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Abstract

An accurate classification is the basis for research in biology. Morphometrics and 
morphospecies play an important role in modern taxonomy, with geometric morphometrics 
increasingly applied as a favourite analytical tool. Yet, really large samples are seldom 
available for modern species and even less common in palaeontology, where morphospecies 
are often identified, described and compared using just one or a very few specimens. The 
impact of sampling error and how large a sample must be to mitigate the inaccuracy are 
important questions for morphometrics and taxonomy. Using more than 4000 crania of adult 
mammals and taxa representing each of the four placental superorders, we assess the impacts 
of sampling error on estimates of species means, variances and covariances in Procrustes 
shape data using resampling experiments. In each group of closely related species (mostly 
congeneric), we found that a species can be identified fairly accurately even when means are 
based on relatively small samples, although errors are frequent with fewer specimens and 
primates more prone to inaccuracies. A precise reconstruction of similarity relationships, in 
contrast, sometimes requires very large samples (> 100), but this varies widely depending on 
the study group. Medium-sized samples are necessary to accurately estimate standard errors 
of mean shapes or intraspecific variance covariance structure, but in this case minimum 
sample sizes are broadly similar across all groups (≈ 20-50 individuals). Overall, thus, the 
minimum sample sized required for a study varies across taxa and depends on what is being 
assessed, but about 25-40 specimens (for each sex, if a species is sexually dimorphic) may be 
on average an adequate and attainable minimum sample size for estimating the most 
commonly used shape parameters. As expected, the best predictor of the effects of sampling 
error is the ratio of between- to within-species variation: the larger the ratio, the smaller the 
sample size needed to obtain the same level of accuracy. Even though ours is the largest study
to date of the uncertainties in estimates of means, variances and covariances in geometric 
morphometrics, and despite its generally high congruence with previous analyses, we feel it 
would be premature to generalize. Clearly, there is no a priori answer for what minimum 
sample size is required for a particular study and no universal recipe to control for sampling 
error. Exploratory analyses using resampling experiments are thus desirable, easy to perform 
and yield powerful preliminary clues about the effect of sampling on parameter estimates in 
comparative studies of morphospecies, and in a variety of other morphometric applications in
biology and medicine. Morphospecies descriptions are indeed a small piece of provisional 
evidence in a much more complex evolutionary puzzle. However, they are crucial in 
palaeontology, and provide important complimentary evidence in modern integrative 
taxonomy. Thus, if taxonomy provides the bricks for accurate research in biology, 
understanding the robustness of these bricks is the first fundamental step to build scientific 
knowledge on sound, stable and long-lasting foundations.

Introduction

Taxonomy, the naming and classification of organisms, is seen by some as unfashionable and 
taxonomic expertise is vanishing quickly from natural history museums and other institutions 
(Drew, 2011). Yet, this ancient branch of biology is today more crucial than ever. We are 
losing species at a rate comparable to that of the great mass extinctions (Ceballos et al., 2015,
2017) and humans are modifying the planet with the strength of a geological force, with 
unpredictable but likely negative consequences for most living beings (Lewis and Maslin, 
2018) including ourselves (Whitmee et al., 2015). Conservationists and ecologists need 
accurate taxonomic knowledge. They are not alone: a taxonomic foundation underpins all 
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fields of biology and is crucial even for medical doctors who face new diseases emerging 
from disrupted ecosystems (Olival et al., 2017; Mollentze and Streicker, 2020; Rodriguez-
Morales et al., 2020). Sir Robert May’s famous statement on the centrality of taxonomy in 
biology remains as current as ever: “without taxonomy to give shape to the bricks [i.e., 
organisms] ... the house of biological science is a meaningless jumble” (p. 130 (May, 1990)). 
Yet, delimiting taxonomic boundaries remains a complex and sometimes contentious issue, 
with grey areas which may elude the application of any general species concept (Zachos, 
2016).

A fundamental operational step in taxonomy is species description and identification. 
Descriptions were traditionally based on morphology, which is still the main source of 
information for identification in the field. In palaeontology, taxonomy is overwhelmingly 
based on morphology, so that the vast majority of fossil species are in fact morphospecies 
(Simpson, 1943, 1951; Harrison, 1993). Genetics has become increasingly important for 
assessing taxonomy, but DNA evidence is only available for modern species and recent 
subfossils. Ideally, multiple lines of evidence should be taken into account to accurately 
describe and identify a species. This type of “integrative taxonomy” (Dayrat, 2005; Padial et 
al., 2010) is  just 15 years old formally (i.e., since the name has been proposed, although a 
‘total evidence’ approach is much older – e.g., Kluge, 1989). However, it has encountered a 
slowly but constantly growing popularity: searching for references in google scholar (on 
January 5th 2021) using “integrative taxonomy” AND “species description”, the number of 
entries retrieved for 2005, 2012 and 2019 is 4, 40 and 137 respectively, and the total number, 
since 2005, when the name was coined, is 975.

Often, integrative taxonomy employs molecular evidence together with morphometric
analysis. Geometric morphometrics (Rohlf and Marcus, 1993; Zelditch et al., 2012; Cardini 
and Loy, 2013), a combination of image analysis and multivariate statistics, is particularly 
suitable to this aim, because it is relatively simple but at the same time powerful and effective
in data collection and visualization (Adams et al., 2004, 2013). In mammals, one of the 
taxonomically best studied groups of animals, successful applications of integrative 
approaches are common. For instance, a combination of molecular and morphometric 
analyses, together with behavioural and biogeographic data, has brought to the recent 
discovery of cryptic diversity, and thus a new species, among orangutans, possibly one of the 
most studied, as well as endangered, genera of primates (Nater et al., 2017). Comparing 
groups using morphometrics is an important tool in species assessment also in palaeontology. 
Although fossil species rarely have large comparative samples and are often defined by 
meristic apomorphies (e.g., the number of molar or premolar cusps or the presence, or 
absence of foramina), quantitative studies of continuous traits are not uncommon and are in 
fact routinely used, for instance, in palaeoanthropology. Indeed, the whole field of virtual 
anthropology originated from the use of a mix of geometric morphometrics and 3D imaging 
techniques, with extensive applications to reconstruct and compare fragmentary material to 
produce results unachievable with traditional non-quantitative methods (e.g., Hublin et al., 
2009, 2017). More generally, in recent years, taxonomists have turned increasingly frequently
to geometric morphometrics to assign living or fossil specimens to species-level taxa using 
clustering methods, discriminant functions or other morphometric analyses, with variable 
accuracy depending on the variability and overlap of the morphologies of the species in 
question as well as the morphometric sample available to the researcher (e.g., Polly and Head
2004; McGuire 2011; Boroni et al., 2017; Fang et al., 2018).   

A taxonomy that is as accurate and stable as possible is typically seen as a prerequisite
for measuring the loss of biodiversity and for setting conservation priorities. We cannot 
protect species we do not know and we cannot say if we have lost a species until we describe 
it: knowing whether, for instance, the Florida panther is a species, subspecies or just a 
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recently isolated population of pumas can make a difference in deciding if and how to 
preserve it (Culver et al., 2000). Yet, some argue that the relationship between taxonomy and 
conservation is more complicated than usually depicted (Zachos, 2018), and its role in 
palaeontology may seem even less clear and pressing. So why does it matter that we 
understand the limits of morphological analysis for taxonomic delimitation in living but also 
in extinct lineages? The study and naming of fossil species, besides being of intrinsic interest 
on its own and clearly central, also contributes in a fundamental way to our understanding of 
the current biodiversity crisis. To assess whether the modern day rate of species extinction is 
unusually high, we need to compare it to the background extinction rate, which can only be 
estimated from fossil species, which must therefore be identified and counted in the same 
way as extant ones (Barnosky et al., 2011). Comparability between taxonomy in the living 
and fossil records is also needed to reconstruct when the extinction crisis began. For instance,
to search for the causes of the end of the Pleistocene megafaunal extinctions, the timing and 
number of megafaunal species extinctions have been used to understand whether they 
coincided with the arrival of humans in a region (Barnosky et al., 2004; Koch and Barnosky, 
2006). Estimates of species numbers have also allowed to infer the Earth megafaunal carrying
capacity and thus demonstrate the biomass trade-off between the rapidly disappearing large 
species of wild terrestrial vertebrates and the increasing size of the human population and its 
livestock (Barnosky, 2008).

Understanding the impact of humans on the environment and on other species 
requires reconstructing our own evolutionary history, which in turn depends on finding, 
studying and classifying our closest extinct relatives (Harrison, 1993; Wood, 2010; White, 
2014). This is again partly a taxonomic endeavour, which mostly relies on the assessment of 
morphospecies and their evolutionary relationships (Wood et al., 2020). Because DNA 
evidence is lacking for most fossils, both their classification and evolutionary relationships 
are largely inferred using quantitative analyses of bone morphology. Species diagnosis, in 
particular, is, in palaeontology, mostly “a phenetically derived morphotype that serves to 
distinguish the species from all other closely related” ones (p. 363, (Harrison, 1993)). Thus, 
as mentioned, fossil species may be defined and compared using meristic phenotypic traits 
but also by employing morphometrics to quantify similarity relationships (i.e., evolutionary 
grades) and assess whether fossils represent the same or different species or maybe a new, 
previously unknown, one. Clearly, given the paucity and often fragmentary nature of fossil 
material (Simpson, 1951; Albrecht and Miller, 1993; Godfray et al., 2004), scattered across 
many continents and over an evolutionary timescale of millions of years, this is no easy task. 
Both taxonomic deflation (Benton, 2008) or inflation (Alroy, 2002) can happen, with 
disagreement about the occurrence of one or the other phenomenon even within a single most
studied fossil lineage such as the hominins (Tattersall, 1986, 1993; Albrecht and Miller, 1993;
Martin and Andrews, 1993; White, 2014). In fact, all species are hypotheses (Dayrat, 2005), 
and therefore morphospecies are just a piece of evidence in a much more complex puzzle 
(Simpson, 1943). In this context, if one also bears in mind that species boundaries may be 
fuzzy and uncertain even in living taxa, it seems likely that taxonomic assessment using a 
single source of evidence, such as morphology, may be prone to errors both in modern and 
fossil lineages.

Among the multifarious sources of errors in the assessment of morphospecies, one 
that afflicts all taxonomic studies is sampling error, that arises because of limited numbers of 
specimens. This observation is almost tautological, because a morphologically-defined 
taxonomic species is in fact “an inference … of the morphological species from which a 
given series of specimens has been drawn” (p. 148, (Simpson, 1943)). Thus, using small and 
poorly representative samples makes conclusions from morphological studies particularly 
uncertain and potentially biased (Simpson, 1943; Cope and Lacy, 1992). An extreme example
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is the use of a type specimen to describe a species, which, despite the good practical reasons 
for this convention (Witteveen, 2015), misses out the often huge variability in a population 
(Simpson, 1940, 1951; Dayrat, 2005). However, even when we adopt a population 
perspective to taxonomic assessment (Simpson, 1940; Newell, 1949), we must inevitably 
draw conclusions from descriptive statistics, based on sample averages, variances etc. 
(Simpson, 1943). These statistics provide the basis for comparing populations, and are 
therefore central to the assessment of morphospecies, but they are also behind state of the art 
morphometric analyses in evolutionary and biomedical research ranging from the application 
of comparative methods (Monteiro, 2013) to studies of modularity and integration 
(Klingenberg, 2013), evolutionary trends (e.g., Cardini, 2019a) and human evolution 
(O’Higgins, 2000), ecomorphology (e.g., Meloro et al., 2017), forensics (e.g., Franklin et al., 
2007) and medicine (e.g., Sanfilippo et al., 2009).

 In this research, using cranial landmarks from a total sample of more than 4000 
specimens of living mammals, representing a variety of placental orders, we explore the 
impact of sample size on key morphometric parameters involved in the assessment of 
morphospecies. As our main interest is the delimitation between closely related species, 
whose boundaries mark the grey areas of alpha taxonomy, we divided our data set into small 
clades of closely related species (mostly genera) and used the member species with the 
largest sample as the focal species (FS). In this species, we focused on how sampling might 
affect the mean and variance-covariance structure of Procrustes shape data. However, unlike 
our previous studies on sampling error in Procrustean geometric morphometrics (Cardini and 
Elton, 2007; Cardini et al., 2015), we did not also analyse size. Size is as important as shape, 
but it is a simpler variable and generally less impacted than shape by sampling (e.g., Cardini 
et al., 2015) and measurement error (Cardini, 2014; Cardini and Chiapelli, 2020). More 
importantly, size is univariate and the ways it might be affected by sampling error are similar 
to those of other biological variables such as body mass, height, width or length. Procrustes 
shape coordinates, in contrast, are more complex, not only because of the multivariate nature 
of shape but also because the Procrustes superimposition alters the covariance structure of the
data (see Lele, 1991; Rohlf, 1998; O’Higgins, 2000; Cardini, 2019b). Thus, within each 
clade, we drew many random subsamples of its FS and, for each subsample of the same 
smaller size, we estimated the mean, variances and covariances of the Procrustes shape 
coordinates. Instead of directly using these statistics, to assess how taxonomic decisions 
would be affected by small sample size, and to also enhance comparability of our results to 
other systems, we develop several ‘indices’ that express variability in the FS subsample 
parameters relative to one another and to the other species of its clade. As the resampling 
experiments produced a huge set of results, we synthesized the results from all the clades and 
investigated whether the impacts of sampling error are generalizable or whether and why they
differ idiosyncratically from group to group. Finally, as we look for consistent patterns, we 
will discuss the answer to a most asked question in morphometrics, taxonomic and 
palaeontological research: how many specimens do I need?

