| 1  | Timing of the Meso-Tethys Ocean opening: Evidence from                                                                                     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Permian sedimentary provenance changes in the South                                                                                        |
| 3  | Qiangtang Terrane, Tibetan Plateau                                                                                                         |
| 4  |                                                                                                                                            |
| 5  | Jian-Jun Fan <sup>1, 2*</sup> , Yaoling Niu <sup>2</sup> , An-Bo Luo <sup>1</sup> , Chao-Ming Xie <sup>1</sup> , Yu-Jie Hao <sup>3</sup> , |
| 6  | Hai-Yong Liu <sup>4</sup>                                                                                                                  |
| 7  | $\sim$                                                                                                                                     |
| 8  |                                                                                                                                            |
| 9  | <sup>1</sup> College of Earth Sciences, Jilin University, Changchur, 130061, P.R. China                                                    |
| 10 | <sup>2</sup> Department of Earth Sciences, Durham University, Durham DH1 3LE, UK                                                           |
| 11 | <sup>3</sup> Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of                                                 |
| 12 | Natural Resources of China, Changchur, 130061, P.R. China                                                                                  |
| 13 | <sup>4</sup> College of Earth Sciences, Chengdy, Oniversity of Technology, Chengdu, 610059,                                                |
| 14 | P.R. China                                                                                                                                 |
| 15 |                                                                                                                                            |
| 16 | <b>Corresponding author:</b> Fel.: +86-431-88502046; Fax: +86-431-88584422; Email:                                                         |
| 17 | fanjj03@163.com ( <b>JJ. Fan</b> )                                                                                                         |
| 18 |                                                                                                                                            |
| 19 | E-mail addresses: <u>fanjj03@163.com</u> (JJ. Fan); <u>yaoling.niu@durham.ac.uk (</u> Y.                                                   |
| 20 | Nu); <u>2279687817@qq.com</u> (AB Luo); <u>xcmxcm1983@126.com</u> (CM Xie);                                                                |
| 21 | <u>452829694@qq.com</u> (YJ Hao); <u>568646271@qq.com</u> (HY Liu)                                                                         |
| 22 |                                                                                                                                            |

1 / 32

Timing of the opening of the Meso-Tethys Ocean, represented by the Bengong-24 Nujiang Suture Zone on the Tibetan Plateau, remains controversial. Further research 25 is required to understand the breakup of the northern Gondwana margin and the 26 tectonic evolution of the Tethyan realm. In this study, we present petrography, U–Pb 27 dating and Hf isotopic data for detrital zircons from Upper Sarboniferous–Upper 28 Permian strata in the South Qiangtang Terrane on the Tibetan/Plateau. These data, 29 together with data from previous literature, indicate voungest detrital zircon age 30 peak of ca. 550 Ma for Upper Carboniferous–Lower Remian strata. This is far older 31 than the depositional age of ca. 300 Ma and indicates a source in the stable Gondwana 32 Continent. Upper Permian strata yield younger ages (490–247 Ma) with peaks at ca. 33 460, 355, 290 and 260 Ma, indicating a Jource in the active South Qiangtang Terrane. 34 Combined with the unconformity between the Lower and Upper Permian strata in the 35 western South Qiangtang Terrane, we conclude that a significant change in 36 sedimentary provenance openred at 280–260 Ma. This provenance change might 37 have resulted from the 300-279 Ma rifting magmatism on the northern Indian margin 38 of Gondwana (e.g., South Qiangtang). The 300–279 Ma magmatism is interpreted to 39 reflect the early stages of rifting, and the subsequent 280–260 Ma sedimentary 40 provenance charge is interpreted as the later stage, both of which established a 41 complete Early–Middle Permian (300–260 Ma) rifting process that marks the opening 42 of the Meso-Tethys Ocean. 43

