are observed along most continental margins of 369 
the CNAR (Mjelde et al. 2008; Lundin and Doré 2011; Funck et al. 2016a) (Figure 7). 370 

Identifying the origin of HVLCBs is essential to understand extension and magmatism in rifts 371 
and passive margins. Many are associated with magmatic underplating or intrusions added to 372 
the lower continental crust during extension (Olafsson et al. 1992; Eldholm and Grue 1994; 373 
Ren et al. 1998; Mjelde et al. 2007b; White et al. 2008; Thybo and Artemieva 2013; Wrona et 374 
al. 2019). However, it is unclear to what extent such features are emplaced during rifting related 375 

to breakup. Some HVLCBs in the CNAR have been interpreted as metasomatised, 376 

metamorphosed or intruded mafic rocks in the uppermost mantle originating from Caledonian 377 

or older subduction and collision zones (Abramovitz and Thybo 2000; Christiansson et al. 378 
2000; Gernigon et al. 2004, 2006; Ebbing et al. 2006; Wangen et al. 2011; Fichler et al. 2011; 379 
Mjelde et al. 2013; Nirrengarten et al. 2014; Schiffer et al. 2015a, 2016; Abdelmalak et al. 380 
2017; Slagstad et al. 2018) (Figure 7). If the HVLCBs are deformed, pre-existing structures, 381 



10 
 

they will likely have influenced and localised the rifting before breakup-related magmatism 382 
(Gernigon et al. 2004; Petersen and Schiffer 2016). 383 

Salazar-Mora et al. (2018) showed that during rifting of an orogenic belt, initial reactivation 384 
usually occurs along pre-existing lithospheric-scale suture zones, whilst the amount of previous 385 

contraction governs the width of the reactivated crustal segment and its offset from the suture. 386 
Thus, pre-existing contractional shear zones are reactivated first and new shear zones form 387 
later. Intrusions in the upper crust may weaken the surrounding rock and control breakup 388 
localisation (Geoffroy et al. 1998). Increasing obliquity of crustal weak zones encourages 389 
increasingly diffuse rift zones, delaying lithospheric breakup (Brune et al. 2014). Heron et al. 390 

(2016; 2018) showed that reactivation of long-lasting intraplate “mantle scars” may lead to 391 

substantial intraplate deformation. Like many of the above studies, they also emphasised that 392 

mantle heterogeneities are usually favourably reactivated in comparison to crustal structures. 393 
This is because these are the load-bearing layers of the lithosphere (e.g. Holdsworth et al., 394 
2001). 395 

 396 

4.3 Pervasive lithospheric fabric  397 

Small-scale compositional and rheological variations form fabrics in the crust and mantle and 398 
localise strain, forming complex patterns of crustal-scale, anastomosing shear bands, 399 
lithospheric boudinage structures, crustal rafts or continental ribbons in continental margins 400 
(Lister et al. 1986; Clerc et al. 2015; Jammes and Lavier 2016). Similarly, extension of a 401 

chemically heterogeneous, finely layered lithosphere leads to boudinage/necking of relatively 402 

strong layers causing intense structural softening as weaker layers become mechanically 403 

interconnected (Duretz et al. 2016). 404 

Rifting and continental breakup may exploit anisotropies formed during previous phases of 405 

deformation in the lithospheric mantle (Vauchez and Nicolas 1991; Tommasi and Vauchez 406 
2001; Misra 2016). Seismic anisotropy of the lithosphere may reflect mechanical anisotropy 407 
and is often, but not always, parallel to mountain/deformation belts (e.g. Vauchez et al. 1997; 408 

Tommasi and Vauchez 2001; Huang et al. 2006; Barruol et al. 2011). With some exceptions, 409 
the general trend of the fast direction of shear wave splitting along the North Atlantic margins 410 

is aligned with that of Caledonian-Variscan structures and deformation (e.g. Helffrich 1995; 411 
Barruol et al. 1997; Kreemer 2009; Wüstefeld et al. 2009; Darbyshire et al. 2015; Wang and 412 

Becker 2019).  413 

Regional seismic tomography shows that present-day mantle anisotropy is generally aligned 414 
with late-Caledonian shear zones in the British Isles, the North Sea and southern Norway 415 
(GGF, WBF, HBF, MTFC, HFZ, Fig. 2,4), but oblique to those farther north (north of the Jan 416 

Mayen microplate complex) (Zhu and Tromp 2013). While breakup in the southern NE 417 
Atlantic followed the general Caledonian orogenic trends, breakup in the northern NE Atlantic 418 
(NE Greenland-NW Norway) followed an oblique, more easterly trend relative to the main 419 
Caledonian axis (defined as the central/median line between the orogenic fronts). This trend 420 
follows the late orogenic sinistral shear fabric of the NE Atlantic (Soper et al. 1992; Dewey 421 

and Strachan 2003), a fabric that was likely also reactivated during Late Caledonian extension 422 
(Figure 4) (Andersen et al. 1991; Dewey et al. 1993; Fossen 2010). This suggests that the 423 

mantle fabric and line of breakup in the north are to some extent related, while crustal fabric 424 
and breakup can be oblique. 425 

A critical observation is that most of the rift systems that predated breakup (e.g. SW Barents 426 
Sea Basins, Danmarkshavn Basin, the Lofoten, Vøring, Møre basins, Faroe-Shetland basins, 427 
Hatton and Rockall basins (Tsikalas et al. 2012; Gaina et al. 2017; Stoker et al. 2017) largely 428 
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followed the major orogenic NE-SW crustal trends (Figure 8). In Section 7.1 we propose that 429 
pre-breakup continental rift systems inherited the shallower, crustal fabric mainly, whilst the 430 
later breakup dominantly exploited the oblique, deeper, pervasive, mantle fabrics, controlled 431 
by a major change in stress field.  432 

 433 

4.4 Crustal-basin scale concepts  434 

At crustal-basin scale, deformation typically localises along weak zones such as pre-existing 435 
faults or shear zones. The size, geometry and interconnectivity of the discrete structures control 436 
the amount and magnitude of reactivation (Holdsworth 2004). Basin-scale structures exert a 437 

range of influences over later tectonic events, including strain localisation to control rift and 438 

fault nucleation, and also partitioning strain to potentially segment and block the propagation 439 

of rift related structures. But whether, and how, rifting is influenced depends on the type and 440 
geometry of the pre-existing structure and its relation to the imposed stress field. The 441 
orientation of the extensional stress field controls which older crustal structures reactivate at a 442 
given time, resulting eventually in co-linear/sub-parallel alignments between basins and older 443 
orogenic structural trends (Shannon 1991; Bartholomew et al. 1993; Doré et al. 1997; Roberts 444 

et al. 1999).  445 

Pre-existing faults undergo varying degrees and styles of reactivation during later rift events 446 
(Bell et al. 2014; Whipp et al. 2014; Henstra et al. 2015; Deng et al. 2017b). The presence and 447 
reactivation of pre-existing basement structures, such as pervasive fabrics or discrete structures, 448 

can produce fault and rift geometries that depart from idealised geometries for orthogonal rift 449 
systems (Morley et al. 2004; Paton and Underhill 2004; Whipp et al. 2014). These effects may 450 

manifest as fault patterns oriented oblique to the regional stress field, and may also display 451 
complex internal transfer and linkage patterns (Morley et al. 2004; Bird et al. 2015; Bladon et 452 

al. 2015; Mortimer et al. 2016). In some instances, pre-existing structures may transfer strain 453 
across a rift from margin to axis as extension progresses (Morley et al. 2004; Bladon et al. 454 
2015; Mortimer et al. 2016). Pre-existing structures can also act as stress guides that locally 455 

rotate the maximum horizontal stress in the overlying basin, controlling the trends of newly 456 
forming structures (Morley 2010; Whipp et al. 2014; Duffy et al. 2015; Reeve et al. 2015; 457 

Phillips et al. 2016). Oblique extension or transtension in the presence of pre-existing weak 458 
zones commonly leads to partitioning displacement into strike-slip and dip-slip fault 459 

components (De Paola et al. 2006; Wilson et al. 2006; Philippon et al. 2015; Kristensen et al. 460 
2018). 461 

Steeper dipping structures are preferentially reactivated under extensional stress compared to 462 
shallowly dipping structures (Bird et al. 2015; Phillips et al. 2016; Fazlikhani et al. 2017). Daly 463 

et al. (1989) show that gently dipping shear zones may be reactivated in a dip-slip manner 464 
whereas steeply dipping structures tend to display strike-slip reactivation. Structures at high 465 
angles to the regional stress direction (typically > 45°) are typically not reactivated (Henstra et 466 
al. 2015; Deng et al. 2017b; Henstra et al. 2017; Deng et al. 2018) and may be cross-cut by 467 
later faults (Duffy et al. 2015; Henstra et al. 2015; Phillips et al. 2016; Fazlikhani et al. 2017). 468 

Alternatively, they may inhibit fault propagation and segment rift basins (Doré et al. 1997; 469 
Fossen et al. 2014; Nixon et al. 2014). 470 

During multiple phases of extension, pre-existing fault networks influence the development of 471 
later faults. Faults that reactivate pre-existing structures often quickly attain the length of the 472 
reactivated structure before undergoing displacement-dominated growth (Walsh et al. 2002; 473 
Whipp et al. 2014; Childs et al. 2017). The influence of pre-existing faults may be complicated 474 
by healing during burial following earlier rift phases, the combination of pre-existing fault 475 
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orientations and the applied stress orientation, as well as lithospheric properties (Cowie et al. 476 
2005; Baudon and Cartwright 2008; Henza et al. 2011; Bell et al. 2014; Whipp et al. 2014; 477 
Henstra et al. 2015, 2017; Claringbould et al. 2017). Complex fault geometries from multi-478 
phase rifts have been documented in natural examples (Nixon et al. 2014; Duffy et al. 2015; 479 

Reeve et al. 2015; Rotevatn et al. 2018) and simulated in analogue models (Keep and McClay 480 
1997; Corti et al. 2007; Henza et al. 2010, 2011; Henstra et al. 2015; Duffy et al. 2017)  481 
although in some instances complex, non-colinear fault networks may also arise in single-phase 482 
rifts due to a 3D stress field (Healy et al. 2015; Collanega et al. 2017; Gernigon et al. 2018).  483 

The emplacement of igneous rocks may be controlled by pre-existing structures at the crustal 484 

(Peace et al. 2017) and intrusion scale (Peace et al. 2018c). Igneous complexes may 485 

subsequently favour the nucleation and formation of new shear zones (Neves et al. 1996) and 486 

can lead to spatial variations in deformation patterns within rift systems and basins (Woodcock 487 
and Underhill 1987; Buck 2006; Dineva et al. 2007; Magee et al. 2014, 2017; Phillips et al. 488 
2017). Steeply dipping intrusions, such as dyke systems, may promote strain localisation in a 489 
similar way to basement faults and fabrics during rifting, introduce anisotropy and controlling 490 
the geometry and evolution of faults (Buck 2006; Ruch et al. 2016; Phillips et al. 2017). In 491 

contrast, sub-horizontal intrusions such as sills and laccoliths may produce more distributed 492 
strain patterns caused by uplift and outer arc extension in forced folds at sub-basin scales 493 
(Wilson et al. 2016; Magee et al. 2017).  494 

Compression of previously formed rift basins typically leads to basin inversion (Stephenson et 495 

al. this volume; Buchanan and Buchanan 1995; Lowell 1995). During basin inversion, the 496 

geometry of the extensional faults, which may themselves be influenced by basement fabric, 497 

affects the style of inversion produced when reactivated under oblique convergence (Withjack 498 
et al. 2010; Kley 2018). On the NE Atlantic margins, the widespread Cenozoic inversion 499 

structures (Stephenson et al. this volume; Johnson et al. 2005; Doré et al. 2008; Pascal and 500 
Cloetingh 2009) also seem to track underlying extensional basin and lithospheric structure 501 
(Nielsen et al. 2014). This, in turn, was probably inherited indirectly from basement fabric 502 

(Kimbell et al. 2017; Reilly et al. 2017). 503 

 504 

5 Pre-rift structural framework of the Circum-North Atlantic region  505 

 506 

The main accretionary events predating CNAR breakup were the mid-Neoproterozoic 507 
Sveconorwegian-Grenvillian (Bingen et al. 2008b; Roberts and Slagstad 2015), the 508 

Neoproterozoic Timanian (Roberts and Siedlecka 2002; Gee and Pease 2004) and the 509 
Phanerozoic Caledonian (Roberts 2003; Gee et al. 2008) and Variscan orogenies (Matte 2001; 510 
Winchester et al. 2002; Franke 2006). These orogenies were in essence the expressions of two 511 
Wilson cycles: (i) the assembly and dispersal of the supercontinent Rodina in the 512 
Neoproterozoic leading to the formation of the Iapetus Ocean, followed by (ii) the renewed 513 

assembly and dispersal of Pangaea in the Phanerozoic and formation of the North Atlantic in 514 
the Cenozoic (Stampfli et al. 2013). 515 

5.1 Archaean-Proterozoic cratons 516 

The North American and East European cratons, the respective cores of the palaeocontinents 517 