Materials and Methods

Summary of specific goals
As the study design is complex, we first outline here briefly what we did and, later in the 
specific sections of the methods, provide more details, starting with an example to clarify the 
design and terminology.

We employed a large sample of mammals (Table 1), that included at least one lineage 
representing each of the four placental superorders. We measured in 3D adult crania using a 
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configuration of 34 anatomical landmarks (Fig. 1). From this configuration, we also selected 
two reduced configurations, in which we replicated the entire analysis to preliminarily 
explore the sensitivity of results to the number and specific choice of landmarks. In each 
lineage we selected the species with the largest sample as the focal study species. In this 
species, we performed five series of randomized subsampling experiments. In these random 
subsamples, we calculated six different indices that estimate the impact of sampling error on 
means, variances and covariances both in relation to interspecific mean differences in a 
lineage and in relation to individual variability in the specific FS. However, because two of 
the three series of randomization experiments using the total configuration produced results 
highly congruent with the third main experiment on this configuration (see below), we will 
focus on the latter, as well as on the two series using reduced configurations. 

Example explaining the study design and terminology
The FS is the species for which we have the largest sample in a lineage. For instance, for the 
Equus clade the FS is E. burchellii (plains zebras), which has a sample size (N) of 103 
specimens. From the total FS sample (the ‘parent’ or total sample), to estimate the effect of 
sampling error, we extracted 500 random subsamples of progressively smaller size (e.g., 500 
subsamples of 50 specimens, then 500 of 20 specimens, then again another 500 of five etc.). 
As N is reduced, the effect of sampling error on the mean shape, variance, and covariance 
structure, becomes more pronounced. This is illustrated in Figure 2, where a cluster analysis 
and PCA of the mean shapes of the random subsamples and the total samples of the Equus 
clade are shown. For the sake of clarity but also to balance the number of observed and 
subsample taxa in the graphic, we only show seven subsamples (the same as the number of 
taxa in the clade) instead of all 500. However, to visualize the full range of variation in the 
500 subsamples, we selected the most distinctive means (i.e., those with the largest Procrustes
shape distance to the mean of the total sample of E. burchellii). When the subsample size is 
large, they all cluster close to the total plains zebra sample, but, when N drops to five 
individuals, the error in estimating the mean shape is so large that five out of seven 
subsamples end up completely separated from all other taxa (including their parent FS, E. 
burchellii). Indeed, at N = 5 the disparity between subsamples becomes almost as great as 
found in the whole genus. An intermediate subsample size of N = 20 is, however, sufficient 
for the subsample means to cluster all together with their own FS, although the branch 
lengths in the dendrograms and convex hulls in PCA ordinations indicate that there is still a 
fair amount of variability due to sampling error. This figure (Fig. 2), and complementary ones
for the other clades found in the supplementary data (S-Figs 1-13), provide intuitive 
summaries of the effects of sample size, that complement the other analytical results 
presented in this paper. 

Because we do not know the true means, variances and covariances of the species, we
recognize that we are not assessing true “accuracy” (i.e., how close the estimates are to the 
truth). We therefore adopt the term relative accuracy to refer to our best proxy for accuracy, 
namely how close results from the subsamples are to their parent FS (whose N ranges from 
44 to 281, with a median sample size of 88) and in relation to the other taxa in the analysis. 
We reserve the term “precision” to describe how close estimates of the random subsamples of
a given size are to one another. Thus, for instance, a group of subsample means that cluster 
closely with one another but not with their parent FS (e.g., the five most distant means in 
plains zebras subsamples of N = 5, Fig. 2a) would be described as providing precise estimates
of the mean but ones with a very low relative accuracy. On the other hand, if very close to the
parent FS but far from one another, they would have higher relative accuracy but lower 
precision.
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Landmarks, shape coordinates and study samples
The cranial landmark configuration is shown in Figure 1. A detailed description of the 
configuration is available in previous studies (Cardini and Polly, 2013; Cardini, 2019a). 
Shape coordinates were computed in MorphoJ (Klingenberg, 2011) using a Procrustes 
superimposition (Rohlf and Slice, 1990).

Study samples and their descriptive statistics are detailed in the supplementary 
information (Table S1-2), but the sample composition is also summarized in Table 1. Each 
sample consists of adults (ca. 95% of which taken from the wild) of closely related species, 
mostly genera, of placental mammals. Overall, they belong to 10 different clades, with at 
least one taxon representing each of the four placental superorders. Specifically, we analysed 
armadillos of the genus Dasypus (Xenarthra), hyraxes of all the three living genera 
(Afrotheria), the Laurasiatheria genera Equus (horses and their kin), Erinaceus (the European
hedgehog and its closest relatives) and Vulpes (‘true’ foxes), the Euarchontoglires genera 
Lepus (hares), Cercopithecus (recently split into three closely related genera of guenon 
monkeys), Macaca (macaques), Papio (baboons) and Piliocolobus (red colobus).

As we mentioned, most of these groups are currently classified as belonging to single 
genera, but two of them, the former genus Cercopithecus and the hyraxes (family 
Procaviidae), include more than one genus of closely related (family level or below) species. 
However, these two suprageneric groups originated comparatively recently ca. 6 and 10 
millions of years ago (MYA), an evolutionary age that falls within the range of the genus-
level groups in our analysis (ca. 2 to 20 MYA - Upham et al., 2019). Also, regardless of time 
since common ancestry, and the uncertainties in its estimate, and regardless of taxonomic 
status, these clades tend to show a fairly conservative cranial morphology. 

As in Cardini (2019a), primates, that are strongly sexually dimorphic (Lindenfors et 
al., 2007; Cardini and Elton, 2008a), were analysed separately for each sex. In all other cases,
we considered sex differences in cranial size and shape, measured using our specific 
configuration, as negligible, following the results of Cardini (2019a) on the same taxa.

Simulations
We ran five sets of simulations, each with its own abbreviation, which we describe below 
together. The first three use the full landmark configuration, and vary either which species are
included or how the random subsamples are constructed. The last two simulations use 
different subsamples of landmarks (‘reduced configurations’) but otherwise follow the same 
protocol as the experiment TOTAL (see below).

TOTALobs (‘observed’): random subsamples (with all landmarks) were drawn 
directly from the total bootstrapped FS sample; this constrains the largest subsamples to N < 
Nmax.

TOTAL: the subsamples were drawn from a simulated set of 1000 individuals from a 
theoretical population with the same mean shape and VCV as the total FS sample using 
mvrnorm() (Venables and Ripley, 2002). All landmarks were used. This strategy uses the 
multivariate version of a normal distribution to generate a very large sample of uniform size 
across all the clades, an approach used in previous work on the effect of sampling error on 
morphospecies assessment (Cope and Lacy, 1992). Note, however, that the degrees of 
freedom in the simulated individuals is fixed by Nmax, which means that even this large 1000 
individual sample underestimates the true variation in the biological population it represents. 
Because the cranium is the left side mirror reflected and symmetrized (Cardini, 2017), the 
rank of the covariance matrix is 52, which is less than the expected dimensionality of 95 (i.e.,
three times the number of landmarks minus seven, for the dimensions lost in the 
superimposition). This means that, in all multivariate normal simulations, with the exception 
of P. ellioti males (N=44) in TOTAL as well as TOTALbig (see below), FS Nmax > p, with p 
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being the number of shape variables. Thus, even if the simulated individuals underestimate 
the true variation, this is not constrained by Nmax - 1 < p, with the only minor exception of P. 
ellioti males.

TOTALbig: as TOTAL, but including only species with N ≥ 10. This is done in order 
to assess the sensitivity of TOTAL results to the inclusion of very small samples.

FACE: as TOTAL, but using the subset of facial landmarks (1 to 6, 14 to 20, 22 to 25, 
30 to 33 and 34, in Fig. 1), as an example of a smaller configuration within a specific 
anatomical region.

HALF: as TOTAL but using half of the total landmarks, with the configuration 
selected to cover all main cranial regions although with fewer points (landmarks 1, 3, 5, 6, 9, 
11, 15, 16, 19, 20-21, 23, 25, 27, 31-32, 34). As with FACE, HALF is another example used 
to start exploring the impact of the specific choice and density of the landmark configuration 
in relation to sampling error.

N of the randomized subsamples was iteratively set at: 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 
16, 18, 20, 23, 26, 30, 40, 45, 50, 75, 100, 150, 200, 250, 300, 400, 500. For each N, we 
randomly drew 500 subsamples from the total FS sample. For TOTALobs, the largest 
simulated N was limited by the FS Nmax; so, for instance, in E. burchellii with Nmax = 103, the 
largest subsample had N = 100. For all the other simulations (TOTAL etc.), in contrast, the 
resampling experiments can be replicated over exactly the same range of sample sizes (from 
three to 500) in all groups. Thus, we focused principally on TOTAL, FACE and HALF. For 
TOTAL, however, we first checked that its results mirrored those from TOTALobs and were 
robust to the inclusion of small (N < 10) samples. This was done by computing the 
correlations between results (i.e., each index in each taxon) obtained in TOTAL and those of 
TOTALobs over the common range of subsample sizes (i.e., N from 3 to the largest N < 
Nmax). The same was done, using the full range of N from three to 500, to compare TOTAL 
and TOTALbig. Similarly, TOTAL was also compared to FACE and HALF, to explore the 
congruence of the results using all landmarks or the two reduced configurations. 

For instance, for Equus, we calculated the correlation of WRONG SELF estimated in 
TOTAL with estimates from TOTALobs (although these included, for TOTAL, only results of
subsamples ranging from N = 3 to N = 100). Then, we did the same for all other indices, and 
finally repeated the whole correlational analysis (over the whole range of Ns from 3 to 500) 
to compare TOTAL with either TOTALbig, FACE or HALF. These correlations were 
summarized using the median and the 10th percentile of all correlations across all taxa. The 
latter was used, instead of the minimum as an estimate of the lowest congruence between two
sets of data once extreme cases are excluded. In general and for the same reasons (i.e., 
reducing the impact of extreme observations), in this study we typically employed trimmed 
ranges as detailed below.

‘Indices’ assessing the impact of sampling error
To assess the effect of sampling error, we categorized results using six ‘indices’ for the 
randomization results (i.e., the estimates of means, variances and covariances). The first three
indices apply mean shapes and explore the effect of sampling error in the FS on how one 
would interpret interspecific relationships based on the shape data; the other three are strictly 
‘micro-evolutionary’, in that they compare differences among individuals in the random 
subsamples to the ones observed in the parent total FS sample. The indices are:

1) WRONG SELF: the fraction of FS subsamples of a given N, whose mean shape is 
closer (i.e., it has a shorter Procrustes shape distance) to the mean of another species than to 
its own parent FS mean. WRONG SELF assesses the risk of misidentification of a FS 
subsample because its mean shape is so different from the ‘true’ mean that it groups with 
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another species. WRONG SELF can range from zero (no errors in identifying the correct 
species) to one (100% of incorrect affiliations). For instance, if we had just seven randomized
subsamples as in Figure 2, WRONG SELF would be 0/7 when N = 20 or 100. However, with 
N = 5, only two subsample means cluster really close to their own observed species mean, 
while the other five make up a completely separate cluster. We would have to check one by 
one those five means to see if, despite being outliers, they are still closer to the observed 
mean of plains zebras in the parent sample than to any other Equus species: if not, WRONG 
SELF would be 5/7 (> 70% of affiliations to a wrong species).

2) WRONG SISTER: the proportion of FS subsamples of a given N, whose mean 
shape does not cluster with the correct phenetic sister species. By “correct phenetic sister 
species” we mean the species whose mean shape is closest, in terms of Procrustes shape 
distances, to the observed FS mean shape. Thus, WRONG SISTER provides again 
information about similarity in mean shapes, but this time is about the risk of an inaccurate 
inference of interspecific phenetic relationships. Like WRONG SELF, WRONG SISTER can 
also range from zero (highest relative accuracy) to one (100% of subsamples having the 
wrong phenetic sister species). For instance, for plains zebras, the phenetic sister species is 
the kiang: if looking at pairwise distances we found that, in the example of Figure 2, one 
subsample mean is in fact closer to, say, the hemion, then WRONG SISTER would be 1/7 (ca
15% of erroneous inferences of the FS nearest neighbour). Unlike these simplified and purely
didactic examples, however, in the real analysis the denominator of both WRONG SELF and 
WRONG SISTER is the total number of random selections of subsamples of a given N, 
which is typically 500.

