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Abstract. We begin an investigation of the action of pseudo-Anosov elements
of Out(F2) on the Markoff-type varieties

Xκ : x2 + y2 + z2 = xyz + 2 + κ

over finite fields Fp with p prime. We first make a precise conjecture about
the permutation group generated by Out(F2) on X−2(Fp) that shows there is
no obstruction at the level of the permutation group to a pseudo-Anosov act-
ing ‘generically’. We prove that this conjecture is sharp. We show that for
a fixed pseudo-Anosov g ∈ Out(F2), there is always an orbit of g of length
≥ C log p + O(1) on Xκ(Fp) where C > 0 is given in terms of the eigenvalues of
g viewed as an element of GL2(Z). This improves on a result of Silverman from
[26] that applies to general morphisms of quasi-projective varieties. We have
discovered that the asymptotic (p→∞) behavior of the longest orbit of a fixed
pseudo-Anosov g acting on X−2(Fp) is dictated by a dichotomy that we describe
both in combinatorial terms and in algebraic terms related to Gauss’s ambiguous
binary quadratic forms, following Sarnak [23]. This dichotomy is illustrated with
numerics, based on which we formulate a precise conjecture in Conjecture 1.10.

1. Introduction

For κ ∈ Z, let Xκ denote the affine surface

(1.1) Xκ : x2 + y2 + z2 = xyz + 2 + κ.

When κ = −2, X−2 is Markoff’s surface. A theorem of Markoff [17] relates the
integer points on X−2 to the Diophantine properties of Q; in particular to the
Markoff spectrum. In a different vein, the real and complex points of Xκ are related
to moduli spaces of SL2(C)-local systems on a torus with one puncture [12]. Due
to this connection, letting F2 denote the free group on 2 generators, the group
Out(F2) ∼= GL2(Z) acts by automorphisms of Xκ, viewed as a scheme of finite type
over Z. We give a detailed description of this group action in Section 2.2 below.

The group Out(F2) is the mapping class group of the torus with one puncture,
and the free group F2 is the fundamental group of this surface. As such, Out(F2)
is subject to Thurston’s classification of mapping class group elements [27] into
periodic, reducible, or pseudo-Anosov (p-A.) elements. From the point of view of
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GL2(Z), an element is p-A. if it is hyperbolic, that is, has two distinct real eigen-
values. The current paper aims to investigate how p-A. elements of Out(F2) act on
Xκ(Fp) for prime p.

The study of p-A. elements of Out(F2) acting on Xκ(R) and Xκ(C) has been on-
going since the early 1980s, instigated by a paper of Kohmoto, Kadanoff and Tang
[15] where the spectrum of a 1D lattice Schrödinger operator with a quasiperiodic
potential was related to the dynamics of a particular p-A. automorphism (the Fi-
bonacci substitution) on Xκ(R). In [4], Cantat resolved a conjecture of Kadanoff
relating the topological entropy of a p-A. element acting on Xκ(R) to the largest
eigenvalue of the corresponding matrix in GL2(Z). See also Bowditch [3] for some
related questions.

Here, we begin a parallel study for the action of p-A. elements on Xκ(Fp). Any p-
A. element Φ of Out(F2) gives for each prime p a permutation Φp of Xκ(Fp). In this
paper we propose that in the study of p-A. Φ acting on Xκ(Fp), one should replace
topological entropy by the asymptotic complexity of the family of permutations
{Φp}. In particular, we ask the following question.

Problem 1.1. For fixed p-A. Φ, what is the asymptotic behavior of

log( longest cycle of Φp on Xκ(Fp) )

log p

as p→∞?

Empirically, the answer to this question is quite surprising (see Conjecture 1.10
below). We also obtain a theoretical result towards this question in Theorem 1.5
below. We will be primarily interested in the case of κ = −2, although we prove
some of our results for general κ.

Before tackling Problem 1.1, a preliminary question intervenes. It could a priori
be the case that the permutation group generated by Out(F2) on Xκ(Fp) is highly
restricted and this would of course affect how a single element can behave.

Let X∗−2(Fp) = X−2(Fp)− (0, 0, 0). Bourgain, Gamburd, and Sarnak prove in [2,
Theorem 2] that for all primes outside a very small exceptional set, the action of
Out(F2) on X∗−2(Fp) is transitive, which was a conjecture of McCullough and Wan-
derley from [18]. Sarnak has raised more generally the question of what permutation
group is generated by the action of Out(F2) on X∗−2(Fp).

It follows from work of Horowitz [14] (see also Goldman [12]) that

Aut(Xκ) ∼= PGL2(Z) nN

where the PGL2(Z) factor is induced by Out(F2) and N is the Klein four-group
generated by even sign changes

n1 : (x, y, z) 7−→ (x,−y,−z)
(similarly n2, n3). For p odd, each N -orbit on X∗−2(Fp) contains four distinct points
(see Lemma 5.1 below). Thus Out(F2) cannot act 2-transitively on X∗−2(Fp) for any
prime, since it must permute orbits of N . In light of this observation, we should
examine instead the action of Out(F2) on the set of N -orbits in X∗−2(Fp), which we
denote by Y−2(Fp).
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Let H(p) denote the permutation group generated by Out(F2) acting on Y−2(Fp).
We write An for the alternating group on n letters and Sn for the symmetric group.
We prove the following.

Theorem 1.2. Let n = |Y−2(Fp)| and let p > 3. Then, H(p) ≤ An if and only if
p ≡ 3 (mod 16).

We prove Theorem 1.2 in Section 5. Theorem 1.2, alongside computations of
H(p) for p ≤ 47, lead us to conjecture the following:

Conjecture 1.3. Let H(p) denote the permutation group induced by the action of
Out(F2) on Y−2(Fp), and let n = |Y−2(Fp)|. Then when p > 3

• H(p) ∼= Sn if p 6≡ 3 (mod 16),
• H(p) ∼= An if p ≡ 3 (mod 16).

Meiri and Puder have proved in [19] that H(p) contains An whenever p ≡ 1 (mod 4)
and p is outside the Bourgain-Gamburd-Sarnak exceptional set, and also for a den-
sity 1 set of primes without any congruence condition. In these cases, Theorem 1.2
describes exactly what H(p) is. This shows there is no obstruction at the level of
the group H(p) to a p-A. element behaving ‘generically’ on Y−2(Fp).

We now describe our theoretical result towards Problem 1.1. In [26] Silverman
studied a more general version of this problem and obtained as a consequence the
following result.

Theorem 1.4 (Silverman [26, Theorem 3(a)]). Let K be a number field with ring
of integers OK and V a quasi-projective variety defined over K. Let ϕ : V → V
be a morphism defined over K, such that ϕ has an infinite orbit on V (K). If
p ∈ Spec(OK) is such that V and ϕ have good reduction at p, then write ϕp and
V (Fp) for these reductions and N(p) for the norm of this prime. For any ε > 0, the
set of p ∈ Spec(OK) such that there is good reduction of ϕ and V at p, and an orbit
of ϕp on V (Fp) of length ≥ (logN(p))1−ε has analytic density 1.

This result applies directly to Problem 1.1. Silverman’s result actually provides
many orbits of length ≥ (logN(p))1−ε.

What we can achieve in the current context is the removal of the ε from The-
orem 1.4, and get a statement for all primes p instead of just analytic density 1.
Furthermore, our bounds are independent of κ.

Theorem 1.5. Given a pseudo-Anosov g ∈ Out(F2), let λ denote the eigenvalue of
largest modulus of the corresponding matrix in GL2(Z). For any κ ∈ Z, as p→∞,
g has an orbit of length at least

log p

log |λ|
+Og(1)

on Xκ(Fp). The implied constant depends on g, but not on κ.