Laurentia and Baltica (prior to their Caledonian suturing to become Laurussia (Roberts et al. 518 
1999; Ziegler 2012), were formed from the Archaean through to the Proterozoic and consist of 519 
terranes of different age separated by networks of mobile belts. In Baltica, the main tectonic 520 
episodes were the Archaean Karelian and Lapland-Kola events in northern Scandinavia, the 521 
Palaeoproterozoic Svecofennian orogeny in central Scandinavia, and formation of the Trans-522 
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Scandinavian Igneous Belt (TIB) in the late Palaeoproterozoic from southern Sweden to NW 523 
Norway (Gorbatschev and Bogdanova 1993; Balling 2000). Similarly, Laurentia depicts 524 
differently aged cratonic terranes and mobile belts (St-Onge et al. 2009). In the CNAR, these 525 
include the North Atlantic Craton, the Rae Craton and the Superior Craton, conjoined by the 526 

Palaeoprtoerozoic Nagsuqqotidian, Makkovik-Ketilidian, Rinkian and other orogens (St-Onge 527 
et al. 2009) (Fig. 2, 3).  528 

 529 

5.2 The Grenville-Sveconorwegian Orogeny 530 
The Grenville-Sveconorwegian fold belt evolved during the assembly of Rodinia in the late 531 

Mesoproterozoic (Li et al. 2008). The Grenville Orogen in NE North America includes the 532 

collision between Laurentia and Amazonia (1.09-1.02 Ga), marked by high-grade 533 

metamorphism (Hynes and Rivers 2010; Rivers 2015). The basement of southern Scandinavia 534 
was assembled by several events prior to the Sveconorwegian orogeny: the Gothian (1.64-1.52 535 
Ga), Telemarkian (1.52-1.48 Ga) and Hallandian events (1.47-1.42) (Bingen et al. 2008a). The 536 
actual Sveconorwegian Orogen is characterised by terrane accretion events between 1.14 and 537 
0.97 Ga arising from collision between Baltica and other continental fragments, followed by 538 

orogenic collapse at 0.9 Ga (Bingen et al. 2008a). Although the Sveconorwegian orogeny was 539 
largely coeval, and likely also spatially related to the Grenville Orogen, the precise connection 540 
between these orogens is unclear, as well as the regional configuration, especially of Baltica at 541 
this time (Bingen et al. 2008b; Slagstad et al. 2013, 2019; Cawood and Pisarevsky 2017). 542 

Sveconorwegian-aged deformation is also reported in the Arctic but any relationship to the 543 
main fold-belt is unclear (Lorenz et al, 2012). The latest Neoproterozoic Valhalla Orogeny has 544 

been proposed as an accretionary orogen along Laurentia’s free margin (East Greenland) 545 
(Cawood et al. 2010; Spencer and Kirkland 2016). 546 

5.3 The Timanian Orogeny 547 
The Timanian fold-and-thrust belt records ocean-continent collisions along the northern margin 548 
of Baltica and the accretion of island arc complexes, terranes and microcontinents at ~0.62-549 

0.55 Ga stretching from the Scandinavian Arctic to the Arctic Urals (Roberts and Siedlecka 550 
2002; Gee and Pease 2004; Gee et al. 2006, 2008). The Trollfjorden-Komagelva Fault Zone is 551 

a major Timanian structure extending from the Urals across the Timan Range to northernmost 552 
Norway, where it was later reworked by the Caledonides (Gernigon and Brönner 2012; 553 
Gernigon et al. 2014, 2018; Klitzke et al. 2019). Neoproterozoic Timanian basement terranes, 554 

metasediments and volcanic sequences were drilled in the Pechora Basin (Roberts and 555 
Siedlecka 2002; Dovzhikova et al. 2004). The Timanian suture may be deeply buried in the 556 
central Barents Sea (Gernigon et al. 2018) possibly associated with high velocity-high density 557 

lower crustal rocks (Shulgin et al. 2018). Basement structures in the eastern and central Barents 558 
Sea show a persistent NW-SE oriented Timanian fabric throughout the region (Gee et al. 2006, 559 
2008; Pease 2011; Klitzke et al. 2019). The Torellian orogeny on Svalbard may be a Timanian 560 
equivalent or prolongation (Majka et al. 2008). 561 

5.4 The Caledonian Orogeny 562 
Prior to opening of the North Atlantic Ocean, Europe, North America and Greenland comprised 563 
part of the most recent continental amalgamation, Laurasia, the northern constituent of Pangaea 564 
(reconstructions in Figure 3,4) (Cocks and Torsvik 2006, 2011; Lawver et al. 2011; Stampfli 565 

et al. 2013). As part of Laurasia, Laurussia was formed by closure of the Iapetus Ocean and 566 
Tornquist seaway, and collision of three palaeocontinents – Laurentia, Baltica and Avalonia – 567 
as well as smaller terranes, culminating in the Scandian phase of the Caledonian orogeny at 568 

425-400 Ma (Soper and Woodcock 1990; Pharaoh 1999; McKerrow et al. 2000; Roberts 2003; 569 
Gee et al. 2008; Leslie et al. 2008). This was preceded by phases of arc-accretion in Norwegian, 570 
British and North American Caledonides in the late Cambrian-early Ordovician, i.e. the 571 
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Finnmarkian/Jämtlandian (Brueckner and Van Roermund 2007), Grampian (Dewey 2005) and 572 
Taconian stages (Karabinos et al. 1998), respectively. Laurasia’s assembly was completed by 573 
accretion of the Siberian and Kazakhstan continental plates during the Uralian and Mongol-574 
Okhotsk orogenies (Blakey 2008). Avalonia was the first of several large terranes released from 575 

Gondwana to dock against Baltica and Laurentia, opening the Rheic Ocean in the mid-576 
Ordovician (Matte 2001). the docking of the peri-Gondwana terranes Armorica and Megumia 577 
to the south of Avalonia in the British Isles and Appalachians defines the Early Devonian 578 
Acadian stage after the complete closure of the Iapetus Ocean and docking of Avalonia 579 
(Murphy and Keppie 2005; Woodcock et al. 2007; Mendum 2012; Woodcock and Strachan 580 

2012). In case of the Appalachians, other authors have proposed that the Acadian represents 581 
the actual docking of Avalonia during the closure of the Iapetus Ocean (Hatcher et al. 2010; 582 

Hibbard et al. 2010). In the Barents Sea the observed trends and seismic evidence suggest two 583 
branches of the Caledonian suture (Doré 1991; Gudlaugsson et al. 1998; Breivik et al. 2005; 584 
Gee et al. 2008; Gernigon et al. 2014), an NE-SW oriented branch and an N-S oriented branch 585 
parallel to the present-day western Barents margin towards Svalbard (Gudlaugsson et al. 1998; 586 
Breivik et al. 2002; Aarseth et al. 2017). Shortening in the Palaeozoic Ellesmerian fold belt in 587 

Svalbard, North Greenland and Arctic Canada was broadly contemporaneous with Caledonian 588 
deformation (Ziegler 1988; Gasser 2013; Gee 2015).  589 

While the fundamental tectonic elements of the Caledonian orogeny are reasonably well 590 

understood, significant aspects of timing, deformation, polarity and number of subduction 591 
events are not resolved. Structural and tectonic relationships are complicated due to overlap 592 

and interaction of Caledonian structures with earlier structures (Roffeis and Corfu 2014). Ages 593 
of Caledonian metamorphism and intrusions in East Greenland and Scandinavia range from 594 

500 to 360 Ma with early age populations (~500-422; Kalsbeek et al. 2008; Corfu et al. 2014), 595 
the main Scandian phase (~425 Ma; Dobrzhinetskaya et al. 1995; van Roermund and Drury 596 

1998; Hacker et al. 2010) in Scandinavia and East Greenland, as well as young ages in NE 597 
Greenland (~360 Ma, (Gilotti et al. 2014), indicating complex and prolonged evolution (Gasser 598 
2013; Corfu et al. 2014). These observations have led to departures from a simple model of 599 

only west-dipping Scandian subduction and collision. Other suggested models include 600 
additional early west-dipping (Brueckner and van Roermund 2004; Brueckner 2006) or east-601 

dipping subduction events (Yoshinobu et al. 2002; Andréasson et al. 2003; Roberts 2003; Gee 602 
et al. 2008; Schiffer et al. 2014), possibly as a northward equivalent of the Grampian 603 

(Karabinos et al. 1998; van Staal et al. 2009) or Taconian phases (van Staal et al. 1998; Dewey 604 

2005), and late intracratonic eastward underthrusting (Gilotti and McClelland 2011). Although 605 

the Caledonian orogeny between Greenland and Scandinavia can be approximated as a linear, 606 
“two-dimensional” orogen, complexities of Caledonian fabrics can be observed along the 607 
length of the orogen indicating a composite, non-orthogonal collision and subduction system 608 
(Fossen et al. 2008). The late Caledonian phases were dominated by the gravitational collapse 609 
of high, unstable topography, accompanied by lithospheric extension and possibly lithospheric 610 

delamination (Seranne 1992; Fossen et al. 2014; Gabrielsen et al. 2015) with major sinistral 611 
strike-slip along the Baltic and Laurentian margins (Harland 1969, 1971; Roberts 1983; Soper 612 
et al. 1992). 613 

 614 

5.5 The Variscan Orogeny 615 
Following consolidation of Laurasia in the Late Silurian-Early Devonian, the basement 616 
substructure of the southern CNAR was modified by the Variscan-Appalachian Orogeny, a 617 

major continent-continent collision to the south with Gondwana and peri-Gondwanan terranes 618 
and microcontinents (McKerrow et al. 2000; Franke 2006; Winchester et al. 2006; Kroner and 619 
Romer 2013). The episodic release of peri-Gondwana terranes was probably driven by back-620 
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arc spreading on the Gondwana margin (Stampfli and Borel 2002). These terranes successively 621 
docked against Laurasia to the north, each generating individual compressional pulses. While 622 
the orogenic evolution of the Appalachians is relatively well-defined (Hatcher et al. 2010), the 623 
situation is more complicated in the European Variscides, due to a more complex subduction 624 

history (Matte 2001). The Variscan Orogeny ended with collision between Gondwana and 625 
Laurasia in Late Carboniferous-Permian time (McKerrow et al. 2000; Matte 2001), forming a 626 
major fold belt, running E-W through southern Europe and NE-SW between eastern North 627 
America and NW Africa. 628 

This collision involved dextral transpression and likely resulted in major orogen-parallel 629 

transform faults in the Appalachians (Hatcher 2002). Similarly, the Variscides of the Iberian 630 

Peninsula were bounded by the NW-trending Coimbra-Cordoba and Ossa-Morena shear zones 631 

in the south, likely connected to the North Iberia Fault. The Coimbra-Cordoba shear zone 632 
experienced at least 72 km of sinistral motion (Burg et al. 1981). A transform system may have 633 
continued from the North Iberia Fault along the proto-Flemish Cap and Goban Spur margins, 634 
through the proto-Labrador Sea, connecting with the Hudson Strait-Foxe Channel fault system 635 
(Lundin and Doré 2018). 636 

6 Structural segmentation and inheritance in the CNAR 637 

The CNAR margins are segmented in terms of crustal thickness, width, basin thickness, 638 
magmatism and presence of HVLCBs (Skogseid et al. 2000; Lundin and Doré 2011; Peron-639 
Pinvidic et al. 2013; Funck et al. 2016b; Ady and Whittaker 2018; Lundin et al. 2018). A 640 

number of failed rift systems are present, including the North Sea Central and Viking grabens, 641 

the conjoined Møre and Vøring basins, the parallel Rockall and Hatton basins, plus the 642 
Porcupine, Orphan, Danmarkshaven and Bjørnøya basins (Ziegler 1992; Péron-Pinvidic and 643 
Manatschal 2010; Lundin and Doré 2011; Gernigon et al. 2014). This rift network on the 644 

continental shelves may be linked to pre-existing lithospheric-scale structures, lineaments and 645 
terranes (Doré et al. 1997; Chenin et al. 2015; Gaina et al. 2017; Schiffer et al. 2018).  646 

A key observation in the northern NE Atlantic is that in some areas, the late Caledonian shear 647 
zones, primarily recognised in the onshore, are largely parallel to the breakup trend, while in 648 
other areas there is a distinct obliquity of the breakup axis with earlier rift basins that follow 649 

Caledonian trends (Fig. 8). This obliquity likely relates to interaction between different sets 650 
and depths of pre-existing structures and varying extensional stress-fields.  651 

The relationship between the Caledonian Orogen and the CNAR can be described in the context 652 
of five primary segments (Fig. 1): 653 

(1) In the northern section between East Greenland and Norway, many of the late Palaeozoic-654 
Early Cretaceous rift basins (Møre, Vøring, Lofoten-Vesterålen, Danmarkshavn basins, and 655 
possibly the Thetis Basin) follow the mapped NE-SW Caledonian trends, while latest 656 
Cretaceous- earliest Cenozoic rifting and breakup is clockwise oblique by ~20-30º (Figures 657 
4,8). North-south Mid-Late Jurassic faulting, as expressed in the Halten Terrace, appears to be 658 

strongly discordant to this pattern, although a link to duplex systems between Caledonian 659 
shears was suggested by Doré et al., (1997).  660 

