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Abstract. We prove a structure theorem for closed topological mani-
folds of cohomogeneity one; this result corrects an oversight in the lit-
erature. We complete the equivariant classification of closed, simply-
connected cohomogeneity one topological manifolds in dimensions 5, 6,
and 7 and obtain topological characterizations of these spaces. In these
dimensions, these manifolds are homeomorphic to smooth manifolds.

1. Main Results

A topological manifold with an (effective) topological action of a compact
Lie group is of cohomogeneity one if its orbit space is one-dimensional. These
manifolds were introduced by Mostert [42] in 1957 and their topology and
geometry have been extensively studied in the smooth category (see, for
example, [15, 16, 19, 28, 29, 30, 45, 48] and [3, 9, 11, 20, 21, 22, 23, 52, 51,
61]). Much less attention has been given to these spaces in the topological
category, probably because of the assertion in [42] that every topological
manifold of cohomogeneity one is equivariantly homeomorphic to a smooth
manifold. This statement originates in the claim that an integral homology
sphere that is also a homogeneous space for a compact Lie group must
be a sphere (see [42, Section 2, Corollary]). This, however, is not the case.
Indeed, the Poincaré homology sphere P3 is a homogeneous space for the Lie
groups SU(2) and SO(3) and it can be written as P3 ≈ SU(2)/I∗ ≈ SO(3)/I,
where I∗ is the binary icosahedral group, I is the icosahedral group (see
[34] or [56, p. 89]), and the symbol “≈” denotes homeomorphism between
topological spaces. One can combine the fact that P3 is a homogeneous
space with the Double Suspension Theorem of Edwards and Cannon [8, 13]
to construct topological manifolds with cohomogeneity one actions that are
not equivariantly homeomorphic to smooth actions (see Example 2.4). We
point out that, by work of Bredon [4], the Poincaré homology sphere is the
only integral homology sphere that is also a homogeneous space, besides the
usual spheres. In the present article we fix the gap in [42] and explore some
of its consequences.
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Figure 1. Cohomogeneity one action of SO(2) on a round 2-sphere.

Our first result is a complete structure theorem for closed cohomogeneity
one topological manifolds (cf. Theorem 2.5, which corresponds to [42, The-
orem 4]). As is customary, we say that a manifold is closed if it is compact
and has no boundary. We briefly discuss the non-compact case in Section 2.

Before stating the structure theorem, let us recall that when the orbit
space of a cohomogeneity one G-action on a closed topological manifold
is homeomorphic to a closed interval [−1, 1], then there exist compact Lie
subgroups H and K± of G such that H ⊆ K± ⊆ G. The group H is
the principal isotropy group of the action and the groups K± are isotropy
groups of points in the orbits corresponding to the boundary points ±1 of
the orbit space. The groupsK± are called non-principal isotropy groups and
the orbits G/K± are called non-principal orbits. We collect these groups in
the quadruple (G,H,K−,K+), called the group diagram of the action (see
Section 2.2 for more details). Figure 1 illustrates the orbit space structure
in the simple case of the cohomogeneity one action of SO(2) by rotations on
a round 2-sphere.

Theorem A. Let M be a closed topological manifold with an (almost) ef-
fective topological G-action of cohomogeneity one with principal isotropy H.
Then the orbit space is homeomorphic to either a closed interval or to a
circle, and the following hold:
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(1) If the orbit space of the action is an interval [−1, 1], then the or-
bits corresponding to points in (−1, 1) are principal orbits G/H,
the orbits corresponding to the boundary points ±1 are the non-
principal orbits G/K± and M is the union of two fiber bundles over
the two non-principal orbits whose fibers are cones over spheres or
the Poincaré homology sphere, that is,

M = G×K− C(K−/H) ∪G/H G×K+ C(K+/H).

In particular, M is the union of the two mapping cylinders of
G/H → G/K±. The group diagram of the action is given by
(G,H,K−,K+), where K±/H are spheres or the Poincaré homol-
ogy sphere. Conversely, a group diagram (G,H,K−,K+), where
K±/H are homeomorphic to a sphere, or to the Poincaré homology
sphere with dimG/H ≥ 4, determines a cohomogeneity one topolog-
ical manifold.

(2) If the orbit space of the action is a circle, then M is equivariantly
homeomorphic to a G/H-bundle over a circle with structure group
N(H)/H. Conversely, every such bundle admits a cohomogeneity
one G-action with principal isotropy H.

This theorem stands in contrast with the corresponding statement in the
smooth category, where the fibers of the bundle decomposition are cones
over spheres, i.e. disks, and the manifold decomposes as a union of two disk
bundles. We prove Theorem A in Section 2.

Remark. In part (1) of Theorem A, when considering M as a union of the
two mapping cylinders of G/H → G/K±, one must also take into account
the presence of a gluing map ϕ : G/H → G/H, which may not be the
identity. It is possible, however, to choose the isotropy groups K± so that M
is equivariantly homeomorphic to the union of the two mapping cylinders of
G/H → G/K± with gluing map the identity (see [5, Ch. IV, Theorem 8.2]).
Thus, with this choice of K±, one can write M as the so-called homotopy
pushout of the diagram G/K− ← G/H → G/K+.

In part (2) of Theorem A, where the orbit space is a circle, M is the quo-
tient of [−1, 1] ×G/H by the identification induced by right multiplication
by a single element a of NG(H)/H (see [5, Ch. 1, Corollary 4.3]). In this
case, the structure group can be reduced to the cyclic group generated by
this element.

It is well known that a closed smooth cohomogeneity one G-manifold
admits a G-invariant Riemannian metric with a lower sectional curvature
bound. Alexandrov spaces are synthetic generalizations of Riemannian man-
ifolds with curvature bounded below (see [6, 7]). Theorem A, in combination
with work of Galaz-Garćıa and Searle [18], implies:
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Corollary B. A closed topological manifold of cohomogeneity one admits
an invariant Alexandrov metric.

We prove this corollary in Section 3. It is an open question whether every
topological manifold admits an Alexandrov metric. Corollary B shows that
this is true if M admits a cohomogeneity one action.

A topological manifold M is smoothable if it is homeomorphic to a smooth
manifold. A topological G-action on a smoothable topological manifoldM is
smoothable if it is equivariantly homeomorphic to a smooth G-action on M .
When the orbit space of a closed cohomogeneity one topological manifold
M is a circle, part (2) of Theorem A implies that both M and the action
are smoothable. When the orbit space is an interval, we have the following
results, which are simple consequences of Theorem A.

Corollary C. A closed cohomogeneity one topological manifold with dia-
gram (G,H,K−,K+) is equivariantly homeomorphic to a smooth manifold
if and only if K±/H are homeomorphic to spheres.

Corollary D. Let M be a closed cohomogeneity one topological manifold
with diagram (G,H,K−,K+).

(1) If the codimension of the non-principal orbits G/K± is not 4, then
the action is smoothable.

(2) If the codimension of some non-principal orbit is 4, then the action
is
(a) smoothable if and only if both K±/H are homeomorphic to

spheres.
(b) non-smoothable if and only if K+/H or K−/H is homeomor-

phic to the Poincaré homology sphere.

Corollary E. Every cohomogeneity one action on a topological n-manifold,
n ≤ 4, is smoothable.

Corollary C follows from the fact that, if a closed cohomogeneity one
topological manifold with diagram (G,H,K−,K+) is equivariantly homeo-
morphic to a smooth manifold, then the Slice Theorem for smooth actions
implies that K±/H are homeomorphic to spheres (see also [5, Ch. IV, The-
orem 8.2]). Conversely, if K±/H are spheres, then Theorem A implies that
the action is equivariantly homeomorphic to a smooth action, since one
can construct a smooth cohomogeneity one smooth manifold with the same
group diagram.

Closed, smooth manifolds of cohomogeneity one have been classified equiv-
ariantly by Mostert [42] and Neumann [45] in dimensions 2 and 3, by Parker
[48] in dimension 4, and, assuming simply-connectedness, by Hoelscher [29]
in dimensions 5, 6 and 7. Mostert, Neumann and Parker gave canonical
representatives for the classes in the equivariant classification in dimension
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n ≤ 4. This was also done by Hoelscher [28] in dimensions 5 and 6 in
the simply-connected case. In dimension 7, Hoelscher [30], Escher and Ult-
man [15] computed the homology groups of the manifolds appearing in the
equivariant classification. By Corollary E, the classification of closed, co-
homogeneity one topological manifolds is complete in dimension n ≤ 4. In
dimensions 5, 6 and 7, however, it follows from Corollary D that Hoelscher’s
results do not yield a classification in the topological category. Our second
theorem completes the equivariant classification of closed, cohomogeneity
one topological manifolds in these dimensions.