Now we describe our numerical results which show what the answer to Problem
1.1 should be, at least for Y−2(Fp). First we give two natural guesses, that turn out
to both be wrong.
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Figure 1.1. This shows the longest orbits of two p-A. elements
U2V UV (blue) and U2V 2UV (green) on Y−2(Fp). The black line is
y = p2/4, which is asymptotic to |Y−2(Fp)|. The red line is y = 10p.
The plots are in log vs log scale axes with p on the horizontal axis
and longest orbit on the vertical.

Guess 1: a p-A. g acts as a random map on Y−2(Fp). A random map from

a set of size N to itself has with high probability its longest orbit of size �
√
N .

Since |Y−2(Fp)| � p2 this predicts the longest orbit of g acting on Y−2(Fp) will have
size � p. This fact comes from a collision heuristic based on the ‘Birthday paradox’.
However, this heuristic is not convincing, since g is invertible, so should really be
viewed as a random permutation (for some notion of random, see next guess). On
the other hand, although this guess doesn’t give the right answer in general (see
below), there are p-A. g for which this guess does point to the right asymptotic
behavior.

Guess 2: a p-A. g acts as a random permutation on Y−2(Fp). Perhaps
we should model the action of g on Y−2(Fp) by a permutation chosen uniformly
at random from An or Sn, where n = |Y−2(Fp)|, according to Conjecture 1.3. To
simplify things, let us just consider Sn, the case of An being similar. Then it
is known that a permutation drawn uniformly at random from Sn has a cycle of
length at least n/2 in its cycle decomposition with positive probability. This fact
is closely related to the well-known ‘100 Prisoners Problem’ posed in [10]. So this
would predict for fixed p-A. g that as p varies we should often (in fact being more
careful with the statistics, with high probability) see an orbit of length � p2 of g
on Y−2(Fp). This guess also turns out not to be correct in general.
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To describe our numerics, we introduce special elements of PGL2(Z). We first
note, if g has determinant −1, then the qualitative behavior of the longest orbit of
g will be governed by that of g2, which has determinant 1. So it is sufficient (at
least for the phenomena we show) to consider only elements of PSL2(Z). Let

U =

(
1 0
1 1

)
, V =

(
1 1
0 1

)
.

Lemma 1.6. Every hyperbolic element of PSL2(Z) is conjugate to an element

Un1V m1 . . . UnkV mk

with k > 0 and all ni,mi > 0. We call this a reduced UV -word.

This is well-known, but for completeness we prove Lemma 1.6 in Section 4 below.
Since the orbit lengths of g on Xκ(Fp) are the same after conjugation, we may simply
consider reduced UV -words in what follows. Our conjectural answer to Problem
1.1 is based on a dichotomy for hyperbolic g ∈ PSL2(Z).

Definition 1.7. A reduced UV -word Un1V m1 . . . UnkV mk is a cyclic palindrome if
its reverse can be cyclically rotated to obtain the original word. For example:

U2V UV
reverse−−−−→ V UV U2 rotate−−−→ UV U2V

rotate−−−→ V U2V U
rotate−−−→ U2V UV.

Then U2V UV is a cyclic palindrome, whereas U2V 2UV is not. Following Sarnak
[23] (who follows terminology of Gauss) we make the following definition.

Definition 1.8. Say g ∈ PSL2(Z) is ambiguous if the conjugacy class of g in
PSL2(Z) is conjugated to the conjugacy class of g−1 in PSL2(Z) by an element of
PGL2(Z) of determinant −1.

Our two definitions actually coincide.

Proposition 1.9. Let hyperbolic g ∈ PSL2(Z) be given by a reduced UV -word.
Then the UV -word is a cyclic palindrome if and only if g is ambiguous.

We prove Proposition 1.9 in Section 4. In Figure 1.1 we show the longest orbits
of U2V UV and U2V 2UV on Y−2(Fp). They evidently have strikingly different
behaviors. Note that

U2V UV =

(
2 3
5 8

)
, U2V 2UV =

(
3 5
7 12

)
,

so they are both hyperbolic. However, Figure 1.1 shows that the longest orbit of
U2V UV is on the order of p and that of U2V 2UV is on the order of p2. Based on fur-
ther evidence (see Table 1 and Figure 1.2), we are led to conjecture that the crucial
difference between these words is that U2V UV is a cyclic palindrome/ambiguous.
Write L(g; p) for the longest orbit of g on Y−2(Fp). We make the following conjec-
ture:
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Conjecture 1.10. Let g ∈ PSL2(Z) be hyperbolic. If g is ambiguous then

(1) There are constants C1 = C1(g) > 0 and C2 = C2(g) > C1 such that
C1p ≤ L(g; p) ≤ C2p for all primes p.

(2) The discrete probability measures

1

#{primes p ≤X}

∑
p≤X

δL(g;p)
p


converge as X →∞ to a compactly supported Borel probability measure on
R.

If g is not ambiguous then

(1) There is a constant c = c(g) such that L(g; p) ≥ cp2 for all primes p.
(2) The discrete probability measures

1

#{primes p ≤X}

∑
p≤X

δL(g;p)

p2


converge as X →∞ to a compactly supported Borel probability measure on
R.

As a particular consequence, we conjecture that the answer to Problem 1.1 for κ =
−2 is

lim
p→∞

log(L(g; p))

log p
=

{
1 if g is ambiguous.

2 if g is not ambiguous.

The issue of whether elements of SL2(Z) are conjugate to their inverses shows
up in several different areas of mathematics including connect sum problems for
manifolds [7], the dynamics of kicked toral automorphisms [22], and the classification
of foliations of torus bundles over the circle [11]. This issue is explored in depth
in the article of Sarnak [23] where it is related to the theory of binary quadratic
forms. A conjugacy class in PSL2(Z) is called primitive if a representative is not a
power of another element. To each conjugacy class [g] in PSL2(Z) one can attach
a number t([g]) = |trace(g)|. Let Π denote the collection of primitive hyperbolic
conjugacy classes in PSL2(Z). It is a result of Hejhal [13], after Selberg [25], that
one has the asymptotic formula ∑

p∈Π, t(p)≤X
1 ≈ X2

2 logX
.

On the other hand, Sarnak shows in [23] that if we write ΠA for the collection of
primitive hyperbolic ambiguous conjugacy classes in PSL2(Z), then∑

p∈ΠA, t(p)≤X
1 ≈ 97

8π2
X(logX)2.

So the ambiguous classes are rare, with those having t(p) ≤ X taking up about a
square root of the number of all primitive hyperbolic classes with t(p) ≤ X.
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Figure 1.2. Histograms showing the distributions that feature in
Conjecture 1.10. Here p ranges between 1009 and 3761. For
U2V 2UV the histogram shows the distribution of L(g; p)(p2/4)−1.
Note |Y−2(Fp)| is asymptotic to p2/4. For U2V UV the distribution
is of L(g; p)(10p)−1. The 10 is not significant and has just been cho-
sen to scale the data. One outlier (p = 3079, L(g; p) = 35585) has
been removed from the U2V UV chart.
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2. Background

2.1. Background on the free group. Here we give necessary background about
the free group F2 and its automorphisms. We fix generators X and Y of F2 through-
out this paper. We always assume words in F2 are reduced, meaning positive powers
of X do not appear beside negative powers, and similarly for Y . Following [21] we
make the following definition.

