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Abstract. We give a definition of a class of Dedekind domains which includes
the rings of integers of global fields and give a proof that all rings in this class
have finite ideal class group. We also prove that this class coincides with the
class of rings of integers of global fields.

1. Introduction.

1.1. Background. The starting point of algebraic number theory is to define an
(algebraic) number field K as a finite field extension of Q and the ring ZK of
algebraic integers in K as all the elements in K that satisfy a monic polynomial
equation with coefficients in Z (This is called the integral closure of Z in K.) Unlike
the situation in Z, unique factorization of elements in ZK into irreducibles can fail.
Nevertheless, ZK is an example of a Dedekind domain, that is, an integral domain
in which every nonzero proper ideal is, uniquely, a product of prime ideals.

One can develop a parallel theory of finite extensions K, called (algebraic) func-
tion fields, of the field Fq(t), which is the field of fractions of the ring of polynomials
Fq[t] over a finite field Fq. The analogue of ZK is then the ring of elements in K
that satisfy a monic polynomial equation with coefficients in Fq[t]. These rings
are also Dedekind domains and their theory can to a large extent be developed in
parallel with that of the rings ZK . For this reason, it is sometimes convenient to
use the term global field for either a number field or a function field.

One of the most fundamental problems about rings of integers in global fields
is the study of the (failure of) unique factorization. This is encoded in the (ideal)
class group of the ring, which is trivial if and only if unique factorization holds.
A important result in algebraic number theory is that the class group of ZK is
finite. Similarly, it is known that the class group of a ring of integers in a function
field is finite. One can define the ideal class group Cl(R) of any Dedekind domain
R as the equivalence classes of nonzero ideals where two ideals I, J are said to be
equivalent if aI = bJ , for some nonzero a, b ∈ R, and the group operation is induced
by multiplication of ideals.

1.2. The main results. In [6], P. L. Clark asked whether there exists a “purely
algebraic” proof of the finiteness of the class group of global fields and whether there
exist any “structural” conditions on a Dedekind domain that imply the finiteness of
its class group.

In this article we answer these questions in the affirmative. More precisely, we
introduce a class (G) of Dedekind domains (see Definition 2) that contains the rings
of integers of global fields. We then give a uniform (i.e., not case by case) proof that
any ring of class (G) has finite ideal class group. We also give a known argument
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showing how to deduce the finiteness of the class group of any overring of a ring of
class (G).

The proof of the finiteness of the class group that we give is essentially that
of R. Swan [17, Theorem 3.9] and I. Reiner [16, (26.3)] (modulo some exercises)
for rings of integers in global fields. The contribution here is that we axiomatize
properties of a Dedekind domain sufficient for the proof to go through and that
we show that these properties in fact characterize rings of integers in global fields.
This shows in particular that the finiteness of the class groups of global fields can
be proved uniformly without adeles and without methods from the geometry of
numbers. This fact does not seem to have been widely known. Indeed, Clark writes
in [6] that “[. . . ] it is generally held that the finiteness of the class number is one
of the first results of algebraic number theory which is truly number-theoretic in
nature and not part of the general study of commutative rings” and in [15, B.1,
p. 334] the authors write: “Note well that for a general Dedekind domain, ClK need
not be finite. This shows that one essentially needs some analysis to supplement
the abstract algebra in Chapter 5.”

A key idea of the proof is to estimate the norm of an element from above al-
gebraically using the fact that a determinant is a homogeneous polynomial in the
entries of a matrix (see the proof of Lemma 6). This idea is present in [17, p. 53],
[16, (26.3)] and [7, (20.10)] but can be traced back to Zassenhaus [18] in the number
field case and Higman–McLaughlin [12] in the function field case. By contrast, the
standard nonadelic and nongeometric proof of the finiteness of the class group in
the number field case (see, e.g., [14, V, Section 4]) expresses the field norm in terms
of the complex absolute values of Galois conjugates, and in the function field case
this needs a modification involving absolute values.

In the final section, we show that the class (G) coincides with the class of global
fields. This uses the Artin–Whaples axiomatization of global fields and shows that
the quasi-triangle inequality condition in Definition 2, despite its simplicity and
elementary nature, implies the product formula for absolute values.