Theorem F. Let M be a closed, simply-connected topological n-manifold,
n ≤ 7, with an (almost) effective cohomogeneity one action of a compact
connected Lie group G. If the action is non-smoothable, then it is given
by one of the diagrams in Table 1 and M can be exhibited as one of the
manifolds in this table.

Dimension Diagram (G,H,K−,K+) Manifold

5 (S3 × S1, I∗ × Zk, I
∗ × S1, S3 × Zk) P3 ∗ S1 ≈ S5

6 (S3 × S3, I∗ × S1, S3 × S1, S3 × S1) Σ(P3)× S2

≈ S4 × S2

(S3 × S3, S1 × I∗, S3 × I∗, S1 × S3) P3 ∗ S2 ≈ S6

7 (S3 × S3, I∗ × 1, I∗ × S3, S3 × 1) P3 ∗ S3 ≈ S7

(S3 × S3,∆I∗, I∗ × S3,∆S3) P3 ∗ S3 ≈ S7

(S3 × S3, I∗ × Zk, I
∗ × S1, S3 × Zk) S5-bundle over S2

(S3 × S3, I∗ × I∗, S3 × I∗, I∗ × S3) P3 ∗P3 ≈ S7

(S3 × S3, I∗ × 1, S3 × 1, S3 × 1) Σ(P3)× S3

≈ S4 × S3

(S3 × S3,∆I∗,∆S3,∆S3) Σ(P3)× S3

≈ S4 × S3

(S3×S3×S1, I∗×S1×Zk, I
∗×T 2, S3×S1×Zk) S5-bundle over S2

Table 1. Non-smoothable cohomogeneity one actions in di-
mensions 5, 6 and 7

The proof of Theorem F follows the outline of the proofs of the classifi-
cation in the smooth case (see, for example, [29]). After determining the
admissible group diagrams, we can write the manifolds as joins, products
or bundles in terms of familiar spaces. The problem still remains whether
the topological manifolds in Table 1 are smoothable. One can quickly settle
this question for the joins in Table 1 since, by the Double Suspension The-
orem, these manifolds are homeomorphic to spheres and therefore they are



6 F. GALAZ-GARCÍA AND M. ZAREI

smoothable. The situation for the products Σ(P3)× S2 and Σ(P3)× S3 in
Table 1, where Σ(P3) denotes the suspension of P3, is more delicate. For
example, the 6-dimensional product Σ(P3) × S2 is homotopy equivalent to
S4×S2. By the classification of closed, oriented, simply-connected topolog-
ical 6-manifolds with torsion-free homology, carried out by Wall [54], Jupp
[31] and Zhubr [60], there exist infinitely many homeomorphism types for a
homotopy S4 × S2, parametrized by a nonnegative integer k. For k even,
the corresponding homeomorphism type is smoothable; for k odd, the cor-
responding homeomorphism type is non-smoothable (see Section 6). Our
third theorem settles the smoothability of Σ(P3)× S2.

Theorem G. The manifold Σ(P3)× S2 is homeomorphic to S4 × S2.

The proof of Theorem G is an application of the classification of closed,
oriented, simply-connected topological 6-manifolds with torsion-free homol-
ogy, and essentially reduces to computing the first Pontryagin class of
Σ(P3)× S2 (see Section 6). To do this, we use results of Zagier [59].

Observe that Σ(P3)× S3 is the total space of a principal S1-bundle over
Σ(P3) × S2. By Theorem G, Σ(P3) × S2 ≈ S4 × S2. Hence, Σ(P3) × S3

is smoothable and, since the Euler class of the bundle is a generator of
H2(S4 × S2), we obtain the following result.

Corollary H. The manifold Σ(P3)× S3 is homeomorphic to S4 × S3.

Let M be the total space of a topological S5-bundle over S2. Since
H4(M,Z2) = 0, the Kirby–Siebenmann class of M vanishes, so M admits
a PL structure (see [35]). Since, in dimensions n ≤ 7, every PL n-manifold
admits at least one compatible smooth structure (see [24, 33, 38] or [55,
p. 66]), it follows that M is smoothable. Thus, the homeomorphisms in
the third column of Table 1, combined with Corollary E, yield the following
result.

Corollary I. A closed, simply-connected topological n-manifold of cohomo-
geneity one is homeomorphic to a smooth manifold, provided n ≤ 7.

Our paper is organized as follows. In Section 2 we discuss Mostert’s article
[42] and prove Theorem A. We prove Corollary B in Section 3. In Section 4
we collect some results on cohomogeneity one topological manifolds that we
will use in the proof of Theorem F. Sections 5 and 6 contain, respectively,
the proofs of Theorems F and G.
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2. Setup and proof of Theorem A

2.1. Notation. Let M be a topological manifold and let x be a point in
M . Given a topological (left) action G ×M → M of a Lie group G, we
let G(x) = { gx | g ∈ G } be the orbit of x under the action of G. The
isotropy group of x is the subgroup Gx = { g ∈ G | gx = x }. Observe that
G(x) ≈ G/Gx. We will denote the orbit space of the action by M/G and
let π : M → M/G be the orbit projection map. The (ineffective) kernel of
the action is the subgroup K =

⋂
x∈M Gx. The action is effective if K is the

trivial subgroup {e} of G; the action is almost effective if K is finite. We
will also denote the normalizer NG(L) of a subgroup L of G by N(L).

We will say that two G-manifolds are equivalent if they are equivariantly
homeomorphic. From now on, we will suppose that G is compact and assume
that the reader is familiar with the basic notions of compact transformation
groups (see, for example, Bredon [5]). We will assume all manifolds to be
connected.

As for locally smooth actions (see [5, Ch. IV, Section 3]), for a topological
action of G on M there also exists a maximum orbit type G/H, i.e. H is
conjugate to a subgroup of each isotropy group. One sees this as follows. Let
M0 be the set of points with isotropy group of smallest dimension and least
number of components. By work of Montgomery and Yang [40], M0 is an
open, dense and connected subset of M . Moreover, by work of Montgomery
and Zippin [41], for every x ∈ M there is a neighborhood V such that
Gy is conjugate to a subgroup of Gx for y ∈ V . It then follows from the
connectedness of M0, that the isotropy groups Gy, y ∈ M0 are conjugate
to each other. By the density of M0 and the existence of the neighborhood
V , each group Gy, for y ∈M0, is conjugate to a subgroup of every isotropy
group. Therefore, the orbit type G/Gy , for y ∈M0, is maximal. We call this
orbit type the principal orbit type and orbits of this type principal orbits. A
non-principal orbit is exceptional if it has the same dimension as a principal
orbit and is called singular if its dimension is less than the dimension of a
principal orbit.

A homology sphere is a closed topological n-manifold Mn such that
H∗(M

n,Z) ∼= H∗(S
n,Z). We will denote the suspension of a topologi-

cal space X by Σ(X) and the join of X with a topological space Y by
X ∗ Y . Recall that Σ(X) ≈ X ∗ S0 and, in general, Σn(X) ≈ X ∗ Sn−1

for n ≥ 1. If two compact Lie groups G and H act on X and Y , respec-
tively, then the product G×H acts on the join X ∗ Y in a natural way, via
(g, h) · [(x, y, t)] = [(gx, hy, t)], where (g, h) ∈ G×H and [(x, y, t)] ∈ X ∗ Y .
We call this action the join action of G×H on X ∗ Y .

We will denote the Poincaré homology sphere by P3; it is homeomorphic
to the homogeneous spaces SU(2)/I∗ and SO(3)/I, where I∗ is the binary



8 F. GALAZ-GARCÍA AND M. ZAREI

icosahedral group and I is the icosahedral group. We will use some basic
concepts of piecewise-linear topology in the proof of Theorem A. We refer
the reader to [50] for the relevant definitions.

2.2. Cohomogeneity one topological manifolds. In this subsection we
collect basic facts on cohomogeneity one topological manifolds, discuss the
omission in Mostert’s work [42] that gave rise to the present article, and
prove some preliminary results that we will use in the proof of Theorems A
and F.

Definition 2.1. Let M be a connected topological n-manifold with a topo-
logical action of a compact connected Lie group G. The action is of coho-
mogeneity one if the orbit space is one-dimensional or, equivalently, if there
exists an orbit of dimension n−1. A topological manifold with a topological
action of cohomogeneity one is a cohomogeneity one manifold.

By [42, Theorem 1], the orbit space of a cohomogeneity one manifold is
homeomorphic to a connected 1-manifold (possibly with boundary). Orbits
that project to interior points of the orbit space all have the same isotropy
group H (up to conjugacy). The subgroup H is called the principal isotropy
group and these orbits are principal orbits. We refer to orbits which map
to boundary points of the orbit space as non-principal. We call the isotropy
groups of points in these orbits non-principal isotropy groups. When the
orbit space is homeomorphic to [−1, 1], we denote a non-principal isotropy
group corresponding to a point in the orbit mapped to ±1 by K±.