Definition 2.1. A word w ∈ F2 is monotone if for each letter X or Y , all the
exponents of this letter in w have the same sign. For example, XY −1 is monotone,
but Y XY −1 is not.

We need the following proposition that appears in Parzanchevski and Puder [21,
Prop. 3.5].
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g not ambiguous

g L(g; 727)

V 1U1V 3U1V 2U2 87928

V 3U2V 1U2V 2U2 77996

V 1U1V 2U1V 2U3 75289

V 2U1V 1U2V 1U2 95183

V 2U1V 1U1V 3U1 42238

V 2U1V 1U2V 2U3 62702

V 1U1V 1U3V 2U1 51981

V 1U1V 3U4V 1U1 75716

V 1U4V 2U1V 1U1 79495

V 1U3V 2U2V 3U1 86897

V 3U1V 1U2V 1U3 108710

V 2U3V 1U1V 3U1 61549

V 1U1V 2U4V 3U1 87870

V 1U1V 2U1V 3U2 82633

V 2U4V 1U1V 1U1 79495

V 4U1V 1U1V 1U4 130737

V 3U4V 1U1V 2U1 72046

g ambiguous

g L(g; 727)

V 1U1V 1U1V 1U2 3193

V 1U1V 3U1V 1U2 2018

V 2U1V 2U3V 2U1 2780

V 4U1V 1U2V 1U1 3748

V 1U2V 1U2V 3U2 2780

V 1U1V 1U1V 1U4 2894

V 1U1V 1U2V 1U2 4591

V 1U3V 1U1V 1U1 3285

V 1U2V 1U2V 1U2 3331

V 2U2V 2U1V 2U2 3350

V 1U4V 1U1V 4U1 1756

V 2U1V 2U4V 2U1 2022

V 2U1V 1U1V 2U4 2937

V 1U2V 1U1V 1U1 3193

V 1U2V 2U2V 1U1 3680

V 1U2V 3U2V 1U2 2780

V 1U2V 1U1V 4U1 3748

Table 1. This table gives evidence for Conjecture 1.10. The data
is for p = 727. We have |Y−2(F727)| = 131587. Recall L(g; 727) is
the longest orbit of g on Y−2(F727).

Proposition 2.2. Any element g of Out(F2) has a representative in Aut(F2) (mod-
ulo conjugation) of the form

(2.1) ĝ : (X,Y ) 7→ (w1, w2)

where w1 and w2 are monotone words in F2.

In the setting of Proposition 2.2 we say that ĝ is monotone. Suppose ĝ ∈ Aut(F2)
as in (2.1) is monotone, with

wi = Xαi1Y βi1Xαi2Y βi2 . . . XαitiY βiti

for some αij , β
i
j , ti ∈ Z. We identify Z2 ∼= F2/[F2,F2] by the basis induced by X,Y .

Then ĝ acts on Z2 by the matrix(
a1 a2

b1 b2

)
∈ GL2(Z)
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where ai =
∑

j α
i
j and bi =

∑
j β

i
j . This matrix clearly only depends on g ∈

Out(F2). Thus we obtain a homomorphism

Out(F2)→ GL2(Z);

in fact, by a result of Nielsen [20], this map is an isomorphism, so the values ai and
bi are uniquely determined by g ∈ Out(F2) and vice versa. We pass freely between
these representations of g in the rest of the paper.

2.2. Automorphisms of Markoff’s surface. The group actions that we consider
in this paper arise from representation varieties. Here we follow Goldman [12]. We
write Hom(F2, SL2(C)) for the set of homomorphisms from F2 to SL2(C). We
view an element φ ∈ Hom(F2, SL2(C)) as an element of C8 via the coordinates
of φ(X), φ(Y ) and hence view Hom(F2,SL2(C)) as an affine variety. There is an
algebraic action of SL2(C) on Hom(F2, SL2(C)) by conjugation, and a commuting
action of Aut(F2).

Let O = OHom(F2,SL2(C)) denote the coordinate ring of Hom(F2, SL2(C)). We

consider the ring of invariant functions OSL2(C). By results of Fricke [8] and Fricke-

Klein [9], OSL2(C) ∼= C[x, y, z] with x = trφ(X), y = trφ(Y ), z = trφ(XY ) (consid-
ered as functions of φ ∈ Hom(F2, SL2(C))). The action of Aut(F2) on O descends

to an action of Out(F2) on OSL2(C) by polynomial maps.
Now one has the following unexpected fact due to Nielsen [20]: the action of

Out(F2) on conjugacy classes in F2 leaves invariant the pair of conjugacy classes
given by the commutator [X,Y ] and its inverse. This, together with the fact that
if A ∈ SL2(C) then tr(A) = tr(A−1), implies that Out(F2) preserves trφ([X,Y ]) ∈
OSL2(C). Moreover, an identity of Fricke and Klein states

trφ([X,Y ]) + 2 = (trφ(X))2 + (trφ(Y ))2 + (trφ(XY ))2 − trφ(X)trφ(Y )trφ(XY ).

This explains that GL2(Z) acts by polynomial automorphisms of both C3 and
C[x, y, z] and preserves the polynomial

(2.2) x2 + y2 + z2 − xyz.

The center of Out(F2) = GL2(Z) is generated by the class of the automorphism
(X,Y ) 7→ (X−1, Y −1). This corresponds to the matrix −Id ∈ GL2(Z). This element
acts trivially on C3 since for φ : F2 → SL2(C)

(trφ(X−1), trφ(Y −1), trφ(X−1Y −1)) = (trφ(X), trφ(Y ), trφ(XY )).

Hence the action of GL2(Z) on C3 factors through one of PGL2(Z). Moreover,
PGL2(Z) is generated by standard unipotent matrices U and V defined in the
Introduction together with

η :=

(
1 0

0 −1

)
.

The matrices U and V have representative automorphisms Ũ(X,Y ) = (XY, Y ),

Ṽ (X,Y ) = (X,XY ) in Aut(F2) from which one can work out the corresponding
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polynomial maps of C3. Indeed, from the Cayley-Hamilton Theorem, for any A,B ∈
SL2(C) we have

(2.3) tr(AB) = tr(A)tr(B)− tr(AB−1).

Hence we have for x0 = trφ(X), y0 = trφ(Y ), z0 = trφ(XY ),

U(x0, y0, z0) = (trφ(Ũ−1(X)), trφ(Ũ−1(Y )), trφ(Ũ−1(XY )))

and since Ũ−1(X,Y ) = (XY −1, Y ) we obtain

(2.4) U(x0, y0, z0) = (trφ(XY −1)), trφ(Y ), trφ(X)) = (x0y0 − z0, y0, x0).

Similar calculations give that

(2.5) U−1(x0, y0, z0) = (z0, y0, y0z0 − x0),

(2.6) V (x0, y0, z0) = (x0, x0y0 − z0, y0), V −1(x0, y0, z0) = (x0, z0, x0z0 − y0),

(2.7) η(x0, y0, z0) = η−1(x0, y0, z0) = (x0, y0, x0y0 − z0).

In particular, the action of GL2(Z) on C3 preserves Z3.
We now consider the affine scheme over Z[κ]

X := Spec(R)

where

R := Z[κ, x, y, z]/I, I := (x2 + y2 + z2 − xyz − 2− κ).

For particular choice of κ ∈ Z we obtain a scheme over Z that we denote by

Xκ := Spec(Rκ),

where

Rκ := Z[x, y, z]/Iκ, Iκ := (x2 + y2 + z2 − xyz − 2− κ).

In the case of κ = −2 one obtains Markoff’s surface X−2. By the previous discussion,
Out(F2) ∼= GL2(Z) acts on X by automorphisms of schemes over Z[κ] and for each
κ, GL2(Z) acts on Xκ by automorphisms.

