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I. ABSTRACT 

 
This report details a deep learning approach to the forward and inverse design of plasmonic metasurface 

structural color. Here, optimized Deep Neural Network models are presented to enable the forward and inverse 
mapping between metamaterial structure and corresponding color. The forward model is capable of predicting 

color with >96% accuracy, with a 105 order of magnitude decrease in computational time when compared to 
finite-difference time-domain simulations used in conventional design workflows. An inverse model is trained 
using a tandem autoencoder, employing the pre-trained forward model. Here, the use of synthetic training 
data for self-learning is reported which results in a 15% improvement in training accuracy. The tightly 
constrained inverse model allows for the instantaneous design of metasurfaces, given a desired color, with an 
accuracy of >86%, making it suitable for commercial use as well as the acceleration of photonics research. 

PACS numbers: 78.67.Pt 

 

Metamaterials have gained significant attention in re- 
cent years for their unique ability to manipulate light 
in the visible spectrum. Metamaterials can be defined 
as artificial materials, for which their electromagnetic 
(EM) response is dependent on periodic subwavelength 
structures as opposed to intrinsic material properties1. 
Notable applications of optical metamaterials include 
photonic waveguides, next generation displays1, bio 
sensors2, invisibility cloaking3, anti-counterfeit4, infor- 
mation storage5 and sustainable and high-resolution 
printing678. 

Periodic features on the order of hundreds of nanome- 
ters modulate light in the visible spectrum due to sev- 
eral physical phenomena including diffraction, resonant 

absorption and localized surface plasmon resonances910. 
Tuning of these features allows for frequency selec- tive 
absorption and scattering and hence, selective col- 
oration. Such plasmonic metamaterials are said to ex- 
hibit structural color (SC) and have gained significant 
attention in recent years due to the their increasing com- 
mercial potential with ever-advancing nano-fabrication 

techniques118. The stability and recyclability of SC 
makes them a desirable candidate to replace current 

pigmentation-based printing technologies9. 
The inverse design of nanophotonic structures, mean- 

ing the design of an optimal metamaterial given a desired 
spectral response, would be of great commercial value, 
accelerating material development and the discovery of 
new structures. Due to the high dimensionality of the 
phenomena responsible for structural color, inverse de- 

sign remains a challenge12. 
Conventional design workflows employ numerical simu- 

lations based on Maxwell’s equations to accurately solve 
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the EM response, given a metamaterial structure (for- 
ward mapping)13. Inverse design (reverse mapping) re- 
quires numerous iterations of these computationally ex- 
pensive simulations in conjunction with an optimization 
algorithm. A review by Campbell et al. details numer- 
ical optimization techniques emphasising the limitations of 
traditional methods including the widely employed ge- 
netic algorithm (GA)13. Traditional methods are limited 
by the initial ’human guess’, which drastically limits the 
design space and is prone to converging on local optima13. 

Deep learning (DL) is a sub-category of machine learn- 
ing (ML) where multi-layer neural networks (NNs) are 
used for feature extraction and learning of large quanti- 

ties of data, with multiple layers of abstraction12. Deep 
neural networks (DNNs) are capable of learning highly 
complex, non-linear relationships and have been used 
extensively for speech recognition, computer vision and 

drug discovery to name a few examples14. The motiva- 
tion for leveraging DL is the need for a new work flow in 
metamaterial design, evaluating a larger parameter space 
and accelerating the design process. 

DNN models have been reported for the forward map- 
ping relationship between metamaterial structure and 
EM response, showing varying degrees of accuracy when 

trained on large quantities of data1516. The models can 
replace numerical simulations for tightly restrained 
structures, significantly reducing the computational bur- 
den. However, use of an optimization algorithm is 
needed to achieve inverse design, leading to sub-optimal 

convergence13. 