Remark 2.2. In [42] non-principal orbits are called “singular” and principal
orbits are called “regular”. We have departed from the original notation in
[42] in order to follow the current standard terminology in the theory of
transformation groups (see, for example, [5, Ch. IV]).

As indicated in the introduction, the oversight in [42] stems from the claim
that a homology sphere that is a homogeneous space must be a sphere. More
precisely, in [42, Sections 2 and 4] Mostert shows that K/H, where K is a
non-principal isotropy group, must be a homology sphere and a homoge-
neous space (see [42, Lemma 2 and proof of Theorem 2]) and concludes,
erroneously, that K/H must be a sphere (see [42, Section 2, Corollary]).
This, as explained in the introduction, is not the case. The following re-
sult of Bredon [4, Theorem 1.1, Corollary 1.2] implies that the Poincaré
homology sphere P3 and spheres are the only possibilities for K/H.

Theorem 2.3 (Bredon). Let G be a compact Lie group and H a closed
subgroup of G.

(1) If G/H is a homology k-sphere, then G/H is homeomorphic to either
Sk or to the Poincaré homology sphere P3.

(2) If G acts almost effectively and transitively on P3, then G is iso-
morphic to SU(2) or SO(3), with I∗ or I as the isotropy group,
respectively.
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The following example shows that there are cohomogeneity one topologi-
cal manifolds with K/H ≈ P3.

Example 2.4. Let S3× SO(n+1), n ≥ 1, act on P3 ∗Sn as the join action
of the standard transitive actions of S3 ∼= SU(2) on P3 and SO(n + 1) on
Sn. The orbit space is homeomorphic to [−1, 1] and K+ = S3 × SO(n),
K− = I∗ × SO(n + 1) and H = I∗ × SO(n). Thus K+/H = P3. By the
Double Suspension Theorem, Σ2(P3) ≈ S5 and it follows that P3 ∗ Sn ≈
Σn+1(P3) is homeomorphic to Sn+4.

Let us now recall the statement of Theorem 4 in [42] (considering the
corrections in the Errata to [42]). Note that the statement to follow is still
incorrect. We have highlighted in bold the problematic claims.

Theorem 2.5 (see [42, Theorem 4]). Let M be a topological manifold with
a cohomogeneity one G-action. Then the following hold:

(i) The orbit space M/G is homeomorphic to one of (a) the circle, (b)
the line, (c) the half-open interval, or (d) the closed interval.

(ii) In case (a), M is a fiber bundle over M/G with fiber G/Gx and struc-
ture group a (finite) cyclic subgroup of N(Gx)/N(Gx)

0, where N(Gx)
is the normalizer of Gx in G, and N(Gx)

0 is the identity component
of N(Gx). In particular, M is homeomorphic to (M/G) × (G/Gx)
if N(Gx) is connected.

(ii ′) In case (b), M is homeomorphic to (M/G) × (G/Gx) for x ∈M .

(iii) In case (c), there exist subgroups H ⊂ K of G such that K/H
is an r-sphere for some r ≥ 0 and, if p denotes the boundary point
of M/G, then M is homeomorphic to the quotient of (M/G)×(G/H)
by the relation (p, gH) ≡ (p, hH) if g−1h ∈ K, which identifies
{p} × (G/H) to {p} × (G/K).

(iv) In case (d), there exist subgroups H ⊂ K− ∩ K+ of G such
that K±/H is an r±-sphere and, if p± are the boundary points of
M/G, then M is homeomorphic to the quotient of (M/G) × (G/H)
by the relation (p±, gH) ≡ (p±, hH) if g−1h ∈ K±, which identifies
{p±} × (G/H) to {p±} × (G/K±).

(v) The action of the group G on a space with structure as
in items (ii)–(iv) is equivalent to a cohomogeneity one G-
action on the manifold M and, conversely, a space M con-
structed in such a way is a topological manifold with a co-
homogeneity one action of G.
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Taking into account Theorem 2.3, the comments preceding it, and Exam-
ple 2.4, we conclude that one must amend Theorem 2.5 by adding P3 as a
second possibility for K/H in items (iii) and (iv).

Item (v) in Theorem 2.5 is true when all theK±/H are spheres and follows
as in [42]. In the case where at least one of the K±/H is homeomorphic to
P3, one must reprove this claim. We do this at the end of this section, in the
case where M is closed (i.e. compact and without boundary). This yields
Theorem A. The remaining cases, where the orbit space is not compact, can
be dealt with in an analogous way, and we leave this task to the interested
reader.

By item (iv) in Theorem 2.5, a cohomogeneity one G-action on a closed
topological manifold with orbit space an interval determines a group diagram

G

K−

j−
==④④④④④④④④

K+

j+
aa❈❈❈❈❈❈❈❈

H
i−

aa❈❈❈❈❈❈❈❈ i+

==④④④④④④④④

where i± and j± are the inclusion maps, K± are the isotropy groups of
the non-principal orbits at the boundary points of the interval, and H is
the principal isotropy group of the action. We will denote this diagram
by the quadruple (G,H,K−,K+). The inclusion maps are an important
element in the group diagram, as illustrated by the following simple example:
(T 2, {e}, T 1, T 1) determines both S3 and S2×S1, where in the first case the
inclusion maps are to the first and second factors of T 2, respectively, and in
the second case, both inclusion maps are the same (see [45]). Now we prove
Theorem A.

2.3. Proof of Theorem A. Let Mn be a closed topological n-manifold
with an (almost) effective topological G-action of cohomogeneity one with
principal isotropy H. By item (i) in Theorem 2.5, the orbit space is home-
omorphic to either a closed interval or to a circle. Part (2) of Theorem A
follows from item (ii) in Theorem 2.5. Therefore, we need only prove part
(1) of Theorem A, where the orbit space M/G is homeomorphic to a closed
interval [−1, 1]. The “if” statement in this case corresponds to part (iv) of
Theorem 2.5 (keeping in mind that one must add P3 as a possibility for
K±/H). Now we prove the “only if” statement.

Let (G,H,K−,K+) be a group diagram satisfying the hypotheses of part
(1) of Theorem A. By the work of Mostert, we need only consider the case
where at least one of K±/H is the Poincaré sphere P3. In this case, n ≥ 5.

Suppose, without loss of generality, that K+/H = P3. Since n ≥ 5, the
non-principal orbit G/K+ is at least one-dimensional. Observe now that
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the space

X = G×K− C(K−/H) ∪G/H G×K+ C(K+/H)(2.1)

is a finite polyhedron. A sufficiently small neighborhood of a point in the
non-principal orbit G/K+ is the PL product of an (n − 4)-ball and a cone
over P3. Therefore, since the link of a vertex (a, b) in a PL product A× B
is the join of the link of a in A and of the link of b in B (see Exercise 3 in
[50, Ch. 2, Section 24]), the link of every point in the non-principal orbit
G/K+ is Sn−5 ∗P3. The following result (see [14, Section 8] or [57, p. 742])
implies now that X is a topological manifold:

Theorem 2.6 (Edwards). A finite polyhedron P is a closed topological n-
manifold if and only if the link of every vertex of P is simply-connected if
n ≥ 3, and the link of every point of P has the homology of the (n−1)-sphere.

�

3. Existence of Invariant Alexandrov metrics

In this section we point out that every closed cohomogeneity one topo-
logical manifold admits an invariant Alexandrov metric. Let us first recall
some basic facts about Alexandrov spaces, all of which can be found in [6].

A finite dimensional length space (X, d) has curvature bounded from be-
low by k if every point x ∈ X has a neighborhood U such that for any
collection of four different points (x0, x1, x2, x3) in U , the following condi-
tion holds:

∠x1,x2
(k) + ∠x2,x3

(k) + ∠x3,x1
(k) ≤ 2π.

Here, ∠xi,xj
(k), called the comparison angle, is the angle at x0(k) in the

geodesic triangle in M2
k , the simply-connected 2-manifold with constant cur-

vature k, with vertices (x0(k), xi(k), xj(k)), which are the isometric images
of (x0, xi, xj). An Alexandrov space is a complete length space of curvature
bounded below by k, for some k ∈ R. The isometry group Isom(X) of an
Alexandrov space X is a Lie group (see [17, Theorem 1.1]) and Isom(X)
is compact if X is compact and connected (see [10, p. 370, Satz I] or [37,
Corollary 4.10 and its proof in pp. 46–50]). Alexandrov spaces of cohomo-
geneity one have been studied in [18]. The following result will play an
essential role in the proof of Corollary B:

Proposition 3.1 ([18, Proposition 5]). If X is a closed, cohomogeneity one
Alexandrov space with orbit space an interval, then X is the union of two
bundles whose fibers are cones over positively curved homogeneous spaces,
that is

G×K−
C(K−/H) ∪G/H G×K+

C(K+/H),

where the group diagram of the action is given by (G,H,K−,K+) and K±/H
are positively curved homogeneous spaces. Conversely, any diagram
(G,H,K−,K+), with K±/H positively curved homogeneous spaces, gives
rise to a cohomogeneity one Alexandrov space.
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3.1. Proof of Corollary B. Let M be a closed topological manifold with
a cohomogeneity one action of a compact Lie group G. By Theorem A(1),
we have a group diagram (G,H,K−,K+), where the spaces K±/H are
spheres or P 3. In either case, K±/H are positively curved and homogeneous.
Therefore, by Proposition 3.1, M admits an invariant Alexandrov metric. �

Remark 3.2. Corollary B follows trivially in the case when the cohomo-
geneity one G-action on M is equivalent to a smooth action. Indeed, it is
well known that one can construct a G-invariant Riemannian metric on M .
Since, M is compact, this Riemannian metric has a lower sectional curvature
bound and hence M is an Alexandrov space.

