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Abstract. To test the hypothesis of symmetry about an unknown median
we propose the maximum of a partial sum process based on ranked set sam-

ples. We discuss the properties of the test statistic and investigate a modified

bootstrap ranked set sample bootstrap procedure to obtain its sampling dis-
tribution. The power of the new test statistic is compared with two existing

tests in a simulation study.
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1. Introduction

Ranked set sampling (RSS) is a sampling protocol that can often improve the
cost efficiency of an experiment. It is appropriate for situations where quantification
of sampling units is costly or difficult, but ranking the units in a small set is easy
and inexpensive.

In RSS one first draws k2 units at random from the population and partitions
them into k sets of k units. The k units in each set are ranked without making
actual measurements. Ranking can be performed based on concomitant variables,
expert judgment, visual inspection or any means that does not involve actually
quantifying the observations. For example, in environmental sampling, the level of
a soil contaminant can be costly to measure, however; we might use soil texture,
color or PH level to rank the experimental units. In the rth set the observation with
the rth judgment rank is quantified for r = 1, . . . , k. The entire process is repeated
m cycles and yields the ranked set sample

{
X(r)j , r = 1, ..., k; j = 1, ...,m

}
. For an

excellent treatment of the RSS literature, see Chen et al. (2004).
Important reasons for general interest in testing symmetry can be found in An-

tille et al. (1982). Based on simple random samples (SRS), many authors, including
Gupta (1967), Butler (1969), Gastwirth (1971), Rothman and Woodroofe (1972),
Boos (1982), Modarres and Gastwirth (1996), have proposed statistics for detect-
ing asymmetry. Based on ranked set samples, Ozturk (2001) constructed an RSS
analog of the Rothman-Woodroofe (1972) statistic for testing symmetry and Hui
and Modarres (2007) proposed a sign test for the hypothesis of symmetry when the
median of the distribution is assumed known.

In this paper, we assume that a ranked set sample
{
X(r)j , r = 1, ..., k; j = 1, ...,m

}
is drawn from a continuous differentiable distribution F with density function f and
unknown median θ. Our interest is to test the hypothesis that F is symmetric about
θ against asymmetric alternatives.
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When both F and θ are unknown, one approach is to estimate θ by a consistent
estimator θ̂ and use it in a test statistic for symmetry about a known θ. The
problem with this approach is that the resulting tests are not distribution-free.
We sidestep this problem by using a modified bootstrap procedure to estimate the
associated critical and/or p-values.

In Section 2, we discuss the existing statistics and define a new statistic for testing
symmetry. In Section 3, we describe a modified bootstrap procedure to obtain the
sampling distribution of the proposed test. In Section 4, we compare the new test
with those of Ozturk (2001) and Hui and Modarres (2007) via a simulation study
and make recommendations. We conclude the article in Section 5.

2. The Test Statistic

For a known center of symmetry θ ∈ R, let

Pθ : set of all continuous distributions with median θ;
Pθ

S : set of all symmetric continuous distributions with median θ.

Based on a sample from F , F ∈ Pθ, the testing problem is{
H0 : F ∈ Pθ

S

H1 : F ∈ Pθ − Pθ
S

which is equivalent to (see Theorem 2.1){
H0 : F (x) + F (2θ − x) = 1 ; ∀x ∈ R
H1 : F (x0) + F (2θ − x0) 6= 1 ; ∃x0 ∈ R.

Existing tests of symmetry that use a simple random sample (SRS)
{
Xj : j =

1, . . . , n
}

include the the sign test S(θ) =
∑n

j=1 I
(
Xj > θ

)
, and its variants (Gast-

wirth, 1971), the modified runs test (Modarres and Gastwirth, 1996) and a modified
sign test by Cheng and Balakrishnan (2004).