The inverse mapping between EM response and struc- 
ture is a one-to-many relationship, meaning that multi- 

ple metamaterial configurations exhibit identical SC17. 
DNNs are one-to-one nonlinear models, hence unlike 
the forward relationship, DNNs cannot learn the in- 
verse relationship directly17. To overcome this, sev- eral 
hybrid architectures have been proposed in liter- 
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ature. Notably, a study by Liu et al. report the 
use of a tandem architecture, which allows for effec- 
tive training of inverse DNNs, overcoming the funda- 
mental issue of non-uniqueness for multi-layer thin film 

metamaterials18. Similar architectures have been re- 
ported on a limited range of metamaterials including di- 

electric nanorods1920, photonic crystals21 and other non- 

linear optical applications22. Here, an optimised tandem 
architecture is presented for the inverse design of a meta- 
surface for SC. A DL approach enables the inverse design 
of tightly constrained metamaterials with high accuracy. 

In this work polydimethylsiloxane (PDMS) nanorod 
metasurfaces with aluminium (Al) coatings are used as a 
proof of concept for the development of DL models. Vari- 
ations on this plasmonic structure have been hailed by 
other research groups showing desirable and robust op- 

tical properties926. Specifically, the use of PDMS makes 
these metasurfaces flexible and can allow for real-time 
color tuning, a promising avenue for next generation ac- 

tive photonic devices1023. In addition to the develop- 
ment of a practical tool for the forward and inverse design 
of the aforementioned structure, the methods presented 
here provide a generalised approach to the development 
of DL models for structural color. 

Recent works report similar metal-dielectric nanorod 
materials, which are tunable across the visible spectrum 

and show polarization independence26924. As seen in fig- 
ure 1(a), the structure topology consists of metal disk 
arrays, suspended by dielectric pillars with a metal back 
reflector. Structural color is observed due to selective 
resonant absorption by the metal structures and strong 
coupling between the disk and hole arrays forming hy- 

bridized reflectance modes9. The parameter design space 
includes materials, metal thickness, t, pillar diameter, d, 
pillar height, h, and pillar pitch, P. 

Pillar pitch is fixed at 200nm to achieve angle in- 
dependent viewing and a homogeneous square lat- tice 
arrangement makes the metasurface polarization 

independent7924. Table I shows the range of variables 
tested in this work. A total of 4620 metamaterials were 
simulated using a FDTD method generating a wide range 
of colors(cf. Figure 1(c)). 

 
Feature Range 

(nm) 
Step 
(nm) 

No. Simulations 

Al thickness (t) 10-30 2 11 
Pillar diameter (d) 38-200 6 28 
Pillar height (h) 30-100 5 15 

Total: 4620 

TABLE I. Range of simulated metamaterial parameters 

DNNs are used for regression type problems, where 
both color and feature geometries take continuous values. 
Figure 1(b) depicts a fully connected DNN where the 
direction of the forward DNN (FDNN) and inverse DNN 
(IDNN) are indicated. 

Supervised learning (SL) is the process of iteratively 
teaching models with labeled training data. Weights and 
biases are updated with each training epoch to minimize 
loss through methods of back propagation and gradi- 

ent descent12, where loss (cost) is defined as the Mean 
Squared Error (MSE) between model predictions and 
ground truths from labeled data. 

The number of hidden layers, l and neurons in each hid- 
den layer, n define the network architecture. In addition 
to architectural parameters, the choice of loss function, 
activation function and optimiser are all hyperparame- 
ters, which can be tuned to optimise a model for a given 
dataset and application. 

Training data consists of tensors encoding the meta- 
material structure and color, where color is calculated 
from reflectance spanning the visible EM spectrum. Data 
collection methods in previous works can be categorized by 
either physical experimentation or numerical simula- tions 
and are reported to be in good agreement925. SL of DNNs 
requires large data sets, making numerical sim- ulations 

the favourable approach17. 