3) BG-RV (between group relative variance): the ratio between the multivariate 
variance of the means of all FS subsamples of a given N and the interspecific multivariate 
variance of all observed species mean shapes in the same lineage (e.g., seven species, for 
Equus). The numerator is expected to increase in smaller samples, while the denominator is 
constant and simply used to scale the amount of error in the estimates of the FS mean to the 
amount of observed interspecific mean shape differences. BG-RV might be interpreted as the 
proportion of interspecific mean shape space occupied by the different means of FS 
subsamples. It can range from zero (no sampling error and perfectly identical means) to one 
or more, if the variability in FS means is as large as or larger than that of the observed species
means in a group. For instance, in the example of Figure 2b-c, the PCA scatterplots indicate 
that plains zebra means overlap almost perfectly with the observed mean using subsamples of
N = 100 and are still fairly close to it, compared to other species, with N = 20, which would 
correspond to BG-RV close to zero. In contrast, in Figure 2a, the area occupied by the means 
of subsamples of N = 5 is almost as large as the range of interspecific mean differences in 
Equus, which suggests a BG-RV ≈ 1. For BG-RV, as well as for W-RV (see below), we used 
the sum of the variances of each variable to measure the size of a multivariate shape space. 
However, this can be done using alternative statistics such as the median of pairwise 
Procrustes shape distances in a sample or their 90th percentile (the latter being analogous to a 
trimmed univariate range) (Cardini and Elton, 2008b). All three statistics are shown in 
supplementary Table S2 and are highly correlated (median r = 0.98, minimum r = 0.91), 
which suggests that using the sum of variances, as we did, or other common alternatives, does
not appreciably change results.

4-5) W-RV (within species relative variance): this is analogous to BG-RV but it is 
based on individual differences within the FS. Variance is computed, as before, as the sum of 
the variances of the shape coordinates. W-RV of a specific run of a simulation is the ratio 
between the variance in a subsample of N FS individuals (e.g., N=10) divided by the 
observed variance using all individuals (Nmax) in the parent FS sample. The interpretation of 
this index is analogous to the one for BG-RV with the difference that, instead of using means,

390

395

400

405

410

415

420

425

430

435



W-RV is within species and thus measure how much of the total parent FS shape space is 
occupied by one of its random subsamples. Thus, because the numerator varies from run to 
run, the median (W-RV-median) and its trimmed range (W-RV-range, computed as the 
absolute difference between the 10th and 90th percentiles of the W-RVs) are used to summarize
this index. As we anticipated, trimmed ranges, here and in other instances where ranges are 
computed, are preferred to the minimum to maximum range, because they are less sensitive 
to extreme cases. As BG-RV, W-RV can range from zero to one or more.

6) VCVr: the median correlation of variance covariance matrices (VCV) between FS 
subsamples (of a given N, e.g. N=20) and the observed total sample (Nmax) VCV. The 
correlation does not guarantee identity but can assess proportionality and therefore 
complements W-RV. VCVr ranges from zero to one.

The definitions of the indices as well as all main abbreviations specific to this study 
are briefly repeated in Table 2, which is provided as an aid for the reader and should be used 
as a quick reference to consult when in doubt.

Graphical summaries, tables, and ‘10% error threshold’
Producing an effective summary of our results is not straightforward, as the set of numbers 
generated by each simulation is vast. Just for TOTAL, for instance, there are 27 subsample Ns
by six indices by 14 taxa, which makes a total of more than 2250 values (from an overall set 
of more than 2250 x 500 ca. = 1.1 million numbers). The main trends were therefore visually 
assessed using profile plots (index vs FS subsample N); summarized with medians and ranges
(trimmed using the 5th and 95th percentile of values across all taxa); and further explored 
using a ‘10% error threshold’.

The 10% threshold is arbitrary (we could have chosen 5% or 20% or anything else) 
but it seems reasonable to us (not too small and not too large), and the approach has already 
been adopted in other morphometric studies of sampling error to summarize results (Stec et 
al., 2016). In practice, the threshold means that, for WRONG SELF and WRONG SISTER, 
we selected the minimum sample size for having no more than 10% of runs misidentifying 
respectively the FS or its phenetic sister species; for BG-RV, we selected the minimum N for 
relative variance to be < 0.1 (i.e., 10% of the size of the interspecific shape space of the 
means); for  W-RV-median, the threshold was not computed, as this index turned out to be 
almost completely unbiased (i.e., ca. = 1 regardless of N); for W-RV-range, we selected the 
smallest N for estimates of the magnitude of FS variance in subsamples to remain within ca. 
±10% of the value observed in the total sample; finally, for VCVr, we looked for the sample 
size corresponding to a median correlation ≥ 0.9 (i.e., less than 10% smaller than a perfect 
correlation of one).

Results

Summary explanation of indices
We remind readers to consult Table 2 for brief definitions, but, before presenting the results, 
we summarize here briefly and informally what the different indices measure. To start, the 
first three (1-3) are based on sample mean shapes and the second three (4-6) on individuals 
within the FS samples. In all instances, sampling error is assessed in the FS species either in 
relation to other species in its clade (1-3) or in relation to the total parent FS sample (4-6). 

WRONG SELF is informative about the risk of affiliating a sample mean to the 
wrong species, whereas WRONG SISTER is about how often, because of sampling error, one
might wrongly infer what species is most similar to the FS. Thus, the closer WRONG SELF 
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or WRONG SISTER are to zero, the smaller the impact of sampling error. 
BW-RV is the portion of the ‘box’ (fraction of the shape space), containing 

interspecific mean differences, that is occupied by uncertainties in estimates of the FS mean 
shape when samples are smaller than in the total parent sample: like the standard error of 
univariate means, one wants this uncertainty to be as small as possible and definitely much 
smaller than interspecific differences (i.e., < 1 and as close to zero as possible). W-RV is 
analogous to BW-RV but it is within species and thus compares variability among individuals
(like a univariate standard deviation) in smaller samples of the FS to that observed including 
all FS individuals. If W-RV-median is about the average relative accuracy (defined as 
explained above), W-RV-range is about precision in estimates of the magnitude of within 
species variability: if accurate and precise, variance in subsamples should be the same as in 
the total sample, which implies W-RV-median = 1 and W-RV-range = 0. Finally, after two 
indices concerning the magnitude of the variability in a sample, VCVr is about the direction 
of shape differences and thus compares the covariance structure in subsamples with that of 
the total parent sample: this index should be close to 1 when sampling error has a negligible 
effect.

Congruence of results
The congruence between TOTAL and other sets of simulations is very high (Table 3). If W-
RV-median is excluded (because this index is almost always ≈ 1, and therefore negligible 
fluctuations around this constant value lower the correlations), the range of median 
correlations across all indices is 0.97-1.00, with the lower boundary (10th percentile) ranging 
from 0.73 to 1.00. More precisely, only WRONG SISTER shows two instances with r < 0.9 
and both occur when TOTAL is compared to the two reduced configurations (10th percentile =
0.73-0.82 respectively for HALF and FACE). Overall, however, correlations had a median r >
0.95 more than 80% of the times (100% if W-RV-median is excluded) with a lower 10th 
percentile r > 0.95 in more than 70% of the comparisons (85% excluding W-RV-median).

Besides correlations, plots and summary statistics (not shown) all indicate that 
TOTAL and other sets of simulations produce very similar results, which are in fact almost 
identical when TOTAL is compared to TOTALobs and TOTALbig. This demonstrates that 
simulated data in TOTAL are an excellent approximation of TOTALobs, within the range of 
sample sizes in common between the two sets of analyses, and that TOTAL is robust to the 
inclusion of small samples. Therefore, in the rest of the paper, we focus on results from 
TOTAL, together with those of FACE and HALF, and omit those of TOTALobs and 
TOTALbig, as they are redundant. The two reduced configurations are also largely congruent 
with TOTAL, when assessed using correlations (Table 3), but also suggest a few small but 
potentially interesting differences.

Graphical summaries
Profile plots in Figures 3-4 summarize the results from TOTAL, FACE and HALF. Figures 
3A-B show the profile plots for the first three indices based on interspecific differences in 
mean shapes. These plots either (A) include all FS subsamples within the range affected by 
sampling error or (B) focus on a specific segment of this range to provide more detail using 
representative cases. Figures 4A-B provides the same information for the remaining three 
‘intraspecific’ indices (within FS variances and covariances). Figure 5 shows profile plots of 
the minimum N for the 10% threshold for each index and set of simulation. The 
corresponding values are shown in Table 4, which also provides summary statistics of 
minimum Ns for each index across the different groups. In this figure and table, smaller Ns 
imply the requirement of fewer specimens for the same approximate level of relative 
accuracy (better performance and less serious issues with sampling error) and larger N 
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indicate the need of larger samples for achieving that relative accuracy (worse performance 
and stronger impact of sampling error). In Figure 5 we included also a profile plot for the 
number of species in each study group and the observed ratios (computed from S-Table 2) of 
between species mean variance and within FS total sample variance (see below).

Detailed results for each index
1) WRONG SELF (frequency of incorrect affiliation of FS using mean shapes)
For WRONG SELF (first column of Fig. 3A-B), 40 individuals guarantee the highest relative 
accuracy in all taxa and datasets, with all FS subsample means correctly affiliated (i.e., 
closer) to FS. With N < 40, relative accuracy rapidly deteriorates in most species, so that in 
the smaller samples (N ≤ 10) chances of affiliating subsample mean shapes to another species
increase to 10-20% and up to 40-50% when N = 3. Using the 10% threshold to suggest what 
the minimum N might be for a reasonable relative accuracy (Table 4, Fig. 5a), we find that 
for WRONG SELF < 0.1 there must be typically between three and 10 specimens, with an 
average of 6-7; the main exception is the males of P. ellioti with > 10% of incorrect 
affiliations even when N = 10. However, if we aimed at an even lower occurrence of wrong 
affiliations and set the relative accuracy threshold to < 5%, we would need ca. N = 20 in 
virtually all species and datasets.

The ‘10% threshold’ is useful also to confirm which taxa might be particularly 
sensitive to small N (Table 4, Fig. 5a). Thus, for WRONG SELF, we find that with N = 3 nine
to 10 of the 14 groups (i.e., ca. 2/3) have more than 10% of wrong affiliations, but with N = 
10 this happens only in 1-2 taxa. Primates are particularly impacted in all sets of simulations 
(TOTAL, FACE and HALF). All the FS with the highest error rate (up to 40-50% of 
subsample means affiliated to the wrong species) are primates, which overall constitute 95% 
of the taxa with errors > 10% using N=3-5. The main non-primate exception among the poor 
performers is the European hedgehog. Its error rate is generally below that of primates, but 
still always larger than 10% in the smallest samples (N = 3). In fact, using the HALF 
configuration, WRONG SELF in the European hedgehog is among the highest of all taxa. 
The other non-primate species with WRONG SELF above the 10% threshold is the European
hare, but it is only slightly above it (11.8%) and this happens only with N = 3 in FACE.

2) WRONG SISTER (frequency of wrong identification of the FS phenetic sister species using
mean shapes)
Misidentifications of the correct phenetic sister species in smaller samples (WRONG 
SISTER) are much more serious and can happen frequently even with large N. Inaccuracies 
vary broadly depending on the group and landmark configuration (Fig. 3A-B, second 
column).

More specifically, FACE performs particularly poorly, with D. novemcintus, male P. 
ellioti and both female and male M. fascicularis misidentifying the phenetic sister species ca. 
10-35% of times even when N = 250. In general, with this configuration, when N = 20-50, 
WRONG SISTER ranges for most species between > 0.1 and > 0.5 (i.e., more than 10-50% 
of errors). In the smallest subsamples (N = 3-5), however, it can be up to 0.5-0.7 and this 
happens in most primates, as well as of D. novemcintus and the European hare and hedgehog.

HALF in contrast, despite also suggesting large inaccuracies even in relatively large 
samples, has only two species performing extremely poorly in terms of identification of the 
correct phenetic sister species. These are male P. ellioti and female M. fascicularis with more 
than 10% of misidentifications even in samples with several hundreds of individuals. All 
other species, in comparison, show a relatively modest error rate, with WRONG SPECIES 
always < 0.1 when N ≥ 50.

The full configuration (TOTAL) performs somewhat in between the worst (FACE) 
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and least (HALF) affected by sampling error, with few species of primates together with D. 
novemcintus and the European hedgehog showing WRONG SISTER error rates of 10-40% 
even when N = 100. In the smallest samples (N = 3-5), the range of TOTAL WRONG 
SISTER error rates is broad, going from no errors in Procavia capensis to almost 70% in 
macaques.