Test statistics that are based on measures of discrepancy include Butler (1969)
statistic

hn(θ) = sup
x∈R

∣∣F̂n(x) + F̂n(2θ − x)− 1
∣∣,

and the Rothman-Woodroofe (1972) statistic

(2.1) hn(θ) =
∫

R

(
F̂n(x) + F̂n(2θ − x)− 1

)2

dx,

where

F̂n(x) =
1
n

n∑
j=1

I
(
Xj ≤ x

)
; x ∈ R,

is the empirical cdf based on the SRS.
An RSS analog of the SRS sign test (Hettmansperger, 1995) is based on the

statistic

Sm(θ) =
k∑

r=1

m∑
j=1

I
(
X(r)j > θ

)
where

PH0{Sm = y} =
∑

i1+···+ik=y

k∏
r=1

(
m

ij

)
pij

r (1− pr)m−ij ; y = 0, . . . ,mk
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where

pr = Beta(r, k − r + 1,
1
2
).

This test does not use the rank information and has a lower power than other test
statistics.

In order to take into account the rank information available in RSS, Ozturk (2001)
and Hui and Modaress (2007) considered the fact that for all F ∈ Pθ

S ,

(2.2) F(r)(x) = 1− F(k−r+1)(2θ − x), ∀r = 1, 2, ..., k, ∀x ∈ R,

where F(r) is the distribution function of the r-th order statistic based on a SRS
from F with size k. Assuming θ is known, Hui and Modaress (2007) introduced a
modified sign test with test statistic

Bm(θ) =


∑ k

2
r=1

∑m
j=1 I

(
X(r)j + X(k−r+1)j > 2θ

)
, k is even∑ k−1

2
r=1

∑m
j=1 I

(
X(r)j + X(k−r+1)j > 2θ

)
+
∑m

j=1 1
(
X( k+1

2 )j > θ
)
, k is odd

which, under H0, is distributed as

Bm ∼ Bin
(
m
[k + 1

2

]
,
1
2
)
.

Since for all F ∈ Pθ
S ,

F (x) + F (2θ − x)− 1 =
1
k

k∑
r=1

F(r)(x) +
1
k

k∑
r=1

F(k−r+1)(2θ − x)− 1

=
1
k

k∑
r=1

[
F(r)(x) + F(k−r+1)(2θ − x)− 1

]
; ∀x ∈ R,

we will show that (2.2) is the sufficient and necessary condition for symmetry of
underlying distribution F .

Theorem 2.1. Suppose ranking in RSS is perfect. F ∈ Pθ
S if and only if

∀r = 1, 2, ..., k, ∀x ∈ R : F(r)(x) = 1− F(k−r+1)(2θ − x).

Proof: See Appendix.

Ozturk (2001) proposed the following test statistic

Tm

(
θ̂
)

= mk

−1 +

m∑
j=1

k∑
r=1

m∑
i=1

k∑
r′=1

∣∣∣X(r)j + X(r′)i − 2θ̂
∣∣∣

m∑
j=1

k∑
r=1

m∑
i=1

k∑
r′=1

∣∣X(r)j −X(r′)i

∣∣
 ,

where θ̂ is a suitable estimator for θ. He used a bootstrap procedure for testing H0

based on Tm.
To explain the rationale for the new test statistic proposed in this paper, first

consider the case where θ is known and note the difference process

drj =
X(r)j + X(k−r+1)j

2
− θ r = 1, ..., k, j = 1, 2, ...m.
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Each component in the above process has zero mean under H0. To measure devia-
tions of the difference process from 0 we propose to use the maximum of the partial
sum process as the test statistic

(2.3) Dm(θ) =
1√
km

k
max
i=1

∣∣∣∣∣∣
i∑

r=1

m∑
j=1

drj

∣∣∣∣∣∣ ,
This is similar in spirit to Lim et al. (2008), who used the maximum residual process
to test constancy of mean in repeated measures data.

Now, we consider the case in which θ is unknown. When θ is unknown, we
estimate it by θ̂ and compute Dm(θ̂) to test H0. Hence,

Dm(θ̂) =
1√
km

k
max
i=1

∣∣∣∣∣∣
i∑

r=1

m∑
j=1

(
X(r)j + X(k−r+1)j

2
− θ̂)

∣∣∣∣∣∣ ,
where θ̂ is an unbiased and consistent estimator of θ under H0. We use X̄RSS (the
RSS sample mean) to estimate θ.