(2) In the southern NE Atlantic, between SE Greenland and the British Isles, the Cretaceous-661 

Jurassic Rockall and Hatton basins and the axis of breakup all follow the general Caledonian 662 
trend. However, breakup produced highly asymmetric margins lying 500 km or more west of 663 
the Caledonian front, and cutting through cratonic lithosphere (Figures 3, 4, 8).  664 

(3) The Greenland-Iceland-Faroe Ridge (GIFR) separates segments 1 and 2. Formation of this 665 
ridge is discussed in detail by Foulger et al. (this volume). Relative movements between the 666 
Reykjanes Ridge to the south and the abandoned Aegir Ridge, and active Kolbeinsey Ridge to 667 
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the north must have been accommodated along the GIFR. Additionally, the GIFR formed 668 
where the North Atlantic rift crosscut the western Caledonian front and along the southern 669 
margin of the Rae Craton. 670 

(4) The North Sea experienced rift phases in the Permian-Triassic, Late Jurassic and Early 671 

Cretaceous in the area of the Iapetus-Thor Suture triple junction and the Danish-German-Polish 672 
Caledonides. The physiography of the later rift is dominated by the northern Viking Graben, 673 
the western Moray Firth Graben and the Central Graben (Færseth et al. 1995). As indicated in 674 
point (1), the dominant N-S faulting of the northern North Sea, generally discordant to the 675 
Caledonian trends, is probably attributable to rift propagation from the SE (e.g. Figs. 4 and 8). 676 

(5) The Labrador Sea and Baffin Bay are two ocean basins formed during the Palaeogene by a 677 

now-extinct spreading system, with the Davis Strait separating and accommodating relative 678 

motions between them. Rifting and continental breakup both cross-cut and ran sub-parallel to 679 
crustal terrane boundaries (Figs. 2,3). 680 

The principal rift architectures and possible relations to inherited fabrics in these segments are 681 
as follows: 682 

 683 

Segment 1 – Norway-Greenland margins 684 

North of the GIFR, the conjugate margins of Norway and Greenland are asymmetric, with 685 
structural variations along strike, as a result of the oblique breakup axis (Fig. 8) (Gernigon et 686 
al. this volume). The narrow continental shelf in central East Greenland contrasts strongly with 687 

the wide conjugate Vøring margin. Further north, the NE Greenland shelf is much wider than 688 
its conjugate Lofoten margin.  689 

The Mid-Norwegian margin is magma-rich with thick NE-SW trending sedimentary basins and 690 
highs. This NE-SW trend is attributed to Caledonian and Precambrian inheritance (Bergh et al. 691 

2007; Maystrenko et al. 2017). The margin is divided into the Møre, Vøring and Lofoten-692 
Vesterålen margins from south to north (Gernigon et al. this volume; Lundin and Doré 1997; 693 
Brekke 2000; Mosar 2003). This segmentation is related to margin-perpendicular transfer 694 

zones, the Jan Mayen Lineament/Corridor between the Møre and Vøring margins (Eldholm et 695 
al. 2002) and the Bivrost Lineament separating the Vøring from the Lofoten-Versterålen 696 

margin (Blystad 1995). These lineaments are expressed through offsets in basin axes, inferred 697 
by some authors to reflect Caledonian or Precambrian basement fabrics (Doré et al. 1997, 1999) 698 

or Late Jurassic–Early Cretaceous extensional structures (Eldholm et al. 2002).  699 

As indicated earlier, Jurassic faulting, as expressed in the Halten Terrace (e.g. Blystad et al., 700 
1995), is approximately N-S and strongly discordant to both the Caledonian trends, later (Early 701 
Cretaceous) basin formation and Cenozoic breakup (Fig. 8). The N-S faulting here and in the 702 

North Sea may represent an attempt by Tethys, the dominant oceanic domain at the time, to 703 
propagate through the North Sea into what is now the Norwegian Sea (compare Figs. 4 and 8). 704 

In the Møre and Vøring segments, deep, inherited HVLCBs of Caledonian and/or Precambrian 705 
age controlled rifting (Gernigon et al. 2003, 2004; Abdelmalak et al. 2017; Maystrenko et al. 706 
2017; Zastrozhnov et al. 2018). In the inner Møre margin, basin architecture follows the trends 707 

of late-Caledonian shear zones bordering the margin to the south, specifically the Møre-708 

Trøndelag Fault Complex (Grunnaleite and Gabrielsen 1995; Hurich 1996; Jongepier et al. 709 

1996; Doré et al. 1997; Nasuti et al. 2011; Theissen-Krah et al. 2017) suggesting a genetic 710 
connection. The dominant NE-SW-trending Caledonian thrust sheets in the Lofoten-Vesterålen 711 
margin interact with the Palaeoproterozoic NW-SE, margin-perpendicular Bothnian-Senja 712 
Fault Complex (Bergh et al. 2007), which appears to run into the younger offshore Senja 713 
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Fracture Zone, forming the Barents Sea’s western transform boundary (Henkel 1991; Doré et 714 
al. 1997).  715 

With the exception of the Wandel Sea Basin, the conjugate East Greenland margin is 716 
characterised by approximately N-S trending basins. Extensional faults appear to relate to 717 

Caledonian fabrics (Henriksen 2003) (Figure 9). Late Devonian-Early Carboniferous shear 718 
zones formed during Caledonian collapse (Surlyk 1990; Price et al. 1997; Parsons et al. 2017; 719 
Rotevatn et al. 2018), accompanied and possibly facilitated by major strike-slip deformation 720 
(Dewey and Strachan 2003), which may have reactivated older, pre-Caledonian shear zones 721 
related to the opening of the Iapetus Ocean (Soper and Higgins 1993). Faulting in the Triassic-722 

Cretaceous East Greenland rift system was episodic, with multiple stages of reactivation 723 

culminating in the final separation of the JMMC (Surlyk 1990; Stemmerik et al. 1991; Hartz 724 

and Andresen 1995; Seidler et al. 2004; Parsons et al. 2017; Rotevatn et al. 2018). The East 725 
Greenland rift system is segmented by right-stepping NW-SE transfer zones (Fossen et al. 726 
2017; Rotevatn et al. 2018). These offsets are thought to be related to reactivation of a NW-SE 727 
Proterozoic fabric (Andresen et al. 1998; White and Hodges 2002; Guarnieri 2015; Rotevatn 728 
et al. 2018).  729 

The JMMC is located between the central East Greenland margin and the Møre margin (Gaina 730 
et al. 2009; Gernigon et al. 2015; Blischke et al. 2017, 2019; Polteau et al. 2018; Schiffer et al. 731 
2018). The nature and formation of the JMMC remains enigmatic but its location and 732 
geographic relation to the GIFR and known Caledonian structures suggests inheritance control 733 

(Gernigon et al. this volume; Schiffer et al. 2015b, 2018) (see section 7.3). A lower crustal-734 

upper mantle fabric, exemplified by a proposed N-S Caledonian (or pre-Caledonian) fossil 735 

suture zone (Schiffer et al. 2015b; Petersen and Schiffer 2016) may also have influenced rifting. 736 
However, direct geological or geophysical evidence for reactivation of older structures remains 737 

sparse.  738 

The Wandel Sea Basin formed by transtension or extension during the mid-Cretaceous, and 739 
was modified by Palaeocene-Eocene N-S compression (Svennevig et al. 2016), synchronous 740 

with formation of the West Spitsbergen fold-and-thrust belt. Local structural trends (~NW-SE) 741 
closely mimic the conjugate Bothnia-Senja Fault Complex and Senja Fracture Zone. The 742 

Wandel Sea Basin is thought to have experienced multiple phases of reactivation of earlier rift 743 
structures (Guarnieri 2015). 744 

Segment 2 – SE Greenland-Rockall-Hatton margins 745 
The NE Atlantic south of the GIFR broke up parallel to Caledonian trends and structures, but 746 
~500 km west of the Caledonian front through the Laurentian basement of the Rockall-Hatton 747 
margin. The margins in this segment are highly asymmetric. The Hatton margin comprises 748 

thinner and narrower SDRs and HVLCBs compared to SE Greenland (Planke and Alvestad 749 
1999; Hopper et al. 2003). The SE Greenland continental shelf is straight and narrow, whilst 750 
the Rockall-Hatton margin shelf is extremely wide and formed during Jurassic-Cretaceous 751 
lithospheric thinning (Stoker et al. 2017). 752 

The Rockall-Hatton margin contains two large failed rift basins (the highly extended, deep 753 

Rockall Basin and the less extended, shallower Hatton Basin) bounded by major marginal highs 754 
(Hatton High, Rockall Bank) (Morewood et al. 2005). The highs are underlain by crustal blocks 755 

up to 30 km thick (Funck et al. 2016a). The Rockall Basin has crustal thicknesses of <10 km 756 
beneath up to 5 km of sediments (Funck et al. 2016a) and is underlain by HVLC or hydrated 757 
mantle peridotite (Roberts 1975; Roberts et al. 1988, 2018; Makris et al. 1991; Shannon et al. 758 
1999; Klingelhöfer et al. 2005; Morewood et al. 2005; Funck et al. 2016a). Reactivation of 759 
NNE–SSW to NE–SW, margin-parallel Caledonian and pre-Caledonian basement lineaments 760 

seems to have led to the initial localisation and segmentation of the Rockall-Hatton shelf. 761 
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Furthermore, the shelf is transected by NW-trending continental lineaments/transfer zones 762 
(Figure 9) (Rumph et al. 1993; Kimbell et al. 2005a; Stoker et al. 2017). Some of these 763 
lineaments link to faults onshore Ireland (e.g., SHL), others are associated with COB offsets 764 
of the Hatton-Rockall shelf (e.g., SHL, ADL) or are correlated with sedimentary basins (e.g., 765 

ADL, WTL, JF), and some may have guided magmatic intrusions or be related to oceanic 766 
fractures or accommodation zones in the Iceland Basin (e.g., CL) (Kimbell et al. 2005a; Naylor 767 
and Shannon 2005; Štolfová and Shannon 2009).  768 

During Cenozoic compression/transpression, some transfer zones became the loci for inversion 769 
(Doré and Lundin 1996; Doré et al. 1999; Eldholm et al. 2002; Kimbell et al. 2005a; Tuitt et 770 

al. 2010). These are interpreted as rejuvenated Precambrian terrane boundaries or shear zones 771 

that had previously impeded rift propagation (Shannon et al. 1995, 1999; Kimbell et al. 2005a; 772 

Ritchie et al. 2008; Štolfová and Shannon 2009), thereby compartmentalising rift evolution in 773 
the Rockall Basin (Rumph et al. 1993; Kimbell et al. 2005a; Stoker et al. 2017). Such pre-774 
existing, margin-perpendicular terrane boundaries between different blocks may also explain 775 
why the lithosphere beneath Rockall did not break, while rifting was transferred outboard to a 776 
weaker section (Johnson et al. 2005; Elliott and Parson 2008). At the southern margin of the 777 

Rockall Basin, a probable connection between the Charlie Gibbs Fracture Zone and the Iapetus 778 
Suture, suggests a further reactivation of a pre-existing Caledonian lithospheric feature 779 
(Shannon et al. 1994; Buiter and Torsvik 2014; Ady and Whittaker 2018) (Figure 2). 780 

The poorly known, narrow margin in SE Greenland comprises SDRs, HVLC bodies, and 781 

igneous centres and intrusions (Dahl-Jensen et al. 1998; Korenaga et al. 2000; Callot et al. 782 

2001; Klausen and Larsen 2002; Hopper et al. 2003). Palaeoproterozoic discontinuities in SE 783 

Greenland were reactivated as left-lateral shear zones prior to breakup and the margin was 784 
inverted during the Eocene or later (Guarnieri 2015). The highly asymmetric line of Cenozoic 785 

breakup, outboard of the Hatton Basin and close to the SE Greenland coast (e.g. Figs. 4, 8 & 786 
9), is a curious feature that appears to have formed without significant observable initial rifting. 787 
Because data is sparse, it is not possible to make any definite connection with older weaknesses.  788 

Speculatively, both the trend and straightness of this margin segment suggests a connection 789 
with the Late Caledonian shear fabric, as exemplified by faults such as the Møre-Trøndelag 790 

Fault Complex (e.g. Fig. 2). This line forms the shortest path from the Aegir Ridge to the 791 
Labrador Sea, and may have been created or exploited by dextral strike-slip associated with 792 
Labrador Sea opening (Lundin and Doré 2018) or high geopotential energy associated with th 793 

forming ridge triple junction located south of Greenland at that time (Kristoffersen and Talwani 794 
1977; Roest and Srivastava 1989; Guan et al. 2019). An alternative hypothesis is that after 795 
Early Cretaceous rifting, the lithosphere in the Rockall-Hatton shelf re-equilibrated, cooled and 796 

strengthened (Guan et al. 2019), thereby leaving the SE Greenland shelf as the weakest 797 
pathway for breakup due to its thick, warm crust (45-55 km) and weak lithosphere. 798 