2. Basic PIDs and rings of class (G).

All rings are commutative with identity. Let N denote the set of positive integers.
We use the standard acronym PID for “principal ideal domain.” A ring R is called
a finite quotient domain or is said to have finite quotients if for every nonzero ideal
I of R, the quotient R/I is a finite ring. If R is a finite quotient domain, I ⊆ R a
nonzero ideal, and x ∈ R is nonzero, we write NR(I) = |R/I| and NR(x) = |R/xR|.
We also define NR(0) = 0. The function NR : R→ N∪{0} is called the ideal norm
on R. It is known that if R is a finite quotient Dedekind domain, then NR is
multiplicative (see [14, Lemma V.3.5]).

Definition 1. We call a PID A a basic PID if it is not a field and if the following
conditions are satisfied:

(1) A is a finite quotient domain;
(2) there exists a constant c ∈ N such that for each m ∈ N,

#{x ∈ A | NA(x) ≤ c ·m} ≥ m
(i.e., A has “enough elements of small norm”);

(3) there exists a constant C ∈ N such that for all x, y ∈ A,
NA(x+ y) ≤ C · (NA(x) +NA(y))
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(i.e., NA satisfies the “quasi-triangle inequality”).

There exist PIDs for which the first and second conditions in Definition 1 hold but
for which the third condition fails. Take, for instance, the PID A = Z[

√
2]. Then

u = 1 +
√

2 is a unit in A and u = 1 −
√

2. For any r ∈ N write ur = ar + br
√

2,
for ar, br ∈ Z. Then ar grows with r and

NA(ur + ur) = N(2ar) = |NQ(
√

2)/Q(2ar)| = 4a2
r,

while NA(ur) + NA(ur) = 2, since ur and ur are units. Thus the third condition
in Definition 1 fails for A even though A is a finite quotient domain that satisfies
the second condition since it has infinitely many units.

Another example of a finite quotient PID A where the second condition holds
but the third condition fails is the localization Z(p) of Z at a prime p, that is,
the subring of Q consisting of fractions a/b, a, b ∈ Z, where p - b. Here ±1 + pn

is a unit for every n ∈ N, so NA(1 + pn) + NA(−1 + pn) = 1 + 1 = 2, while
NA(1 + pn + (−1 + pn)) = NA(2)NA(p)n, which grows with n.

Definition 2. Let A be a basic PID. We call a Dedekind domain B a ring of class
(G) (over A) if B is an A-algebra that is finitely generated and free as a module
over A.

Since free modules over a PID are torsion-free, we may and will consider A as a
subring of B via the embedding a 7→ a · 1. Our goal in the next section is to prove
that any ring B of class (G) has finite ideal class group. The terminology “(G)” is
provisional (“G” for global), because it will turn out that the class (G) is equal to
the class of rings of integers in global fields (see Corollary 13).

Definition 3. By global field we mean either a finite extension of Q or a finite
separable extension of some Fq(t), where t is transcendental over Fq. By a ring of
integers of a global field K we mean either the integral closure in K of Z (in the
number field case) or the integral closure in K of Fq[t], for some t ∈ K transcen-
dental over Fq (in the function field case).

Note that in the function field case, there is no unique ring of integers, as, for
instance, one can also take the integral closure of Fq[t−1].

Proposition 4. Let B be a ring of integers of a global field. Then B is a ring of
class (G) over Z or Fq[t], respectively.
Proof. First, it is straightforward to check that Z is a basic PID. Indeed, all its
proper quotients Z/n are finite, NZ(n) = |n| (the absolute value of n) so #{x ∈ Z |
NZ(x) ≤ m} = 2m+ 1 ≥ m and NZ(x+ y) = |x+ y| ≤ |x|+ |y| = NZ(x) +NZ(y),
thanks to the usual triangle inequality.