4. Tools and further definitions

In this section we review some standard results for cohomogeneity one
smooth manifolds in the context of topological manifolds. We will use these
tools in the proof of Theorem F.

We first point out that all the propositions and lemmas used by Hoelscher
in [29] to determine both the groups G that may act by cohomogeneity
one on a smooth closed manifold M and the fundamental group of M also
hold for topological manifolds. Indeed, the fact that M is a union of two
mapping cylinders is a key point in the proofs of most statements in [29]. By
Mostert’s work [42], this is also the case for a cohomogeneity one topological
manifold (see also Theorem A). We collect the relevant results here for easy
reference, focusing our attention on the cases where at least one of K±/H
is the Poincaré sphere.

The following proposition determines when two different group diagrams
yield the same manifold. Its proof follows as in [5, Ch. IV, Theorem 8.2],
after observing that a cohomogeneity one topological manifold decomposes
as the union of two mapping cylinders.

Proposition 4.1. If a cohomogeneity one topological manifold is given by
a group diagram (G,H,K−,K+), then any of the following operations on
the group diagram will result in a G-equivariantly homeomorphic topological
manifold:

(1) Switching K− and K+,
(2) Conjugating each group in the diagram by the same element of G,
(3) Replacing K− with gK−g−1 for g ∈ N(H)0.

Conversely, the group diagrams for two G-equivariantly homeomorphic co-
homogeneity one, closed topological manifolds must be mapped to each other
by some combination of these three operations.

The following result of Parker [29, Proposition 1.8] is stated for smooth
cohomogeneity one manifolds but the proof carries over to the topological
category.

Proposition 4.2 (Parker). A closed simply-connected cohomogeneity one
topological manifold has no exceptional orbits.
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The van Kampen Theorem applied to a closed cohomogeneity one mani-
fold written as a union of two mapping cylinders yields the following result
(see [29, Proposition 1.8]).

Proposition 4.3 (Corollary of the van Kampen Theorem). Let M be the
closed cohomogeneity one topological manifold given by the group diagram
(G,H,K−,K+) with dim(K±/H) ≥ 1. Then π1(M) ∼= π1(G/H)/N−N+,
where

N± = ker{π1(G/H)→ π1(G/K±)} = Im{π1(K
±/H)→ π1(G/H)}.

In particular M is simply-connected if and only if the images of K±/H
generate π1(G/H) under the natural inclusions.

Corollary 4.4. Let M be the closed simply-connected cohomogeneity one
topological manifold given by the group diagram (G,H,K−,K+), with
dim(K±/H) ≥ 1, and K−/H = Sl, for l ≥ 2. Then G/K+ is simply-
connected and, if G is connected, then K+ is also connected.

Proof. Consider the fiber bundle

K±/H → G/H → G/K±.

This gives a long exact sequence of homotopy groups:

· · · → π1(K
±/H)

i±∗−→ π1(G/H)
ρ±∗−−→ π1(G/K±)

∂∗−→ π0(K
±/H).

Since dim(K−/H) ≥ 1 and K−/H = Sl is simply-connected for l ≥ 2, we
get the following sequences:

0→ π1(G/H)
ρ−∗−−→ π1(G/K−)→ 0,

· · · → π1(K
+/H)

i+∗−→ π1(G/H)
ρ+∗−−→ π1(G/K+)→ 0.

In particular, N− = ker ρ−∗ = 0 and π1(G/K+) = π1(G/H)/N+. Fur-
ther, by Proposition 4.3, since M is simply-connected, π1(G/H) = N−N+.
Hence, π1(G/H) = N+, and π1(G/K+) is trivial.

Now assume that G is connected. Similarly, the following fiber bundle

K+ → G→ G/K+,

gives a long exact sequence of homotopy groups:

· · · → π1(K
+)→ π1(G)→ π1(G/K+)→ π0(K

+)→ π0(G).

AsG is connected and π1(G/K+) is trivial by the above argument, π0(K
+) =

0, i.e. K+ is connected. �

As the homogeneous spaces K±/H are homeomorphic to either spheres or
the Poincaré homology sphere, their fundamental groups are Z, the identity
or the binary icosahedral group. Since these groups are finitely generated,
the next lemma follows as in the proof of [29, Lemma 1.10].
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Lemma 4.5. Let M be the cohomogeneity one topological manifold given by
the group diagram (G,H,K−,K+) with at least one of K±/H homeomorphic
to P3. Denote H± = H ∩ K±

0 , and let αi
± : [0, 1] → K±

0 be curves that

generate π1(K
±/H), with αi

±(0) = 1 ∈ G. The manifold M is simply-
connected if and only if

(1) H is generated as a subgroup by H− and H+, and
(2) αi

− and αi
+ generate π1(G/H0).

Recall that a cohomogeneity one action on a closed manifold M is non-
primitive if for some diagram (G,H,K−,K+) for M the isotropy groups K±

and H are contained in some proper subgroup L of G. Such a non-primitive
action is well known to be equivalent to the usual G-action on G ×L ML,
where ML is the cohomogeneity one manifold given by the group diagram
(L,H,K−,K+).

A cohomogeneity one action of G on a closed topological manifold M is
reducible if there is a proper normal subgroup of G that still acts by coho-
mogeneity one with the same orbits. Conversely, there is a natural way of
extending an arbitrary cohomogeneity one action to an action by a possibly
larger group. Such extensions, called normal extensions, are described as
follows (see [18, Propositions 11–13] and [29, Section 1.11]). Let M be a co-
homogeneity one topological manifold with group diagram (G1,H1,K

−
1 ,K+

1 )
and let L be a compact connected subgroup of N(H1) ∩N(K−

1 ) ∩N(K+
1 ).

Notice that L∩H1 is normal in L and let G2 = L/(L∩H1). We then define
an action of G1 ×G2 on M orbitwise by

(ĝ1, [l]) · g1(G1)x = ĝ1g1l
−1(G1)x

on each orbit G1/(G1)x for (G1)x = H1 or K±
1 . This action is of cohomo-

geneity one, has the same orbits as the action of G1 and has group diagram

(G1 ×G2, (H1 × 1)∆L, (K− × 1)∆L, (K+ × 1)∆L),

where ∆L = {(l, [l]) | l ∈ L}.
Notice that every reducible action is a normal extension of its restricted

action (see [29, Proposition 1.15]). Therefore it is natural to consider non-
reducible actions in the classification. We will use the following result on
reducible actions (see [18, Proposition 11] and [29, Proposition 1.12]) in the
proof of Theorem F.

Proposition 4.6. Let M be a cohomogeneity one manifold given by the
group diagram (G,H,K−,K+) and suppose that G = G1 × G2 with
Proj2(H) = G2. Then the subaction of G1× 1 on M is also by cohomogene-
ity one, with the same orbits, and with isotropy groups K±

1 = K±∩ (G1×1)
and H1 = H ∩ (G1 × 1).

The following two results give restrictions on the groups that may act by
cohomogeneity one on a closed topological manifold. The next proposition
can be found in [29, Proposition 1.19] for smooth actions. Here we prove
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it in the slightly more general case of topological actions on topological
manifolds.

Proposition 4.7. If a compact connected Lie group G acts (almost) effec-
tively on a topological manifold with principal orbits of dimension k, then
k ≤ dimG ≤ k(k + 1)/2.