Under H0, the asymptotic distribution of the test statistic (Dm) is in the form
of maxima of the Brownian motion when (i) m →∞ with a fixed k and (ii) k →∞
with a fixed m. For details, see Lim et al. (2008).

3. Bootstrap Test For Symmetry

In this section, we discuss a bootstrap test for symmetry based on a ranked set
sample. Since finding the sampling distributions of statistics under RSS is often
difficult, inference is typically drawn using asymptotic results. Moreover, depending
on the statistic of interest, asymptotic results may not be readily available and,
when they are available, they may not be valid for the finite sized sample at hand.
Chen et al. (2004) suggest a natural method to obtain bootstrap samples from each
row of RSS. Modarres et al. (2006) introduced two other methods that are designed
to obtain more stratified resamples from the given sample. We use the bootstrap
RSS (BRSS) algorithm of Modarres et al. (2006) to estimate the distribution of
Dm.

Suppose H0 is true and we want to estimate the distribution of Dm. Let F̂n,RSS

be the empirical cdf based on the ranked set sample. Since F̂n,RSS is not symmetric,
bootstrap samples should not be taken from F̂n,RSS , but rather from a symmetric
distribution which is close to F̂n,RSS . We study bootstrap samples taken from the
closest symmetric distribution to F̂n,RSS in integrated square error (or L2-norm)
sense. Schuster and Barker (1987) call this procedure the symmetric bootstrap.

Theorem 3.1. Given an RSS sample from F ∈ Pθ, the closest symmetric distri-
bution function to

F̂n,RSS(x) =
1

km

k∑
r=1

m∑
j=1

I
(
X(r)j ≤ x

)
is

Gn(x) =
1
2

(
F̂n,RSS(x) + 1− F̂n,RSS(2θ − x)

)
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Proof: See Appendix.

Note that Gn is empirical distribution function of a random sample

W = {X(1)1 ,X(1)2 , . . . ,X(k)m , 2θ −X(1)1 , 2θ −X(1)2 . . . , 2θ −X(k)m}

with size 2km. Thus, generating a random sample of size n from Gn is equivalent to
sampling n times with replacement from W . For an RSS sample, to decide whether
to reject H0 or accept H0 based on test statistic Dm, we propose this algorithm:

(1) Compute observed Dm for original RSS sample.
(2) Generate b = 1000 RSS samples with the same k and m values as original

sample from the closest symmetric distribution function Gn,
(3) Compute Dm for each of these bootstrap samples,
(4) Compute percentage of bootstrap samples with Dm values greater than

observed Dm,
(5) If this percentage is greater than α = 0.05, accept H0, otherwise reject H0.

In next section, Monte Carlo studies are performed to compute and compare the
power of B, T and D tests.

4. Monte Carlo Power Estimation

Let πk,m(F ) denote the power of D-test at F . Given k, m, F ∈ Pθ, and the
sample

{
X(r)j : r = 1, ..., k; j = 1, ...,m

}
from F , πk,m(F ) is the probability of re-

jecting H0. By controlling Type I error at α = 0.05, we expect that

πk,m(F ) ≤ 0.05 ; ∀F ∈ Pθ
S ,

and as a powerful test, we expect that for all F ∈ Pθ −Pθ
S , πk,m(F ) be as large as

possible.
We selected the standard Normal, standard Cauchy and standard Logistic dis-

tributions from Pθ
S . To represent asymmetric distributions we selected Gamma

distribution with parameter (α, β) = (5, 7), and (α, β) = (3, 5), Fisher-Snedecor or
F distribution with parameter (n1, n2) = (8, 9) and Log-Normal distribution with
parameter (µ, σ2) = (0, 1) from Pθ − Pθ

S were selected. The skewness values of
these distributions are 0.89, 1.15,4.24 and 6.18, respectively. For each distribution,
we obtained 2000 ranked set samples with k = 4, 5 and m = 5, 10, 15, 20. We ob-
tained the rejection frequency of B, and T and D tests. A bootstrap procedure
with b = 1000 was used to obtain the sampling distribution of Tand D tests. Test
statistic B was based on an center.