Using the 10% error threshold (WRONG SISTER < 0.1) to summarize results, we 
found that we need samples of ca. 15 specimens on average in TOTAL and HALF and much 
larger ones (N ≈ 90 on average) in FACE for this level of relative accuracy (Table 4, Fig. 5b). 
Yet, in a few cases, not even using the largest samples the 10% accuracy threshold can be 
reached. This happens in one case in both TOTAL and HALF, as well as in three taxa in 
FACE, and more specifically in D. novemcintus (FACE) and a few of the primate groups (all 
other cases). Unlike all other indices, the trimmed range of N variation for WRONG SISTER 
< 0.1 is very large in all sets of simulations, going from three to several hundreds. Even using
a slightly more liberal threshold, such as a 20% relative accuracy in the assessment of which 
species is phenetically sister to the focal sample, TOTAL and HALF suggest the requirement 
of about 8-9 individuals on average (and more than 50 using FACE), although this can be 
much less (N=3) or much more (between ca. 150 and almost 400) depending on the taxon.

Therefore, to summarize the results of the first two indices, although one can predict 
the right affiliation (low WRONG SELF) even with small samples of the FS, for accurately 
discovering its shape similarity relationships with other species (low WRONG SISTER), one 
requires much larger N. Besides, whereas WRONG SELF produces very similar results 
regardless of the configuration (Fig. 5a), WRONG SISTER is highly variable in relation to 
the choice of landmarks, which is particularly evident in the species with the largest errors 
(Fig. 5b). What species, if any, are most strongly affected by sampling error (which we refer 
to as ‘taxonomic bias’) is also less clear for WRONG SISTER compared to WRONG SELF. 
With the latter, primates tend to be impacted more severely by errors in small samples. With 
WRONG SISTER, in contrast, unless N is really big, errors are large in almost all species. 
For instance, with 10 individuals, depending on the configuration, only 30-50% of taxa have 
inaccuracies <10%. Among these, some in fact require Ns as large as 150-400. Specifically, 
using WRONG SISTER, the species worst affected by sampling error in at least one of the 
three sets of simulations are D. novemcintus, the European hare and European hedgehog, as 
well as both sexes of M. fascicularis and C. mitis and females of P. ellioti. Not only these 
species require very large samples to keep WRONG SISTER below the 10% threshold. With 
the exception of the European hedgehog, they also have in at least one of the three 
configurations huge error rates of more than 50% when N is very small (N = 3-10). In FACE, 
in particular, these very large inaccuracies using N ≤ 10 are almost the rule, as they occur in 
half of the FS.

3) BG-RV (proportion of the interspecific mean shape space ‘occupied’ by variation in FS 
means due to sampling error)
The effect of N on BG-RV seems fairly similar in all groups and datasets except the European
hedgehog, which is more negatively impacted by sampling error (Fig. 3A-B, third column). 
The region of the shape space accounted for by errors in estimates of FS mean shape is ca. 
less than 20% of that capturing interspecific mean differences when N = 20 and becomes 
almost completely negligible in most species when N ≥ 50. In contrast, when N=10, between 
ca. 60% and almost 80% of the taxa have BG-RV > 0.1 and up to 0.36, which indicates that 
the magnitude of variance due to sampling error in estimating the FS mean shape is as large 
as approximately 1/10 to 1/3 of the observed variance of interspecific means. With even 
smaller samples, when N ≤ 5, the variability in FS means can be as large as 10-80% of the 
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interspecific mean shape variation and even larger than that in the European hedgehog. In this
species, sampling error with N = 3 produces means that vary 1.2 times more than observed 
interspecific mean shapes. This does not happen in any of the other species, although with 
N=3 either one or both sexes of C. mitis and P. ellioti, as well as the plains zebra and the 
European hare, can have at least one set of simulations with a variance among subsample 
means as large as ca. 50-80% of that of interspecific means (i.e., BG-RV ≈ 0.5-0.8).

Using the 10% threshold (BG-RV < 0.1), one needs, on average, N ≈ 15, which is 
about the same average sample size as for WRONG SISTER in TOTAL and HALF (Table 4, 
Fig 5c). However, with BG-RV results are largely congruent across all three sets of 
simulations and different taxa (trimmed range = 7-23), suggesting that, regardless of the 
configuration, ca. 10-20 individuals may be enough for the error in estimates of a species 
mean shape to be fairly small relative to the differences between species in its lineage.

In terms of potential taxonomic biases, despite some primates being often among the 
species with larger BG-RV for a given N, this index does not suggest a particularly strong 
effect of sampling on a specific lineage, with the main exception of hedgehogs.

4-5) W-RV-median and range (proportion of the observed total FS intraspecific shape space 
‘occupied’ by individual variation due to sampling error)
W-RV-median shows very little variation with N being ≈ 1 (Fig. 4A-B, first column), thus 
suggesting on average almost identical estimates of the magnitude of intraspecific shape 
variance in FS subsamples as in the total sample of FS. Thus, the magnitude of within species
variance is virtually unbiased, as expected with a variance, except in the smallest samples (N 
≤ 5), where it is slightly underestimated (up to ca. 10% compared to the observed magnitude 
of variance in FS).

In contrast, W-RV-range is much broader in smaller samples (Fig. 4A-B, second 
column), increasing in all datasets form ca. 0.1 to up to 0.7-0.8 in the smallest samples. As 
W-RV has a roughly symmetric distribution around the median, this translates into over- or 
under-estimates of within FS variance of about ±5% and up to ±35-40%. Thus, for the W-RV-
range to stay between 1.1 and 0.9 (i.e., ±10% of observed total sample variance – Table 4, 
Fig. 5d), one needs on average about 30 individuals for TOTAL and about 40 for FACE and 
HALF, although in the worst cases, such as using facial landmarks in P. capensis or female P.
anubis baboons, more than 70 specimens are necessary for precise (within ±10% of observed)
estimates of within FS variance. However, in general, different FS are approximately 
similarly impacted by low precision in smaller (< 30-40) samples and therefore there seems 
to be no evident taxonomic bias for this index.

6) VCVr (proportionality of FS shape variance covariance matrices)
Finally, VCVr, the median correlation of VCVs in subsamples with the parent FS VCV, is 
high (ca. 0.9 or larger) when N is ca. 20-50 or larger (Fig. 4A-B, third column; Fig. 5e; Table 
4). More precisely, the reduced configurations (FACE and HALF) require on average slightly 
fewer specimens (N=40) than TOTAL (N=50) for VCVr ≥0 .9. However, variability in VCVr 
is generally modest: as an example, with N=20, VCVr ranges, depending on the FS and set of
simulation, between 0.74 and 0.89; and with N=50, it ranges between 0.87 and 0.95. With N 
ca. < 20-30 the correlation becomes rapidly smaller (and especially so in the complete 
landmark configuration) and, with N ca. < 10, VCVr ranges between 0.6-0.7 and just ca. 0.4. 
Yet, overall, except for the slightly worse performance of TOTAL, the trend in change of 
VCVr with N is broadly similar in all datasets and taxa. 

Discussion
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Main findings
The impact of sampling error on cranial shape data, as assessed by the six indices we used, 
varies across groups but a strong and consistent taxonomic bias is found only for WRONG 
SELF, with primates requiring comparatively larger samples for the same relative accuracy of
other taxa. In general, across all groups, 40 individuals guarantee that a mean shape is closer 
to its own species than to any other in that genus or supra-generic lineage, thus making no 
errors in taxonomic identification. However, with fewer than 10 specimens, erroneous 
affiliations may occur 10-50% of the time, despite an average requirement of just 6-7 
individuals for staying within a 10% error threshold.

To achieve this same low error rate in the identification of the correct phenetic sister 
species (WRONG SISTER < 10%), in contrast, N must be on average between ca. twice to 
10 times larger than in WRONG SELF, which corresponds to about 15-90 individuals. The 
FACE dataset is more strongly impacted by sampling error, so that, even with N = 20-50, 
there can be 10-50% of erroneous identifications of the phenetic sister species. The 
taxonomic bias is, however, much less obvious with WRONG SISTER compared to 
WRONG SELF, as some of the largest errors (for a given N) are found not only among some 
of the primates but also in D. novemcintus and European hares. Thus, this index suggests that 
primates may be more problematic, but the issue is general and less predictable. If these 
results are generalizable, they suggest that to correctly identify a placental morphospecies and
its phenetic sister species one needs, respectively, ca. 10-40 and 20 to several hundreds 
individuals. ‘Guessing’ the right species seems therefore feasible with means based on 
relatively small samples (yet, still larger than what is often available with fossil mammals), 
but reconstructing mean similarity relationships may be much harder unless really large 
samples are available. This is congruent with studies that use random subsampling of tip taxa 
to produce bootstrap values on trees built from morphometric data. For example, using 
continuous traits maximum-likelihood and tip taxa with 4 ≤ N ≤ 13, the proportion of tree 
nodes recovered from mandible, cranial, and tooth shape data was sometimes as low as 
16.5% and never higher than 96.5% in a study on marmots with approximately the same 
taxonomic scope as our clades (Caumul and Polly, 2005). Nodes linking sister taxa were 
wrong 4% to 38% of the time at sample sizes of fewer than 10, which is comparable to the 
range of WRONG SISTER error in our simulations. Similarly, by bootstrapping samples with
N ranging between four and 20, Pearson et al. (2015) found that most nodes in trees built 
using neighbour-joining applied to Procrustes shape distances between means of subspecies 
of great apes received a support of less than 70%, with several cases below a 50% threshold, 
whereas species trees (with on average larger N and larger interspecific differences) fared 
much better. 

The average N required for the variability in FS mean shapes to be no more than 10% 
of the magnitude of between species mean variance (BG-RV) is ca. 15, which is about the 
same average sample size as for WRONG SISTER in TOTAL and HALF. This might indicate
that misidentifications of the phenetic sister species become more likely when sampling error 
increases the inaccuracy of the estimates of the FS mean shape to the extent that their 
uncertainty accounts for more than 1/10 of the interspecific mean shape space in that lineage. 
However, unlike WRONG SISTER, BG-RV does not vary much across datasets and taxa, and
mostly suggests that 10-20 individuals are enough to have high relative accuracy. Indeed, 
with the main exception of hedgehogs, with their consistently larger BG-RV for reasons we 
will discuss later, all taxa perform about equally using this index.

Thus, the minimum N required for relative accuracy in mean shape estimates is, in 
this study, slightly smaller but fairly close to findings by Cardini et al. (2015), whose 
resampling experiments on Procrustes shape data from horse premolars suggested that 
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accurate means might require at least 20 individuals. Our ‘desirable’ Ns for relative accuracy 
in species comparisons are in good agreement also with another simulation study based on 
parameters from real samples (Cope and Lacy, 1992), despite their different approach (using 
the coefficient of variation to decide if a sample represented one or more species) and nature 
of the data (univariate on teeth). In this analysis, they showed that species of Cercopithecus 
can be well discriminated on average even in samples of just 5-10 individuals but more than 
20 are required to achieve adequate power and reduce the rate of false positives (i.e., results 
suggesting multiple species when only one is present) to less than 10-40% (Cope and Lacy, 
1992; Cope, 1993). Also using traditional morphometrics but another different method to 
investigate sampling error, (Wood and Constantino, 2007) showed that the number of 
specimens necessary for the average of cranio-mandibular measurements of Paranthropus 
boisei to stabilize on a given value is ca. 7-15 specimens. This fits well with Cardini et al.’s 
(2015) finding that premolar size in horses might be fairly accurately estimated with just 
about 10 specimens, which in turn was about the same as in Cardini and Elton’s (2007) 
analysis of monkey skulls. Overall, these findings from previous research suggest that 
univariate estimates of means, such as the centroid size of a set of landmarks or linear 
measurements, may indeed require slightly smaller samples for relative accuracy, but their Ns
of at least ca. 5-20 individuals are not too far from our ca. 7-15 to 40-50 for achieving 
respectively the <10% threshold and a next to zero inaccuracy in WRONG SELF and BG-RV.

Relative accuracy in within species estimates of variance and covariance, in contrast, 
might need even larger samples in both size and shape data. Cardini and Elton (2007) and 
Cardini et al. (2015) showed that, unlike univariate means, size variance cannot be similarly 
accurately estimated unless some 20-40 individuals are available within a species, which is 
about the same range of sample sizes we found for relative accuracy in the estimates of shape
variances and covariances. Similarly, using the same type of resampling experiments as 
Cardini et al. (2015) in cranial data of voles, Schlis-Elias (2020) found that mean size was 
accurately predicted with just five individuals, but its variance required some 40 specimens, 
thus reproducing in rodent skulls almost exactly the findings from horse teeth. Indeed, also 
for univariate measurements, the minimum N for relative accuracy likely varies depending 
not only on the group but also on the test statistics. For instance, in an in depth assessment of 
sampling error in bivariate allometric regressions using cranial measurements of Alligator 
mississippiensis, Brown and Vavrek (2015) found that accurate estimates of static allometries 
in adults require N > 20. This, compared to the studies of size variables we have just 
mentioned, is larger than the ca. 10 individuals needed for the mean and about the same or 
slightly fewer than the 20-40 required for the variance.