Next, let A = Fq[t]. For any f(t) ∈ A we have NA(f(t)) = qdeg(f), so A is a
finite quotient domain and

#{x ∈ A | NA(x) ≤ m} = #{x ∈ A | deg(x) ≤
⌊
logq(m)

⌋
}

= qblogq(m)c+1 > qlogq(m) = m,

so the second property in Definition 1 is satisfied for A. Furthermore, for f(t), g(t) ∈
A we have

NA(f(t) + g(t)) = qdeg(f+g) = qmax{deg f,deg g} ≤ qdeg f + qdeg g

= NA(f(t)) +NA(g(t)),
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so A is a basic PID. Thus both Z and Fq[t] satisfy Definition 1 with c = C = 1.
It is well known that B is a Dedekind domain and is free of finite rank over

Z or Fq[t], respectively (see [14, Theorem I.4.7] for the number field case and [14,
Theorem X.1.7] for the function field case; note that if the extension of fraction
fields is finite and separable, which is always the case for number fields, this follows
with a classical proof, but for function fields, where separability may fail, it requires
a separate proof.). Thus, in either case, B is a ring of class (G). �

3. Norm estimates and finiteness.

Throughout this section, let B be a ring of class (G) over the basic PID A and
let K and L be the field of fractions of A and B, respectively.

For α ∈ L we let Tα denote the endomorphism L → L, x 7→ αx, and define the
norm NL/K(α) = det(Tα). As is well known, the fact that B is the integral closure
of A in L implies that NL/K(B) ⊆ A (see, e.g., [14, Corollary IV.2.4]).

The following lemma is a consequence of [14, Proposition IV.6.9 and Proposi-
tion V.3.6] (which is valid when A is a Dedekind domain, not necessarily a PID).
We give a simple proof in our setting (where A is a PID), exploiting the Smith
normal form (see, e.g., [1, Section 5.3]).

Lemma 5. For any nonzero α ∈ B, we have NB(α) = NA(NL/K(α)).

Proof. We have NB(α) = |B/αB| and B/αB is the cokernel of the map Tα : B →
B. By the Smith normal form, we have

B/αB ∼= A/p1A⊕ · · · ⊕A/pnA,

where n is the rank of B over A, and pi ∈ A are some nonunits such that det(Tα) =
u−1p1 · · · pn, for some unit u ∈ A (u = det(PQ) where PTαQ is the Smith normal
form, with Tα identified with its matrix with respect to some chosen basis).

Now observe that for any m1, . . . ,mk ∈ A, we have

|A/m1 · · ·mkA| = |A/m1A| · · · |A/mkA|,

which follows from the Chinese remainder theorem (see, e.g., [1, Corollary 2.25]),
combined with the fact that for any irreducible element m ∈ A and i ∈ N, we
have |miA/mi+1A| = |A/mA| (the map A → miA given by 1 7→ mi induces an
isomorphism A/mA→ miA/mi+1A).

Thus

NA(NL/K(α)) = |A/NL/K(α)A| = |A/ det(Tα)A| = |A/p1A| · · · |A/pnA|
= |B/αB| = NB(α).

�

Lemma 6. Let x1, . . . , xn be a basis for B over A. Let α ∈ B and write α = c1x1 +
· · ·+ cnxn, with ci ∈ A. Then there exists a homogeneous polynomial f(T1, . . . , Tn)
over A of degree n such that

NL/K(α) = f(c1, . . . , cn).

Moreover, there exists a constant C ∈ N such that

NB(α) ≤ C ·max
i
{NA(ci)}n.
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Proof. For 1 ≤ i, j, k ≤ n, let r(k)
ij ∈ A be such that

xixj =

n∑
k=1

r
(k)
ij xk.

Then

αxi = c1xix1 + · · ·+ cnxixn = c1

n∑
k=1

r
(k)
i1 xk + · · ·+ cn

n∑
k=1

r
(k)
in xk

=

n∑
k=1

( n∑
j=1

cjr
(k)
ij

)
xk,

so the matrix of Tα with respect to the basis x1, . . . , xn has (i, k)-entry equal to∑n
j=1 cjr

(k)
ij , for 1 ≤ i, k ≤ n. Hence each entry of the matrix of Tα is a linear

form in c1, . . . , cn, and therefore det(Tα) = f(c1, . . . , cn) for some homogeneous
polynomial f of degree n.