Segment 3 – The Greenland-Iceland-Faroe Ridge and adjacent margins 799 
The GIFR forms a WNW-ESE ridge spanning the NE Atlantic from central East Greenland to 800 
the Faroe-Shetland Basin (Foulger et al. 2019). The GIFR has anomalously high topography 801 

with typically 20-30 km thick crust (Foulger et al. 2003; Fedorova et al. 2005; Torsvik et al. 802 
2015; Funck et al. 2016b; Haase et al. 2016), which thickens to 40 km beneath the central 803 
Iceland Plateau (Darbyshire et al. 2000; Du and Foulger 2001; Kaban et al. 2002; 804 

Gudmundsson 2003; Foulger et al. 2003; Fedorova et al. 2005). Thick basaltic lava flows cover 805 
the ridge (Horni et al. 2017; Hjartarson et al. 2017). The origin, structure and composition of 806 
the lithosphere beneath the GIFR remain poorly understood but there is significant evidence 807 
for a component of continental crust (Foulger 2006; Torsvik et al. 2015; Schiffer et al. 2018; 808 

Petersen et al. 2018; Foulger et al. 2019). The role of structural inheritance here is unknown, 809 
but the common location and orientation of the GIFR and the intersection of the North Atlantic 810 
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rift axis with the Caledonian orogenic front suggest a link (Foulger and Anderson 2005; 811 
Schiffer et al. 2015b, 2018; Foulger et al. 2019). In addition, the recent recognition of Faroe-812 
Shetland basement terrane immediately north of Scotland and the correlation of its southern 813 
boundary with that of the Rae Craton in Greenland (Holdsworth et al. 2019) mean that the 814 

southern margin of the GIFR follows this ancient terrane boundary.  815 

The central East Greenland margin appears to be structurally and magmatically segmented by 816 
margin-perpendicular Precambrian structures that accommodated transform motion and 817 
localised intrusions (Karson and Brooks 1999). This segmentation was controlled by local 818 
magmatic centres, from which magma flow was guided and transfer zones defined (Callot et 819 

al. 2001; Klausen and Larsen 2002; Callot and Geoffroy 2004). Tegner et al. (2008) linked 820 

some of these tectonic lineaments to failed rifts, localised magmatism and breakup between 821 

central East Greenland and the JMMC.  822 

The Faroe–Shetland margin consists of basins and highs, formed from the Late Palaeozoic to 823 
early Cenozoic plate breakup, followed by syn- to post-breakup magmatism, compressional 824 
tectonics and differential uplift and subsidence (Doré et al. 1999; Roberts et al. 1999; Johnson 825 
et al. 2005; Ritchie et al. 2008, 2011; Fletcher et al. 2013; Stoker 2016; Stoker et al. 2017, 826 

2018). N–S to NE–SW and ESE–WSW to SE–NW structural trends follow regional fabrics 827 
observed in onshore basement rocks (Doré et al. 1997; Wilson et al. 2010). Many Devonian to 828 
Jurassic rifts exhibit Caledonian structural inheritance with a generally NNE trend such as the 829 
Outer Hebrides/Minch fault zones (Imber et al. 2001) (Fig. 9), faults within the West Orkney 830 

Basin (Bird et al. 2015) and the northeastern Faroe-Shetland Basin (Lamers and Carmichael 831 

1999; Ritchie et al. 2011; Stoker et al. 2017) (Fig. 9).  832 

In contrast, some lineaments in the Faroe Shetland Basin, including the southern boundary of 833 
the basin (Judd Fault), have a NW-SE orientation. Similar to the Rockall-Hatton margin, this 834 

structural trend is pre-Caledonian and may have created the transfer zones that 835 
compartmentalised the basin during the Mesozoic and early Palaeogene (Ritchie et al. 2011), 836 
although these features are not ubiquitous (Moy and Imber 2009). In the southern part of the 837 

basin, a W-to-NW trend prevails, including the Wyville-Thomson Lineament (Fig. 9), which 838 
reactivated during the Palaeocene (Kimbell et al. 2005a; Lundin and Doré 2005; Ziska and 839 

Varming 2008). Compressional structures formed in the Late Cretaceous (Booth et al. 1993; 840 
Grant et al. 1999; Stoker 2016) have been attributed to strike-slip tectonics linked to a shear 841 
margin (proto-plate boundary) separating Faroe–Shetland and SE Greenland, which reactivated 842 

old lineaments prior to breakup (Roberts et al. 1999; Guarnieri 2015; Stoker et al. 2018). 843 
Further compressional folding and differential uplift events occurred during the Eocene to early 844 
Neogene (Johnson et al. 2005; Stoker et al. 2005; Ritchie et al. 2008).  845 

Segment 4 – North Sea & Tornquist Zone 846 
The North Sea formed within basement that had been influenced by the Caledonian orogeny 847 
and Devonian orogenic collapse (Coward 1990; Andersen 1998; McKerrow et al. 2000; Fossen 848 
and Hurich 2005; Fossen 2010), with subsequent generally E-W extension beginning in the 849 
Permian-Triassic (Ziegler 1992; Fossen and Dunlap 1999; Frederiksen et al. 2001; Coward et 850 

al. 2003) and E-W to NW-SE extension in the latest Jurassic to Early Cretaceous (Brun and 851 
Tron 1993; Underhill and Partington 1993; Færseth 1996; Frederiksen et al. 2001; Coward et 852 
al. 2003; Arfai et al. 2014; Bell et al. 2014; Duffy et al. 2015; Deng et al. 2017a). Its 853 

development was also variably influenced by Permo-Carboniferous rifting and magmatism 854 
(Glennie et al. 2003; Heeremans and Faleide 2004; Neumann et al. 2004; Wilson et al. 2004), 855 
and far-field Alpine compression combined with ridge-push and gravitational forces from the 856 
high topography in Norway in the Late Cretaceous and Eocene (Biddle and Rudolph 1988; 857 

Cartwright 1989; Nielsen et al. 2005, 2007; Pascal and Cloetingh 2009; Jackson et al. 2013). 858 
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The North Sea region exhibits a range of upper mantle fabrics of Precambrian to Devonian age 859 
(Klemperer and Hurich 1990; Blundell et al. 1991; Abramovitz and Thybo 2000; Balling 2000; 860 
Fossen et al. 2014). Large-scale Moho and upper mantle shear zones originating from Devonian 861 
extension are imaged in the Norwegian North Sea (Fossen et al. 2014; Gabrielsen et al. 2015). 862 

HVLCBs in the southwest (Abramovitz and Thybo 2000) and NW (Christiansson et al. 2000) 863 
of the North Sea, and lower crustal fabrics (Klemperer et al. 1990) in the vicinity of the Iapetus 864 
suture offshore NW England are attributed to Caledonian collision and may have exerted 865 
structural control on the development of the rifts. Caledonian or Variscan upper mantle fabric 866 
along the eastern British coastline (Blundell et al. 1991) may also have influenced rifting. Pre-867 

Caledonian dipping structures in the upper mantle were identified in the Skagerrak Sea between 868 
Norway and Denmark (Lie et al. 1990).  869 

Structural inheritance within the North Sea seems to be related to N-S to NE-SW oriented 870 
Caledonian and Devonian lineaments (Bartholomew et al. 1993; Glennie 1998; Fossen 2010), 871 
along with the NW-SE trend of the Tornquist Zone in the south (Pegrum 1984; Bartholomew 872 
et al. 1993; Mogensen 1994). Caledonian nappes and late-Caledonian strike-slip shear zones 873 
in Norway (Andersen and Jamtveit 1990; Fossen 1992; Fossen and Dunlap 1998; Vetti and 874 

Fossen 2012; Fossen et al. 2017) and Scotland (Stewart et al. 1997, 1999) extend offshore 875 
beneath the North Sea rift (Bird et al. 2015; Reeve et al. 2015; Phillips et al. 2016; Fazlikhani 876 
et al. 2017). These were reactivated during later tectonic events (Phillips et al. 2016; Fazlikhani 877 
et al. 2017; Rotevatn et al. 2018) and exerted strong control on the Permo-Triassic structural 878 

development of the North Sea (Færseth et al. 1995; Færseth 1996; Lepercq and Gaulier 1996; 879 
Phillips et al. 2016; Fazlikhani et al. 2017).  880 

The lithosphere-scale Tornquist Zone (TZ) spans Central Europe from SE to NW and extends 881 
across the Central North Sea (Figs. 2, 9), marking a major change in lithospheric and crustal 882 

thickness between Baltica to the NE and younger lithosphere to the SW (Berthelsen 1998; 883 
Pharaoh 1999; Cotte and Pedersen 2002; Babuška and Plomerová 2004; Janutyte et al. 2015; 884 
Mazur et al. 2015; Hejrani et al. 2015; Köhler et al. 2015). The TZ is associated with a series 885 

of NW-SE oriented crustal rift systems which have been periodically reactivated (Pegrum 886 
1984; Berthelsen 1998; Mazur et al. 2015; Phillips et al. 2018). The TZ accommodated major 887 

late-Cretaceous compression associated with far-field stresses imposed by the Alpine orogeny 888 
(Berthelsen 1998; Nielsen et al. 2005, 2007; Jackson et al. 2013; Phillips et al. 2018).  889 

At the rift scale, lithospheric thinning from Permian-Triassic, Carboniferous-Permian and 890 

Devonian extension, strongly influenced the Late Jurassic-Early Cretaceous rift in the North 891 
Sea (Walsh et al. 2002; Whipp et al. 2014; Duffy et al. 2015; Henstra et al. 2015; Reeve et al. 892 
2015; Childs et al. 2017; Deng et al. 2017a). Thinning localised the thermal perturbation during 893 

later extension, resulting in a narrower and more localised rift focussed in the Viking Graben 894 
(Odinsen et al. 2000; Cowie et al. 2005) which, as indicated earlier, probably represented the 895 
main marine conduit between the Tethyan ocean and the proto-Norwegian Sea. 896 

Segment 5 – Labrador Sea, Baffin Bay & Davis Strait 897 
The Labrador Sea and Baffin Bay form an extinct early Cenozoic spreading system, with the 898 

Ungava Fault Zone running through the Davis Strait separating the two ocean basins (Figure 899 
10). The basins formed by two-phase divergence between Greenland and North America 900 
(Chalmers and Pulvertaft 2001; Hosseinpour et al. 2013). A first phase of NE-SW extension 901 

started in the Early Cretaceous and culminated in Palaeocene continental breakup in the 902 
Labrador Sea (Srivastava and Keen 1995; Chalmers and Laursen 1995; Larsen et al. 2009; 903 
Abdelmalak et al. 2012, 2018; Pinet et al. 2013; Jones et al. 2017). Mesozoic-Early Cenozoic 904 
faulting was controlled by reactivation of pre-existing structures (Peace et al. 2018a, b). A 905 

second phase of NNE-SSW extension caused oblique spreading from the late Palaeocene (C25) 906 
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to late Eocene (Roest and Srivastava 1989; Abdelmalak et al. 2012), which ceased at about 36 907 
Ma (Roest and Srivastava 1989). The continental Davis Strait underwent sinistral transtension, 908 
but not breakup during the first stage (Wilson et al. 2006; Suckro et al. 2013; Peace et al. 909 
2018b), followed by sinistral transpression during the second stage (Geoffroy et al. 2001; 910 

Suckro et al. 2013).  911 

The Labrador Sea and Baffin Bay formed perpendicular to many lithospheric-scale 912 
Precambrian structures and fabrics, perhaps suggesting limited basement inheritance (Figure 913 
2). However, purely based on similar trends of pre-existing structures with the Labrador Sea 914 
and Baffin Bay it is apparent that exceptions may exist. Direct evidence that any of these pre-915 

existing structures did reactivate and guided the formation of the Labrador Sea and Baffin Bay 916 

is lacking however. For example, the Palaeoproterozoic Rinkian Orogen along the West 917 

Greenland margin of Baffin Bay (Grocott and McCaffrey 2017) and Precambrian normal faults 918 
(McWhae 1981) and strike-slip faults (van Gool et al. 2002; St-Onge et al. 2009) are sub-919 
parallel to the Labrador Sea margin (Fig. 2). Early Cretaceous sinistral transform motion 920 
(Lundin and Doré 2018) and/or Jurassic mafic dyke swarms (Watt 1969; Larsen et al. 2009; 921 
Peace et al. 2016) could also have played a role in strain localisation in the Labrador Sea. 922 

Additionally, Neoproterozoic and Palaeoproterozoic dyke swarms in West Greenland and 923 
Baffin Island are parallel to sub-parallel to coastlines and continental margins of Baffin Bay 924 
and the Labrador Sea. In particular the Late Palaeoproterozoic-Early Mesoproterozoic Melville 925 
Bugt dyke swarm is strikingly parallel to the Baffin Bay continental margins (Buchan and Ernst 926 