Precision in estimates of within FS shape variance magnitude (i.e., a W-RV-range of 
0.9-1.1, which corresponds to the magnitude of FS variance being ±10% of that observed in 
the total sample) requires on average slightly larger samples (30-40 individuals). There is also
more variability across taxa, but again no clear taxonomic bias. These results, for W-RV-
range, are congruent with those for the correlation of VCV (subsamples vs total FS sample), 
which suggest the requirement of N ≈ 20-50 (sometimes more) for r > 0.9, with some 
variability depending on the group, but no evident taxonomic bias. Thus, within species, 25-
50 individuals could be appropriate for a good relative accuracy in cranial shape estimates of 
variance and covariance, although ca. 100 individuals may be more appropriate to keep errors
really low.

If for mean shape relative accuracy Cardini et al. (2015) were slightly more 
pessimistic in terms of minimum N, for within species variance covariance they were almost 
the same or at most slightly more optimistic than we are in this study. They suggested that at 
least ca. 15-20 individuals are needed, which is an estimate very close to Polly’s (2005) 
analysis of molars in the common shrew. In that study, he found that VCV estimates are 
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inaccurate with N < 15, which is almost identical to Kryštufek et al.’s (2016) findings using 
skull shape in Bandicota indica rats, even if these authors only focused on the magnitude of 
shape variance. Thus, overall, it seems that, despite small differences, results of all these 
studies on adult mammal cranio-dental variation are fairly similar. Because, like ours, these 
previous analyses were largely based on resampling experiments using sample estimates as a 
baseline to assess relative accuracy, they are also likely to produce underestimates of 
minimum Ns, as we discuss in more depth in the next section. At the same time, however, the
generally high congruence we found (with N for relative accuracy in variance and covariance 
of ca. 15-20 in those analyses vs ca. 20-50 in ours) is surprising and even more so in 
consideration of the different study structures and taxa, as well as the differences in methods.

Conservative and optimistic results?
Do the minimum sample sizes we found look like a difficult target especially for 
palaeontological studies of closely related species or analyses of groups with very few 
museum specimens, as, for instance, rare samples of small island populations? Clearly, the 
appropriate N in a study depends on the specific question, test statistic and size of the effect 
being measured. We investigated sampling error in the context of the taxonomic assessment 
of mammalian morphospecies but, even in this narrow field, a robust generalizable answer on
desirable Ns for the accuracy of means, variances and covariances clearly requires more 
research. In terms of internal validity, however, it is likely that our findings are in fact 
conservative and tend to err on the optimistic side.

To appreciate why, we can take BG-RV as an example. To compute this index, after 
drawing 500 random FS subsamples of a given size (e.g., N=10), we divide the multivariate 
variance of their 500 means by the multivariate variance of the observed species means in 
that group (including the mean of the total FS sample). The numerator quantifies the effect of 
sampling error on the estimate of the FS mean shape ‘scaled’ by the magnitude of observed 
variation in that taxon (the denominator). However, this ratio is almost certainly an 
underestimate, because species samples are small and this tends to inflate distances between 
means, thus overestimating the interspecific differences used as denominator. This has been 
observed empirically in geometric morphometric studies (Cardini et al., 2015) and is 
expected from de Moivre’s equation, which states that the standard error of the mean 
increases as N decreases (Wainer, 2007). Besides, the numerator is probably underestimated 
not only because the total FS sample from which subsamples are drawn is a fraction of its 
overall population size in the wild (and likely affected by problems such as uneven sampling 
across the distribution range - Cardini, 2020a). The numerator is an underestimate also, and 
simply, because those FS means originate from random subsamples of a bigger sample, 
which introduces a degree of autocorrelation and makes them more similar than expected in 
truly independent samples of a population. This second issue likely applies to all indices. 
Furthermore, because we simulate sampling error only in the FS, holding the others constant, 
we do not assess the simultaneous effect of sampling error in each of the species, which 
would almost certainly increase uncertainties. Thus, rather than being pessimistic, our results 
are probably overoptimistic and, assuming their generalizability is demonstrated, a really 
cautious morphometrician should probably aim at samples larger than the minimum Ns we 
tentatively suggest. Nevertheless, there might be a few instances where within FS sample 
variance was in fact inflated because the focal taxon might in fact include more than one 
species, as we discuss later using P. ellioti as an example.

Even if our results are generalizable in the context of the taxonomic assessment of 
morphospecies, sampling error, like measurement error (Cardini, 2014; Fruciano, 2016), is 
always relative to the amount of ‘true’ differences in a study. The same absolute error, which 
would invalidate a study on a small amount of group variation, could be tolerable in a 
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different comparison, focusing on much larger differences. Nevertheless, even studies at 
higher taxonomic levels often involve a hierarchy of variance partitioning. Therefore, one 
must be sure that errors are negligible at all levels of the analysis. This suggests that larger 
samples not only help to increase accuracy, but may also allow more flexibility in terms of 
applications.

Differences between taxa and indices
Specific groups were sometimes more strongly impacted by sampling error. If there is a 
taxonomic bias, however, its severity varies with the type of index and therefore depends on 
what is being quantified. In contrast, the specific landmark configuration seems less 
important, as results are, for the majority, congruent between the full and reduced 
configurations.

Primates performed particularly poorly in terms of WRONG SELF, requiring larger 
samples than other taxa. Primates also comprise many of the cases with highest values for 
WRONG SISTER, although European hares and D. novemcintus were also relatively poor at 
discovering the correct phenetic sister species when N is small. For BG-RV, European 
hedgehogs clearly stood out as the group with the largest variability due to error in estimates 
of FS mean shapes. Unlike these indices, which are mainly assessing the relative accuracy of 
mean shapes in relation to interspecific differences, the other three indices, focusing on 
within FS variation, do not generally show evident taxonomic biases. W-RV-median is almost
unbiased, whereas the range of estimates of within species variance (W-RV-range), as well as 
the degree of correlation between matrices of variance covariance (VCVr), are similarly 
strongly affected by sampling, regardless of the species and the specific landmark 
configuration. For W-RV, our results are congruent with the effect on the coefficient of 
variation of sampling error in empirical datasets of craniodental measurements (Cope, 1993): 
the coefficient is moderately underestimated in the smallest samples (close or equal to N = 5) 
but this is accompanied by a remarkable increase in the range of estimates and thus a strong 
reduction in precision.

Thus, it seems that predicting a minimum N for relative accuracy of mean shapes in a 
group of closely related species (as assessed by WRONG SELF/SISTER and BG-RV) is 
more difficult and tends to be specific of the study group, which implies that results are less 
easily generalizable. In contrast, within species (W-RV and VCVr) results could be more 
robust and general, as they are less dependent on the choice of the study taxon. This apparent 
difference in the larger or smaller variability of the effect of sampling error in relation to the 
between vs within species level of the analysis seems like a potentially intriguing conclusion, 
but also one that clearly requires to be confirmed in future studies. However, bearing in mind 
this caveat, we explore in the next sections why the different indices might vary. Because, in 
this respect, the ‘supra-specific’ indices, based on mean shapes, show more differences, we 
will mostly focus on them. Thus, we start with BG-RV, more easily comparable to results 
from previous studies and more homogeneous across taxa; go on with WRONG SELF, with 
its clear taxonomic bias; and finally conclude discussing WRONG SISTER, highly variable 
across taxa and, to some extent, datasets.

BG-RV: how much do mean shapes vary because of sampling error and why does that change
among taxa?
BG-RV is a numerical version of the graphical approach shown in Figure 2 and used previous
research (Cardini et al., 2015): it quantifies the amount of interspecific mean shape space 
‘occupied’ by variability in estimates of a species mean due to sampling error. This metric is 
also related to the ratio of Procrustes shape distances between means employed in our first 
study on sampling error in geometric morphometrics (Cardini and Elton, 2007). In that paper,
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we computed the Procrustes shape distance between the observed FS sample mean shape and 
either the means of its random subsamples (averaged) or the mean of a closely related single 
‘outgroup’ species. These two quantities are analogous to respectively the numerator and 
denominator of BG-RV. Cardini and Elton’s (2007) FS was vervet monkeys (Chlorocebus), 
with all currently recognized species treated as a single superspecies, and the ‘outgroup’ the 
blue monkey, C. mitis. By progressively reducing the size of the random subsamples of 
vervets, they showed (Cardini and Elton, 2007) that with 10-30 individuals (p. 129) “the error
in the mean shape estimate can be on average as large as 37-20% of the interspecific distance 
between mean shapes of C. aethiops and C. mitis, two species that diverged about 8 million 
years ago (Tosi et al. 2005) and which have profound differences in their ecology and 
behaviour ”.

Cardini and Elton’s (2007) finding, that means of subsamples of 10 individuals, 
within a species, have an average distance of almost 40% of its distance to a different species,
seems even worse than our results using BG-RV, which suggests that differences among FS 
means from subsamples of just ca. 15 individuals on average account for 10% or less of the 
observed interspecific variance. Thus, with similar Ns, the magnitude of the error in Cardini 
and Elton (2007) appears almost four times larger than in our study. However, results are not 
strictly comparable, because BG-RV is related to but somewhat different than the ratio of 
Cardini and Elton (2007). For this reason, in TOTAL, FACE and HALF, we also computed 
the same type of ratio as in Cardini and Elton (2007) and called it BG-RV2. The index is 
redundant, because it is related to BG-RV1 and measures, in a slightly different way, the same
aspect of the impact of sampling error. However, it allows to compare more directly our study
with previous findings and helps to provide a better contextualization. Thus, we briefly 
summarize in the Discussion the results of BG-RV2, which was obtained using the median 
distance between random subsample means and their parent FS mean in the numerator and 
the median of the distances of the other species to the same FS mean (denominator). With 
BG-RV2, we found that, somewhat surprisingly, despite the differences in their study (larger 
configuration of 86 unilateral landmarks, different FS and their use of a single interspecific 
distance), our current analysis reproduces almost perfectly their main finding: for a BG-RV2 
of ca. 0.4 (i.e., 40% of interspecific distances ‘accounted for’ by within FS sampling error), 
one needs no fewer than ca. 15 specimens, with a trimmed range of five to 25 depending on 
the species and dataset. This result also mirrors almost exactly the range of N for BG-RV ≤ 
0.1, but clearly provides a different and less optimistic perspective on the impact of sampling 
error: the minimum N for the uncertainty in FS means to be constrained within a small 
portion of the volume of the interspecific mean shape space (BG-RV < 0.1) corresponds to 
errors in estimates that can be > 1/3 of the average interspecific mean difference in that group
(BG-RV2 ≈ 0.4). This is why Cardini and Elton (2007) argued that 30 or more specimens 
may be needed to reduce inaccuracies in species mean shapes. In our current study, to keep 
the percentage of interspecific mean distance accounted for by errors in a species mean 
estimate below 30-20-10% (i.e., BG-RV2 < 0.3, 0.2 and 0.1), one would need on average 
respectively ca. 25-60-240 specimens in the FS, which is again in very good agreement with 
Cardini and Elton (2007). At the opposite extreme of variation in sample size, with just three-
four specimens, as not unusual with fossils, the median distance of subsample means to the 
total FS mean becomes about as large as the median interspecific mean distance in a clade in 
40% of the analyses.

These last observations, from the comparison of BG-RV and BG-RV2, have a 
potential implication for the interpretation of the results of WRONG SISTER. If, even with 
an average N = 15, uncertainties in FS means due to sampling error can be comparatively 
large, it seems likely that the position of the mean shape of FS relative to those of other 
species can vary widely. Then, means of randomized FS subsamples might frequently end up 
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close to the mean of a species which is not its observed phenetic sister, thus leading to 
frequent inaccuracies (10-35% of incorrect sister species identifications). This type of 
inaccuracy is also likely to become more common with more species in a lineage and 
especially if interspecific differences are small compared to within species variation (see 
below).

Discovering why an index varies in relation to the study group is a challenge. 
However, one can explore the correlations between the minimum Ns for reaching the 10% 
threshold (e.g., BG-RV < 0.1) and the main descriptive statistics of the study samples (S-
Table 2). For BG-RV, in all datasets, the sample size required for BG-RV < 0.1 has a high 
negative correlation (-0.76, -0.70 and -0.77, respectively in TOTAL, HALF and FACE) with 
the observed magnitude of interspecific variance in mean shapes. The negative correlation is 
even slightly stronger (-0.78, -0.82 and -0.77, respectively in TOTAL, HALF and FACE) if 
the mean interspecific variance is divided by the observed within FS total sample variance. 
Like an F ratio (although clearly not the same as!), this ratio says something about how big 
observed mean interspecific differences are compared to those among individuals within the 
FS. For brevity, we call it pseudo-F. Then, it makes sense that a taxon with a large amount of 
between species differences relative to the variance within the FS (i.e., a large pseudo-F) will 
not be strongly impacted by sampling error, because the variation within the FS occupies a 
relatively small portion of the interspecific mean shape space. On the other hand, if FS 
individuals vary a lot and interspecific mean differences are small (small pseudo-F), the 
effect of sampling error will be stronger and large Ns will be required to keep BG-RV small. 
Indeed, using TOTAL as an example, we find that the species requiring larger samples (N > 
16 and up to 40) to keep BG-RV < 0.1 are precisely those (the European hedgehog, C. mitis, 
P. ellioti, plains zebra and the European hare) with the lowest pseudo-Fs (≈ 0.3-0.5). At the 
opposite extreme, D. novemcintus and the red fox, with pseudo-F ≈ 2, require only 5-6 
specimens for the same relative accuracy.