Given g ∈ GL2(Z) we write g∗(x), g∗(y), g∗(z) ∈ Z[x, y, z] for the pushforwards of
the generators of Z[x, y, z] under g. If φ ∈ Hom(F2, SL2(C)) then

φ 7→ g(φ)

in the coordinates x0 = trφ(X), y0 = trφ(Y ), z0 = trφ(XY ) corresponds to

(x0, y0, z0) 7→ g(x0, y0, z0) = (g−1
∗ (x), g−1

∗ (y), g−1
∗ (z))|(x0,y0,z0).

The inverses here are important to note; they cater to the distinction between the
group action on coordinate functions and the group action on points of the scheme.

Aside from those already mentioned, there are other polynomial automorphisms
of Z3 preserving the polynomial (2.2) and hence acting on X and Xκ. These will
be used in the sequel so we introduce them now. Let mi denote the Markoff moves
defined for i = 1, 2, 3 by

m1(x, y, z) = (yz − x, y, z), m2(x, y, z) = (x, xz − y, z), m3(x, y, z) = (x, y, xy − z)
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These moves correspond to fixing two coordinates in (2.2) and flipping the root of
the quadratic equation in the remaining coordinate, hence they are sometimes called
Vieta involutions. One also has an action of S3 on Z3 by permuting coordinates, that
clearly preserves (2.2). The Markoff moves and the action by S3 are contained in,
and generate, the image of PGL2(Z) in Aut(Xκ). As described in the Introduction,
there is also a finite abelian group N of even sign changes preserving (2.2). These
are not induced by the GL2(Z) action, and a result of Horowitz [14] says that N
and GL2(Z) generate all complex polynomial automorphisms of Xκ(C).

2.3. The Cayley Cubic. When κ = 2, X2 is Cayley’s cubic surface [6]. In fact X2

is closely related to the split torus G2
m; we heavily exploit this fact in the sequel.

To see this, let X̃2 := Spec(R̃2) where

R̃2 := Z[x, y, z, δ, η]/J2, J2 := (x2 + y2 + z2 − xyz − 4, δ2 − xδ + 1, η2 − yη + 1).

The mapping

R̃2 → OG2
m

:= Z[δ, δ∗, η, η∗]/(δδ∗ − 1, ηη∗ − 1)

x 7→ δ + δ∗(2.8)

y 7→ η + η∗(2.9)

z 7→ δη + δ∗η∗(2.10)

and δ, η 7→ δ, η induces an isomorphism X̃2
∼= G2

m. The inclusion of R2 → R̃2

induces a map

G2
m
∼= X̃2 → X2.

Remark 2.3. The existence of the mapping G2
m → X2 described above arises from

the fact that X2(C) can be identified with the collection of SL2(C)-conjugacy classes
of semisimple reducible representations in Hom(F2,SL2(C)), or in simpler terms,
conjugacy classes of pairs of diagonal matrices in SL2(C). Although we do not use
this fact, it is useful to keep in mind.

There is an action of GL2(Z) on OG2
m

by

g∗(δ) = δaηc, g∗(η) = δbηd,

g∗(δ∗) = (δ∗)a(η∗)c, g∗(η∗) = (δ∗)b(η∗)d,(2.11)

for g =

(
a b

c d

)
∈ GL2(Z). We interpret δ−n = (δ∗)n for n ∈ Z and similarly

η−n = (η∗)n.

Let ι be the map ι : R2 → OG2
m

defined by the inclusion R2 → R̃2 followed by

the map R̃2 → OG2
m

given by (2.8), (2.9), (2.10). This induces a map

ι∗ : G2
m → X2.

Lemma 2.4. The map ι∗ : G2
m → X2 is GL2(Z)-equivariant.
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Proof. Recall U, V from our Introduction and η from Section 2.2. The lemma can
be checked by noting that GL2(Z) is generated by U , V and η, and these act on R2

by

(U∗(x), U∗(y), U∗(z)) = (z, y, yz − x),

(V∗(x), V∗(y), V∗(z)) = (x, z, xz − y),

(η∗(x), η∗(y), η∗(z)) = (x, y, xy − z).

(cf. (2.4)–(2.7)). Then taking V as an example, V =

(
1 1

0 1

)
, and therefore using

(2.8), (2.9), (2.10) and (2.11) gives

(V∗ ◦ ι(x), V∗ ◦ ι(y), V∗ ◦ ι(z)) = (V∗(δ + δ∗), V∗(η + η∗), V∗(δη + δ∗η∗))

= (δ + δ∗, δη + δ∗η∗, δ2η + (δ∗)2η∗)

= (ι(x), ι(z), ι(xz − y)) = (ιV∗(x), ιV∗(y), ιV∗(z)).

The calculations for U and η are similar. �

3. Lower bound on the longest orbit

3.1. Proof of Theorem 1.5. Our proof of Theorem 1.5 relies on proving that
reasonably small powers of g have few fixed points. It is convenient for our analysis
to introduce the following definition.

Definition 3.1 (Good matrices). Let g =

(
a b

c d

)
∈ GL2(Z). We say g is good

if a, b, c, d ≥ 2.

We use the notation Ox(xn) for the class of polynomials containing terms with
x-degree ≤ n, that is, with no monomial summand containing a power of x greater
than n.

The main technical ingredient in the proof of Theorem 1.5 is the following result,
whose proof will be deferred to Section 3.2.

Proposition 3.2. For each coprime a, c ∈ Z with a ≥ 2, c ≥ 2 there are polynomials

p̃a,c, q̃a,c ∈ Z[x, y] with the following properties. Assume g =

(
a b

c d

)
∈ GL2(Z)

and that g is good. Recall that I = (x2 + y2 + z2 − xyz − 2− κ) ⊂ Z[κ, x, y, z].

(1) We have

g∗(x) = p̃a,c + q̃a,cz mod I, g∗(y) = p̃b,d + q̃b,dz mod I.

(2) Moreover,

D̃ := det

(
p̃a,c − x q̃a,c

p̃b,d − y q̃b,d

)
∈ Z[κ, x, y]

is given by
D̃ = xa+b−1D0 +Ox(xa+b−2)
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where D0 ∈ Z[y] with D0 6= 0 and monic, up to a sign, and deg(D0) =
|d− c| − 1 ≥ 0.

With Proposition 3.2 in hand, we can control fixed points:

Lemma 3.3. Let g =

(
a b

c d

)
∈ GL2(Z) with |a|, |b|, |c|, |d| ≥ 2, then for any

κ ∈ Z, g has fewer than 2p(||d| − |c||+ |a|+ |b|) fixed points in Xκ(Fp).

Proof. First if ab < 0 then conjugating by

(
1 0

0 −1

)
gives a new matrix which

has ab > 0. Now if a < 0, multiplying by −I gives a new matrix with a, b, c, d ≥ 2,
i.e. the resulting matrix is good. These operations do not change the conjugacy
class of the matrix in PGL2(Z), therefore the number of fixed points on Xκ(Fp),
and neither do they change the quantity 2p(||d|− |c||+ |a|+ |b|). So we may assume
without loss of generality that g is good.

In this proof we distinguish a specific fixed value κ0 from the generic parameter
κ of Z[κ, x, y]. Let p̃a,c, q̃a,c be the polynomials from Proposition 3.2, and let pκ0a,c,
qκ0a,c be the images of p̃a,c, q̃a,c under the evaluation map

πκ0 : Z[κ, x, y]→ Z[x, y], κ 7→ κ0.