Numerical simulations were solved in the time domain 
using a finite-difference time-domain (FDTD) technique, 

based on Maxwell’s equations2627. Here, LUMERICAL 
FDTD solver was used to simulate the reflectance spec- 
tra of 4620 metamaterial configurations. Table I displays 
the range of geometry parameters, varied within nested 
simulation sweeps. To maintain viewing angle indepen- 
dence and reduce dimensionality, a unit cell periodic- ity 
of 200nm was fixed for all materials. This allowed for 
use of the unit cell approximation, simulating 1/4 of one 
nanorod with symmetrical boundaries. 50-point dis- 
cretized reflectance spectra were collected for each mate- 
rial between 400 and 750nm. PDMS was defined using 
a refractive index value of 1.41 (assumed to be constant 

across the visible spectrum)28. Al properties were de- 
fined using frequency dependent permittivity from the 

handbook of Palik29. 

A method of parameter vectorisation was used to en- 
code the metamaterial structures, where pillar diameter, 
height and Al thickness take numerical values ranging be- 
tween 5 and 200nm. To enable effective learning with gra- 
dient decent algorithms, features were individually nor- 
malised (c.f SI). 

Direct interpretation of the metamaterial reflectance 
spectra cannot provide an intuitive indication of per- 
ceived color. For use as a practical design tool, dimen- 
sionallity reduction to the CIE 1931 chromaticity gamut 

was used to encode SC chromaticity24430 (c.f SI). 

The resultant colors from all simulated metamateri- 
als are seen in Figure 1(c). The metamaterials display 
a broad gamut of colors spanning far from the achro- 
maitic point, showing highly saturated examples of blue, 
purple, pink, orange and yellow. This material topol- ogy 
struggles to produce highly saturated green and red 
colors originating from spectral dips due to resonant 

absorption9. 
Encoded simulation data were shuffled and randomly 

split into training and test sets with a ratio of 80:20, 
where 20% of the training set was used for validation dur- 
ing learning. A pseudorandom seed was used to provide 
repeatable pseudorandom test sets for the development of 
models and meaningful comparison of performance met- 
rics. 

Here, an optimised FDNN model is presented, which 
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FIG. 1. (a) Metasurface composed of polymeric pillar (PDMS) with metal coating (Al). Pitch, metal thickness, height and 
pillar diameter are P, t, h and d, respectively. (b) Fully connected DNN, where l and n are the number of hidden layers and neurons 
in each hidden layer, respectively. (c) Range SCs from simulated metamaterials plotted on CIE 1931 gamut. 

 

 

FIG. 2. (a) Learning curve of FDNN model showing valida- 
tion and training cost as a function of epochs, where cost is 
defined as the MSE between model predictions and ground 
truths. (b) CIE 1931 scatter plot showing FDNN model pre- 
dictions on the test set, where blue and red dots indicate the 
model predictions and ground truths, respectively. 

 
 

allows for the prediction of color given a metamaterial 
structure. The following sections provide details of the 
model optimisation and development. 

As observed in Figure 1(c), a large quantity of the 
simulated metamaterials are clustered around the achro- 
matic CIE point, where low color saturation and broad- 
band reflectance is observed. Early models showed ability 
to predict colors around this cluster with high accuracy, 
however failed to predict highly saturated colors at the 
extremities (with fewer training samples). This is be- 
cause trainable parameters are skewed toward data clus- 
ters when using an averaged loss metric. To overcome 
this, data centered around the achromatic point were re- 
moved using a square mask. The data set was reduced 
from 4620 to 2394 samples and used for all subsequent 
model development (c.f SI). 

An experiment was undertaken in which 160 different 
model architecture permutations were trained, each for 
three independent trials (c.f SI). The optimum network 
architecture was found to be 7 hidden layers, each with 
950 neurons employing ReLU activation functions. Fur- 
thermore, MSE loss function and Keras’s Adam optimiser 
were used. 

The FDNN model was trained for a total of 4795 
epochs. Figure 2(a) shows the learning curve, where 
training accuracy converges to 98.57%. Validation losses 
are in good agreement, indicating a well-fit model. When 
evaluated on the test set, color predictions were 96.03% 
accurate, where accuracy is defined as the MSE between 
model predictions and ground truths. Figure 2(b) dis- 
plays a qualitative representation of test accuracy, show- 
ing the model’s ability to predict colors across the gamut. 