Moreover, write f(c1, . . . , cn) = a1c
n1,1

1 · · · cn1,n
n + · · · + akc

nk,1

1 · · · cnk,n
n , where

ai ∈ A, k, ni,j ∈ N and
∑n
j=1 ni,j = n, for every i. By Lemma 5 and the quasi-

triangle inequality for NA, there exists a constant C0 ∈ N such that

NB(α) = NA(NL/K(α)) = NA(f(c1, . . . , cn))

≤ C0

(
NA(a1)NA(c1)n1,1 · · ·NA(cn)n1,n + · · ·

+NA(ak)NA(c1)nk,1 · · ·NA(cn)nk,n
)

≤ C0k ·max
i
{NA(ai)}(max

i
{NA(ci)})n.

Hence the result follows by letting C = C0k ·maxi{NA(ai)}. �

Theorem 7. Suppose that B is a ring of class (G) over A. Then there exists a
constant C ∈ N such that for any ideal I in B, there exists a nonzero element α ∈ I
such that

NB(α) ≤ C ·NB(I).

Hence the ideal class group of B is finite.

Proof. Let x1, . . . , xn be a basis for B over A. Let m be the unique positive integer
such that mn ≤ NB(I) < (m + 1)n. The fact that A is a basic PID (the second
property) says that there exists a c ∈ N such that for every m, #{x ∈ A | NA(x) ≤
cm} ≥ m. Thus, for every m, the set

Sm := {x ∈ A | NA(x) ≤ 2cm}

has at least m+ 1 elements. Hence the set

Smx1 + · · ·+ Smxn

has at least (m + 1)n distinct elements. Since (m + 1)n > |B/I|, there exist two
distinct elements s and t in the set Smx1 + · · ·+ Smxn that are congruent mod I.
Write s =

∑n
i=1 aixi and t =

∑n
i=1 bixi, with ai, bi ∈ Sm. Then

s− t =

n∑
i=1

(ai − bi)xi
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is a nonzero element of I and by the third property of Definition 1, there is a C0 ∈ N
such that

NA(ai − bi) ≤ C0(NA(ai) +NA(bi)) ≤ C02 · 2cm.

Thus Lemma 6 implies that there is a C1 ∈ N such that

NB(s− t) ≤ C1 ·max
i
{NA(ai − bi)}n ≤ C1(C04cm)n,

and thus
NB(s− t)
NB(I)

≤ C1(C04cm)n

mn
= C1(C04c)n.

Taking α = s− t and C = C1(C04c)n thus proves the first assertion of the theorem.
A well-known argument now implies the finiteness of the class group of B (see,

e.g., [14, Lemmas V.3.8–3.9]). We give the argument here for the convenience of
the reader. If I is an ideal of B, we write [I] for the corresponding ideal class in
the class group Cl(B). We will first show that any ideal class c ∈ Cl(R) contains
an ideal I such that N(I) ≤ C. Let J be an ideal of B such that c = [J ].

By the first assertion of the theorem, there exists a nonzero α ∈ J and a C ∈ N
such that N(α) ≤ C · N(J). Since αB ⊆ J , the unique factorization of ideals in
B implies that we have αB = IJ , for some ideal I. Since [αB] is the trivial ideal
class,

[I] = [J ]−1 = c−1,

and by the multiplicativity of N ,

N(J)N(I) = N(α) ≤ C ·N(J),

so N(I) ≤ C. We have thus shown what we wanted for c−1. But c ∈ Cl(B) was
arbitrary, so it holds for all c. Now, since there are only finitely many ideals of
norm below a given bound (see, e.g., [14, Lemma V.3.7]) we conclude that there
can only be finitely many classes c ∈ Cl(B). �

The theorem above together with Proposition 4 imply that rings of integers of
global fields have finite ideal class group.

Let D be an integral domain with field of fractions K. A ring R such that
D ⊆ R ⊆ K is called an overring of D. The following is a known result.

Lemma 8. Let D be a Dedekind domain with finite class group. Then any overring
R of D is a Dedekind domain with finite class group.