If (X,Y, Z) ∈ Xκ0(Fp) is a fixed point of g, then from Proposition 3.2 we know
pκ0a,c(X,Y ) + qκ0a,c(X,Y )Z = X and pκ0b,d(X,Y ) + qκ0b,d(X,Y )Z = Y so

(3.1)

(
pκ0a,c(X,Y )−X qκ0a,c(X,Y )

pκ0b,d(X,Y )− Y qκ0b,d(X,Y )

)(
1

Z

)
≡

(
0

0

)
mod p.

In particular, the determinant Dκ0 ∈ Z[x, y] of this matrix must be zero when
evaluated at (X,Y ) ∈ F2

p. But, recalling Proposition 3.2 and its notation,

Dκ0 = πκ0(D) = πκ0

(
xa+b−1D0 +Ox(xa+b−2)

)
= xa+b−1D0 +Ox(xa+b−2)

by using that D0 ∈ Z[y].
Proposition 3.2 tells us that for Y ∈ Fp with D0(Y ) 6= 0, the polynomial in Fp[x]

obtained by evaluating Dκ0 at y = Y has degree a + b + 1. Also from Proposition
3.2, D0 is monic up to a sign with degree |d− c| − 1, so there are at most

p.(||d| − |c|| − 1) + p(a+ b+ 1) = p(||d| − |b||+ |a|+ |c|)

pairs (X,Y ) ∈ F2
p for which (3.1) can hold. On the other hand, since X2+Y 2+Z2 =

XY Z + 2 + κ0, given X,Y for which (3.1) holds, there are at most two possible Z
with (X,Y, Z) ∈ Xκ0(Fp). �

Now that we have control over the number of fixed points of elements of g ∈
GL2(Z) we can proceed to prove Theorem 1.5.

Proof of Theorem 1.5. Given hyperbolic g in GL2(Z), we consider powers gn of this
element. Let λ be the eigenvalue of g of largest modulus. Diagonalizing g we have
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gn =

(
Q11(λn, λ−n) Q12(λn, λ−n)

Q21(λn, λ−n) Q22(λn, λ−n)

)
where the Qij are quadratic forms depending on g. It is possible to check that since
g is hyperbolic, all the coefficients of gn are unbounded as n → ∞ in the sense
that for all M > 0, there is N(M) such that when n > N(M), |(gn)ij | > M for all
1 ≤ i, j ≤ 2.

Indeed, if g is hyperbolic it cannot fix [1; 0] or [0; 1] in the action of GL2(Z)
on P 1(R). So g has an attracting fixed point z+ in P 1(R) that is distinct from
than [1; 0] and [0; 1]. Of course the same is true for the transpose gT . This means,
projectively, gn converges to a matrix with all entries nonzero. Since GL2(Z) is
discrete, at least one entry of gn is unbounded, hence all the entries are.

Note this implies that for n ≥ n0(g), gn satisfies the hypothesis of Lemma 3.3.
Noting that there is C = C(g) such that all coefficients of gn are ≤ Cλn, Lemma
3.3 gives that gn has fewer than 8Cp|λ|n fixed points on Xκ(Fp) when n ≥ n0(g).

We also need a bound on the number of fixed points of gn when n < n0(g). In

this case, we have that gndn0(g)/ne satisfies the hypothesis of Lemma 3.3, so it has
fewer than Mp fixed points, where

M = 8 max{ |(gndn0(g)/ne)i,j | : 1 ≤ i, j ≤ 2, , 1 ≤ n < n0(g) }.

But any fixed point of gn gives rise to a fixed point of gndn0(g)/ne so this means gn

has fewer than Mp fixed points.
For given N , this implies that the number of points in Xκ(Fp) fixed by any gn

with n ≤ N is

≤
∑
n<n0

Mp+
∑

n0≤n≤N
8Cp|λ|n ≤ n0Mp+ C ′p|λ|N .

for C ′ = C ′(g) > 0. We have |Xκ(Fp)| ≤ cp2 with c depending only on the complex-
ity of Xκ viewed as a variety over Fp, hence independent of κ. This follows from
the Lang-Weil bound [16, Lemma 1], and also from direct consideration of (1.1).
Therefore if n0Mp+C ′p|λ|N < cp2 then there exists a point in Xκ(Fp) not fixed by
gn for any n ≤ N . Hence there is a cycle of g of length ≥ N where

N ≈
log
( cp

2C′ −
n0M
C′

)
log |λ|

=
log p

log |λ|
+Og(1).

�

3.2. Proof of Proposition 3.2. In this section we prove the technical Proposition
3.2. The first step is to calculate the action of a given g ∈ GL2(Z) on the Cayley
cubic X2 and prove the analog of Proposition 3.2 when κ is evaluated at 2. We will
do this by exploiting the embedding ι : R2 → OG2

m
.
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Proposition 3.4. For each coprime a, c ∈ Z with a ≥ 2, c ≥ 2 there are polynomials

pa,c, qa,c ∈ Z[x, y] with the following properties. Assume g =

(
a b

c d

)
∈ GL2(Z)

and that g is good. Recall that I2 = (x2 + y2 + z2 − xyz − 4) ⊂ Z[x, y, z].

(1) We have

g∗(x) = pa,c + qa,cz mod I2, g∗(y) = pb,d + qb,dz mod I2

where x, y ∈ R2 are the first two coordinate functions on X2. Here when we
make statements that relate elements of Z[x, y] to elements of Rκ we always
use the natural inclusion Z[x, y]→ Rκ.

(2) We have

D := det

(
pa,c − x qa,c

pb,d − y qb,d

)
= xa+b−1D0 +Ox(xa+b−2)

with D0 ∈ Z[y], with D0 6= 0 and monic, up to a sign, and deg(D0) =
|d− c| − 1 ≥ 0.

Proof. Working in R̃2, write

(x, y, z) = (δ + δ∗, η + η∗, δη + δ∗η∗).

It will be useful to use the notations1 c(δnηm) := δnηm+(δ∗)n(η∗)m, and s(δnηm) :=
δnηm − (δ∗)n(η∗)m, interpreting δ−1 as δ∗ as before to extend the definitions of c
and s to include negative powers of δ and η. Note that analogs of trigonometric
formulas hold also for these functions.

Now,

(g∗(x), g∗(y)) = (c(δaηc), c(δbηd))

=
1

2
(c(δa)c(ηc) + s(δa)s(ηc), c(δb)c(ηd) + s(δb)s(ηd)).(3.2)

To continue our calculation we introduce Chebyshev polynomials. For n ∈ N ∪ {0}
the nth Chebyshev polynomial of the first kind is the unique element Tn ∈ Z[t]
such that Tn(cos(θ)) = cos(nθ) for θ ∈ [0, 2π]. The polynomial 2Tn

(
t
2

)
has integer

coefficients and is monic in t of degree n. The nth Chebyshev polynomial of the

second kind is the unique element Un ∈ Z[t] such that Un(cos(θ)) = sin((n+1)θ)
sin(θ) for

θ ∈ (0, π). The polynomial Un
(
t
2

)
has integer coefficients and is monic in t of degree

n. Because of their definition in terms of trigonometric functions, the Tn and Un
satisfy certain identities. For example, the difference of angles formula for sines
gives for m > n

(3.3) Um−n−1 = Um−1Tn − Un−1Tm.