Because phenotypic divergence generally increases with time, one might also expect 
larger disparity, and thus smaller impacts of sampling error, in older lineages. Indeed, despite 
the large uncertainties around our crude approximations of evolutionary age (Upham et al., 
2019), the pseudo-F tends to increase with the lineage evolutionary age (e.g., Dasypus with 
the largest pseudo-F is the oldest taxon and Erinaceus with the smallest is one of the 
youngest), but the correlation is moderate (r = 0.55-0.59), which is probably why 
evolutionary age is not a good predictor (average r ≈ -0.33) of the minimum N for BG-RV < 
0.1. In contrast, evolutionary age correlates negatively with the minimum N for WRONG 
SELF < 0.1 (with r ranging from -0.42 to -0.61), which may partly explain why primates, on 
average younger than other groups, are so strongly impacted by sampling error in species 
identification. Yet, this should imply that interspecific differences are smaller in younger 
groups, but the correlation between age since the last common ancestor and interspecific 
mean variance is in fact weak (r ≤ 0.2). This is not surprising, because we know that 
interspecific shape differences do not always increase in a simple linear way with 
evolutionary time, as the rate of morphological evolution varies widely within and between 
taxa (Tattersall, 1986). For instance, it is very slow in ‘living fossils’ and typically very fast in
insular species (Millien, 2006). Therefore, although one might predict a smaller effect of 
sampling error when the study group contains older species, what really matters is how much 
bigger the shape divergence among its species is relative to within species variation (i.e., the 
magnitude of the pseudo-F).

WRONG SELF: when shall we expect inaccurate species affiliation?
WRONG SELF is similar across datasets but varies among taxa. Also for this index, 
exploring the correlation between the minimum N for WRONG SELF < 0.1 and the total 
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sample descriptive statistics (Table S2) helps to provide clues on what causes the differences 
among the groups. Minimum N correlates positively, and consistently in all configurations, 
with within FS variance (r = 0.51-0.66). Although weaker, it has also, like BG-RV, a negative 
correlation (average r ≈ -0.44) with pseudo-F. The reasons for these correlations are partly the
same as for BG-RV. A larger variance within the FS implies a higher probability that small 
subsamples will produce ‘unusual’ mean shapes, which may be farther from their own species
than from other species means. Indeed, the primate FS species, which perform particularly 
poorly in terms of correct species identification, have on average at least 50% more variance 
compared to the average in other clades. 

Why then does the observed within FS variance vary three folds in magnitude across 
the different species? It could be simply because some FS samples are larger than others and 
therefore capture more differences in a population, but this is only a partial and unsatisfactory
explanation, as shown by the small correlation between variance and FS total N (r = 0.25-
0.36). It is also possible that within species variance is slightly inflated by a relative larger 
measurement error in smaller animals (Polly, 1998), which, together with their recent 
evolutionary divergence, is a likely reason why the small European hedgehog has a large 
pseudo-F and is strongly impacted by sampling error. Yet, large variance might instead reflect
genuine variability in relation to the specific evolutionary history, pattern of distribution and 
breadth of ecological adaptations or degree of plasticity of a species. However, variance 
could also be biased by how well the museum samples cover the full geographic range of a 
species (Albrecht and Miller, 1993; Cope, 1993; Harrison, 1993; Cardini, 2020a). For D. 
novemcintus, a small variance is almost certainly an artefact of sampling. Although detailed 
information was missing, this is an unusual sample, as the majority of specimens originate 
from the same collection and likely are closely related zoo animals. In contrast, why primates
tend to have more within FS variance than found in species of other placental orders is less 
easy to say. It might be simply because primate data were collected in more museums than 
those used for the other groups, which included only the main European museums as funds 
were limited and specific for those institutions. As specimens from different institutions 
generally originate from different time and localities, they will be less autocorrelated and 
more representative of the overall species geographical range. Regardless of the reason for 
having more variability within FS species, it is probably largely because of this, that primates
require at least 2-3 times more specimens for the same relative accuracy in the identification 
of the correct species.

If it is reasonable to have a larger minimum N with a larger FS variance, one might 
also expect that species identification improves using more landmarks to capture more 
information (something which is often claimed but is potentially misleading – Cardini, 
2020b). Yet, in our datasets, doubling the number of landmarks (in TOTAL compared to 
FACE or HALF) produces a rather negligible improvement in species predictive accuracy: on
average WRONG SELF < 0.1 is achieved with N = 6 in TOTAL vs N = 7 in FACE and 
HALF. With fewer landmarks, however, some species do need larger samples, as suggested 
by the upper extreme of the trimmed range of N going from 7 (TOTAL) to 10 (FACE and 
HALF). For now, any conclusion on whether more landmarks could help to mitigate issues 
with sampling error is premature and likely the answer to this question will change from case 
to case. Also, one should be careful because, even if in a specific study there were good 
reasons for increasing the number (p) of morphometric descriptors, there is a trade-off 
between N and p. Several recent studies (Kocovsky et al., 2009; Bookstein, 2017; Björklund, 
2019; Cardini et al., 2019) have drawn attention to a well known statistical problem, 
mentioned in every introductory text on multivariate statistics (e.g., Hair et al., 1998): when 
N is not adequately large compared to p (which generally means N >> p), methods such as 
PCA, DA and between group PCA, and some other multivariate techniques, may have serious
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problems and potentially produce spurious findings. In general, the choice of measurements, 
and therefore landmarks, must be functional to the specific study hypothesis (Oxnard and 
O’Higgins, 2009), and quantity is clearly not a simple substitute for quality (Cardini, 2020a-
b).

Overall, a median minimum sample size of 6-7 for a species mean shape to be 
correctly assigned to its own species at least 90% of the time (i.e., WRONG SELF < 0.1) 
seems quite modest, which is good news but (for the reasons we already discussed) likely to 
be overoptimistic. In fact, with rare fossils, one may often have samples even smaller than 
that and it is not uncommon to have just one individual, whose taxonomic affiliation needs to 
be assessed (Simpson, 1943). Besides, if all from the same site and stratum, and thus likely to
be close relatives, individuals from a palaeontological excavation may be highly 
autocorrelated. They could also be more similar than real simply because, if fragmentary, 
they have been partly virtually reconstructed using computerized methods (Gunz et al., 
2009). In all these instances, taxonomic assessment in relation to putatively closely related 
species should therefore be particularly cautious (Shea et al., 1993; White, 2014).

With palaeontological data, there are also other potential problems. Sex is often an 
important confounding factor (Martin and Andrews, 1993; Cameron, 1997), unlike in our 
study, where we knew in advance which species show strong sexual dimorphism and the 
majority of individuals were of known sex. In theory this issue can be mitigated by selecting 
traits showing little or no dimorphism (Cope, 1993), but these may be hard to find (or even 
absent) and greatly reduce the range of morphological evidence available for taxonomic 
assessment. Besides, variability over time can also bias estimates, with effects that may be 
difficult to predict but, at least using assumptions of gradual change, likely to increase 
differences over tens of thousands of years (Hunt, 2004), which is well within the duration of 
the average lifespan of ca. 0.5-2 million years of a mammal species (Regan et al., 2001; 
Ceballos et al., 2015). How this inflated variance over time interacts with evidence from 
samples that inevitably represent point localities of a larger distribution range is hard to 
predict, but clearly another reason for increased caution in palaeontological taxonomic 
assessment (Cope and Lacy, 1992; Albrecht and Miller, 1993; Harrison, 1993; Godfray et al., 
2004).

WRONG SISTER: what about inaccurate similarity relationships among species?
The considerations made in the conclusion of the previous paragraph are similar and even 
more important when the aim is to infer the similarity relationship of a sample, and more 
precisely of its mean, to other closely related species. We exemplified this aim by focusing on
the errors in the prediction of the correct phenetic sister species (WRONG SISTER), which is
concerned only with similarity using a specific set of morphometric descriptors and may or 
may not be informative on phylogenetic relatedness. Results for this index are more complex 
to interpret. The minimum N required for errors to occur less than 10% of the time has a low 
correlation (r < 0.5) with virtually all of the main descriptive statistics (Table S2). The 
exception is the positive correlation with the total number of species in a taxon, but even this 
is inconsistent, as it is high (0.66) in TOTAL and rather small in the other two sets of 
simulations (r < 0.3). However, it is reasonable that predicting the right phenetic sister species
becomes more difficult with higher diversity in a lineage. Nevertheless, this effect is almost 
completely negligible in the reduced configurations. One would also expect that, with larger 
differences between interspecific means and/or less variation within FS, sampling error 
should be reduced (as in WRONG SELF) but this does not happen, as correlations with 
observed variances (as well as their pseudo-F ratios) are always small (- 0.2 ≤ r ≤ 0.4) and 
sometimes even inconsistent in sign.

Thus, WRONG SISTER and WRONG SELF have some commonalities, but also clear
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differences. The estimated minimum Ns for accurate (< 10% errors) predictions of a phenetic 
sister species are on average at least twice larger than those of WRONG SELF, but the most 
striking difference is that, for WRONG SISTER, they vary widely depending on the lineage 
(from a few specimens to several hundreds). It is likely that WRONG SELF is influenced by 
many factors, including the possibility that one or more species are about as close as the 
observed phenetic sister to the observed FS mean. Thus, when the mean of the FS changes, 
even if that may be a slight change in a big sample, that is enough to move it closer to the 
wrong phenetic sister species. If so, the precise geometry of the space of the species mean 
shapes can be even more important than the number of species in the lineage or the 
magnitude of between and within species variance.

Overall, then, when should we expect a stronger impact of sampling error?
Discussing the three most variable indices has provided the first clues on what may contribute
to change the severity of the impact of sampling error. This was specific to the estimates of a 
species mean shape, one of the most important descriptive statistics in the taxonomic 
assessment of a morphospecies. Of the other three indices, focusing on within species 
variances and covariances, one (W-RV-median) is almost unbiased and the other two (W-RV-
range and VCVr) suggest for all taxa very similar requirements of minimum sample size for 
high relative accuracy (ca. 30-50 individuals on average). Correlational exploratory analyses, 
using minimum Ns (‘< 10% error threshold’), as with the indices based on mean shapes, did 
not discover any consistent and large correlation between W-RV-range or VCVr and the main 
descriptive statistics (Table S2). 

The heterogeneity of sample size requirements for mean shapes in relation to 
interspecific differences, and the fair homogeneity of patterns in the case of within species 
variance and covariance, seem to indicate differences in how sampling error affects 
parameters depending on the level of the analysis. This is a first preliminary but potentially 
important conclusion of our work. However, even if there might be differences between 
indices using species means and those using individuals within a species, we decided to 
explore further the overall results from all indices in order to look for a possible general 
explanation of our findings. Thus, excluding the almost unbiased W-RV-median, we 
transformed the minimum Ns of Table S2 (obtained using the ‘< 10% error threshold’) into 
standardized z-scores and averaged them across the three main sets of results (TOTAL, FACE
and HALF). Compared to the raw results, z-scores preserve the relative differences in Ns 
while rescaling them more uniformly. This avoids that a few very large N in WRONG 
SISTER might dominate the averaged results. Indeed, the averaged z-scores are as a sort of 
ranking, where lower (negative) scores imply a smaller impact of sampling error and larger 
(positive) ones indicate a stronger impact. From this, two well separated clusters emerge: 1) 
the least impacted (-0.49 ≤ z ≤ -0.18), which are V. vulpes, P. capensis, D. novemcinctus, E. 
burchellii, L. europaeus, and male and female P. anubis; 2) the most impacted (z ≥ 0.05), 
which are all other primates plus the European hedgehog, with this species as well as female 
C. mitis and male P. ellioti being the most badly affected by sampling error (z ≥ 0.48 vs 0.05 
≤ z ≤ 0.21 in the remaining species).