Proof. It is well known that R is a Dedekind domain (see, e.g., [5, Lemma 1-
1]). Since the class group of D is finite, hence torsion, a result independently due
to Davis [8, Theorem 2], Gilmer and Ohm [9, Cor. 2.6], and Goldman [10, §1,
Corollary (1)] implies that R is the localization of D at a multiplicative subset of
D. Then, by a straightforward argument (see [5, Proposition 1-2, Corollary 1-3]),
the class group of R is a quotient of the class group of D, hence is finite. �

The class of overrings of rings of class (G) includes all S-integer rings, for any
finite set S of places containing the Archimedean ones. On the other hand, by
Theorem 11 it will follow that a ring of S-integers is not of type (G) unless it is a
ring of integers of a global field.
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4. Rings of class (G) and global fields.

For the reader’s convenience, we state a few definitions and results from Artin’s
book [2, Chapter 1].

Definition 9. An absolute value (called “valuation” in [2, Chapter 1]) of a field K
is a function | · | : K → R, x 7→ |x|, satisfying the following conditions:

(1) |x| ≥ 0 and |x| = 0 if and only if x = 0;
(2) |xy| = |x| · |y|;
(3) there exists a constant c ∈ R, c ≥ 1 such that if |x| ≤ 1, then |1 + x| ≤ c.

Note that the third condition is equivalent to | · | satisfying the quasi-triangle
inequality (cf. the third condition in Definition 1). Indeed, let c be as in the
third condition above and let x, y ∈ K. If either x = 0 or y = 0, the quasi-
triangle inequality is trivially satisfied, so we may assume that x 6= 0, y 6= 0,
and without loss of generality |x/y| ≤ 1. Then |1 + x/y| ≤ c ≤ 2c(1 + |x/y|), so
|x+ y| ≤ C(|x|+ |y|), with C = 2c. Conversely, if C ∈ R is a positive number such
that |x+y| ≤ C(|x|+|y|) holds for all x, y ∈ K, then in particular |1+x| ≤ C(1+|x|),
and by making C larger if necessary, we can take C ≥ 1. Thus, if |x| ≤ 1, we obtain
|1 + x| ≤ 2C, so the third condition in Definition 9 holds with c = 2C.

The trivial absolute value is the one for which |x| = 1 for all nonzero x ∈ K.
One defines two absolute values | · |1 and | · |2 to be equivalent if for any x ∈ K,
|a|1 < 1 if and only if | · |2 < 1. It turns out that every absolute value is equivalent
to one for which the usual triangle inequality holds.

Let K be a field and | · |v and absolute value of K. The absolute value | · |v is
said to be non-Archimedean if for all x, y ∈ K,

|x+ y|v ≤ max{|x|v, |y|v};

otherwise | · |v is said to be Archimedean. We call | · |v discrete if |K|v is a discrete
subset of R. If | · |v is non-Archimedean, Ov = {x ∈ K | |x|v ≤ 1} is a ring (called
the valuation ring at v), pv = {x ∈ K | |x|v < 1} is a maximal ideal of Ov, and the
field

kv = Ov/pv
is called the residue class field at v.

Let Σ be a set of nonequivalent and nontrivial absolute values ofK. Consider the
set k0 = {x ∈ K | |x|v ≤ 1 for all v ∈ Σ}. It is not hard to show that k0 is a field if
and only if Σ contains no Archimedean prime (see [2, Chapter 12, Section 1]). In
this case we may consider k0 as a subfield of each kv.

We will use the following fundamental result, due to Artin and Whaples [3].

Theorem 10. Suppose that K is a field with a set Σ of mutually nonequivalent
and nontrivial absolute values such that the following two conditions hold:

(1) For every x ∈ K×, |x|v = 1 for all but a finite number of v ∈ Σ and∏
v∈Σ

|x|v = 1;

(2) there is at least one v ∈ Σ such that either v is Archimedean or v is discrete
and kv is finite.

Then K is a global field.
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A comment on the proof of this theorem. The proof of [2, Chapter 12, Theorem 3]
shows that under the conditions of Theorem 10, if Σ has at least one Archimedean
absolute value, then K is a number field and otherwise K is a finite extension of
k0(t), for some t transcendental over k0. In the latter case, k0 is a subfield of the
finite field kv, so k0 itself is finite and thus K is a global function field.

We now come to the main result of the present section.

Theorem 11. Let A be a finite quotient PID such that its ideal norm NA satisfies
the quasi-triangle inequality. Then the field of fractions K of A is a global field and
A is a ring of integers of K.