We have

c(δa) = 2Ta

(x
2

)
, c(ηc) = 2Tc

(y
2

)
.(3.4)

1c(δ) should be thought of as 2 cos(θ) for abstract θ such that δ = exp(iθ).
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Similarly for a, c ≥ 2

s(δa) = Ua−1

(x
2

)
s(δ), s(ηc) = Uc−1

(y
2

)
s(η).(3.5)

Although we work in Z[1
2 ]⊗ R̃2 throughout the proof, our final results will hold in

R2.
We obtain from (3.2) and (3.4), (3.5) the expression

(g∗(x), g∗(y)) = (Pa,c(x, y, z), Pb,d(x, y, z)),

where

Pa,c(x, y, z) := 2Ta

(x
2

)
Tc

(y
2

)
+

1

2
Ua−1

(x
2

)
Uc−1

(y
2

)
(2z − xy).

To obtain this expression, we used that s(δ)s(η) = 2z − xy. The key point is that
Pa,c(x, y, z) is linear in z, and we obtain Part 1 of the proposition with

pa,c(x, y) := 2Ta

(x
2

)
Tc

(y
2

)
− 1

2
xyUa−1

(x
2

)
Uc−1

(y
2

)
,

qa,c(x, y) := Ua−1

(x
2

)
Uc−1

(y
2

)
.

Using that 2Ta
(
t
2

)
and Ua−1

(
t
2

)
are monic in t for a ≥ 1 of degrees a and a − 1

respectively, we get that the leading x-degree contribution to pa,c is xauc where

uc(y) : = Tc

(y
2

)
− y

2
Uc−1

(y
2

)
.(3.6)

The leading x-degree contribution to qa,c is more easily seen to be xa−1vc where

vc(y) := Uc−1

(y
2

)
.

This concludes our calculations for the pair a, c. Since g is good, we have b, d ≥ 2 and
so the calculation of Pb,d and pb,d, qb,d is analogous to the preceding one, replacing
a, c 7→ b, d.

Calculation of D and D0. Note that since g is good, we must have c 6= d.
Indeed, if c = d then c(a− b) = ±1 which cannot happen since c ≥ 2. Since a ≥ 2,
the −x term in the determinant does not contribute to the largest x-degree term.
We get from (3.6)

D = xa+b−1 (ucvd − vcud) +Ox(xa+b−2)

= xa+b−1
(
Tc

(y
2

)
Ud−1

(y
2

)
− Td

(y
2

)
Uc−1

(y
2

))
+Ox(xa+b−2)

= xa+b−1sign(d− c)U|d−c|−1

(y
2

)
+Ox(xa+b−2),

where the last equality used (3.3). �

The next step in the proof of Proposition 3.2 is to establish some general proper-
ties of the polynomials that appear in the action of Out(F2) on X. By work of Fricke-
Klein [9], for any w ∈ F2, the induced word map w : SL2(C) × SL2(C) → SL2(C)
has

tr(w(A,B)) = Pw(x, y, z)
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for unique Pw ∈ Z[x, y, z], where x = tr(A), y = tr(B), z = tr(AB). Indeed this
follows from repeated applications of the identity (2.3). If θ ∈ Aut(F2) acts by
θ(X,Y ) = (w1(X,Y ), w2(X,Y )) then θ acts on the coordinate functions x, y ∈ R
by

θ∗(x) = Pw1 , θ∗(y) = Pw2 , Pwi ∈ Z[x, y, z].

Define the (x, z)-degree of a monomial xαyβzγκδ to be α+γ, and define the (x, z)-
degree of a polynomial f in Z[κ, x, y, z] to be the maximum of the (x, z)-degrees of

the monomials with nonzero coefficients in f . We write f (N) for the (x, z)-degree
N piece of f , that is, the part comprised of monomials of (x, z)-degree N .

Lemma 3.5. Write X,Y for fixed generators of F2. Let

w = Xα1Y β1Xα2Y β2 . . . XαtY βt

be a monotone word, with every αi, βi 6= 0. Let a =
∑t

i=1 αi and b =
∑t

i=1 βi. The
(x, z)-degree of Pw is ≤ |a|.

Proof. Assume for ease of exposition that all αi, βi are positive, so a, b > 0. This
will be the case for words arising from good elements of GL2(Z). The proof is by
induction on the partial order � defined by the following moves:

• If any αi has αi ≥ 2 then w′, w′′ � w for either w′, w′′ obtained by replacing
αi 7→ αi − 1 or αi 7→ αi − 2. Then (2.3) yields

Pw(x, y, z) = xPw′(x, y, z)− Pw′′(x, y, z).
Note if the lemma holds for Pw′ and Pw′′ , it holds for Pw.
• If any βi has βi ≥ 2 then we perform the replacements βi 7→ βi − 1 or
βi 7→ βi − 2 to form w′, w′′ and declare w′, w′′ � w. By the same logic as
before, Pw(x, y, z) = yPw′(x, y, z)−Pw′′(x, y, z) so if the lemma holds for w′

and w′′ it holds for w.
• We identify all words with their cyclically reduced conjugates. This doesn’t

change Pw.

To put this all together, note that any minimal cyclically reduced word with respect
to � has all the αi = βi = 1. If all the αi and βi are 1, and w is cyclically reduced,
then w is a power of XY or Y X and e.g. if w = (XY )n then a = n. On the other
hand, P(XY )n(x, y, z) = 2Tn

(
z
2

)
has (x, z)-degree n as required (this also shows the

statement of the lemma is sharp). �

Our next goal is to show, in the present context, that the Pw are equal in R to
functions that are linear in z and such that certain terms have no dependence on κ.

Lemma 3.6. If (X,Y ) 7→ (w1(X,Y ), w2(X,Y )) is in Aut(F2), then

Pw1(x, y, z) = Uw1 + Vw1z mod I, Pw2(x, y, z) = Uw2 + Vw2z mod I

where Uwi , Vwi ∈ Z[κ, x, y] have the following property. If Ni is at least the (x, z)-
degree of Pwi then

(1) Uwi = xNiU0
wi +Ox(xNi−1) with U0

wi ∈ Z[y].

(2) Vwi = xNi−1V 0
wi +Ox(xNi−2) with V 0

wi ∈ Z[y].

In particular, U0
wi and V 0

wi do not depend on κ.
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Proof. Transform Pw1(x, y, z) by replacing each monomial of the form xαyβzγ with
γ ≥ 2 by

(3.7) xαyβzγ 7→ xαyβzγ−2(xyz − x2 − y2 + 2 + κ),

these two terms are equal mod I. Moreover this replacement has the following prop-
erties: if p, q ∈ Z[κ, x, y, z] and p 7→ q in this manner then

• The (x, z)-degree of q is at most the (x, z)-degree of p.

• Let N1 be at least the (x, z)-degree of p and let p(N1) be the (x, z)-degree

N1 component of p and similarly define q(N1). If N1 is larger than the (x, z)-

degree of p then p(N1) is zero. If p(N1) ∈ Z[x, y, z] then q(N1) ∈ Z[x, y, z]

(so doesn’t depend on κ). This follows since q(N1) is obtained from p(N1) by
replacement of all monomials of the form xαyβzγ with γ ≥ 2 by

xαyβzγ 7→ xαyβzγ−2(xyz − x2) = xα+1yβzγ−2(yz − x).

Monomials xαyβzγ with γ ≤ 1 are left unaltered.

The effect of iterating this reduction, beginning with the fact that Pw1 ∈ Z[x, y, z],
yields polynomials Uw1 , Vw1 ∈ Z[κ, x, y] such that Pw1 = Uw1 + Vw1z mod I, the

(x, z)-degree of Uw1 + Vw1z is ≤ N1, and (Uw1 + Vw1z)
(N1) ∈ Z[x, y, z]. This means

that the x-degree of Uw1 is ≤ N1 and U
(N1)
w1 ∈ Z[x, y]. Similarly the x-degree of Vw1

is ≤ N1 − 1 and V
(N1−1)
w1 ∈ Z[x, y]. Performing this reduction also for Pw2 with N2

in place of N1 establishes the result. �

We now have everything we need to prove Proposition 3.2.