2006b). Klausen and Nilsson (2018) proposed a continuation of this dyke swarm through 927 
southern Greenland. Similarly, the Palaeoproterozoic BN-1 dyke swarm in SW Greenland is 928 

parallel to Labrador Sea breakup (Ernst and Buchan 2004). The Neoproterozoic Franklin-Thule 929 
dyke swarm is sub-parallel to the Baffin Bay continental margins on the Greenland side, but 930 

largely parallel to breakup on Baffin Island (Buchan and Ernst 2006a). Direct reactivation of 931 
these dykes or lithospheric rheological anisotropies reworked during dyke emplacement may 932 
have facilitated or guided rifting and breakup in Baffin Bay and Labrador Sea.  933 

The Ungava Fault Zone in the Davis Strait is a major structural discontinuity (Geoffroy et al. 934 
2001; Peace et al. 2017, 2018b; Abdelmalak et al. 2018) that may be related to Proterozoic 935 

basement structures and mantle scars (Geoffroy et al. 2001; Peace et al. 2018b; Heron et al. 936 
2019). For example, the Palaeoproterozoic Torngat-Nagssugtoqidian orogenic belt (van Gool 937 
et al. 2002; Grocott and McCaffrey 2017) could have formed a rheological barrier, preserving 938 

thicker, continental-affinity crust and lithosphere in the Davis Strait (Heron et al. 2019). The 939 
HVLC underlying Davis Strait (Funck et al. 2007, 2012) could represent remnants of pre-940 
existing metamorphosed or metasomatised crust or mantle (Petersen and Schiffer 2016; Peace 941 

et al. 2017).  942 

The Labrador Sea and Baffin Bay margins are subdivided into magma-rich and magma-poor 943 
segments by major lithospheric structures, such as the Upernavik Escarpment in Baffin Bay   944 
(Chauvet et al., 2019) and the Grenville Front or the Ketillidian Mobile Belt in the Labrador 945 
Sea (Keen et al. 2018; Gouiza and Paton 2019). The poorly defined onshore continuation of 946 

the Upernavik Escarpment trends parallel to the Precambrian crustal fabric. A potential 947 
interplay between lithospheric inheritance and magmatism in the NW Atlantic has been 948 
proposed (Foley 1989; Larsen et al. 1992; Tappe et al. 2007; Peace et al. 2017). Excessive 949 

melting along the Davis Strait may also be related to older lithospheric structures (Larsen et al. 950 
1992; Koopmann et al. 2014; Peace et al. 2017). Clarke and Beutel (this volume) link the Davis 951 
Strait Palaeogene picrites to sudden rupture of the thick Nagssugtoquidian lithosphere during 952 
breakup.  953 
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The conjugate margins of the Labrador Sea and Baffin Bay display significant structural and 954 
magmatic asymmetry (Chalmers and Pulvertaft 2001; Funck et al. 2012; Suckro et al. 2012; 955 
Welford and Hall 2013; Peace et al. 2016; Keen et al. 2017; Welford et al. 2018; Chauvet et al. 956 
2019). This asymmetry could indicate that the Greenland lithosphere was weaker prior to 957 

rifting compared to the conjugate Labrador margin (Welford and Hall 2013). It could also be 958 
the consequence of strain migration associated with hyperextension (Brune et al. 2014) and, in 959 
the southern Baffin Bay, to the usual development of VPMs away from previous amagmatic 960 
rift systems due to strain hardening (Guan et al. 2019).  Major shear zones, faults and basement 961 
structures onshore (Figure 10) may have controlled the fracture zones, structural divisions and 962 

basin architecture offshore (Welford and Hall 2013; Jauer et al. 2014; Peace et al. 2018b).  963 

Moho topography seen in northern Baffin Bay may result from reactivation of large-scale pre-964 

existing structures (Jackson and Reid 1994). Approximately N-S faults produced during 965 
Cretaceous rifting were reactivated during the Palaeogene deformation phase, when Greenland 966 
moved north relative to North America (Gregersen et al. 2016), causing the Eurekan Orogeny 967 
(Oakey and Chalmers 2012) during which Palaeozoic and Proterozoic structures were 968 
reactivated (Piepjohn et al. 2016; Schiffer and Stephenson 2017; Stephenson et al. 2017). 969 

7 Discussion  970 

7.1 Rifting, segmentation and breakup in the CNAR 971 

Our review suggests that in the NE Atlantic (segments 1-4), many of the late Palaeozoic to 972 
Cretaceous rift systems follow the trend of Caledonian structures, particularly the NE-SW-973 

oriented sub-vertical, orogen-parallel sinistral strike-slip faults formed during the Silurian-974 

Devonian (e.g. GGF-WBF, HBF, SUF, MTFC; Figures 3,9). There are, however, some 975 
exceptions such as the noted obliquity of the N-S Triassic-Jurassic rift trend expressed in (for 976 
example) the Viking Graben and Halten Terrace. This may have reactivated duplex structures 977 

formed during the late Caledonian (Doré et al., 1997) but could simply represent a newly 978 
created trend resulting from northwards Tethyan propagation (Figs. 4 & 8). In many cases NW-979 

SE to WNW-ESE lineaments and transfer zones (Figure 9) further partitioned the structure and 980 
evolution of the NE Atlantic margins (Doré et al. 1997, 1999; Kimbell et al. 2005b). Some of 981 
these lineaments had pre-Caledonian history while others formed during the development of 982 

post-Caledonian basins. Of significance is the relation between continental transfer zones and 983 
oceanic fracture zones. In some cases, continental lineaments pass laterally into oceanic 984 

transfer faults (Figure 9). Many other margin-perpendicular lineaments are expressed by offsets 985 
in sedimentary basin architecture, but direct evidence of strike-slip motion is often lacking. A 986 

connection between continental transfer faults and oceanic fracture zones in the Vøring margin 987 
(Tsikalas et al. 2002; Mjelde et al. 2005) is questioned in more recent studies of modern 988 
magnetic data (Olesen et al. 2007).  989 

A key observation in the northernmost NE Atlantic (essentially the Vøring margin) is the 990 
obliquity of its breakup axis with earlier rift basins and the Caledonian (surface) trend in the 991 

northern part (segment 1), compared to other areas where Caledonian structures appear to be 992 
more parallel to breakup. The late-Caledonian shear zones are strikingly parallel to the line of 993 
breakup (Figure 4 & 8) suggesting a causal link. As we explain below, a primary reason for 994 
this obliquity may lie in the existence of lithospheric layers in which differently oriented pre-995 

existing fabrics rejuvenate at different times in response to changes in the regional stress field. 996 

This may be additionally linked to the magmatic development, as the extent of the Cenozoic 997 
pre- and syn-rift magmatism of the NAIP is also generally parallel to the final line of breakup, 998 
which may have been “perforated” by magmatic intrusions (Gernigon et al., this volume), 999 
and/or strike-slip deformation (Lundin & Doré, 2018). 1000 
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Numerical modelling suggests that the dominating weaknesses may lie within the mantle 1001 
lithosphere, rather than the crust (e.g. Heron et al. 2016) (see also section 2.2). We hypothesise 1002 
that at the onset of rifting, the crustal and mantle lithospheric fabrics were oblique to one 1003 
another. There existed an older, orogen-parallel, brittle crustal fabric and an oblique, younger, 1004 

upper mantle shear fabric. Rifting in the North Atlantic experienced phases of varying stress 1005 
orientations that rejuvenated either the less dominant, shallow crustal fabric or the dominant 1006 
mantle fabric. 1007 

We propose a scenario for the NE Atlantic rifting and breakup as follows: 1008 

• The Caledonides formed as a notably linear orogen in the NE Atlantic resulting in a 1009 
predominantly orogen-parallel fabric of crustal blocks, terranes, nappes and thrust 1010 

faults (Figure 4, 8). At this time, lithospheric mantle fabric was parallel to the brittle 1011 
crustal features. During late Caledonian sinistral transpression (Soper et al. 1992) the 1012 
pre-existing discrete, brittle crustal fabric was reactivated as strike-slip faults, 1013 

preserving their original orogen-parallel orientation. In contrast, the pervasive ductile 1014 
lower crustal-upper mantle fabric was reworked and reoriented to ENE-WSW (rotated 1015 
20-30° clockwise about the orogenic axis). 1016 

• Devonian orogenic collapse was driven by body forces created by the high Caledonian 1017 
topography mainly perpendicular to the axis of the mountain range (England and 1018 
Houseman 1986; Molnar et al. 1993; Schiffer and Nielsen 2016), however, with local 1019 

structural and kinematic complexities (Seranne 1992; Braathen et al. 2000; Osmundsen 1020 
et al. 2003). The Devonian collapse was partly driven by major strike-slip shearing 1021 

along reactivating Caledonian fault and shear zones (MTFC, HFZ, GGF, WBF, HBF) 1022 
(Osmundsen and Andersen 1994; Dewey and Strachan 2003; Fossen 2010), during 1023 

which the Devonian basins of southern Norway, East Greenland and Britain were 1024 
formed (Seranne and Seguret 1987; Seguret et al. 1989; Fossen 1992) and lower crustal 1025 
and high pressure metamorphic rocks were exhumed, as prominently displayed in the 1026 

Western Gneiss Region in southern Norway (Andersen et al. 1991; Brueckner and van 1027 
Roermund 2004; Hacker et al. 2010) and East Greenland (Hartz et al. 2001; Gilotti et 1028 

al. 2014). 1029 

• In late Palaeozoic to Triassic(?) times, rifting still essentially reflected orogenic 1030 

collapse, and NE-SW-oriented shallow, brittle crustal structures were reactivated that 1031 
were favourably aligned with the dominant stress field. 1032 

• Beginning in the Triassic and particularly during the Jurassic, complex fragmentation 1033 

of Pangea took place, with rifting including the dominant N-S trend of the Viking 1034 
Graben and Halten Terrace. This extensional trend probably represents a linkage 1035 

between Tethys and proto-Norwegian Sea. This period represents a long time interval 1036 
(circa 100 million years) during which the dominant E-W stress field was highly 1037 
oblique to the lithospheric-scale Caledonian orogenic structures, preventing full 1038 

lithospheric rupture and breakup. This was probably a significant contributing factor in 1039 
the anomalously long period between initial rifting and breakup in the North Atlantic 1040 

(c. 350 million years). 1041 

• A major change in extension vector from E-W to NW-SE in the Early Cretaceous (Doré 1042 

et al. 1999) resulted in favourable alignment with the pervasive mantle-lithospheric 1043 

fabric and late-Caledonian shear zones. Major basins such as the Rockall, Faroe-1044 
Shetland, Møre, Vøring and Thetis basins, oblique to the earlier Jurassic N-S trend, had 1045 
their principal expression at this time. These crust beneath the basins was 1046 
hyperextended (Lundin and Doré 2011) but never achieved full oceanic status. 1047 
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• Apparent cessation of extensional stress in the mid-Cretaceous (although with minor 1048 

extension in some sub-basins) resulted in a significant time gap (60-70 million years) 1049 
before final early Cenozoic breakup. This hiatus further contributed to the anomalously 1050 
long time between initial rifting and breakup.  1051 

• Rupturing to form the North Atlantic was highly asymmetric in the south (segment 2) 1052 
and oblique to the preceding basin trend in the north (segment 1) (Fig. 8).  We suggest 1053 
that the late Caledonian shear trend, deeply ingrained in the mantle, was now 1054 
reactivated, but did not follow the axes of the previously formed basins that followed 1055 

the shallower crustal trends and where cooling and strengthening may have occurred 1056 
(e.g. Naliboff and Buiter 2015). The obliquity in segment 1, where the Thetis and 1057 
Vøring basins may represent a single basin that has been diagonally bisected by breakup 1058 

(Fig. 8), is an interesting issue; it is difficult to see why basin-parallel breakup akin to 1059 
that of the Møre Basin did not occur. Cut-across of the basin by pre-breakup strike-slip, 1060 
either newly formed or reactivating elements of the late Caledonian shear fabric, is one 1061 
potential explanation for this geometry (Lundin & Doré, 2018; see also Section 7.2). 1062 
Additionally, the oblique geometry of this segment may have been also controlled by 1063 

pre-breakup magmatic intrusions. 1064 

One model for rift relocation suggests strengthening of the lithosphere by cooling after 1065 
cessation of initial rifting (Van Wijk and Cloetingh 2002; Naliboff and Buiter 2015). This 1066 

model might apply to the abandonment of the Møre and Rockall-Hatton shelves (Gernigon et 1067 
al. this volume; Kimbell et al. 2017; Guan et al. 2019). However, this would not explain why 1068 

the initial rifting stopped in the first place. Another mechanism is strain hardening in the 1069 
vicinity of rift basins that may lead to development of a new rift offset from the early one 1070 

(Kusznir and Park 1987; Sonder and England 1989; Newman and White 1997; Yamasaki and 1071 
Stephenson 2009). 1072 

7.2 Magmatism, rifting and breakup 1073 

In the North Atlantic, variations in the magmatic budget during the onset of breakup were often 1074 
controlled by complex interactions between the pre-existing lithosphere state (including 1075 
discrete pre-existing structures, lithospheric thickness variations, thermal state and 1076 

composition) and the timing and degree of decompression melting (Gernigon et al. this volume; 1077 
Gouiza and Paton 2019).  1078 