As with the raw indices, one can eventually investigate the correlations between the 
averaged z-scores and the main descriptive statistics (Table S2, plus the pseudo-F ratios – 
Fig. 5g). This shows that there are only a few strong correlations (ranging from -0.58 to -
0.66), which are consistently those with the pseudo-F ratios of the different configurations. 
Although smaller, and positive (r = 0.45), there is also a potentially interesting correlation 
with the number of species in a group. Thus, a fairly simple, partial and very preliminary 
explanation seems to emerge for the variable severity of the problems with sampling error, as 
assessed in our study. With larger between species differences and smaller within species 
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variance, relatively small N can still produce fairly accurate estimates of means, variances 
and covariances. However, when within species variance is big compared to interspecific 
differences, one then needs really big samples for accuracy. For instance, using an 
hypothetical example, one could do well with a dozen, or a few dozens, of specimens, in a 
study of a population with small variability and a highly distinctive shape, such as an insular 
species that has gone through genetic bottlenecks and may have an accelerated rate of 
morphological evolution (Millien, 2006). However, during an adaptive radiation on a 
continent, with at least some species having large populations, and thus big variability among
individuals, as well as potentially variable degrees of interspecific divergence, accurate 
estimates of means and variance covariance structure will require much larger samples. 
Besides, with more species, the problem might become even more serious, but this appears, at
least in our analysis, as a much less relevant factor compared to the pseudo-F ratio of 
variances. Indeed, even with few species, if interspecific differences are small and within 
species variation large, the impact of sampling error may be serious, as convincingly shown 
by hedgehogs.

The influence of taxonomic uncertainties and fuzzy interspecific boundaries
Primates and especially C. mitis and P. ellioti were often strongly affected by sampling error 
even in relatively large samples. On average, the primate clades we used in the study are 
younger than those from other orders but this has not produced smaller interspecific 
divergence in cranial morphology, as in fact the variance of mean shapes is slightly bigger in 
this group (Table S2). However, primate FS also have larger within species variance, so much
larger that their pseudo-F ratios are almost 30% smaller than in FS of other placental orders. 
Because relatively larger within species variance compared to interspecific differences seems 
the best predictor for a stronger impact of sampling error, so that often primates required 
larger Ns for the same relative accuracy, it is important to understand the reasons for the 
larger FS variability of the primates.

Besides the possibility briefly mentioned above that this is largely an effect of better 
sampling across more museums, taxonomic uncertainties may also have played a role. 
Indeed, at least some of the primate FS might belong to the ‘grey area’ of taxonomy where 
populations may be considered either species or subspecies, depending on the criterion used 
to establish these taxonomic categories (Zachos, 2016). Thus, there could be a degree of 
taxonomic inaccuracy and cryptic diversity that inflates within species variance in cranial 
shape. As an example, we will focus on the case of P. ellioti, which, like most other red 
colobus, is characterized by an unstable taxonomy and a complex pattern of evolutionary 
divergence and potentially incomplete reproductive isolation (Oates and Ting, 2015).

As Zachos (2016, p. 143) discusses, we undertake zoological research in a 
“continuous world with fuzzy boundaries”. In Table S1 we outline that the taxonomic 
schemes we adopt in our analyses are not the only ones available to us, and there is 
considerable discussion about the composition of the species we include. For instance, in the 
past two decades, P. ellioti has been included in the genus Procolobus and subgenus 
Piliocolobus (although it is now suggested that Piliocolobus should be raised to a full genus) 
and assigned, as a subspecies, to several different species (oustaleti, badius, pennantii and 
rufomitratus - see review in Maisels and Ting, 2020). Indeed, Grubb et al. (2003) considered 
ellioti a subspecies but did not assign it to a species. The scheme we use in this paper follows 
Grubb et al. (2003), which is the classification used by most museums at the time of data 
collection, but raises ellioti to a full species. However, others, such as the IUCN Red List 
(Hart et al., 2020; Maisels and Ting, 2020) do not consider ellioti a valid taxon. Instead, the 
red colobus we describe as ellioti is split into two species, Piliocolobus langi and 
Piliocolobus semlikiensis (the geographic distribution of our ellioti sample covers the ranges 

1140

1145

1150

1155

1160

1165

1170

1175

1180

1185



of both taxa). Consideration of the underlying biology helps to make sense of this taxonomic 
instability. It appears that the red colobus in the ‘ellioti’ range (in northeast Democratic 
Republic of Congo) comprise a ‘hybrid swarm’ of three potential taxa, langi, semlikiensis and
oustaleti (Groves, 2007). All have been reported to be externally phenotypically similar (e.g. 
in pelage and skin colour) and such variation is largely continuous (Groves, 2007), although 
Struhsaker (2010) remarked that variation may be more extensive than previously supposed. 
In cranial morphology, P. ellioti and P. oustaleti cluster together, with no significant 
differences in size and shape between the taxa, and a relatively small shape distance (Cardini 
and Elton, 2009). The results we report here bring the ‘fuzzy boundaries’ of these taxa into 
sharp relief. As anticipated, we use P. ellioti as an example, not least because primates are 
among the best studied of all the mammals we analysed, and in consequence have 
experienced more taxonomic revision. Nonetheless, the issues highlighted are likely to be 
applicable across several other mammals, given the evidence for hybridisation (Taylor and 
Larson, 2019) and the longstanding debates over how to recognise and demarcate species 
(Zachos, 2016). For now, our pragmatic solution was to follow an older taxonomic scheme 
and accept that there will always be uncertainty in where we draw boundaries between 
species. However, this decision means that taxonomic uncertainty might have affected some 
of our analytical results by inflating intraspecific variance  in a ‘compound’ FS such as P. 
ellioti. Yet, in most other cases, as we discussed before, the variability in the wild populations
of the FS has been almost certainly underestimated, which makes our results in terms of the 
severity of sampling error likely to be conservative, with minimum Ns suggested for relative 
accuracy smaller than truly desirable.

Indeed, in the red colobus as well as in all other clades, the choice of the FS was 
dictated by a simple practical consideration: the importance of using the largest available 
sample to better approximate accuracy. One might wonder, however, to what extent this 
selection might have influenced results. The example case of P. ellioti highlights the issue of 
uncertain or contested taxonomy, which is actively being debated for this taxon  but is 
certainly not unique. Cercopithecus mitis is another example, which like P. ellioti is widely 
distributed and contains many subspecies (Grubb et al., 2003), some of which are sometimes 
elevated to  species status (Upham et al., 2019). The trade-off between taxonomic uncertainty
and sample size is an important one to consider. Our results demonstrate that larger sample 
sizes are better for estimating mean shapes and covariance patterns, but the drive to 
accumulate a large sample of most mammals based on museum collections almost always 
requires combining individuals sampled from across the species’ geographic range.  This 
strategy, however, risks combining subgroups that are genetically distinct and thus different 
in their mean shape and covariance structure.  Our primate results may well reflect this issue: 
the relatively larger minimum Ns  required for primates could have been the result of a bias 
caused by the choice of a taxonomically mixed and therefore potentially inaccurate FS. As 
already discussed, we cannot completely rule out  this possibility but we can explore what 
would have happened if we had, for instance, chosen the second largest sample available for 
either the red colobus or Cercopithecus-Chlorocebus monkeys. Thus, we replicated the 
analyses using as FS P. badius and P. oustaleti, for respectively female and male red colobus, 
and C. pygerythrus for both sexes in the Cercopithecus-Chlorocebus clade. Results were 
almost identical, with the median N for the ‘10% threshold’ ranging between 20 and 40 in 
badius-oustaleti and between 23 and 40 in  pygerythrus (compared to 14-40 in P. ellioti and 
26-40 in C. mitis). The findings of the main analysis, including the requirement on average 
larger samples for relative accuracy in primates, are therefore confirmed and were not biased 
by selecting P. ellioti and C. mitis.

In fact, with the same approach, using whenever possible the second largest samples 
(N ≥ 40, with a median FS N = 56) of each clade as a FS to replicate the simulations, we find 
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an excellent agreement with the results of the original analysis (Tab. 2). Although this limits 
the comparison of desirable Ns to E. roumanicus, Vulpes lagopus, and Lepus timidus, among 
the non-primates, relative to C. pygerythrus, males of P. cynocephalus and females and males
of respectively P. badius and P. oustaleti, among primates, the upward bias of the primates is 
well supported with an overal median N of 18 for non-primates and 30 for primates (vs 
respectively 20 and 26, for the same groups, in the original results of Tab. 2). The re-analysis 
also shows an increase in both the median and 90th percentile for the minimum Ns of all FS, 
across all indices, from respectively 23-40 (original analysis of Tab. 2) to 26-45 (re-analysis 
using different FS). Thus, it does seem that at least using the clades we selected for this study,
results might be robust and the main patterns supported more generally by the data we 
analysed.    

CONCLUSIONS

This study is probably one of the broadest on sampling error in geometric morphometrics. 
The total sample size is large and there is at least one taxon for each of the four placental 
superorders. Nevertheless, it is still a small portion of the overall diversity of placental 
mammals and we were limited to analyses of adults, leaving unexplored the effect of 
ontogenetic growth on sample size issues. Also, we only considered cranial shape, which has 
its own peculiarities of genetic underpinnings, developmental processes, dimorphism, and 
variation, that may produce intra-and interspecific variance patterns that are different from 
other morphological systems (e.g., Caumul and Polly 2005; Polly et al. 2013). Thus, in our 
study, the accuracy with which morphometrics can be used to identify specimens to species-
level taxa depended mainly on the interaction between within-group variability and between-
group differences, which in turn determined the size of sample needed for a correct 
classification.  The relative amount of between to within variation depends on at least three 
factors: precision of measurement (imprecision adds to apparent within-group variation and 
subtracts from apparent between-group difference), genetic variation within species versus 
genetic divergence between them, and non-genetic environmental variation (e.g. bone 
remodeling in response to stress). These factors differ by species, by morphological system, 
and even by individual. Highly variable but shallowly diverged species will be more prone to 
classification error than will deeply diverged species all other things being equal. Genetically 
and developmentally complex morphologies with less non-genetic environmental variation 
(e.g., molar shape) should in contrast provide a more accurate classification than 
morphologies with simpler genetics and development but more ecophenotypic variance (e.g., 
mammalian long bones). For this reason, and in spite of  the good correspondence of many of
our conclusions about the minimum N for relative accuracy with those of previous studies in 
mammals, it is too early to claim generalizability even about evaluating morphospecies using 
adult cranial data of closely related taxa at the boundary between micro- and macro-evolution
(i.e., within species and in relation to closely related ones). Besides, as we stressed multiple 
times, even in terms of internal validity of the analysis, our estimates are almost certainly 
overoptimistic. 

Bearing in mind these caveats, our results tentatively suggest that:
1) A minimum sample of 10-15 adult specimens (per sex if the species is dimorphic) 

is required to estimate mean shape and to have a low standard error of the mean relative to 
the variance among members of a mammalian genus. Such a sample size gives a good chance
of numerically identifying the species correctly. However, note that with this sample size the 
estimated mean could differ from the true mean by about 40% of the distances separating 
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species within a genus. Thus, N of at least 40-50 will give much better approximations.
2) For reconstructing accurate similarity relationships and finding the correct phenetic

sister species, samples must be typically larger (ca. 15-90 on average but up to more than 
100-200 in some cases) and requirements of minimum N will vary considerably depending 
on the taxon.

3) For reasonable estimates of the magnitude of total variance and VCV, 30-50 
specimens may be enough on average, but to increase confidence in these estimates one 
should aim at even larger N.

Overall, we conclude that ca. 25-40 specimens (depending on using either the median 
or 90th percentile of Ns in the results of all our simulations shown in Table 4) is the best 
sample size across the board based on the 10% threshold of all our indices and datasets. But 
even this should not be taken as a general and definitive conclusion, because there is large 
variability depending on the taxon, configuration and the parameter being assessed. 
Therefore, for some situations, even larger samples may be required to produce robust results 
and, clearly, there is no universal recipe for controlling for sampling error. Moreover, a 
morphospecies is just a morphospecies and, regardless of the size of the sample and quality of
the data, one should always remember that it is an important but small piece of taxonomic 
evidence (Simpson, 1943; Jolly, 1993), even smaller when based just on a given ontogenetic 
stage and a specific set of anatomical traits (such as crania or other skeletal parts - Godfray et 
al., 2004).

Taxonomic accuracy is central to all biological research both in living and extinct 
organisms. Resampling experiments, such as those we used in this and previous studies, have 
limitations but allow to start exploring the sensitivity of results to sampling error. This type of
analysis should be encouraged, if we want to improve the assessment of morphospecies by 
providing information on the confidence one can have in her/his results. This might help not 
only to avoid overstatements and reduce the risk of taxonomic inflation, but also to make the 
classification more stable and useful. Even when working with fossils, that rarely offer large 
samples, one can easily explore the problem using rarefaction analyses in modern living 
relatives (Cope and Lacy, 1992, 1995; Roth, 1992; Jolly, 1993; Martin and Andrews, 1993; 
Plavcan, 1993; Plavcan and Cope, 2001), if available and under a uniformitarian assumption 
of roughly similar evolutionary patterns, or with numerical simulations (Kelley and Plavcan, 
1998; Plavcan and Cope, 2001). Without taxonomy, biology is indeed a “meaningless 
jumble” (p. 130, May, 1990), but it can be a chaotic jungle if taxonomy is inaccurate and its 
uncertainties are not acknowledged.
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Figure legends

Fig. 1. Landmark configuration. As detailed in Cardini (2019), landmarks were digitized by a 
single operator (AC) on the left side of the cranium; very small midplane asymmetries were 
removed; and the right side was reconstructed by mirroring following Cardini (2017).