Proof of Proposition 3.2. Let ĝ ∈ Aut(F2) be a monotone automorphism represent-
ing g, given by Proposition 2.2. We consider g∗(x), the calculation of g∗(y) is similar.
Let w1 and w2 be the monotone words appearing in the expression (2.1) for ĝ. We
have g∗(x) = Pw1(x, y, z). This has (x, z)-degree ≤ a by Lemma 3.5. Note that
since we know w1 is monotone, we can conjugate w1 to be of the form as in Lemma
3.5 without changing a or Pw1(x, y, z).

Applying Lemma 3.6 with N1 = a we can write

g∗(x) = U0
w1
xa + U ′w1

+ (V 0
w1
xa−1 + V ′w1

)z,

where U0
w1
, V 0

w1
∈ Z[y], U ′w1

∈ Z[κ, x, y] has x-degree ≤ a − 1 and V ′w1
∈ Z[κ, x, y]

has x-degree ≤ a− 2. We obtain the first part of the proposition with

(3.8) p̃a,c := U0
w1
xa + U ′w1

, q̃a,c := V 0
w1
xa−1 + V ′w1

.

Similarly p̃c,d and q̃c,d are obtained by replacing w1 by w2 and a, c 7→ b, d. Note that
at this moment we do not know that U0

w1
and U0

w2
are non-zero.

Let π be the evaluation map Z[κ, x, y, z] → Z[x, y, z] sending κ 7→ 2. We must
have in R2

(3.9) π (p̃a,c + q̃a,cz) ≡ π(p̃a,c) + π(q̃a,c)z ≡ pa,c + qa,cz mod I2

where pa,b and qa,b are the polynomials from Proposition 3.4. This is because they
both describe how g maps the coordinate function x. In the other hand, since the
left and right hand sides of (3.9) differ by a function that is linear in z, this difference
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must be zero since 0 is the only element of I2 that is linear in z. So the identity
(3.9) actually holds in Z[x, y, z]. This means π(p̃a,c) = pa,c, π(q̃a,c) = π(qa,c) and
the same replacing a, c 7→ b, d.

This implies, if D is the quantity obtained in Proposition 3.4, that

π(D̃) = D.

From (3.8) we have

D̃ = xa+b−1(U0
w1
V 0
w2
− U0

w2
V 0
w1

) +Ox(xa+b−2).

Since the xa+b−1 coefficient of D̃ doesn’t depend on κ, and equals D0 (from Propo-
sition 3.4) when evaluated at κ = 2, it must be equal to this D0. This completes
the proof, using the properties of D0 described in Proposition 3.4. �

4. Algebraic Characterization of Cyclic Palindromes

In this section, we use that PSL2(Z) ∼= Z/2Z ∗ Z/3Z with the generators of the
cyclic factors given by

S =

(
0 1

−1 0

)
, R =

(
0 1

−1 −1

)
.

Here R = ST where T =

(
1 1

0 1

)
. With this presentation, every conjugacy class

in S has a representative of the form either g = Ry, g = S, or

(4.1) g = SRy1 . . . SRyk

with yi ∈ {1, 2} for 1 ≤ i ≤ k. However, powers of S and R are not hyperbolic,
so every hyperbolic conjugacy class has a representative as in (4.1). Moreover, a
representative of this form has unique sequence y1, . . . , yk, up to cyclic rotation. We
write [y1, . . . , yk] for the cyclic equivalence class of this sequence.

Proof of Lemma 1.6. Note that in PSL2(Z),

(4.2) SR =

(
−1 −1

0 −1

)
= V, SR2 =

(
1 0

1 1

)
= U,

and substituting this into (4.1) proves Lemma 1.6. �

Proof of Proposition 1.9. Suppose g = Un1V m1 . . . UnlV ml is a hyperbolic reduced
UV -word. Also suppose g is given by (4.1). Then g−1 is conjugate in PSL2(Z) to

(4.3) SR(1−yk)SR(1−yk−1) . . . SR(1−y1).

The action of PGL2(Z) on conjugacy classes in PSL2(Z) is generated by

w =

(
0 1

1 0

)
.

We calculate
wSw−1 = S, wRw−1 = R2.
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Therefore with g as in (4.1), we have

(4.4) wgw−1 = SR(1−y1)S . . . SR(1−yk).

which is conjugate in PSL2(Z) to g−1. Then comparing (4.3) and (4.4) we have
that g is ambiguous if and only if [(1− y1), (1− y2), . . . , (1− yk)] = [(1− yk), (1−
yk−1) . . . (1− y1)] which is if and only if [y1, y2, . . . , yk] = [yk, . . . , y1], and it is easy
to see, using the substitutions (4.2), that this happens if and only if the reduced
UV -word giving g is a cyclic palindrome. �

5. Proof of Theorem 1.2

In this section we prove Theorem 1.2. We do this by calculating the sign of the
Markoff moves mi and elements of S3 as permutations of Y−2(Fp).

We begin by examining the subgroup N of Aut(Xκ) as it plays a special role in
the action of Out(F2) on X∗−2(Fp). Recall from the Introduction the elements ni
and the fact that Out(F2) permutes the N -orbits of X∗−2(Fp).

Lemma 5.1. There are no points in X∗−2(Fp) with zeroes in exactly two coordinate
entries. Hence for p > 2 all orbits of N in X∗−2(Fp) are of size 4.

Proof. By symmetry, it suffices to check that we can have no (0, 0, z) ∈ X∗−2(Fp),
with z 6= 0. If x, y = 0, substituting into (1.1) with κ = −2 we obtain 0 + 0 + z2 = 0
which implies z = 0. Given the first statement of the lemma, the second follows
since no points of X∗−2(Fp) are fixed by any ni. �

Due to a result of Carlitz [5], |X∗−2(Fp)| = p(p + 3) when p ≡ 1 (mod 4) and
|X∗−2(Fp)| = p(p− 3) when p ≡ 3 (mod 4). Thus,

(5.1) |Y−2(Fp)| =

{
1
4p(p+ 3), if p ≡ 1 (mod 4)
1
4p(p− 3), if p ≡ 3 (mod 4)

The following fact will be useful later.

Fact 5.2. In Fp, the number of distinct pairs of consecutive quadratic residues, both
nonzero, is exactly:

(5.2)

{
1
4(p− 5), when p ≡ 1 (mod 4)
1
4(p− 3), when p ≡ 3 (mod 4) .

The total number of consecutive quadratic residues is found in [1, Theorem 10-2]2.
We discount the pair (0, 1) in both cases, and (−1, 0) when p ≡ 1 (mod 4).

Lemma 5.3. Let p be an odd prime. For a given i ∈ {1, 2, 3}

#{(x, y, z) ∈ X∗−2(Fp) | mi(x, y, z) = (x, y, z)} =

{
p− 5, p ≡ 1 (mod 4)

p− 3, p ≡ 3 (mod 4) .

2Count the number of the solutions (a, b) to a2 − b2 = 1 in Fp. To do this, count unordered
pairs α := a+ b, β := a− b such that αβ = 1, then discount ones that result in the same values of
a2, b2.
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Proof. We will prove this formula for m1, and it follows for m2,m3 by symmetry.
We have that m1(x, y, z) = (x, y, z) exactly when

(5.3) 2x = yz.