Table 1 and Table 2 show the performance of the three test statistics for sym-
metry under different distributions and sample sizes.

Table 1 shows that for symmetric distributions T and D tests perform well and
have Type I error rate close to the nominal 0.05 level. B-test has inflated levels
under a logistic distribution. Table 2, for asymmetric distributions, shows that
when the skewness of the distribution is low (e.g, gamma), D-test is more powerful
than B-test and T -test. But, for extremely skewed distributions (e.g., lognormal)
T -test has better performance. It should be noted that increasing m leads to more
growth in power for D-test in comparison to T -test. Since detecting the asymmetry
of underling distribution is difficult when the skewness is small, we recommend to
use D-test for data with small skewness.
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Table 1. Percent rejections at the 5% level for B , T and D tests
(the first, second and the third entry of each cell). Symmetric
distributions are Normal, Cauchy and Logistic.

Symmetric Distributions Power Estimates
Density Function

N(0, 1)

C(0, 1)

L(0, 1)

k m
5 10 15 20

4
6.4
4.8
5.0

6.5
4.7
4.9

6.1
5.4
4.5

6.0
4.6
4.6

5
7.9
4.0
5.0

6.4
4.6
4.4

5.4
5.3
4.9

3.9
4.2
4.3

5 10 15 20

4
6.7
2.8
2.6

8.1
2.7
2.2

7.0
2.9
2.4

6.4
3.0
2.0

5
6.7
2.6
2.4

7.5
3.4
2.3

5.5
3.7
2.2

4.8
3.5
2.1

5 10 15 20

4
7.3
5.3
4.9

8.1
6.1
5.7

7.2
5.5
5.6

6.8
5.0
5.1

5
7.1
4.6
4.7

6.6
4.3
4.5

6.1
4.9
5.5

5.5
4.4
4.5

5. Conclusion

For testing symmetry based on RSS samples, we proposed a distribution-free
test based on the maximum of a partial sum process. Although the asymptotic dis-
tribution of the test statistic is in the form of maxima of the Brownian motion, in
practice the size of the data set is not always large enough to apply the asymptotic
results. To overcome this problem, we used a symmetric bootstrap procedure to
approximate the finite-sample distribution of the test statistic. We have demon-
strated, via simulation, that the proposed test has Type I error rate close to the
nominal level. In addition, the results of the simulations indicate that the proposed
test is more powerful than the test proposed by Hui and Modarres (2007). More-
over, for the data with small skewness, the proposed test is more powerful than the
test proposed by Ozturk (2001). A power advantage of the proposed test statistic
with respect to the test statistic proposed by Ozturk (2001) is that the asymptotic
distribution of the proposed test statistic can be explicitly derived.
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Table 2. Percent rejections at the 5% level for B , T and D tests
(the first, second and the third entry of each cell). Asymmetric dis-
tributions are Gamma(5,7), Gamma(3,5), F(8,9) and Log-Normal
with skewness values 0.89, 1.15,4.24 and 6.18, respectively.

Asymmetric Distributions Power Estimates
Density Function

G(5, 7)

G(3, 5)

F (8, 9)

LN(0, 1)

k m

5 10 15 20

4
6
7
11

11
18
24

15
29
35

18
42
48

5
9
13
18

13
29
35

16
48
55

18
65
67

5 10 15 20

4
6
14
16

14
34
39

22
56
59

26
71
72

5
11
23
28

18
52
55

25
75
77

31
87
88

5 10 15 20

4
9
34
33

26
77
66

37
94
92

46
99
97

5
14
55
50

30
91
87

39
98
96

48
100
100

5 10 15 20

4
12
59
46

41
97
85

58
100
97

69
100
100

5
19
79
63

43
99
95

61
100
99

76
100
100
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Appendix A. Proof of Theorems

A.1. Proof of Theorem 2.1. Sufficiency: If f is symmetric about θ ∈ R, then
for all r = 1, . . . , k and for all x ∈ R,

F(r)(x) = Beta
(
r, k − r + 1, F (x)

)
= k

(
k − 1
r − 1

)∫ F (x)

0

yr−1(1− y)k−rdy

= k

(
k − 1
r − 1

)∫ 1

1−F (x)

(1− u)r−1uk−rdu

= 1− Beta
(
k − r + 1, r, 1− F (x)

)
= 1− Beta

(
k − r + 1, r, F (2θ − x)

)
= 1− F(k−r+1)(2θ − x).