Proof. The ideal norm NA extends to K via NA(a/b) = NA(a)
NA(b) , for a, b ∈ A and it is

immediately checked that NA on K satisfies the quasi-triangle inequality. Thus NA
on K is an absolute value. We also have p-adic absolute values for every nonzero
prime ideal p of A. Indeed, for a ∈ A, let vp(a) denote the largest integer n such
that pn divides the ideal aA, and define

|a|p = |A/p|−vp(a).

Just like NA, the function | · |p : a 7→ |a|p extends to K via |a/b|p =
|a|p
|b|p , and

this defines an absolute value on K. Note that NA is not equivalent to any of the
absolute values | · |p because if p ∈ A is a generator of a prime ideal p, we have
|p|p = |A/p|−1 < 1, while NA(p) = |A/p| > 1.

We will now verify that K together with the absolute values NA and | · |p, where
p runs through the prime ideals of A, satisfies the conditions of Theorem 10.

Condition 1: Since A is not a field (by the definition of basic PID), it has a
nonzero proper ideal, so the ideal norm NA is not the trivial absolute value on K.
For any nonzero a, b ∈ A, there are only finitely many prime elements of A that
divide a or b, so |a/b|p = 1 for all but finitely many p. Set |x|∞ := NA(x) for x ∈ K
and let Σf = {p | p 6= (0) prime ideal of A} and Σ = Σf ∪ {∞}. Note that Σf is
nonempty since A is not a field. For a nonzero a ∈ A, let aA = pe11 · · · perr be the
prime ideal factorization, where ei = vpi(a). Then∏

i∈Σ

|a|i = |pe11 |p1
· · · |perr |pr

· |a|∞ = |A/p1|−e1 · · · |A/pr|−er · |A/aA|

= |A/p1|−e1 · · · |A/pr|−er · |A/p1|e1 · · · |A/pr|er = 1,

where for the penultimate equality we have used the Chinese remainder theorem and
the fact that |A/pn| = |A/p|n, for any prime p and n ∈ N (see [14, Lemma V.3.4]).
Thus also

∏
i |a/b|i = 1 for any nonzero a, b ∈ A.

Condition 2: Let p ∈ Σf . Then | · |p is discrete since its values are of the form
|A/p|n, n ∈ Z. Moreover, the valuation ring Op contains A, so by [13, Theorem 2.3]
Op is a finite quotient domain. In particular, kp = Op/p is finite. Thus Theorem [3]
implies that K is a global field.

By [2, Chapter 12, Corollary 1 and Theorem 4] the set {| · |v | v ∈ Σ} consists of
all the nontrivial absolute values on K (up to equivalence). Since x ∈ K lies in A
if and only if vp(x) ≥ 0 for all p ∈ Σf , we have

(1) A = {x ∈ K | |x|p ≤ 1 for all p ∈ Σf} =
⋂

p∈Σf

Op.
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If K is a number field, let OK be its ring of integers. If K is a function field, we
define OK as follows. As noted just before Theorem 10, k0 is a subfield of any kp,
so k0 is finite. Moreover, (1) implies that k0 ⊂ A. Let t ∈ A be an element such
that t 6∈ k (such an element exists since A is not a field); then NA(t) > 1 (otherwise
|x|p ≤ 1 for all p ∈ Σ, hence t ∈ k0). By the proof of [2, Chapter 12, Theorem 3],
K is a finite extension of the field of fractions k0(t) of k0[t]. In this case, let OK
denote the integral closure of k0[t] in K.