Proof. Let G/H be a principal orbit. Since dimG/H = k, the left in-
equality is immediate. To verify the right inequality, it suffices to show
that G acts almost effectively on principal orbits, since then we can equip
G/H with a G-invariant Riemannian metric and obtain a homomorphism
ϕ : G→ Isom(G/H) with finite kernel L. It then follows that G/L ∼= ϕ(G) ≤
Isom(G/H). Since L is finite,

dimG = dimG/L ≤ dim Isom(G/H)

≤
k(k + 1)

2
,

where the last inequality follows from a well-known theorem of Myers and
Steenrod [44, Theorem 7] (see also [36, Ch. II, Theorem 3.1]). To finish
the proof, let us show that G acts almost effectively on principal orbits. As
mentioned in Section 2, all principal isotropy groups are conjugate to each
other and conjugate to subgroups of the non-principal isotropy groups. As a
result, G acts almost effectively on the principal orbits. Observe that every
conjugate of the principal isotropy group occurs as an isotropy group within
each principal orbit. �

An argument as in the proof of [29, Proposition 1.18] yields the following
lemma:

Lemma 4.8. Let M be a closed, simply-connected topological manifold with
an (almost) effective cohomogeneity one action of a compact Lie group G.
Suppose that the following conditions hold:

• G = G1 × Tm and G1 is semisimple;
• G acts non-reducibly;
• at least one of the homogeneous spaces K±/H is the Poincaré sphere.

Then, G1 6= 1 and m ≤ 1. Moreover, if m = 1, then one of the homogeneous
spaces K±/H is a circle and K+ ⊂ G1 × 1.

It is well known that every compact connected Lie group has a finite cover
of the form Gss×T k , where Gss is semisimple and simply connected and T k

is a torus. The classification of compact simply-connected semisimple Lie
groups is also well known. By Proposition 4.7, every compact connected Lie
group G acting (almost) effectively with cohomogeneity one on a topological
n-manifold, n ≤ 7, must have dimension at most 21. A list of compact
simply-connected semisimple Lie groups of dimension at most 21, along with
their subgroups, can be found in [29, Section 1.24] (see also Tables 2.2.1 and
2.2.2 in [27]). We have collected the relevant groups in Tables 2 and 3. If
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an arbitrary compact group G acts on a topological manifold M , then every

cover G̃ of G still acts on M , although less effectively. Hence, if we consider
almost effective actions, and since in our case G has dimension 21 or less,
we can assume that G is a product of groups from Table 2 with a torus T k.

The following proposition (see [29, Proposition 1.25]) gives further restric-
tion on the groups.

Proposition 4.9. Let M be the cohomogeneity one topological manifold
given by the group diagram (G,H,K−,K+), where G acts non-reducibly on
M . Suppose that G is the product of groups

G = SU(4)i × (G2)
j × Sp(2)k × SU(3)l × (S3)m × (S1)n.

Then
dimH ≤ 10i + 8j + 6k + 4l +m.

We will also use the following result on transitive actions.

Proposition 4.10 ([47, Ch. 1, §5, Proposition 7]). Let a Lie group G act
transitively on a manifold M . Then G0 acts transitively on any connected
component of M . In particular, if M is connected, then G0 acts transitively
on M , and (G0)x = G0 ∩Gx, G = G0Gx, for all x ∈M .

We conclude this section with an observation on groups acting on the
Poincaré homology sphere.

Lemma 4.11. Let G be a compact Lie group of dimension at most 2. If
S3×G acts transitively on P3, then G acts trivially on P3 and the isotropy
group of the (S3 ×G)-action is I∗ ×G.

Proof. Assume first that G is connected and let L be the kernel of the action.
By Theorem 2.3, (S3 ×G)/L is isomorphic to S3. Hence, dimG = dimL.
Since L is a normal and connected subgroup of S3×G, Proj1(L) is a normal
connected subgroup of S3. Thus Proj1(L) is trivial, as dimG ≤ 2. As a
result, L = 1×G and H = I∗×G, where H is the principal isotropy group.

Suppose now that G is not connected. In this case, S3 ×G0 is connected
and acts transitively on P3 as a restriction of the action of S3×G. Since S3×
G0 is connected, we may apply the argument in the preceding paragraph.
Therefore, I∗ × G0 ⊆ H ⊆ I∗ × G. Connectedness of the quotient P3 =
(S3 ×G)/H gives H = I∗ ×G. �

5. Proof of Theorem F

Let G be a compact, connected Lie group acting almost effectively, non-
reducibly and with cohomogeneity one on a closed, simply-connected topo-
logical n-manifold Mn, 5 ≤ n ≤ 7. We assume that the action is non-
smoothable. Hence, by Corollary C, at least one of K±/H, say K+/H, is
homeomorphic to P3, the Poincaré homology sphere. We analyze each di-
mension separately.
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Group Dimension Rank

S3 ∼= SU(2) ∼= Sp(1) ∼= Spin(3) 3 1

SU(3) 8 2

Sp(2) ∼= Spin(5) 10 2

G2 14 2

SU(4) ∼= Spin(6) 15 3

Sp(3) 21 3

Spin(7) 21 3

Table 2. Simple compact simply-connected Lie groups in
dimensions 21 and less.

Group Subgroups

T 2 {(eipθ, eiqθ)}

S3 {exθ = cos θ + x sin θ}, where x ∈ Im(S3).

SU(3) S1 ⊂ T 2, T 2, SO(3), SU(2) and U(2)

Sp(2) U(2), Sp(1)SO(2) and Sp(1)Sp(1), in dimensions 4 and higher.

G2 SU(3), in dimensions 8 and higher.

SU(4) U(3) and Sp(2) in dimensions 9 and higher.

Table 3. Groups and their subgroups playing a role in the classification.

Dimension 5. By Proposition 4.7, we have 4 ≤ dimG ≤ 10. Hence,
by Table 2, G is, up to a finite cover, one of (S3)m × T n, SU(3) × T n or
Spin(5) (see also [29, 1.24]). From Lemma 4.8, we see that n ≤ 1. Since
dimH = dimG − 4, Proposition 4.9 gives the possible groups. These are,
up to a finite cover, S3 × S1, S3 × S3, SU(3) and Spin(5). On the other
hand, since K+/H = P3, dimK+ = 3 + dimH = dimG − 1. Therefore,
G = S3 × S1 is the only possibility, since the other groups do not have a
subgroup of codimension 1.

Now we determine the group diagrams for S3 × S1. Here H0 is trivial
because dimH = dim(S3×S1)−4 = 0. From Lemma 4.8 we have K−/H =
S1, and K+

0 ⊆ S3 × 1. Therefore, K−
0 = {(eipθ, eiqθ)} and K+

0 = S3 × 1,
for dimK+ = 3 + dimH = 3. By Proposition 4.10, K+

0 = S3 × 1 acts
transitively on P3 with isotropy group H+ = H ∩K+

0 = I∗ × 1. Thus

I∗ × 1 ⊆ H ⊆ K− ⊆ NS3×S1(K−
0 ),
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since L ⊆ N(L0) for every closed subgroup L ofG. Since I∗ cannot normalize
any circle in S3, it follows that p = 0. Hence K−

0 = 1 × S1 and H− =
H∩K−

0 = 1×Zk, for some k ≥ 1. By Lemma 4.5, H = 〈H−,H+〉 = I∗×Zk.
Finally, by Proposition 4.10, K+ = K+

0 H = S3×Zk, K
− = K−

0 H = I∗×S1,
and we have the following diagram:

(S3 × S1, I∗ × Zk, I
∗ × S1, S3 × Zk).

The action is the one described in Example 2.4. Therefore, by Proposi-
tion 4.1, M is equivalent to P3 ∗ S1 , which is homeomorphic to the double
suspension of P3. By the Double Suspension Theorem, M is then homeo-
morphic to S5.

Dimension 6. Proceeding as in the 5-dimensional case, we find that 5 ≤
dimG ≤ 15 and dimH = dimG − 5. It follows from Propositions 4.9 and
4.8 that G must be one of S3×S3, S3×S3×S1, SU(3), SU(3)×S1, Sp(2),
Sp(2)×S1 or Spin(6). On the other hand, since K+/H = P3, we must have
that dimK+ = dimG− 2. This dimension restriction rules out all possible
G except S3 × S3.

Now we determine the possible diagrams for G = S3 × S3. In this case,
dimH0 = 1, so H0 is a circle subgroup of S3 × S3, i.e. H0 = {(eipθ, eiqθ)}
after conjugation by an element of G. Since, by assumption, K+/H = P3,
we must have that dimK+ = dimG − 2 = 4. Thus, K+

0 = S3 × S1 or
K+

0 = S1 × S3 by Table 3. These cases differ only by an automorphism of
S3×S3 that exchanges the factors of the group and yield the same diagrams
up to switching the order of the factors of the isotropy groups. Hence we
can assume that K+

0 = S3 × S1, which acts transitively on P3. According
to Lemma 4.11, S1 acts trivially on P3 and H+ = H ∩K+

0 = I∗ × S1. Now

we consider the different possibilities for K−/H, namely Sl, for l ≥ 2, S1,
and P3, and determine the group diagrams corresponding to each case.

First, suppose K−/H = Sl, l ≥ 2. By Corollary 4.4, K+ is connected.
HenceK+ = K+

0 = S3×S1, andH = H+ = I∗×S1. For l = 2, dimK− = 3.
Thus K−

0 has to be one of the subgroups 1× S3, S3 × 1, or ∆S3 = {(g, g) |
g ∈ S3} of G. However, since I∗×S1 = H ⊂ K−, we must have K−

0 = 1×S3

and hence K− = I∗ × S3. Therefore, we obtain the following diagram:

(S3 × S3, I∗ × S1, I∗ × S3, S3 × S1).