44 Key words: Detrital zircon; Rifting; Indian margin of Gondwana

45 **1. Introduction** 

The Meso-Tethys Ocean, which is represented by the Bangong–Nujiang Suture 46 Zone (BNSZ) on the central Tibetan Plateau, places important constraints of the 47 Mesozoic tectonic history of the Tibetan Plateau (Kapp et al., 2007; Paret d., 2012; 48 Zhang et al., 2014; Zhu et al., 2016), and provides insights into widespread late 49 Mesozoic mineralization within central Tibet (Geng et al., 2016; Li et al., 2018). 50 Although the BNSZ has been studied extensively (Allegre et al., 1984; Yin and 51 Harrison., 2000; Kapp et al., 2007; Shi et al., 2008; Can et al., 2012; Zhang et al., 52 2014, 2017, 2019; Li et al., 2014, 2018, 2019, 2020, Zhu et al., 2016; Wang et al., 53 2016; Zeng et al., 2016; Hu et al., 2017; Liu et 1., 2017; Chen et al., 2017; Ma et al., 54 2017; Fan et al., 2018, 2020; Wu et al., 2018, Hao et al., 2019; Tang et al., 2020; Luo 55 et al., 2020), many aspects of the evolution of the Meso-Tethys Ocean remain 56 controversial, and the timing of the opening of the Meso-Tethys Ocean has been 57 subject to fierce debate (Metcalfe, 2013; Zhai et al., 2013; Liao et al., 2015; Chen et 58 59 al., 2017; Liu et al., 2017; E., et al., 2017; Wang et al., 2019; Zhang et al., 2019; Li et al., 2019). 60

An understanding of the timing of opening of the Meso-Tethys Ocean is critical for constraining the nistory of the breakup of the northern Gondwana margin, and for understanding the tectonic evolution of the Tethyan realm. The opening of the Meso Tethys Ocean is associated with Carboniferous–Permian rifting of the South Quantang Terrane from the Indian margin of Gondwana (Metcalfe, 2013; Zhai et al., 2013; Liao et al., 2015; Chen et al., 2017; Liu et al., 2017; Fan et al., 2017; Wang et al., 2019; Zhang et al., 2019; Li et al., 2019); therefore, the Carboniferous–Permian
strata in the South Qiangtang Terrane (Fig. 1b) are expected to provide crucial
information on the timing of the Meso-Tethys opening.

In this paper, in order to discuss the timing of the Meso-Tethyspening, we 70 examine the Upper Carboniferous–Upper Permian strata (Fig. 1), in the South 71 Qiangtang Terrane by using a combined approach of detaile pyrographic analysis, 72 detrital zircon U–Pb dating, and Hf isotope analysis. The resultant data allow us to 73 identify a significant change in sedimentary provenance during 280-260 Ma in the 74 South Qiangtang Terrane, which is interpreted as the sedimentary and tectonic 75 response to continental rifting, the precursory process of the Meso-Tethys Ocean 76 opening. This work thus establishes an important framework for the timing of opening 77 78 of the Meso-Tethys Ocean.

79

# 80 2. Upper Carboniferous–Upper Permian strata in the South

81 Qiangtang Terrane

From south to north, VerTibetan Plateau is made up of the Himalaya, Lhasa, 82 South Qiangtang, North Diangtang, Songpan-Ganzi-Hoh Xil and Qaidam terranes 83 (Fig. 1a). These terranes are separated by five suture zones (Fig. 1a; Allègre et al. 84 1984; Yin and Harrison. 2000; Pan et al. 2012; Metcalfe, 2013; Zhu et al., 2013; Xu et 85 al., 2016; Thai et al., 2016). This study focuses on the Jiaco and Ritu areas in the 86 middle and western South Qiangtang Terrane, respectively (Fig. 1b), where Upper 87 Carboniferous–Upper Permian strata are widely distributed within complex 88 sedimentary sequences (Figs 1c, 1d, 2). 89

The Upper Carboniferous–Upper Permian strata in the Jiaco area include the Zhanjin, Qudi, Lugu and Jipuria formations (Figs 1c, 2), and those in the Ritu area include the Zhanjin, Qudi, Tunlonggongba, Longge and Jipuria formations (Figs 1d, 2).

The Zhanjin Formation is dominated by grey–green glacial matche diamictite 94 (Fig. 3a)—formed by the Late Carboniferous–Early Permian Condwanan glaciation 95 (Jin et al., 2002; Fielding et al., 2008; Zhang et al., 2013; Fan et 1., 2015)—sandstone, 96 siltstone and shale. Sakmarian bivalves (e.g., Eurydesma perversum) and solitary 97 corals (e.g., *Cyathaxonia* and *Lophophyllidium*; Liang Val., 1983; Liu and Cui, 1983; 98 Zhang et al., 2013) in the sandstone and siltstore also indicate a Late Carboniferous-99 Early Permian age. Slump structures, convolute bedding and Bouma sequences are 100 common in the Zhanjin Formation, is dicating a bathyal to abyssal depositional 101 environment (Fan et al., 2015; Zhan, et al., 2019). The overlying Qudi Fomation is 102 dominated by littoral-neritic sandstone in the western South Qiangtang Terrane, and 103 bathyal to abyssal siltstone and shale in the middle South Qiangtang Terrane (Zhang 104 et al., 2012a, 2019). This Formation contains fusulines (e.g., Pseudofusulina, 105 Chalaroschwagering, Primirina) of Early Permian age (Zhang et al., 2012a, 2013). 106 The Lugu Formation in the middle South Qiangtang Terrane is dominated by basalt 107 and littoral-netic limestone; Early Permian fusulines (Cancellina, Parafusulina) 108 and *Readodoliolina*) occur in the basal strata, and Middle Permian 109 Ness hwagerina and Verbeekina occur in the upper strata of the formation (Nie 110 and Song, 1983a; Zhang et al., 2012a, 2013, 2019). The Tunlonggongba and 111