Fig. 2. Example of the effect of sampling error on mean shape estimates in plains zebras. 
Unweighted Pair Group Mean Average (UPGMA) phenogram and principal component 
analysis (PCA) are used to summarize shape similarity relationships among observed species 
means and the means of the FS subsamples.  Subsamples N used as examples are (a) 5, (b) 20
and (c) 100. The percentage of variance accounted for by a PC is shown for each axis. In the 
ordinations, the ‘boxed’ 1 and 2 refer to the grand mean of respectively the observed species 
means and the means of the FS subsamples. The photo of the focal species is from 
https://commons.wikimedia.org/wiki/File:Plains_Zebra_(Equus_burchelli).jpg under a 
Creative Commons Attribution-Share Alike 2.0 Generic licence.

Fig. 3A-B. Profile plots for WRONG SELF (first column, a-b-c), WRONG SPECIES (second
column, d-e-f) and BG-RV (third column, g-h-i), subdivided according to the dataset 
(TOTAL, FACE, HALF). In this and the next figures, species abbreviations are those shown 
in Table 1 (using the first three letters of the genus and species scientific names, and followed
by F, for females, or M, for males, when analyses are done with separate sexes). (A) shows 
the range of subsample Ns with non-negligible sampling error; (B) focuses on a few Ns, 
taken as examples within the range of Ns showing the largest effect of sampling error.

Fig. 4A-B. Same as Fig. 3A-B but now for W-RV-median (first column, a-b-c), W-RV-range 
(second column, d-e-f) and VCVr (third column, g-h-i).

Fig. 5. (a-e) Profile plots of the minimum Ns for the ‘10% relative accuracy threshold’ in 
TOTAL, FACE and HALF: (a) WRONG SELF, (b) WRONG SISTER, (c) BG-RV, (d) W-RV-
range, (e) VCVr. (f-g) Profile plots for the number of species in each study taxon (f) and the 
pseudo-F ratio (g) in TOTAL, FACE and HALF. Species in the plots are in increasing order 
of the plotted value (e.g., increasing minimum Ns); when multiple datasets are present, the 
values for TOTAL are used to order the species. It is easy to observe that the order for BG-RV
is almost exactly the reverse as for pseudo-F, as expected given their high correlation.

S-Figs 1-13. Same type of example figures as in Figure 2. They help to visualize the different 
impact of sampling error on mean shape estimates depending on the taxon and subsample N. 
Photos of the FS are from Wikipedia under Creative Commons Attribution-Share Alike 
2.0/  2.5/  3.  0/4.0   licences. Specific links are available upon request. For P. ellioti illustrations 
are in the public domain in the United States because it was published (or registered with the 
U.S. Copyright Office) before January 1, 1925.
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Tab. 1. Summary of sample composition showing FS sample sizes as well as the average N of other species in the same group; bold is used for emphasizing N in the simulations (with separate sexes for primates and pooled 
females and males in all other groups).

superorder lineage genus species abbreviation FS common name samples F M U all group tot.

Euarchontoglires African colobines Piliocolobus ellioti Pil_eli Elliot's red colobus N 65 44 109

other 14 sp. mean N 21 15 34 586

guenons Cercopithecus mitis Cer_mit blue monkeys N 67 78 145

other 21 sp. mean N 19 22 41 1011

papionins Macaca fascicularis Mac_fas crab-eating macaque N 184 281 465

other 18 sp. mean N 10 10 20 819

Papio anubis Pap_anu anubis baboon N 54 123 177

other 5 sp. mean N 7 29 36 357

leporids Lepus europaeus Lep_eur European hare N 45 49 7 101

other 19 sp. mean N 5 5 8 14 367

Laurasiatheria erinaceids Erinaceus europaeus Eri_eur European hedgehog N 40 52 34 126

other 4 sp. mean N 16 10 5 29 212

equids Equus burchellii Equ_bur plains zebra N 59 41 3 103

other 6 sp. mean N 9 6 1 16 200

canids Vulpes vulpes Vul_vul red fox N 63 71 19 153

other 8 sp. mean N 4 5 8 14 263

Afrotheria hyraxes Procavia capensis Pro_cap rock hyrax N 6 6 43 55

other 3 sp. mean N 8 12 18 38 168

Xenarthra armadillos Dasypus novemcinctus Das_nov nine banded armadillo N 4 1 54 59

other 4 sp. mean N 1 2 2 66

grand total N 1697 1925 427 4049
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Tab. 2. Main abbreviations specific to our study (see main text for details).

topic abbreviation definition

general terms FS Focal species: species in which we assess the effect of sampling 
error by using randomized subsamples. The parent or total sample 
is the one including all (i.e., Nmax) measured specimens.

indices WRONG
SELF

Fraction of FS subsamples of a given N, whose mean shape is 
closer to the mean of another species than to its own parent FS 
mean. With no sampling error, it should be zero, whereas with a 
strong effect of sampling error it will get closer to one.

WRONG
SISTER

Proportion of FS subsamples of a given N, whose mean shape does
not cluster with the correct phenetic sister species, which is the 
species whose mean is most similar (thus, closest) to the total FS 
mean shape. As the previous index, it ranges from zero (no impact 
of sampling error) to one (when 100% of the time the phenetic 
sister species is wrongly inferred).

BG-RV Between group relative variance: the ratio between the multivariate
variance of the means of all FS subsamples of a given N and the 
interspecific variance of all observed species mean shapes in the 
same lineage. It should be close to zero if sampling error has little 
impact but will become closer to or even larger than one if 
sampling error introduces so much variation in the FS estimates of 
mean shapes that they vary more than found among different 
species in that group.

W-RV Ratio between the variance in a subsample of N FS individuals 
(e.g., N=10) divided by the observed variance using all individuals 
in the parent FS sample. With no effect of sampling error, estimates
should be identical and the ratio equal to one.

W-RV-median Median of W-RVs in 500 simulated samples of a given N.

W-RV-range Absolute difference between the 10th and 90th percentiles of the 
W-RVs in 500 simulated samples of a given N.

VCVr Median of the correlations between variance covariance matrices 
(VCV) of FS subsamples of a given N and the observed total 
sample VCV: it should be close to one if sampling error is small.

randomization
experiments

TOTAL Full configuration with subsamples drawn from a simulated set of 
1000 individuals from a theoretical multivariate normal population 
with the same mean shape and VCV as the total FS sample.

TOTALbig As above but including only species with larger samples (10 or 
more individuals) in the interspecific analyses.

TOTALobs Full configuration with subsamples of FS randomly drawn from 
the bootstrapped total sample.

FACE As TOTAL but using only facial landmarks.

HALF As TOTAL but using half of the landmarks in the total 
configuration (see main text for the list of landmarks included).



Table 3. Summary of correlations between the results of TOTAL and those of the other sets of 
simulations.

TOTAL vs index median 10th percentile

TOTALbig WRONG SELF 1.00 0.98

TOTALobs WRONG SELF 0.99 0.96

FACE WRONG SELF 0.99 0.95

HALF WRONG SELF 0.99 0.91

TOTALbig WRONG SISTER 0.99 0.97

TOTALobs WRONG SISTER 0.98 0.95

FACE WRONG SISTER 0.96 0.82

HALF WRONG SISTER 0.97 0.73

TOTALbig BG-RV 1.00 1.00

TOTALobs BG-RV 1.00 1.00

FACE BG-RV 1.00 1.00

HALF BG-RV 1.00 1.00

TOTALbig W-RV-median-median 0.73 0.34

TOTALobs W-RV-median-median 0.59 0.40

FACE W-RV-median-median 0.70 0.51

HALF W-RV-median-median 0.72 0.53

TOTALbig W-RV-range 1.00 0.99

TOTALobs W-RV-range 1.00 0.99

FACE W-RV-range 1.00 0.99

HALF W-RV-range 1.00 0.99

TOTALbig VCVr 1.00 1.00

TOTALobs VCVr 1.00 1.00

FACE VCVr 1.00 1.00

HALF VCVr 1.00 1.00



Table 4. Minimum N (minN) required for the '10% threshold' of RA (W-RV not shown because unbiased; prop.=proportion): for each index, the three 
least and most impacted cases are emphasized using respectively a grey and black background.

focal species WRONG SELF<0.1 WRONG SISTER<0.1* BG-RV<0.1 W-RV-range<0.2 VCVr>0.9
set of landmarks (F=female; M=male) minN prop. minN prop. minN fraction minN fraction N r

TOTAL Dasypus novemcinctus 3 0.000 150 0.080 5 0.090 30 0.193 50 0.911

Procavia capensis 3 0.012 3 0.000 14 0.091 30 0.195 50 0.918

Equus burchellii 3 0.020 4 0.070 18 0.092 40 0.167 50 0.904

Erinaceus europaeus 4 0.072 9 0.080 40 0.093 23 0.183 75 0.920

Vulpes vulpes 3 0.000 6 0.090 6 0.084 20 0.198 75 0.915

Lepus europaeus 3 0.034 200 0.100 16 0.089 20 0.192 75 0.908

F Cercopithecus mitis 7 0.066 400 0.130 23 0.096 26 0.197 75 0.925

M Cercopithecus mitis 6 0.096 26 0.100 23 0.097 30 0.197 50 0.912

F Macaca fascicularis 5 0.074 150 0.100 14 0.097 23 0.196 75 0.929

M Macaca fascicularis 6 0.068 250 0.080 10 0.092 26 0.195 50 0.901

F Papio anubis 7 0.080 9 0.100 12 0.092 40 0.199 40 0.916

M Papio anubis 6 0.084 3 0.080 12 0.090 30 0.194 50 0.905

F Piliocolobus ellioti 6 0.074 9 0.100 16 0.095 23 0.189 75 0.916

M Piliocolobus ellioti 12 0.072 23 0.100 20 0.099 30 0.196 50 0.905

FACE Dasypus novemcinctus 3 0.002 500 0.290 4 0.096 50 0.190 26 0.906

Procavia capensis 3 0.028 3 0.000 14 0.095 75 0.158 30 0.904

Equus burchellii 3 0.018 3 0.060 14 0.089 30 0.197 40 0.905

Erinaceus europaeus 4 0.058 100 0.100 40 0.094 26 0.199 40 0.901

Vulpes vulpes 3 0.004 3 0.070 6 0.100 30 0.195 50 0.918

Lepus europaeus 4 0.076 16 0.100 16 0.096 30 0.198 50 0.917

F Cercopithecus mitis 9 0.092 200 0.060 23 0.093 40 0.192 40 0.915

M Cercopithecus mitis 7 0.086 100 0.080 20 0.096 40 0.182 40 0.909

F Macaca fascicularis 7 0.068 300 0.100 12 0.089 40 0.195 40 0.916

M Macaca fascicularis 9 0.092 500 0.140 10 0.096 50 0.172 40 0.916

F Papio anubis 7 0.094 7 0.100 9 0.095 75 0.170 23 0.902

M Papio anubis 7 0.072 4 0.060 9 0.098 40 0.177 40 0.915

F Piliocolobus ellioti 10 0.100 75 0.100 23 0.086 40 0.178 40 0.903

M Piliocolobus ellioti 16 0.092 500 0.160 20 0.099 50 0.175 30 0.901

HALF Dasypus novemcinctus 3 0.002 40 0.060 6 0.096 50 0.181 40 0.921

Procavia capensis 3 0.012 3 0.000 12 0.087 30 0.197 40 0.909

Equus burchellii 3 0.068 26 0.100 20 0.088 40 0.182 40 0.909

Erinaceus europaeus 10 0.094 7 0.090 40 0.091 50 0.167 40 0.916

Vulpes vulpes 3 0.006 12 0.100 8 0.089 30 0.191 50 0.913

Lepus europaeus 3 0.052 12 0.090 14 0.090 26 0.190 50 0.908

F Cercopithecus mitis 8 0.072 40 0.100 23 0.088 40 0.179 40 0.907

M Cercopithecus mitis 7 0.100 26 0.100 23 0.096 40 0.189 40 0.912

F Macaca fascicularis 8 0.072 500 0.100 14 0.098 40 0.175 40 0.904

M Macaca fascicularis 9 0.092 12 0.090 10 0.096 40 0.187 40 0.905

F Papio anubis 7 0.070 9 0.100 12 0.098 50 0.178 30 0.907

M Papio anubis 7 0.078 3 0.100 12 0.087 40 0.173 40 0.907

F Piliocolobus ellioti 8 0.094 14 0.050 14 0.096 40 0.184 50 0.917

M Piliocolobus ellioti 12 0.094 500 0.240 18 0.099 40 0.183 40 0.911

summary statistics minN minN minN minN minN

TOTAL median 6 16 15 28 50

10th perc. 3 3 7 21 50

90th perc. 7 235 23 37 75

FACE median 7 88 14 40 40

10th perc. 3 3 7 30 27

90th perc. 10 500 23 68 47

HALF median 7 13 14 40 40

10th perc. 3 4 9 30 40

90th perc. 10 362 23 50 50

*Unless specified differently and emphasized by underscoring.