The FDNN model can be used to replace numerical 
simulations in the forward design process and critically 

provides a 105 order of magnitude decrease in compu- 
tational time when compared to FDTD simulations. In 
addition, the FDNN model may be used as a sub-optimal 
inverse design tool when an external optimisation method 
such as GA is used13. 

To overcome the issue of non-uniqueness for the in- 
verse design problem, a tandem autoencoder architecture 

is employed182122. Figure 3 shows a diagram of the learn- 
ing architecture, where the pretrained forward model is 
used to train an inverse DNN. The loss is defined as the 
MSE between the desired color (input vector) and pre- 

 

FIG. 3. Autoencoder architecture used for IDNN training, 
where CIE input and output tensors encode desired and pre- 
dicted color respectively. 

 
 

dicted color (output vector). The hidden layer joining the 
two networks is three neurons deep, representing the 
latent encoding of geometry parameters d, h, and t. The 
weights of the FDNN are frozen and is used to predict 
color from the geometry vector output of the IDNN. The 
tandem model is trained using back propagation and gra- 
dient decent (Keras Adam optimiser) to minimize the 
loss between the desired color and the model prediction. 
Since the input to the FDNN is a vector of geometries, 
the inverse network learns to design metamaterial param- 
eters d, h, t for target colors. This training method over- 
comes the fundamental issue of non uniqueness because 
the metamaterial structures are not limited to those in 

a finite labeled training set18. Once trained, the IDNN is 
separated from the tandem structure and used as a 
stand-alone model. 

The optimum IDNN architecture was found to be 4 
hidden layers, each with 950 neurons employing ReLU 
activation functions. Use of sigmoid activation functions 
(equation 1) in the final IDNN layer of 3 neurons, bounds 
the output between 0 and 1. This restricts the predicted 
geometries within the range of simulated features in the 
training set due to feature normalisation (c.f Table I). 
This is a necessary optimization, as unconstrained IDNN 
models predicted nonphysical metamaterials including 
negative dimensions and pillar diameters exceeding the 
unit cell. 

 
 

σ(a) = 
1 + e−a 

(1) 

Autoencoder architectures enable unsupervised self- 
learning. Here, the first reported use of unlabeled, syn- 
thetic training data leads to an approximate 15% increase 
in training accuracy. Previous works181920 report the 
training of similar architectures using labeled simulation 
data. Due to the dimensionality reduction of color to the 
2D CIE domain, here, arbitrarily large sets of random 
colors without corresponding structures can be used in 
training. The unlabeled training set consisted of 20,000 
random colors, generated to be within 0.01 of colors 
corresponding to the simulated metamaterials, in both 
CIE x and y directions (c.f SI). This leads to improved 
learning and enables the IDNN model to design meta- 
surfaces with a larger range of SCs (c.f SI). Figure 4(a) 
displays the learning curves of the IDNN where a training 
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accuracy of 87.55% is achieved. 

 
FIG. 4. (a) Learning curve of IDNN model showing valida- tion 
and training cost as a function of epochs, where cost is defined 
as the MSE between model prediction and desired color. (b) 
Evaluation of the IDNN tandem model using 5000 random 
colors. For visual aid, 500 model predictions are plot- ted on 
the CIE 1931 gamut, where target colors and model predictions 
are seen in red and blue, respectively. 

 
Evaluation of the inverse model is challenging due to 

the many-to-one relationship. The inverse model may 
accurately predict a metamaterial structure for a given 
color, which is different to the structure in the test set. 
This is the same reason why direct training of IDNNs 
is not possible. Hence, comparing the IDNN-designed 
metamaterial parameters; d, h, t, with the simulated test 
set does not provide a suitable method of evaluation. 

Instead, 5000 randomly sampled ’unseen’ colors were 
used as a test set. The corresponding IDNN-designed 
metamaterials were validated using the FDNN model in 
the tandem architecture depicted in Figure 3. The test 
accuracy was then calculated as the MSE between target 
colors and those predicted by the FDNN. Figure 4(b) is a 
visual representation of this evaluation metric, where the 
IDNN model designed metamaterials with an accuracy 
of 89.80%. 