As discussed earlier, the amount of pre- and syn-breakup decompression melting beneath 1079 

continental margins is dependent on extension rate and pre-existing lithospheric rheology and 1080 
composition (Buck 1991; Armitage et al. 2010; Huismans and Beaumont 2011; Petersen and 1081 

Schiffer 2016), as well as on the geotherm (White and McKenzie 1989; Hill 1991). Petersen & 1082 
Schiffer, (2016) suggest that a hot, weak crust over a relatively strong lithospheric mantle can 1083 

produce wide, asymmetric, magma-rich margins. In contrast, a cold, strong crustal layer above 1084 
a weaker mantle lithosphere may facilitate, magma-poor margins with abrupt necking zones 1085 
(Petersen & Schiffer, 2016). As indicated in section 7.3, the abrupt margins observed in the NE 1086 

Atlantic between Greenland and Norway may also related to exploitation of deep-seated and 1087 
lithospheric-scale shear faults (Lundin & Doré, 2018). 1088 

Literature on the origin of magma-rich margins in the North Atlantic is dominated by the plume 1089 

concept; in this hypothesis, the impingement of the Icelandic plume on the base of the 1090 
lithosphere has variously been implicated in raised mantle temperatures, elevated margins, 1091 
voluminous magmatism and break-up itself. A full description of this model is beyond the 1092 
scope of this paper; it has been well-described in (for example) (White and McKenzie 1989; 1093 

White 1992; Skogseid et al. 1992, 2000) while problems with the hypothesis have been 1094 
highlighted by (for example) (Foulger 2002, 2010; Lundin and Doré 2005). Other ideas exist 1095 
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to explain the anomalous magmatism. These include a relationship to extension rate during 1096 
breakup (Lundin et al. 2014) and the generation of small-scale edge-driven convection at abrupt 1097 
steps in the lithosphere (Mutter et al. 1988; van Wijk et al. 2001). 1098 

Independent of the origin of anomalous magmatism in the North Atlantic, magmatic processes 1099 

guided by pre-existing faults and shear zones may have influenced and governed final plate 1100 
separation. Lithosphere softening associated with melts and lithospheric hardening associated 1101 
with emplaced and cooled mafic rocks can occur at different depths and can accommodate and 1102 
localise strain. Magma-supported lithospheric breakup may occur at far lower differential stress 1103 
levels than those needed for lithosphere breakup via brittle faulting (Buck and Karner 2004). 1104 

Most of the magmas feeding plateau basalts and SDRs in the North Atlantic are associated with 1105 

large Palaeocene to Eocene igneous centres (Callot et al. 2001; Callot and Geoffroy 2004; 1106 

Geoffroy et al. 2007). These may have been related to small-scale convection cells that initiated 1107 
at the base of the lithosphere and grew upward by thermal erosion, feeding these localised 1108 
igneous centres and creating “soft spots” in the lithosphere (Geoffroy et al. 2007; Gac and 1109 
Geoffroy 2009). These small-scale convection cells appear to correlate with areas of high 1110 
mantle heat flow suggesting a relationship with lithospheric thickness variations (Geoffroy et 1111 

al., 2007). The pattern and development of such instabilities, marking the potential locus of the 1112 
future breakup axis, could thus reflect the pre-existing thermal, compositional and structural 1113 
configuration of the lithosphere.  1114 

Cenozoic breakup of the NE-Atlantic did not occur within previously (Late Jurassic-Early 1115 

Cretaceous) tectonically thinned lithosphere, such as the Hatton-Rockall shelf. These areas 1116 

thermally re-equilibrated and strengthened after early rifting events (Guan et al., 2019; 1117 

Gernigon et al., 2019). On the Hatton-Rockall shelf, the distance between the Palaeogene 1118 
igneous centres is approximately 100 km – about twice as large as along the continental 1119 

margins of East Greenland and Hatton-Rockall (Geoffroy et al. 2007; Horni et al. 2017).  1120 

In the British Tertiary Igneous Province an abnormally dense spacing of igneous centres is 1121 
observed (Doubre and Geoffroy 2003). This dense pattern may indicate that the pattern of 1122 

Palaeogene small-scale convection or loci of mantle diapirism interacted with 1123 
compartmentalised lithospheric blocks and terranes originating with Caledonian and post-1124 

Caledonian shear motions. The developing igneous centres then exploited lithospheric 1125 
structural and compositional heterogeneities. 1126 

Edge convection along the eastern border of the Greenland craton (King and Anderson 1998) 1127 
may have increased magmatic production rates and reduced the spacing between small-scale 1128 
convection cells, forming igneous centres and weakening and thinning the lithosphere. This 1129 
model could be one explanation for the development of the breakup axis oblique to most failed 1130 

rift systems in the NE Atlantic (Gernigon et al., 2019), along with an oblique inherited 1131 
lithospheric mantle fabric and lithospheric perforation by pre-syn-breakup strike-slip motion 1132 
(see next section), or a combination of these end-member mechanisms (Fig. 12). 1133 

7.3 Role of strike-slip faults 1134 
Lundin & Doré (2018) recently proposed that the instigation of oceanic spreading in the North 1135 

Atlantic-Arctic region was facilitated by the development of transform faults. Such faults are 1136 
strike-slip faults that segment plates or form plate boundaries, juxtaposing oceanic and 1137 

continental crust. According to Lundin and Doré (2018), some of these faults were inherited 1138 
structures while others formed first during the breakup process. The basis of this model is that 1139 
a) pre-existing lines of lithospheric-scale strike-slip faults are zones of weakness, which can be 1140 
separated by orthogonal forces without initial stretching, and b), that oblique slip more easily 1141 
facilitates breakup (Brune et al. 2012a). Thus, such zones should fail first (Brune et al. 2018). 1142 
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A clear example of a margin influenced by transform faulting is found on the SW Barents Sea 1143 
margin, which opened along the De Geer transform fault. This fault was probably instigated 1144 
during late-stage sinistral movements along the Caledonian Orogen in the Late Devonian 1145 
(Harland 1969), but its role in oceanic development did not start until the Eocene opening of 1146 

the NE Atlantic, when it enabled Greenland to be translated dextrally past Eurasia. In the 1147 
earliest Oligocene, the De Geer transform fault opened obliquely as a zone of deformation that 1148 
developed into an oblique transform margin, along which the Knipovich Ridge ultimately 1149 
formed between Eurasia and Greenland (Faleide et al. 2008). The De Geer transform fault and 1150 
rigid crustal/lithospheric blocks in the SW Barents Sea may have acted as a barrier to the 1151 

straight propagation of the North Atlantic. A further example is found in the southernmost 1152 
CNAR, where the Aptian opening of the Bay of Biscay utilised the North Pyrenean Fault, an 1153 

established Variscan transform fault (Vissers et al. 2016).  1154 

Margins influenced by strike-slip faulting may be characterised by the reduced role of 1155 
extension prior to breakup as well as the potential for the breakup axis to be oblique to earlier 1156 
rifting. The NE Atlantic, as shown earlier, is an example where older (Mesozoic) rift systems 1157 
are cut obliquely by the axis of Early Eocene breakup, resulting in highly asymmetric conjugate 1158 

margins (Lundin et al. 2013).  1159 

Based on these observations, Lundin & Doré (2018) suggested that the old rift systems were 1160 
bisected by transform faulting, which facilitated orthogonal opening in the Early Eocene. 1161 
Kinematic evidence along the line of breakup provides some support for this hypothesis. 1162 

Indications of dextral motion are provided by the Hel Graben in the northern Vøring Basin. 1163 

The Hel Graben would be located at a right-stepping releasing bend in the proposed pre-NE 1164 

Atlantic shear, offset by the Surt Lineament (Blystad 1995; Brekke 2000). Within the graben 1165 
are a series of E-W trending normal faults (Ren et al. 2003), consistent with cross-basin fault 1166 

systems in a dextral pull-apart basin (Dooley and McClay 1997).  1167 

The strike slip deformation and associated breakup may have acted rapidly (on geological 1168 
scale) along long segments of the North Atlantic rift. Such a model is consistent with the rapid 1169 

lithospheric relaxation observed in the shift of depocentres in the Danish Basin (Nielsen et al. 1170 
2007). Other authors prefer a rift propagation model characterised by highly diachronous and 1171 

fragmented breakup (Gernigon et al. this volume). In such a model, the North Atlantic rift 1172 
would have propagated along the weakest path for the background stresses and this may have 1173 
been governed by basement inheritance or pre-syn-rift magmatism that has perforated the 1174 

lithosphere. These two models may not necessarily be incompatible: A rift propagation model 1175 
could have had a strong component of strike-slip deformation, or strike-slip may have acted 1176 
only on certain segments rather than the whole length of the NE Atlantic margins. 1177 

Whether or not one accepts the evidence for strike-slip motion immediately preceding breakup 1178 
in the NE Atlantic, a further key observation is that of the close correlation of the breakup axis 1179 
and NE-SW-trending late Caledonian shears, such as the MTFC and GGF. This suggests that 1180 
a more ancient and deep-seated strike-slip trend was implicated in the eventual line of opening. 1181 

Both, the Labrador Sea and Baffin Bay appear to cut through cratonic elements and across 1182 

Proterozoic orogenic belts (Section 1.3) (St-Onge et al. 2009). As it is unusual that such 1183 
features would form in a mid-cratonic setting, the possibility exists that they were facilitated 1184 

by transform faults. Indirect support for such a fault in the proto-Labrador Sea is provided from 1185 
the c. 1000 km long fault system in Hudson Strait and Foxe Channel, the projected continuation 1186 
of the Canadian Labrador Sea margin. The fault system has been interpreted as an abandoned 1187 
rift tip to the Labrador Sea rift (Pinet et al. 2013), but vertical offsets are small compared with 1188 
the length of the fault system, and terminate northwards in a horse-tail geometry.  1189 
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The fault system is marked by shallow rhomboid basins, suggesting sinistral movement. It may, 1190 
therefore, have originated as a sinistral transform that experienced minor extensional overprint 1191 
during early opening of the Labrador Sea. When the Ungava Transform linked the Labrador 1192 
Sea and Baffin Bay in the Palaeogene (Funck et al. 2012), the Hudson Strait-Foxe Basin fault 1193 

system was abandoned. However, the Labrador Sea transform fault might have had a much 1194 
older origin.  Whereas there is no evidence of a suture beneath the Labrador Sea, there is 1195 
abundant evidence on the Labrador margin of sinistral shear sub-parallel to the ocean, which 1196 
van Gool et al. (2002) and St-Onge et al. (2009) relate to the Palaeoproterozoic (c. 1.8 Ga) 1197 
indentation of the North Atlantic Craton into northern Greenland.  Thus, it is possible that these 1198 

older shears were exploited during development of the Labrador Sea in a similar way as 1199 
suggested for the NE Atlantic. 1200 

7.4 Microcontinent formation  1201 
A complication in North Atlantic breakup was formation of the JMMC (Gaina et al. 2009; 1202 
Blischke et al. 2011, 2017; Schiffer et al. 2015b, 2018) and other smaller continental fragments 1203 
(Døssing et al. 2008; Péron-Pinvidic and Manatschal 2010; Nemčok et al. 2016). The central 1204 
segment of the NE Atlantic, between the GIFR and the Jan Mayen Fracture zone (Figure 1,2), 1205 

underwent breakup and initially fast spreading along the Aegir Ridge in the early Eocene (~55 1206 
Ma) that then slowed down in the mid-Eocene (~47 Ma) (Gernigon et al. this volume, 2015). 1207 
In the mid-Cenozoic, the JMMC began to separate from East Greenland’s Liverpool Land 1208 
margin along the new Kolbeinsey Ridge, and the Aegir Ridge became extinct, between ~28 1209 

Ma and ~21 Ma (Nemčok et al. 2016; Lundin and Doré 2018), when the JMMC separated from 1210 
the East Greenland margin. The two mid-oceanic ridges were, therefore, simultaneously active 1211 

for possibly up to 10 Ma, but probably longer (Doré et al. 2008; Gernigon et al. 2012, 2015; 1212 
Peron-Pinvidic et al. 2012; Ellis and Stoker 2014).  1213 

The JMMC consists of Cenozoic igneous rocks and older thinned and intruded continental crust 1214 
(Kuvaas and Kodaira 1997; Breivik et al. 2012; Blischke et al. 2017). Breakup on the eastern 1215 
side of the JMMC was magmatic, forming subaerial seaward-dipping reflectors (SDRs) 1216 

(Planke and Alvestad 1999) underlain by HVLCBs (Breivik et al. 2012). SDRs are not 1217 
observed along the western margin of the JMMC (Kodaira et al. 1998), nor are they reported 1218 

from the conjugate Liverpool Land margin (Horni et al. 2017). Wide-angle seismic data suggest 1219 
that the northern part of the JMMC is underlain by “Icelandic-type” crust (Kandilarov et al. 1220 
2015). The central Jan Mayen Ridge comprises ~15 km thick continental crust (Kodaira et al. 1221 