Lemma 5.1, equation (5.3), and our assumption that (x, y, z) 6= (0, 0, 0) imply
that x, y, z 6= 0. Substituting x = yz/2 into (1.1) we have

(5.4) y2 + z2 − y2z2

4
= 0.

As x is uniquely determined given y, z by (5.3) we count the solutions to (5.4) over
Fp .

Letting Y = y2, Z = z2 we have

(5.5) Z(Y − 4) = 4Y .

As y, z 6= 0 there are exactly as many y, z satisfying (5.4) as four times the number
of solutions to (5.5).

By (5.5), as Y 6= 0, Z is determined uniquely by Y , so we just need to count
possible values of Y 6= 0 that can satisfy (5.5). As Y and Z are quadratic residues,
Y − 4 must also be. Thus to count the possible solutions to (5.5), we just need to
count the possible values of Y such that both Y and Y − 4 are nonzero quadratic
residues. This is the case if and only if Y/4 and (Y − 4)/4 are consecutive nonzero
quadratic residues. By (5.2), for p ≡ 1 (mod 4) (resp. p ≡ 3 (mod 4)), there are
(p− 5)/4 (resp. (p− 3)/4) of these. This gives us our result. �

Lemma 5.4. Suppose p is an odd prime. For a given i ∈ {1, 2, 3}, the Markoff
move mi acts as an even permutation on Y−2(Fp) exactly when p ≡ 3 (mod 8).

Proof. We will show this result for m1 and it follows by symmetry for m2,m3.
Because it is an involution, the permutation induced by m1 on Y−2(Fp) is a product
of

(5.6) r :=
|Y−2(Fp)| − |F |

2

disjoint transpositions, where F is the set of fixed points of m1 in Y−2(Fp). Each
of the ni commute with m1, so x ∈ X−2(Fp) is fixed by m1 if and only if all the
elements of N ·x are fixed by m1. Consequently |F | is exactly one fourth the number
of fixed points of m1 in X∗−2(Fp) which we have calculated in Lemma 5.3. We also
recall from (5.1) the size of Y−2(Fp). We calculate the parity of m1 by calculating
r case by case:

If p = 4k + 1

r =
1

2

(
p2 + 3p

4
− p− 5

4

)
= 2(k2 + k) + 1 ≡ 1 (mod 2),

so m1 acts as an odd permutation. If p = 8k + 7

r =
1

2

(
p2 − 3p

4
− p− 3

4

)
= 8k2 + 10k + 3 ≡ 1 (mod 2),
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so m1 acts as an odd permutation. If p = 8k + 3

r =
1

2

(
p2 − 3p

4
− p− 3

4

)
= 8k2 + 2k ≡ 0 (mod 2),

so m1 acts as an even permutation. �

Proposition 5.5. The permutation group generated by the action of 〈m1,m2,m3〉
on Y−2(Fp) is contained in the alternating group on Y−2(Fp) if and only if p ≡ 3
(mod 8).

Proof. This follows directly from Lemma 5.4. �

In order to complete our proof of Theorem 1.2, we must check the parity of the
other generators of PGL2(Z) (through which Out(F2) acts). The only remaining
generators to check, aside from the Markoff moves, are those of S3. By Proposition
5.5, we know there always will be odd permutations for p 6≡ 3 (mod 8), so we only
need to examine the remaining case, when p ≡ 3 (mod 8).

Lemma 5.6. The action of S3 on Y−2(Fp) consists of even permutations when p ≡ 3
(mod 16). When p ≡ 11 (mod 16), it consists of both even and odd permutations.

Proof. The group S3 is generated by transpositions, and by symmetry they all have
the same parity, so it suffices to check the parity of the action of the transposition
(1 2) in the cases we consider.

Our strategy is to count the points in X∗−2(Fp) whose N -orbits are fixed by the
transposition (1 2). We start by counting how many possible values x can take on,
then for each of those values we will count how many points with fixed orbits there
are.

The N -orbit of (x, y, z) is fixed by (1 2) if and only if

(5.7) (x, y, z) ∈ {(y, x, z), (y,−x,−z), (−y, x,−z), (−y,−x, z)},
which is if and only if x = ±y. Note that by Lemma 5.1 this rules out x = 0.

Substituting x = ±y into (1.1) with κ = −2 we reduce to two cases:

(5.8) x 6= 0, y = x, 2x2 + z2 = x2z, or

(5.9) x 6= 0, y = −x, 2x2 + z2 = −x2z .

For fixed x, in both cases we obtain quadratic equations in z with discriminant
∆ = x2(x2 − 8). Note that ∆ 6= 0 as x 6= 0 and 8 is not a quadratic residue of Fp
because p ≡ 3 (mod 8) in the cases we consider. Thus (5.8) and (5.9) have solutions
over Fp if and only if ∆ is a square, which happens if and only if x2− 8 is a square.

As we assume p ≡ 3 (mod 8), there exists3 some α such that α2 = −8. Setting
w := x/α we want to count how many values w can take such that x2 − 8 =
−8(w2 +1) is a square, which we do by counting the number of nonzero consecutive
quadratic residues w2 and w2 + 1. From Fact 5.2 we have that there are (p− 3)/4

3As p ≡ 3 (mod 4) we have that
(
−1
p

)
= −1 and as p ≡ 3 (mod 8) we have that

(
2
p

)
= −1.

This implies that
(
−2
p

)
=

(
−8
p

)
= 1.
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such pairs of the form (w2, w2 + 1) where w2 6= 0 (as in both cases p ≡ 3 (mod 4)).
Each pair of residues, (w2, w2 + 1), can be made by both w and −w, which gives us
(p− 3)/2 possible values of w and hence of x.

For each valid x, those such that ∆ is a square, we have exactly four solutions
total to (5.8) and (5.9) for (x, y, z) that correspond to four points which satisfy both
(1.1) and (5.7) and thus four points whose N -orbits are fixed by (1 2):

(x, x, z1), (x, x, z2), (x,−x,−z1), (x,−x,−z2)

where z1 =
x2 +

√
∆

2
, z2 =

x2 −
√

∆

2
.

Recall that as ∆ 6= 0, we have that z1 6= z2, so these four points are distinct. This
gives us 2(p − 3) points of X∗−2(Fp) in total whose N -orbits are fixed by (1 2). As

each N -orbit in X∗−2(Fp) has exactly 4 points, there are p−3
2 fixed N -orbits of (1 2).

To determine the parity of (1 2), we use the same method of counting disjoint
transpositions as we did for m1 in the proof of Lemma 5.4. Letting F denote the
fixed N -orbits of (1 2), we examine the two cases:

If p = 16k + 3

|Y−2(Fp)| − |F |
2

=
1

2

(
p(p− 3)

4
− p− 3

2

)
= 2k(16k + 1) ≡ 0 (mod 2),

so (1 2) acts as an even permutation.
If p = 16k + 11

|Y−2(Fp)| − |F |
2

=
1

2

(
p(p− 3)

4
− p− 3

2

)
= 32k2 + 34k + 9 ≡ 1 (mod 2),

so (1 2) acts as an odd permutation. The lemma follows directly from this result. �

Theorem 1.2 now follows directly from Lemma 5.6 and Proposition 5.5.
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[8] R. Fricke. Über die Theorie der automorphen Modulgrupper. Nachr. Akad. Wiss. Göttingen
91–101, 1896

[9] R. Fricke and F. Klein. Vorlesungen über die Theorie der automorphen Funktionen. Band
1: Die gruppentheoretischen Grundlagen. Band II: Die funktionentheoretischen Ausführungen
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