By Proposition 4.1, M is equivalent to P3 ∗ S2 with the action described
in Example 2.4. For l ≥ 3 there is no subgroup K− of S3 × S3 containing
H = I∗ × S1 such that K−/H = S3.

Now assume that K−/H = S1. In this case, dimK− = 2. By Table 3,
K−

0 is isomorphic to T 2, i.e. K−
0 is a maximal torus of G. Since K− should

contain I∗ × S1 = H+ ⊆ H, and no finite extension of a maximal torus of
S3 × S3 contains I∗ × S1, this case cannot happen.
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The only remaining case to be considered is when K−/H is also the
Poincaré sphere, i.e. K−/H = P3. We now show that the only possible
diagram that can occur is

(S3 × S3, I∗ × S1, S3 × S1, S3 × S1).(5.1)

Since K−
0 is a 4-dimensional subgroup of G containing H, we must have

K−
0 = S3 × S1, with the same S1-factor as in K+

0 = S3 × S1 (considered as
subgroups of G). Therefore, H+ = H ∩K+

0 = H ∩K−
0 = H−. Because M

is simply-connected, H must be generated by H+ and H− by Lemma 4.5,
so H = H− = H+ = I∗×S1. The last part of Proposition 4.10 then implies
that K− = S3 × S1 = K+. Diagram (5.1) is given by the natural product
action of S3 × S3 on Σ(P3)× S2, defined by

(S3 × S3)× (Σ(P3)× S2)→ Σ(P3)× S2

((g, h), ([x, t], y)) 7→ ([gx, t], hyh−1).

Here the S3-action on S2 is the restriction to the unit sphere of the adjoint
action of S3 on its Lie algebra su(2) ∼= R3. Therefore, by Proposition 4.1,
M is equivalent to Σ(P3) × S2 with the product action we just described
above. By Theorem G, M is in turn homeomorphic to S4 × S2.

Dimension 7. By Proposition 4.7 we know that 6 ≤ dimG ≤ 21 and
dimH = dimG− 6. As before, Propositions 4.9 and 4.8 give us the possible
acting groups: S3 × S3, S3 × S3 × S1, SU(3), S3 × S3 × S3, SU(3) × S1,
Sp(2), SU(3) × S3, Sp(2) × S3, G2, SU(4), SU(4) × S1 and Spin(7). Since
dimK+ = dimG − 3, we easily rule out most of the groups and the only
possible groups remaining are S3 × S3, S3 × S3 × S1 and S3 × S3 × S3. We
analyze each case separately.

G = S3 × S3. Here dimH = 0, so H0 is trivial. Since K+/H = P3

by assumption, dimK+ = 3. Therefore, K+
0 is one of 1 × S3, S3 × 1 or

∆gS
3 = {(a, gag−1) | a ∈ S3}, for some g ∈ G. The cases whereK+

0 = 1×S3

or S3 × 1 only differ by an automorphism of S3 × S3 which exchanges the
factors of the product group. Since both cases yield the same diagram up
to a reordering of the factors of the isotropy groups, we will only consider
the cases where K+

0 = S3 × 1 or K+
0 = ∆gS

3.
First assume that K+

0 = S3 × 1, so H+ = K+
0 ∩ H = I∗ × 1. We now

continue by considering the different possibilities forK−/H, i.e. Sl, for l ≥ 2,
S1, and P3.

Suppose first that K−/H = Sl, l ≥ 2. Then, by Corollary 4.4, K+ is
connected. Thus, we have K+ = S3×1 and H = I∗×1. Since H is discrete
andK−/H is simply-connected, the long exact sequence of homotopy groups
corresponding to the fiber bundle

H → K− → K−/H
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implies that π1(K
−
0 ) = 0. A glance at the subgroups of S3 × S3 shows that

only S3 × S3 and its 3-dimensional subgroups are simply-connected. Since
(S3×S3)/H is not a sphere, K− is necessarily 3-dimensional. Therefore, K−

0

is one of the subgroups S3×1, 1×S3 or ∆gS
3, for some g ∈ G. We will now

show that only the case K−
0 = 1×S3 occurs. Clearly, ∆gS

3 does not contain
I∗ × 1 = H, so this case cannot happen. Assume now that K−

0 = S3 × 1.
Then H ⊆ K−

0 and it follows from Proposition 4.10 that K− = K−
0 . Since

H = I∗ × 1, K−/H is not a sphere, which contradicts our assumption that
K−/H = Sl, l ≥ 2. This rules out the case K−

0 = S3 × 1. Therefore, we
are left with the case K−

0 = 1 × S3. It follows from Proposition 4.10 that
K− = K−

0 H = I∗ × S3. Hence we have the following diagram:

(S3 × S3, I∗ × 1, I∗ × S3, S3 × 1),

which corresponds to the join action of S3 × S3 on P3 ∗ S2.
Now let K−/H = S1. Since H0 = 1, we can write K−

0 = {(eipθ, eiqθ)} ⊆
S3 × S3. As

I∗ × 1 ⊆ K− ⊆ NS3×S3(K−
0 ),

and I∗ cannot normalize any circle in S3, we must have p = 0, i.e. K−
0 =

1× S1. Let H− = H ∩K−
0 . Since H is a finite group, H− ⊆ H has to be a

finite cyclic subgroup of K−
0 = 1 × S1, say Zk, k ≥ 1. By Lemma 4.5 and

Proposition 4.10, we have the following diagram:

(S3 × S3, I∗ × Zk, I
∗ × S1, S3 × Zk).

In this case, the action is non-primitive. In fact, for L = S3×S1 ⊆ S3×S3,
we have the following diagram, which is the diagram of the cohomogeneity
one action of S3 × S1 on P3 ∗ S1 already described in dimension 5:

(S3 × S1, I∗ × Zk, I
∗ × S1, S3 × Zk).

Therefore, M is an S5-bundle over S2.
Finally, suppose that K−/H = P3. Then K−

0 is one of the subgroups
S3 × 1, 1 × S3 or ∆gS

3 of G. As above, H+ = H ∩ K+
0 = I∗ × 1 *

±∆gS
3 = NS3×S3(∆gS

3), where −∆gS
3 = {(a,−gag−1) | a ∈ S3} and

−gag−1 denotes the additive inverse of the unit quaternion gag−1 ∈ S3.
Thus we have two possibilities: either K−

0 = S3 × 1 or K−
0 = 1 × S3. Let

K−
0 = S3 × 1. Then H− = H ∩ K−

0 = I∗ × 1, and, since M is simply-
connected, Lemma 4.5 implies that H = 〈H−,H+〉 = I∗ × 1. Therefore, we
have the following group diagram:

(S3 × S3, I∗ × 1, S3 × 1, S3 × 1),(5.2)

which corresponds to the cohomogeneity one product action of S3 × S3 on
Σ(P3) × S3. Thus M is equivariantly homeomorphic to Σ(P3) × S3. Now
assume that K−

0 = 1×S3. Hence H− = H ∩K−
0 = 1× I∗ and the following

diagram appears:

(S3 × S3, I∗ × I∗, I∗ × S3, S3 × I∗).
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It follows that M is equivalent to the join action of S3 × S3 on P3 ∗P3.
Now let K+

0 = ∆gS
3. Thus H+ = H ∩K+

0 = ∆gI
∗ = {(a, gag−1) | a ∈

I∗}. As before, we consider the possible cases for K−/H, i.e. Sl, for l ≥ 2,
S1, and P3.

First assume K−/H = Sl, for l ≥ 2. By Corollary 4.4, K+ is connected
and we have H = ∆gI

∗. Also, K−
0 is a 3-dimensional subgroup of G. There-

fore, K−
0 is one of 1 × S3, S3 × 1 or ∆hS

3 = {(a, hah−1) | a ∈ S3}, for
some h ∈ G. As before, the cases where K−

0 = 1× S3 or S3 × 1 only differ
by an automorphism of S3 × S3, so we will only consider the cases where
K−

0 = 1× S3 or K−
0 = ∆hS

3.
ForK−

0 = 1×S3 we can first conjugate all subgroups by (1, g−1). Then, by
Proposition 4.1, the corresponding diagrams are equivalent to the following:

(S3 × S3,∆I∗, I∗ × S3,∆S3).

The actions are equivalent to the following action:

(S3 × S3)× (P3 ∗ S3)→ P3 ∗ S3

((g, h), ([x, y, t], y)) 7→ [gx, gyh−1, t].