This approach provides a rapid and repeatable method 
for the evaluation of IDNNs, however, use of the im- 
perfect FDNN leads to compounding uncertainties. The 
FDNN has a test accuracy of 96.03% and thus a more re- 
alistic estimate of the IDNN model’s accuracy is 86.21%. 

To provide additional confidence in the IDNN model, 
an absolute accuracy metric was obtained by individually 
verifying the colors of inversely designed metamaterials. 
As seen in Figure 5, 10 metamaterials were designed us- 
ing the IDNN, given random target colors. The metama- 
terials were subsequently verified using FDTD methods 
and the corresponding ’true’ color of each metamaterial 

is compared to the target color. 
It is apparent from the small test set, that the IDNN 

model is able to design metamaterials with high preci- 
sion, spanning blue, purple and pink colors. However, 
trials 1, 6-7 indicate a systematic error in the design of 
orange-hued metasurfaces. This implies that the quoted 
error of 86.21% is not randomly distributed across the 
color gamut. This systematic error is due to the com- 
pounding uncertainty introduced by the imperfect FDNN 
during training. Figure 4(b), provides a qualitative in- 
sight to this systematic error where a predictive dead- 

zone is observed between 0.35 − 0.425 and 0.35 − 0.45 in 

 

FIG. 5. Evaluation of 10 IDNN-designed metamaterials where 
random target SCs are compared to the true SC. CIE 1931 
x,y coordinates of both target colors and designed colors are 
displayed. 

CIE x and y directions, respectively. This was observed 
in all IDNN models trained with the same FDNN. 

These results provide confidence in the presented DL 
method as a practical tool for the instantaneous design 
of metamaterials. The model is able to accurately design 
SCs different to those in the original training data and 
thus interpolating the complex relationship between color 
and structure. Caution however, should be taken when 
using the inverse model and the proposed evaluation met- 
rics presented in Figures 4(b) and 5 provide valuable in- 
sight to the limitations of the statistical model. Full-wave 
simulations should be used to verify the inverse model’s 
designs before they are taken to be true. 

A trend in recent works, has been the anecdotal 
validation of inverse model performance using few se- 

lected examples181920. Although this provides excite- 
ment within the community, it serves little in the way of 
providing confidence in DL methodologies and cannot be 
used to justify one inverse architecture over another. 
Here, an additional accuracy metric based on the au- 
toencoder model was proposed (c.f Figure 4(b)), which 
provides a rapid performance metric to aid model devel- 
opment and hyperparameter tuning and provides addi- 
tional insight to the IDNN performance. 

A DL approach to the forward and inverse design 
of photonic metamaterials was reported. Here, metal- 
dielectric nanorod metasurfaces composed of Al and 
PDMS were simulated using a FDTD method, display- 
ing a wide range structural colors. Due to the flexibility 
of PDMS, these metamaterials have applications in real- 
time tunable color and are hailed as promising candidates 
for next generation screen technologies. In addition, the 
use of Al makes the metamaterial a sustainable and low 
cost alternative to metamaterials commonly employing 
Ag and Au. 

A DL model was developed for the forward map- ping 
between structure and color and can replace full- wave 

EM simulations with a 105 order of magnitude de- crease 
in computational burden and a predictive accu- racy of 
>96%. Moreover, the fundamental issue of non- 
uniqueness for the training of inverse models was over- 
come through the use of an autoencoder architecture with 
a pre-trained forward model. The tightly restrained in- 
verse model can be used to design metamaterials, given 
desired colors with an accuracy of approximately 86%. 
The first reported use of un-labeled self learning with syn- 
thetic data allowed the autoencoder model to make use 
of large training data and improved the training accuracy 
by approximately 15%. In addition to the development 
of metamaterial-specific models, the methods presented 
here provide a generalised approach to the design of com- 
plex metamaterials using deep learning. 

 
 

SUPPLEMENTARY INFORMATION 

 
See Supplementary Information (SI) for details of data 

acquisition, data encoding methods and supporting ma- 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
5
5
7
3
3



5 
 

terial on the development and evaluation of DL models. 
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