1998; Breivik et al. 2012) with no evidence of HVLC (Kodaira et al. 1998; Mjelde et al. 2007a), 1222 
but HVLC is observed in the transition zone to the Iceland plateau (Gernigon et al. this volume; 1223 
Brandsdóttir et al. 2015). 1224 

The mechanisms responsible for breakoff of the JMMC are poorly understood. Plume impact 1225 
has been suggested (Müller et al. 2001; Mittelstaedt et al. 2008; Howell et al. 2014). In such a 1226 
scenario a plume heats and weakens the lithosphere to cause renewed continental breakup and 1227 
a ridge jump. However, breakup-related volcanism, such as SDRs, are absent between 1228 
Greenland and the JMMC (Kodaira et al. 1998; Horni et al. 2017), at odds with expectations 1229 

of this model.  1230 

Also mechanical explanations for the formation of microcontinents and rifted continental 1231 
blocks via detachment along pre-existing lithospheric weaknesses have been suggested 1232 

(Nemčok et al. 2016; Molnar et al. 2018; Schiffer et al. 2018). Recent analogue modelling 1233 
illustrates how microplates may be formed by propagating rifts that form new oceans. 1234 
Microcontinents may separate from the continental margin with rotational motion during the 1235 
latest breakup stages, such that location and shape of fragmentation is controlled by 1236 

lithospheric weaknesses (Molnar et al. 2018). Analogue modelling produces rotating 1237 
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microplates “trapped” between overlapping spreading centres (Katz et al. 2005). Geoffroy et 1238 
al. (2015) suggested microcontinent formation though large-scale, symmetric and continental-1239 
vergent detachment faulting – the so-called “C-Block”. Other models involve the separation of 1240 
continental lithosphere along overlapping spreading centres (Auzende et al. 1980; Ellis and 1241 

Stoker 2014). Foulger et al. (this volume) suggest that extension in the southern JMMC was 1242 
initially diffuse, and westward migration of the axes of extension on the GIFR induced 1243 
extension in the JMMC, focusing on its most westerly axis to form the proto-Kolbeinsey Ridge. 1244 
This resulted in breakoff of the JMMC from Greenland. 1245 

Several authors have linked separation of the JMMC to mid-Eocene plate-kinematic 1246 

reorganisations in the North Atlantic (Gaina et al. 2009). For instance, Schiffer et al. (2018) 1247 

proposed a model linking the formation of the JMMC to global plate tectonic reconfigurations 1248 

to rejuvenation of old and pre-existing lower-crustal/upper mantle orogenic fabric (Schiffer et 1249 
al. 2015b; Petersen and Schiffer 2016). In this model, the apparent rotation of North Atlantic 1250 
spreading from NW-SE to W-E put the NW-SE oriented accommodation zone between the 1251 
Aegir and Reykjanes Ridges – the proto-GIFR – under transpression. This “locked” the right-1252 
lateral deformation along the proto-GIFR and forced extension to divert to a more favourable 1253 

position/path – possibly pre-existing Caledonian weak zones along the East Greenland margin. 1254 

 1255 

7.5 The Wilson Cycle revisited 1256 

The breakup of Pangaea to form the NE Atlantic was a protracted and piecemeal process with 1257 

many local complexities (Gernigon et al. this volume; Peace et al. this volume; Roberts et al. 1258 
1999; Ady and Whittaker 2018). The original Wilson cycle theory does not conclusively 1259 

explain how and why the opening of the North Atlantic occurred and why its manifestation 1260 
varies across the CNAR. During the past 50 years, more data have been acquired, and new 1261 

theories proposed, but the mechanisms driving the Wilson Cycle are still a matter of debate. 1262 
The simplest explanation for breakup along former orogens is that mountain ranges are usually 1263 
the weakest zones in supercontinents and hence regions where deformation is expected to 1264 

concentrate. 1265 

We show that most rifts are associated with former collision zones, implying that structural 1266 

inhomogeneity may be preserved long term. However, the North Atlantic did not necessarily 1267 
focus exactly along suture zones, but in some places broke through regions of apparently 1268 

previously undisturbed cratonic lithosphere such as SE Greenland (Buiter and Torsvik 2014). 1269 
The Labrador Sea and Baffin Bay broke through pre-existing cratons (the Archean North 1270 
Atlantic and Rae cratons) and almost orthogonally across Precambrian orogenic belts (the 1271 
Meosoproterozoic Grenville and Makkovik-Ketilidian orogens, and the Paleoproterozoic 1272 

Nagssugtoqidian orogen) (Buchan et al. 2000; St-Onge et al. 2009; Peace et al. 2017). 1273 

These events may have been enabled by the development of transform faults that can also 1274 
nucleate at a distance from old suture zones (Lundin & Doré, 2018), or by the regional rift, 1275 
magmatic and thermal history that modified lithospheric strength distribution and guided 1276 
lithospheric breakup away from suture zones – for example, the pronounced N-S rift fabric that 1277 

developed in the Jurassic, oblique to the main Caledonian trend. Alternatively, they may have 1278 
occurred simply for kinematic compatibility reasons, for example if the pathway through a 1279 

craton was the shortest. 1280 

The Wilson Cycle is one of the most crucial and basic concepts regarding inheritance in a plate 1281 
tectonic framework. However, the Wilson Cycle concept only addresses large-scale, first-order 1282 
events and is insufficient to explain all the complexities of developing oceans and continental 1283 
margins. (Super)continents do not simply re-open along the surface traces of suture zones. 1284 
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Structures and fabric are 3D entities and dominant weaknesses are not at the surface. 1285 
Inheritance at all scales is important in explaining rejuvenation at regional and global scales. 1286 
Structures can be preserved over billions of years and may still impose an inheritance control. 1287 
Intraplate deformation and “non-rigid” plates and magmatism must also be incorporated in 1288 

inheritance models and plate tectonic theory. 1289 

 1290 

8 Conclusions 1291 

 1292 

1. The CNAR is the type example of the Wilson Cycle concept and, in general, reopened 1293 

elements of the Caledonian fold belt. However, evidence from the CNAR and 1294 
elsewhere clearly demonstrates that the Wilson Cycle only partially accounts for the 1295 
observations. Where breakup does occur along an older orogenic belt, it does not simply 1296 

re-open the older suture, and intact cratons may fragment.   1297 
2. Rift evolution and opening of the CNAR is to varying degrees linked to structural 1298 

inheritance at lithospheric, continental, basin, fault and micro-scales. However, other 1299 
factors were influential, such as changing stress directions imposed by plate boundary 1300 

effects and supercontinent (Pangaea) breakup and magmatism. 1301 
3. Caledonian rejuvenation of anisotropies imparted at different depths (crust vs. mantle) 1302 

and different stages of the orogenic evolution (collision vs. late Caledonian 1303 
transpression-transtension) played the major role in regional rift evolution and breakup 1304 

of the NE Atlantic. Precambrian structures (e.g., the Nagssugtoquidian suture, Bothnia-1305 
Senja Fault Zone) may have also controlled the margin segmentation of the NE Atlantic 1306 

on the largest scale. 1307 
4. Many, but not all, of the rift systems that preceded the CNAR followed major orogenic 1308 

trends expressed at the surface. However, final breakup seems to have followed the late 1309 
Caledonian strike-slip shear fabric exemplified by the MTFC. In the NE Atlantic 1310 
(Segment 1), breakup cut obliquely across the preceding rifts. We suggest that breakup 1311 

occurred when stress directions became favourable to exploit a deeper and more 1312 
pervasive mantle fabric, probably related to lithospheric-scale shear zones that 1313 
developed in the late Caledonian. The radical cut-across of a Cretaceous basin by the 1314 

breakup line in Segment 1, defining the Thetis and Vøring margins, may represent 1315 

reactivation of this trend by pre-breakup strike-slip and/or was guided by pre-breakup 1316 

magmatic intrusions weakening the crust. 1317 
5. Breakup between SE Greenland and the Rockall-Hatton margin does not appear to fit 1318 

the classic Wilson-Cycle model. This may have been be related to the pre-breakup rift 1319 

history of the Hatton-Rockall shelf which thinned crust but created an overall stronger 1320 
lithospheric column. Breakup occurred where the crust was thicker above weaker 1321 

lithosphere, and may have been assisted by strike-slip/transform motion. This region 1322 
then formed the southern CNAR link, which was offset from the Northern CNAR 1323 
breakup axis between the Central Atlantic and the Aegir Ridge  1324 

6. The extremely long interval between initial post-orogenic rifting and final plate 1325 
separation – some 350 million years – is highly anomalous and an order of magnitude 1326 

greater than that of most other oceans – for example the Central and South Atlantic.  It 1327 
was probably a result of radical changes in the regional stress field – for example in the 1328 
Triassic-Jurassic interval, and significant hiatuses in extension (for example in the mid-1329 
Late Cretaceous), which allowed the pre-existing rifts to cool and strengthen. 1330 
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7. The “magma-poor” nature of the western margin of the JMMC and adjacent ocean 1331 
favours mechanical models for microcontinent formation, rather than weakening by a 1332 
thermal anomaly. 1333 

8. High velocity lower crustal bodies beneath the basins flanking the North Atlantic have 1334 

been variously attributed to syn-rift serpentinised mantle, syn-rift mafic and ultramafic 1335 
rocks and pre-existing metamorphic and metasomatised rocks such as granulites and 1336 
eclogites. Some of these interpretations and the question of whether these HVLCBs 1337 
have a pre-or syn-rift origin remain controversial. Some HVLCBs formed before the 1338 
onset of rifting and breakup, forming rheological inhomogeneities in the lithosphere 1339 

that can control the location, deformation and type of breakup and continental margins. 1340 
9. The temperature- and composition-dependent strength profile of a lithospheric column, 1341 

which controls crust vs. mantle thinning (among other properties), but also the 1342 
extension rate, structural and rift obliquity determine whether a wide, asymmetric, 1343 
diffuse rift zone develops or whether sharply localised rifts with narrow necking zones 1344 
develop.  1345 

10. The GIFR may contain a significant component of continental lithosphere. It may owe 1346 

its existence to diffuse extension of a zone of Precambrian terranes and Caledonian 1347 
fossil structures running parallel to the direction of extension between central East 1348 
Greenland and northern Scotland.  1349 

11. At the basin-scale, the CNAR displays a wide variety of structural inheritance effects 1350 

including brittle reactivation of basement faults and fabrics creating syn-rift faults that 1351 
are complex in terms of kinematics or growth history. Oblique extension on pre-existing 1352 

orogenic, post-orogenic or early rift structures may partition deformation into strike-1353 
slip and dip-slip components at different scales. Complex fault displacement patterns 1354 

are produced by multiphase rifting where later extension collinear with, or rotated 1355 
relative, to earlier phases by local stresses. Basin inversion structures by definition are 1356 
inherited features where intense localisation of contractional deformation is guided by 1357 

pre-existing extensional features. Igneous activity and other mobilised materials such 1358 
as salt interact with local stress fields to partition deformation within basins both 1359 

spatially and temporally. 1360 
 1361 
 1362 
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9 Figures 1371 

 1372 

Figure 1: Physiographic map of the present-day Circum-North Atlantic region showing 1373 
geographic names and places, as well as the five segments discussed in the paper. 1374 
Abbreviations: AR = Aegir Ridge, BB = Baffin Bay, BFZ = Night Fracture Zone, BS = 1375 

Barents Sea, CGFZ = Charlie Gibbs Fracture Zone, DaS = Davis Strait, DkS = Denmark 1376 

Strait, EI = Ellesmere Island, EJMFZ = East Jan Mayen Fracture Zone, FI = Faroe Islands, 1377 

FSB = Faroe-Shetland Basin, GB = Greenland Basin, GR = Gakkel Ridge, HB = Hatton 1378 
Basin, HBk = Hatton Bank, IcB = Iceland Basin, IrB = Irminger Basin, JM = Jan Mayen 1379 

Island, JMMC = Jan Mayen Microplate Complex, KnR = Knipovich Ridge, KR = Kolbeinsey 1380 
Ridge, LB = Lofoten Basin, LS = Labrador Sea, MB = Møre Basin, MR = Mohn’s Ridge, 1381 
NB = Norway Basin, NS = Nares Strait, PB = Porcupine Basin, RB = Rockall Basin, RBk = 1382 

Rockall Bank, RR = Reykjanes Ridge, SB = Svalbard, SI = Shetland Islands, VB = Vøring 1383 
Basin, WJMFZ = West Jan Mayen Fracture Zone. Solid black lines are an interpretation of 1384 
the continent-ocean transition. Stippled black lines indicate uncertain locations of the 1385 
continent-ocean transition. 1386 

 1387 

 1388 
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 1389 

Figure 2: Structural map of the present day Circum-North Atlantic region, showing oceanic 1390 

structure, marginal character and major onshore basement lineaments.  Abbreviations: AR= 1391 
Aegir Ridge, ASZ = Armorican Shear Zone, BF = Billefjorden Fault, BSSZ = Bothnian-1392 
Senja Shear Zone, CF = Caledonian front, CFZ=Cartwright Fracture Zone, CGFZ = 1393 
Charlie Gibbs Fracture Zone, FC = Flemish Cap, FCHF = Foxe Channel – Hudson Bay 1394 

fault system, GFZ = Greenland Fracture Zone, GGF = Great Glen Fault, GIFR – Greenland 1395 