It remains to show that in either case we have A = OK . Let A0 = Z in case K
is a number field and let A0 = k0[t] otherwise. By [4, Corollary 5.22], OK is the
intersection of all the valuation rings of K containing A0, where a valuation ring
R of K is an integral domain with field of fractions K such that x ∈ K implies
x ∈ R or x−1 ∈ R. It is clear that every Op is a valuation ring of K containing
A0, so that by (1) we have OK ⊆ A. Conversely, we claim that every valuation
ring R of K containing A0 equals some Op. Indeed, let R be a valuation ring of K
containing A0. Then R is integrally closed [4, Proposition 5.18], so OK ⊆ R. If m
is the maximal ideal of R, then q := OK ∩m is a prime ideal of OK , and as R is a
local ring [4, Proposition 5.18], we have OK,q ⊆ R, where OK,q is the localization
of OK at the prime ideal q = OK ∩ p. Since OK is a Dedekind domain, OK,q is
a discrete valuation ring, hence a valuation ring, so by [4, Theorem 5.21] we must
have OK,q = R. Now, since A is a PID it is integrally closed (and A contains A0),
so we must have OK ⊆ A. Let p be a prime ideal of A such that q = OK ∩ p (i.e., p
can be any prime ideal dividing the ideal qA). Then OK ⊆ A ⊆ Op, so OK,q ⊆ Op

and by [4, Theorem 5.21] OK,q = Op and thus R = Op. It thus follows from (1)
and [4, Corollary 5.22] that A = OK . �

Let B be a ring of class (G) over the basic PID A, let K be the fraction field of
A, and let L be the fraction field of B. With this notation, we have the following
result.

Lemma 12. The field extension L/K is of finite degree and B is the integral closure
of A in L. On the other hand, let L′/K be a finite separable extension and let B′
be the integral closure of A in L′. Then B′ is a ring of class (G) over A.

Proof. Let S = A \ {0}. Then (by a simple argument) S−1B is finitely generated
as a vector space over S−1A = K. Thus S−1B is an integral domain that is a
finite-dimensional vector space, so S−1B is a field, that is, S−1B = L. Hence L/K
is finite. Furthermore, since B is finitely generated over A, B is integral over A
(see, e.g., [14, Proposition I.2.10]). Thus B lies inside the integral closure C of A
in L. Since B ⊆ C ⊆ L, the fraction field of C is L. Any x ∈ C is integral over
A, hence integral over B. Since B is a Dedekind domain it is integrally closed, so
x ∈ B. Thus C = B, that is, B is the integral closure of A in L.

Moreover, it is well known that B′ is a Dedekind domain that is finitely generated
over A (see, e.g., [14, Theorem I.4.7 and Theorem I.6.2]). Since B′ is torsion-free,
it is free over A and thus B′ is a ring of class (G) over A. �

Corollary 13. Let A be a finite quotient PID such that its ideal norm NA satisfies
the quasi-triangle inequality. Let B be a Dedekind domain which is a finitely gener-
ated and free A-module. Then B is a ring of integers of a global field. In particular,
if A is a basic PID and B is of class (G) over A, then B is a ring of integers of a
global field.
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Proof. Let K and L be the fraction field of A and B, respectively. By Lemma 12
L is a global field and B is the integral closure of A in L. By Proposition 11, A is
the integral closure in K of A0, where A0 is either Z or Fq[t], for some t ∈ K. Let
C be the integral closure of A0 in L. Since A0 ⊆ A we trivially have C ⊆ B. By
the transitivity of integrality [14, Proposition I.2.18] applied to A0 ⊆ A ⊆ B, we
have that B is integral over A0, hence B ⊆ C and so B = C. We have proved that
B is the integral closure of Z or Fq[t] in the global field L and thus B is a ring of
integers in L. �

One may ask whether there exists a Dedekind domain B that is finitely generated
and free over a PID A with finite quotients and such that B has infinite class
group. Theorem 7 and Corollary 13 show that if such an example exists, then the
quasi-triangle inequality must fail for ideal norm NA. We note that Goldman [10]
and Heitmann [11] have given examples of Dedekind domains with finite quotients
and infinite class groups, but we do not know whether these examples are finitely
generated and free over some PID.

It is a trivial fact that there exist Dedekind domains (even PIDs) with finite class
groups that are not overrings of any ring of integers of a global field. Indeed, the
polynomial ring C[X] is a PID but is not a finite quotient domain, so cannot be an
overring of any finite quotient domain (finite quotient domains are stable under
localization). However, we do not know whether there exists a finite quotient
Dedekind domain with finite class group that is not the overring of any ring of
integers of a global field.

Acknowledgement. I wish to thank Pete L. Clark and D. Lorenzini for pointing out
inaccuracies in a previous version and for comments that helped to improve the
exposition.
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