Now let K−
0 be a diagonal subgroup of S3 × S3. Since K−/H is simply-

connected, π0(K
−) = π0(H). However, π0(H) = I∗ whereas K− has at

most two components. Thus this case cannot occur.
Now we suppose that K−/H = S1. Thus K−

0 is a circle subgroup. Notice
that the normalizer of a circle subgroup of G does not contain H0 = ∆gI

∗.
Therefore this case cannot happen either.

Finally, letK−/H = P3. In this caseK−
0 must be one of the 3-dimensional

subgroups of S3×S3. The same argument we used in the paragraph preced-
ing diagram 5.2 rules out the cases K−

0 = 1×S3 and K−
0 = S3×1. Indeed, if

K−
0 were 1×S3, then, since K−/H = P 3, we would have H− = 1×I∗. How-

ever, K+
0 = ∆gS

3, which givesK+ ⊆ ±∆gS
3. Therefore, K+ cannot contain

H− = 1×I∗. The case where K−
0 = S3×1 is ruled out similarly. Therefore,

there is only one possibility for K−
0 , namely ∆hS

3 = {(a, hah−1) | a ∈ S3}
for some h ∈ S3. Now we show that the isotropy groups K± are connected.
Notice that K+ ⊆ N(∆gS

3) = ±∆gS
3 and K− ⊆ N(∆hS

3) = ±∆hS
3.

Hence K± has at most two connected components, so π1(G/K±) is either
trivial or Z2 according to the long exact sequence of homotopy groups of the
fiber bundle

K± → G→ G/K±.

It also follows from the sequence that π2(G/K±) = 0.
Since M is simply-connected, Proposition 4.3 implies that π1(G/H) =

N+N−, where N± are as in the statement of the proposition. From the
long exact sequences

0→ π1(K
±/H)

i±∗−→ π1(G/H)
ρ±∗−−→ π1(G/K±)→ 0
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we conclude that N± ∼= I∗, for π1(K
±/H) = I∗. Furthermore,

π1(G/K±) =
N+N−

N±
=

N∓

N+ ∩N−
.

Since the only proper normal subgroup of I∗ is Z2, π1(G/K±) has to be
trivial by the above argument. Therefore, K± are connected. Consequently,
we have ∆gI

∗ = H = ∆hI
∗. This implies that hg−1 ∈ CS3(I∗) = Z2, where

CS3(I∗) is the centralizer of I∗ in S3. Therefore, g = h or g = −h. In either
case, K+ = ∆gS

3 = ∆hS
3 = K−. Hence, after conjugating all subgroups

by (1, g−1), we get the following equivalent diagram, by Proposition 4.1:

(S3 × S3,∆I∗,∆S3,∆S3).

Thus M is equivariantly homeomorphic to Σ(P3)×S3 with the action of
S3 × S3 given by

(S3 × S3)× (Σ(P3)× S3)→ Σ(P3)× S3

((g, h), ([x, t], y)) 7→ ([gx, t], gyh−1).

By Corollary H, M is homeomorphic to S4 × S3.

G = S3 × S3 × S1. In this case dimH = 1 and dimK+ = 4 since, by
assumption, K+/H = P3. According to Proposition 4.8, K−/H = S1 and
K+

0 ⊆ S3 × S3 × 1. Therefore, K−
0 is a 2-torus subgroup of G, and (up to

an automorphism of G) we can assume that K+
0 = S3 × S1 × 1. As a result

H+ = H ∩K+
0 = I∗ × S1 × 1 by Lemma 4.11. Since I∗ × S1 × 1 ⊆ K− ⊆

N(K−
0 ) = NG(T

2), K−
0 has to be 1× T 2 = 1× S1× S1. Therefore, we have

the following diagram:

(S3 × S3 × S1, I∗ × S1 × Zk, I
∗ × T 2, S3 × S1 × Zk).

This action is a non-primitive action. Indeed, for L = S3×T 2 ⊆ S3×S3×S1,
we have the diagram

(S3 × T 2, I∗ × S1 × Zk, I
∗ × T 2, S3 × S1 × Zk),

which is a normal extension of the cohomogeneity one action of S3 × S1 on
P3 ∗ S1 described in dimension 5. Thus M is a P3 ∗ S1-fiber bundle over
(S3 × S3 × S1)/(S3 × T 2) and is therefore homeomorphic to an S5-bundle
over S2.

G = S3 × S3 × S3. We show that no non-reducible diagram for this case
occurs. In fact, we will show that all possible diagrams in this case reduce
to the diagrams of the case G = S3 × S3. First, note that dimH = 3 and
dimK+ = 6. Recall that Projk, k = 1, 2, 3, denotes the projection onto
the k-th factor of S3 × S3 × S3. Since we assume that the action is non-
reducible, it follows from Proposition 4.6 that Projk(H0), k = 1, 2, 3, is not
S3. On the other hand, Projk(H0) cannot be trivial. Otherwise, H would
be a 3-dimensional subgroup of S3 × S3 and H0 must project onto one of
the factors. This would yield a reducible action, which would contradict
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the assumption that the action is non-reducible. Thus, Projk(H0) = S1, for
k = 1, 2, 3. An inspection of the subgroups of S3×S3×S3 shows that none
of the 6-dimensional subgroups of S3 × S3 × S3 contains H. Therefore, no
non-reducible action can occur. �

6. Proof of Theorem G

To prove that Σ(P3)×S2 is homeomorphic to S4×S2 we will use a special
instance of the classification of closed, oriented, simply-connected topologi-
cal 6-manifolds with torsion-free homology. This classification follows from
work of Wall [54], Jupp [31], and Zhubr [60]. We first recall Jupp’s classi-
fication of closed, oriented, simply-connected topological 6-manifolds with
torsion-free homology (see [31] or [46, Section 1]). We follow Okonek and
Van de Ven’s presentation in [46, Section 1].

Definition 6.1. (1) A system of invariants is a sextuple (r,H, µ,w, p,∆),
where
• r is a nonnegative integer;

• H is a finitely generated free abelian group;

• µ : H ⊕H ⊕H → Z is a symmetric trilinear form;

• w ∈ H ⊗ Z2;

• p ∈ HomZ(H,Z); and

• ∆ ∈ Hom(H,Z2).

(2) A system of invariants (r,H, µ,w, p,∆) is admissible if, for every
W ∈ H and T ∈ HomZ(H,Z) such that W ≡ w (mod 2) and T ≡ ∆
(mod 2), the following relation holds:

µ(W,W,W ) ≡ (p + 24T )(W ) (mod 48).

(3) Two systems of invariants (r,H, µ,w, p,∆) and (r′,H ′, µ′, w′, p′,∆′)
are equivalent if r = r′ and there exists an isomorphism α : H → H ′

such that

α(w) = w′, α∗(∆′) = ∆, α∗(µ′) = µ, α∗(p′) = p.

LetM be a closed, oriented, simply-connected topological 6-manifold with
torsion-free homology. We now recall how to extract from M the system of
invariants (r,H, µ,w, p,∆) in Definition 6.1, as explained in [31, Section 1]
and [46, Section 1.1, Definition 1 and Theorem 1]. The invariants r, H and
µ correspond to invariants of the cohomology ring of M . As pointed out in
[46, p. 300, item ii)] the rank of H3(M,Z) is an even number. We let b3(M)
denote the rank of H3(M,Z). One obtains r, H and µ as follows:
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• r = b3(M)/2, a nonnegative integer;

• H = H2(M,Z), a finitely generated free abelian group;

• µ corresponds to the symmetric trilinear form µM : H ⊕H ⊕H → Z
given by the cup product evaluated on the orientation class.

The invariants w, p, and ∆ correspond to characteristic classes of M and
are obtained in the following way:

• w ∈ H⊗Z2 corresponds to the second Stiefel–Whitney class w2(M) ∈
H2(M,Z2) = H ⊗ Z2;

• p ∈ HomZ(H,Z) represents the first Pontryagin class p1(M) ∈ H4(M,Z).
By Poincaré duality, H4(M,Z) = HomZ(H,Z).

• ∆ ∈ HomZ(H,Z2) is the Kirby–Siebenmann class ∆(M) ∈ H4(M,Z2).
By Poincaré duality, H4(M,Z2) = HomZ(H,Z2).

The invariants of M listed above satisfy the relation

µM (W,W,W ) ≡ (p1(M) + 24T )(W ) (mod 48).

for all integral classes W ∈ H2(M,Z), T ∈ H4(M,Z) with W ≡ w2(M)
(mod 2), T ≡ ∆(M) (mod 2). Therefore, any system of invariants com-
ing from a closed, oriented, simply-connected topological 6-manifold with
torsion-free homology is admissible.

We now state Jupp’s classification theorem (see [31, Theorem 1] and [46,
Theorem 1]).