Necessity: We know that

F (x) =
1
k

k∑
r=1

F(r)(x) ; ∀x ∈ R.

Thus, for all x ∈ R, when k is even,

F (x) =
1
k

k
2∑

r=1

(
F(r)(x) + F(k−r+1)(x)

)

=
1
k

k
2∑

r=1

(
1− F(k−r+1)(2θ − x) + F(k−r+1)(x)

)

=
1
k

k
2∑

r=1

(
2− F(k−r+1)(2θ − x)− F(r)(2θ − x)

)

=
1
k

(2
k

2
)− 1

k

 k
2∑

r=1

F(r)(2θ − x) +
k∑

r= k
2

F(r)(2θ − x)


= 1− 1

k

k∑
r=1

F(r)(2θ − x) = 1− F (2θ − x),

and when k is odd, similarly,

F (x) =
1
k

 k−1
2∑

r=1

(
F(r)(x) + F(k−r+1)(x)

)
+ F( k+1

2 )(x)


=

1
k

 k−1
2∑

r=1

(
2− F(k−r+1)(2θ − x)− F(k−r+1)(2θ − x)

)
+
(
1− F( k+1

2 )(2θ − x)
)

=
1
k

(2
k − 1

2
+ 1)− 1

k

 k−1
2∑

r=1

F(r)(2θ − x) +
k∑

r= k+1
2

F(r)(2θ − x) + F(k−r+1)(2θ − x)


= 1− 1

k

k∑
r=1

F(r)(2θ − x) = 1− F (2θ − x).
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A.2. Proof of Theorem 3.1. For any f ∈ L2, the L2-norm is defined by

‖f‖ =
[∫
|f (x)|2 dx

] 1
2

.

Now, under L2-norm, for symmetric (around θ) distribution G, we have

d
(
F̂n,RSS , Gn

)
=

∥∥∥F̂n,RSS −Gn

∥∥∥ =
[∫ ∣∣∣F̂n,RSS (x)−Gn (x)

∣∣∣2 dx

] 1
2

=

[∫ ∣∣∣∣F̂n,RSS (x)− 1
2

[
F̂n,RSS (x) + 1− F̂n,RSS (2θ − x)

]∣∣∣∣2 dx

] 1
2

=
1
2

[∫ ∣∣∣F̂n,RSS (x)− 1 + F̂n,RSS (2θ − x)
∣∣∣2 dx

] 1
2

=
1
2

[∫ ∣∣∣F̂n,RSS (x)−G (x) + G (x)− 1 + F̂n,RSS (2θ − x)
∣∣∣2 dx

] 1
2

≤ 1
2

([∫ ∣∣∣F̂n,RSS (x)−G (x)
∣∣∣2 dx

] 1
2

+
[∫ ∣∣∣1−G (x)− F̂n,RSS (2θ − x)

∣∣∣2 dx

] 1
2
)

≤ 1
2

([∫ ∣∣∣F̂n,RSS (x)−G (x)
∣∣∣2 dx

] 1
2

+
[∫ ∣∣∣G (2θ − x)− F̂n,RSS (2θ − x)

∣∣∣2 dx

] 1
2
)

≤ 1
2

(
2
[∫ ∣∣∣F̂n,RSS (x)−G (x)

∣∣∣2 dx

] 1
2
)

=
[∫ ∣∣∣F̂n,RSS (x)−G (x)

∣∣∣2 dx

] 1
2

= d
(
F̂n,RSS , G

)
,

where first inequality is derived by Minkowsky inequality.
Thus, we conclude that

d
(
F̂n,RSS , Gn

)
= inf

G

{
d
(
F̂n,RSS , G

)}
.