Iceland Faroes Ridge GRSZ = George River Shear Zone, GS = Goban Spur, HBF = 1396 
Highland Boundary Fault, HF = Hornsund Fault, HFZ = Hardangerfjord Fault Zone, IS 1397 
= Iapetus Suture, JF = Judd Fault, JFZ=Julianehaab Fracture Zone, JMFZ = Jan Mayen 1398 
Fracture Zone, JMMC = Jan Mayen Microplate complex, KnR= Knipovich Ridge, KR= 1399 
Kolbeinsey Ridge, LTSZ = Lac Tudor Shear Zone, mR= Mohn’s Ridge, MT = Moine Thrust, 1400 
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MTFC = Møre-Trøndelag Fault Complex, NGF = Nagssugtoquidian Front; NGS = 1401 
Nagssugtoquidian Suture, NIF = North Iberian Fault, NSL = Nares Strait lineament, OHF 1402 
= Outer Hebrides Fault, ReR= Reykjanes Ridge, RR = Rona Ridge, SFZ = Senja Fracture 1403 
Zone, SUF = Southern Uplands Fault, TKFC = Trollfjord-Komagelv Fault Complex, TLF 1404 

= Trolle Land Fault, TZ = Tornquist Zone, TS = Thor Suture, UFZ = Ungava Fault Zone, 1405 
VF = Variscan Front, VS = Variscan Suture, WBF = Walls Boundary Fault.  1406 
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1407 
Figure 3: Terrane and structure map of the Circum-North Atlantic region at 145 Ma 1408 
showing continents, terranes, suture zones and upper mantle structures. Caledonian and 1409 

Variscan terranes and structures are generally closely aligned with the breakup axes In the 1410 
NE Atlantic, breakup occurred west of the Iapetus Suture; In contrast, breakup occurred to 1411 
the east of the Iapetus Suture in the northern Central Atlantic. Precambrian terranes are 1412 
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generally perpendicularly aligned, but have therefore probably affected margin 1413 
segmentation and the formation of transform zones and faults during rifting. The NW 1414 
Atlantic is a region where an ocean opened (Labrador Sea and Baffin Bay) not following 1415 
any known Phanerozoic structures or terranes and cross-cutting Precambrian lineaments. 1416 

However, the Rinkian Orogen may have played a role during the formation of Baffin Bay. 1417 
GRE – Grenvillian Orogen, IMB – Inglefield Mobile Belt, KAR – Karelian, LGB – Lapland 1418 
Granulite Belt, MAK – Makkovik-Ketilidian Orogen, NAC – North Atlantic Craton, NAG – 1419 
Nagssugtoqidian Orogen, RAC – Rae Craton, RIN – Rinkian Orogen, SUC – Superior 1420 
Craton, SVF – Svecofennian, SVN – Sveconorwegian Orogen, THO – Trans-Hudson 1421 

Orogen, TIB – Transscandinavian Igenous Belt, TIM – Timanian Orogen 1422 

 1423 

 1424 
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 1425 

Figure 4: Basin and structure map of the Circum-North Atlantic region at 145 Ma showing 1426 

continents, basins, faults, upper mantle structures and Permo-Carboniferous magmatism. 1427 

Almost all of the early, Devonian-Jurassic basins illustrated in this figure have formed 1428 

within the Caledonian or Variscan orogens (within their deformation fronts) and oblique to 1429 
the axis of breakup.  1430 
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 1431 

Figure 5: (a) Schematic diagram showing typical fault rocks/fabrics, the strain distribution, 1432 
strength, tectonic style and primary rheological controls during rejuvenation at different 1433 
depth through the lithosphere (Holdsworth et al. 2001; Jefferies et al. 2006). The regimes of 1434 
reactivation and reworking are separated by a gradual transition somewhere in the lower 1435 

crust. Note that the strength profile is for a simplified and averaged continental lithosphere. 1436 
Any tectonic processes (orogenesis, delamination, rifting) and compositional heterogeneity 1437 
will perturb the strength profile of the lithosphere. (b) Schematic diagrams illustrating 1438 
variations in shear deformation, deformation regime and typical fault rocks with depth in a 1439 
crustal profile, (left) and a crustal strength profile with different representative rheologies 1440 

(right) (Holdsworth et al. 2001; Alsop and Holdsworth 2004; Jefferies et al. 2006; Imber et al. 1441 
2008). 1442 
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 1443 

Figure 6: 2D numerical modelling setup and results modified from Petersen & Schiffer 1444 

(2016) illustrating the effect of crustal thickness and a preserved subduction zone complex 1445 
on rifting and passive margin formation. The crust vs. mantle (depth-dependent) thinning is 1446 
in agreement with many other studies (e.g. Buck, 1991; Huismans and Beaumont, 2011) (a) 1447 
Starting model setup with crust (upper and lower), lithospheric mantle with discrete 1448 
heterogeneities (eclogite, serpentinite and hydrated peridotite) on top of the asthenospheric 1449 

mantle (upper panel). The binary phase diagram for antigorite/serpentinite stability is shown 1450 

(lower left panel), the different tested initial geotherms for a range of crustal thicknesses 1451 

(35-55 km) (lower middle panel) as well as the resulting strength profiles for the involved 1452 
lithologies (wet quartz, plagioclase, dry and wet olivine, and antigorite/serpentinite) (lower 1453 
right panel). (b) Modelling evolution in terms of relative crustal thinning (blue, stretch factor 1454 
= 1-1/β; 0 is no thinning, 1 represent separation of the continental crust – marked by the 1455 

vertical black line) and melt production (red, in terms of equivalent thickness of flood 1456 
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basalts). It can be noticed that melt production first starts with separation (breakup) of the 1457 
continental crust, therefore, no flood basalts cover the continental crust. For a thick crust 1458 
(45 km) it can be observed that melt production starts several tens of Ma before crustal 1459 
separation (breakup), therefore intruding and extruding magmatic products into and on top 1460 

of continental crust. (c) Models and possible analogues in the North Atlantic passive 1461 
margins. The thin crust template is able to explain many first-order observations in magma-1462 
poor margins, such as the Iberia-Newfoundland conjugate passive margins. Here, the 1463 
surrounding continents have thinner crust (~35 km). The margins have sharp, abrupt 1464 
necking zones, thin continental slivers, separated from the margin lie within exhumed and 1465 

hydrated mantle lithosphere covering the ocean floor and few (pre-breakup) magmatic 1466 
products are observed on the continental margin. Volcanic products cover hundreds of km 1467 

of the preserved hyperextended continental crust. The conjugate (not shown here) would be 1468 
– in contrast – very narrow forming a highly asymmetric conjugate margin pair. This 1469 
“magma-rich” margin shows evidence of high velocity lower crust that – in this case – is 1470 
derived from the deformed and re-emplaced lithospheric heterogeneities. This template 1471 
shows many similar first order features with many observed magma-rich margins, for 1472 

example the Møre margin. 1473 

 1474 

 1475 

1476 
Figure 7: Top left: Map of the high-velocity lower crustal bodies in the Circum-North 1477 
Atlantic region. Green colours illustrate HVLCBs in the P-wave velocity range 7.2-7.6 km/s 1478 



40 
 

and magenta shows occurrences of ultra-HVLCBs with P-wave velocity larger than 8.2 km/s 1479 
that is indicative of eclogite. Thick black lines show dipping upper mantle structures and 1480 
triangles the dip direction: CF, Central Fjord structure; FL, Flannan structure; ML, Mona 1481 
Lisa Caledonian suture. Orange indicates other possible occurrences of the Vp>8.2 km/s 1482 

ultra-HVLCBs. Four transects are defined through the NE Atlantic based on seismic lines 1483 
(thin black lines) illustrates the position of the transects (red) and wide-angle seismic lines 1484 
(black lines) in the North Atlantic. Top right: Same map in a 100 Ma pre-breakup 1485 
reconstruction showing how well the interpreted eclogite bodies coincide with the location 1486 
of the Iapetus Suture (thin red line). Lower panel shows the four transects (A-D) at present 1487 

day from wide-angle seismic lines (Theilen and Meissner 1979; Goldschmidt-Rokita et al. 1488 
1994; Weigel et al. 1995; Mandler and Jokat 1998; Christiansson et al. 2000; Tsikalas et al. 1489 

2005; Mjelde et al. 2009, 2013; Roberts et al. 2009; Voss et al. 2009; Breivik et al. 2012; 1490 
Maupin et al. 2013; Schiffer et al. 2015a).  1491 
 1492 

 1493 

 1494 

 1495 

 1496 

 1497 
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 1498 

Figure 8: Basin age map of the North Atlantic, shown before breakup at 53 Ma (left), and 1499 

present day (right).  Basins are coloured according to the age of the crustal extension that 1500 
mainly created the basin.  The general asymmetry of the breakup (much of pre-existing basin 1501 
system left on the European margin) and the obliquity of the breakup in the NE are clearly 1502 
shown. Abbreviations: BB, Bjørnøya Basin; CG, Central Graben; DB, Danmarkshavn 1503 
Basin; FSB, Faroe-Shetland Basin; HB, Hatton Basin; LVB, Lofoten-Vestrålen Basin; MB, 1504 

Møre Basin; MFG, Moray Firth Graben; PB, Porcupine Basin; RB, Rockall Basin; TB, 1505 

Thetis Basin; VB, Vøring Basin; VG, Viking Graben; WB=Wandel Sea Basin, WOB, West 1506 

Orkney Basin. 1507 

 1508 

 1509 
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 1510 

Figure 9: Basement terranes and lineaments of the NE Atlantic margins in a plate 1511 
reconstruction at 60 Ma. Lineaments are coloured according to their main observed age of 1512 

expression (Gernigon et al. this volume; Karson and Brooks 1999; Doré et al. 1999; Heeremans 1513 
and Faleide 2004; Kimbell et al. 2005a; Guarnieri 2015; Fossen et al. 2017; Rotevatn et al. 1514 

2018; Holdsworth et al. 2019). Abbreviations: ADL, Anton Dohrn Lineament; BL, Bivrost 1515 
Lineament; BSZ, Bothnian-Senja Shear Zone; EGR, East Greenland Rift System; GGF, 1516 

Great Glen Fault; HBF, Highland Boundary Fault; HFZ, Hardangerfjord Fault Zone; IS, 1517 
Iapetus Suture; JF, Judd Fault; JMMC, Jan Mayen Microplate Complex; JMC, Jan Mayen 1518 
Corridor; MF, Mich Fault Zone; MTFZ, Møre-Trøndelag Fault Zone; MT, Moine Thrust; 1519 
OHF, Outer Hebrides Fault Zone; SL, Surt Lineament; TZ, Tornquist Zone; WTL, Wyville-1520 
Thomson Lineament. 1521 

 1522 

 1523 

 1524 
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 1525 

Figure 10: Schematic diagram summarising the kinematic and structural development, as 1526 
well as seismic, mapping and modelling results of the Labrador Sea and Baffin Bay 1527 

spreading system after (Peace et al. 2018b). A) Pre-rift configuration of North America and 1528 
Greenland with graphical representations of the onshore structure and basement terrains of 1529 

West Greenland (e.g. Wilson et al., 2006). B) Kinematic model for the first rift phase. C) 1530 
Kinematic model for the second rift phase, after a change of stress field from ~SE-NW to N-1531 
S, at which the Ungava Transform Fault system develops as a result of the lateral offset 1532 

between the Baffin Bay and Labrador Sea spreading centres. 1533 
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 1534 

Figure 11: Schematic block diagram showing the Caledonian thrust belt and Devonian 1535 
shear zones present within the lithosphere (above) and the various interactions with rift-1536 

related faults (below). After Phillips et al. (2016).  1537 

 1538 

 1539 

 1540 

Figure 12: Simplified schematic diagram illustrating large-scale inheritance and 1541 
reactivation in the NE Atlantic. The diagram is not to scale and is conceptual (i.e. does not 1542 

show specific structures) (a) The initial shallow (crustal) Caledonian thrust fault systems 1543 
(thin, dark grey lines) were oblique to the late Caledonian mantle shear fabric (light grey 1544 
bands). (b)During early basin formation, the shallow Caledonian thrust faults were 1545 
reactivated as normal faults (orange). Breakup, however, was not accommodated as the 1546 

stress field was oblique to the stronger mantle shear fabric (light grey). (c) First later, after 1547 
rotation of the stress field, the mantle shear fabric (orange) was favourably aligned 1548 
allowing lithospheric breakup (red line). This may have been assisted by the formation of 1549 

magmatic centres (magenta circles) and dykes exploiting lithospheric weaknesses 1550 
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(Gernigon et al. this volume; Geoffroy et al. 2007) and/or strike slip motion, perforating 1551 
the lithosphere prior to breakup (Lundin and Doré 2018). 1552 

 1553 

 1554 
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