Theorem 6.2 (Jupp). The assignment

M 7→
(
b3(M)/2,H2(M,Z), µM , w2(M), p1(M),∆(M)

)

induces a bijection between oriented homeomorphism classes of closed, ori-
ented, simply-connected topological 6-manifolds with torsion-free homology
and equivalence classes of admissible systems of invariants
(r,H, µ,w, p,∆). Such a manifold has a smooth (or PL) structure if and
only if ∆(M) = 0, and the smooth structure is unique.

We point out that for closed, oriented, simply-connected topological 6-
manifolds the first Pontryagin class is always integral (see [31]). Okonek
and Van de Ven [46, pp. 302–303] have summarized the classification in the
special case where r = 0 and H = Z. This is the case that is relevant to us,
since for Σ(P3)×S2 we have r = 0 and H = Z. We now recall these results
(cf. [46, Example 2]).

Definition 6.3 ([46]). (1) A quadruple (W̄ , T̄ , d, p) ∈ Z2 × Z2 × Z× Z
is admissible if

(6.1) d(2x+W )3 ≡ (p+ 24T )(2x +W ) (mod 48),
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for every integer x.

(2) Two admissible quadruples (W̄ , T̄ , d, p) and (W̄ ′, T̄ ′, d′, p′) are equiv-
alent if W̄ = W̄ ′, T̄ = T̄ ′ and (d′, p′) = ±(d, p).

(3) A quadruple (W̄ , T̄ , d, p) ∈ Z2 × Z2 × Z × Z is normalized if d ≥ 0,
and p ≥ 0 if d = 0.

(4) Two normalized quadruples (W̄ , T̄ , d, p), (W̄ ′, T̄ ′, d′, p′) are weakly
equivalent if d′ = d, W̄ ′ = W̄ and

p+ 24T ≡ p′ + 24T ′ (mod 48) if d ≡ 0 (mod 2),
p ≡ p′ (mod 24) if d ≡ 1 (mod 2).

Theorem 6.4 ([46]). (1) Let M be as in Theorem 6.2 with r = 0 and
H = Z. The system of invariants introduced in Definition 6.1 can be
identified with admissible quadruples (W̄ , T̄ , d, p) ∈ Z2×Z2×Z×Z,
where the “degree” d corresponds to the cubic form µ (i.e. d is the
unique integer such that µ(x, x, x) = dx3 for every integer x).

(2) The assignment

X → (W̄ , T̄ , d, p)

induces a 1-1 correspondence between oriented homeomorphism classes
of closed, oriented, simply-connected topological 6-manifolds with
torsion-free homology and equivalence classes of normalized admis-
sible quadruples (W̄ , T̄ , d, p).

(3) The assignment

X → (W̄ , T̄ , d, p)

induces a 1-1 correspondence between homotopy classes of closed,
oriented, simply-connected topological 6-manifolds with torsion-free
homology and weak equivalence classes of admissible systems of in-
variants.

Now we use the above results to prove that Σ(P3)×S2 is homeomorphic
to S4×S2. Let (W̄ , T̄ , d, p) be the admissible quadruple of M = Σ(P3)×S2

as in Theorem 6.4–(1). Since (0, 0, 0, 0) is the admissible quadruple of
S4×S2, and M is homotopy equivalent to S4×S2, Theorem 6.4–(3) implies
that d = 0, W̄ = 0, and p + 24T ≡ 0 (mod 48). On the other hand, in
this case, equation (6.1) is equivalent to p ≡ 0 (mod 24), i.e. p = 24k,
for k = 0,±1,±2, . . . . Hence, T ≡ p/24 (mod 2); therefore, it suffices to
compute the first Pontryagin class of M . If p = 0, then M is homeomorphic
to S4 × S2 by Theorem 6.4–(2); if p ≡ 0 (mod 48), M is smoothable and,
if p ≡ 24 (mod 48), M is non-smoothable by Theorem 6.2.

In the remainder of this section, we compute the first Pontryagin class
p1 of Σ(P3) × S2 and show that p1 = 0. Note that rational Pontryagin
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classes are defined for topological manifolds (see [32]) and for polyhedral
rational homology manifolds (see [39, Ch. 20] or [58, Ch. 1]; also [25, 53]).
In both cases, one can also define Hirzebruch l-classes so that l1 =

1
3
p1 (see

[39, p. 231] and [32, Section 2.1]). Typically, the l-classes are not integral.
When a polyhedral rational homology manifold is a topological manifold,
both definitions of Pontryagin classes (and of Hirzebruch l-classes) agree
(see [32, p. 244]).

The l-classes are multiplicative, i.e. given any two topological or polyhe-
dral rational homology manifolds X and Y , one has

li(X × Y ) =
∑

p+q=i

lp(X)lq(Y ).

Thus in our case, since Σ(P3) is a polyhedral rational homology manifold,
we have

l1(Σ(P
3)× S2) = l1(Σ(P

3)) + l1(S
2)

= l1(Σ(P
3)).

Therefore, to find p1(Σ(P
3)× S2), it suffices to find l1(Σ(P

3)).
First observe that Σ(P3) ≈ S4/I∗, where I∗ acts in the obvious way

on a round S4 by orientation-preserving diffeomorphisms. This observa-
tion allows us to use a formula of Zagier [59] to compute the Hirzebruch
l-class of the quotient space X/G of a closed, oriented smooth manifold
X by the orientation-preserving diffeomorphism action of a finite group
G. Since Σ(P3) is 4-dimensional, the top-dimensional component of l is
l1 and, by [59, Observation (ii) on p. 256], l1 equals the signature. Thus,
to compute l1(Σ(P

3)), we need only compute Sign(Σ(P3)). Recall now
that Σ(P 3) is homotopy equivalent to S4. Therefore, their cohomology
rings are isomorphic and it follows that Sign(Σ(P3)) = 0. Hence the top
component of l(Σ(P3)) is zero. Since the top component of l(Σ(P3)) is
Sign(Σ(P3)) = 1

3
p1(Σ(P

3)) = 1

3
p1(Σ(P

3) × S2), we conclude that the first

Pontryagin class of Σ(P3)×S2 is zero. Therefore, Σ(P3)×S2 is homeomor-
phic to S4 × S2. �

Remark 6.5. One can also see that Sign(Σ(P3)) = 0 using results of Atiyah
and Singer [2] and of Atiyah and Bott [1], which we briefly outline in the
following paragraphs.

Let X be a closed, oriented smooth manifold and G a finite group acting
on X by orientation-preserving diffeomorphisms. Let

π : X → X/G



COHOMOGENEITY ONE TOPOLOGICAL MANIFOLDS REVISITED 27

be the projection map of X onto the orbit space X/G. As mentioned above,
the top-dimensional component of l(X/G) is Sign(X/G). By the Atiyah-
Singer G-equivariant signature theorem (see [2, Section 6] or [26]), the sig-
nature of X/G is given by

Sign(X/G) =
1

|G|

∑

g∈G

Sign(g,X).(6.2)

In our particular case, where G = I∗ acts on X = S4 with only two isolated
fixed points, Sign(g,X) is given by a signature formula of Atiyah and Bott
[1, Theorem 6.27], which we state as Theorem 6.6 below. Before quoting
the theorem, we recall some notation.

Let f : X → X be an isometry of a compact, oriented, even-dimensional
Riemannian manifoldX and p be a fixed point of f . Consider the differential

dfp : TpX → TpX.

Because f is an isometry of X, dfp will be an isometry of TpX. Hence, one
may decompose TpX into a direct sum of orthogonal 2-planes

TpX = E1 ⊕ E2 ⊕ ...⊕ En,

which are stable under dfp. Let (ek, e
′
k) be an orthogonal basis of Ek. We

may choose (ek, e
′
k) so that

vp(e1 ∧ e′1 ∧ ... ∧ en ∧ e′n) = 1,

where v is the volume form of X. Relative to such a basis dfp is then given
by rotations by angles θk in Ek. That is,

dfpek = cos θkek + sin θke
′
k,

dfpe
′
k = − sin θkek + cos θke

′
k.

The resulting set of angles {θk} is called a coherent system for dfp.

Theorem 6.6 (Atiyah and Bott). Let f : X2n → X2n be an isometry of
the compact, oriented, even dimensional Riemannian manifold X. Assume
further that f has only isolated fixed points {p}, and let θpk be a system of
coherent angles for dfp. Then the signature of f is given by

Sign(f,X) = i−n
∑

p

∏

k

cot(θpk/2).

We now use Theorem 6.6 to compute Sign(g,X) for each g ∈ I∗ and
recover Sign(S4/I∗) via equation (6.2). For non-trivial g ∈ G, the fixed
point set Xg has two elements, say {p, q}, corresponding to the cone points
of the suspended I∗-action on S4. Let {α, β} be the coherent system for
p. Then the coherent system for q will be {−α, β}, so Sign(g,S4) = 0.
On the other hand, Sign(e,S4) = Sign(S4) = 0 and Sign(−e,S4) = 0 by
Theorem 6.6. As a result Sign(S4/I∗) = 0.
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