Longge formations in the western South Qiangtang Terrane are both dominated by 112 littoral-neritic limestone. The Tunlonggongba Formation contains the Jusuline 113 Monodiexodina, indicating a late Early Permian age (Nie and Song, 1983))/ The 114 Longge Formation contains the coral Iranophyllum, fusulines and m 115 Neoschwagerina, Dunbarula, Sumatrina, Chusenella and Kahlerina V late Middle 116 Permian age (Liang et al., 1983; Nie and Song, 1983c; Zhang et al., 2013). The nature 117 of the stratigraphic contact between the Tunlonggongba and Longge formations is 118 unclear, because the Longge Formation occurs as tooks' in the western South 119 Qiangtang Terrane (Zhang et al., 2019). The Jipunit Formation is dominated by 120 littoral-neritic conglomerate, sandstone, siltstore and limestone, with minor andesite 121 and tuff (Figs 2, 3b; Liang et al., 1983; Xia and Liu., 1997; Mou et al., 2010; Zhang et 122 al., 2013, 2019). This formation overlies the Tunlonggongba Formation with angular 123 unconformity in the western South grangtang Terrane, whereas it overlies the 124 Lugu Formation with parallel unconformity in the central South Qiangtang Terrane 125 126 (Fig. 2). In the western Scath Qiangtang Terrane, the Jipuria Formation contains the fusulines *Codopolusiella*, *Reichelina* and *Palaeofusulina*, the corals 127 *Waagenophyllum* and *Lophophyllidium*, and the brachiopods *Permophricodothyris* 128 and *Leptodus*, all indicating a Late Permian age (Wu and Lan, 1990; Zhang et al., 129 2013). Due to a absence of fossils, the age of the Jipuria Formation in the middle 130 South Qiangtang Terrane remains unconstrained. 131

132

### **3. Analytical methods**

### 134 **3.1 Sandstone petrographic analysis**

- Sandstone samples from the Upper Carboniferous–Lower Permian Zhanji 135 Formation and the Upper Permian Jipuria Formation in the South Qiarguang Terrane 136 were prepared and studied using petrographic analysis. Modal analysis vas carried out 137 on Upper Permian samples that exhibit minor metamorphism. Approximately 300 138 grains were identified and counted in each sample, following the Gazzi-Dickinson 139 method (Dickinson, 1985); crystals or grains larger than  $\sim 60 \,\mu\text{m}$  in diameter 140 within rock fragments were counted as single minerely (Ingersoll et al., 1984). The 141 results are presented in Supplementary Table S1. 142
- 143

### 144 **3.2 Zircon U–Pb dating**

Based on field work, four sandstone samples were selected for U–Pb dating: one from the Upper Carboniferous–Lower Permian Zhanjin Formation in the Jiaco area (sampled S19T21, 33°31′31″N, 83°13′16″E, 5323 m elevation), two from the Upper Permian Jipuria Formation in the Jiaco area (sampled D18T16, 33°13′40″N, 83°9′17″E, 4926 m elevation; and D18T17, 33°8′24″N, 83°17′49″E, 4622 m elevation), and one from the Upper Permian Jipuria Formation in the Ritu area (sampled B19′17, 33°34′35″N, 80°18′4″E, 4482 m elevation).

152 Zincongrains were extracted from sandstone samples by crushing and using a
153 combined method of heavy liquid and magnetic separation in the Laboratory of the
154 Geological Team of Hebei Province, Langfang, China. Internal structures of the grains

| 155 | were imaged using cathodoluminescence (CL) in the Continental Dynamics                                                                 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| 156 | Laboratory, Chinese Academy of Geological Sciences, Beijing, China to select spots                                                     |
| 157 | for laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-M3)                                                            |
| 158 | analysis. The LA-ICP-MS U-Pb zircon dating was carried out in the Key Laboratory                                                       |
| 159 | of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Pesources of                                                    |
| 160 | China, Changchun, China. The spot size was 32 $\mu$ m for each sample. Helium was                                                      |
| 161 | used as a carrier gas. The reference zircon standards 91500 (Wedenbeck et al., 1995)                                                   |
| 162 | and NIST610 ( <sup>29</sup> Si) were used for instrumental calibration. The Pb correction method                                       |
| 163 | of Anderson (2002) was applied, with analytical details following those described by                                                   |
| 164 | Yuan et al. (2004). Reported uncertainties for the age analyses are given as $1\sigma$ values                                          |
| 165 | with weighted mean ages at the 95% confidence level. Isotopic data were processed                                                      |
| 166 | using the GLITTER (version 4.4) and Iscolor/Ex (version 3.0) programs (Ludwig,                                                         |
| 167 | 2003). Reported ages are <sup>206</sup> Pb/ <sup>238</sup> U ages for grains<1000 Ma and <sup>207</sup> Pb/ <sup>206</sup> Pb ages for |
| 168 | grains >1000 Ma. For statistical purposes, zircon ages with <10% discordance are                                                       |
| 169 | used in our discussion.                                                                                                                |
| 170 |                                                                                                                                        |
| 171 | 3.3 In situ zircon Hfisctope analysis                                                                                                  |

Twelve zir cons from the Upper Permian sandstone samples (D18T16, D18T17, 172 and B19T17) Gre analyzed for Hf isotopic compositions. The same dating spots 173 were and for Hf analysis. The Hf isotope data were collected using a NEPTUNE Plus 174 multi collector (MC)-ICP-MS at the Beijing Createch Testing Technology Co., Ltd, 175 Beijing, China. A single spot ablation mode with a spot size of 44 µm was used to 176

- acquire the data. Each measurement consisted of 20 s of background signal
- acquisition followed by 50 s of ablation signal acquisition, with analytical processes
- 179 following those described by Hu et al. (2012). Off-line selection, signals integration
- 180 of analyte, and mass bias calibrations were performed using the ICP-MS DataCal
- 181 program (Liu et al., 2010). The analyzed <sup>176</sup>Hf/<sup>177</sup>Hf ratios for the zirco. standard
- 182 (91500) were  $0.282299 \pm 31$  ( $2\sigma_n$ , n-40), which are in agreement with the
- recommended value within error ( $^{176}$ Hf/ $^{177}$ Hf ratios of 0.282302  $\neq$  8 at 2 $\sigma$ ; Goolaerts
- 184 et al., 2004; Woodhead et al., 2004).
- 185

186 **4. Results** 

187 **4.1 Sandstone petrography** 

Sandstone samples from the Upper Carboniferous–Lower Permian Zhanjin 188 Formation in the Jiaco area have undergone lower greenschist facies 189 metamorphism, causing alteration of the muddy matrix into sericite (Fig. 3c). The 190 191 samples are dominated by quartz grains (>95%; Fig. 3c). However, sandstone samples from the Upper Permian Jipuria Formation in the Jiaco area are dominated by 192 poorly sorted quartz grains (76%–83%) and lithic fragments (12%–21%; Table S1). 193 The lithic fragments comprise mainly limestone and basalt (Figs 3d-e). 194 Sandston Samples from the Upper Permian Jipuria Formation in the Ritu 195 area  $\longrightarrow$  dominated by fine-grained (<0.1 mm) quartz grains (77%–83%), 196 feidsbar (8%–12%) and lithic fragments (9%–14%; Table S1, Fig. 3f). 197 Polysynthetic twinning is common in the feldspar (Fig. 3f), and lithic fragments 198

composed predominantly of metamorphic and volcanic detritus (Table S1). 199

| 200 | 5                                                                                       |
|-----|-----------------------------------------------------------------------------------------|
| 201 | 4.2 Zircon U–Pb dating                                                                  |
| 202 | Representative cathodoluminescence (CL) images of detritar zircons are                  |
| 203 | presented in Figure S1, and age data are presented in Tables S2–S4.                     |
| 204 | Detrital zircon ages from one Upper Carboniferous-Lowe. Permian sandstone               |
| 205 | sample from the Zhanjin Formation from the Jiaco area (S19727, Fig. 1c) range from      |
| 206 | 3944 to 498 Ma, with two main peaks at ca. 958 and cr 530 Ma (Fig. 4c). These age       |
| 207 | distributions are in good agreement with those of detricitiziticons from Carboniferous- |
| 208 | Lower Permian strata in other areas of the South Qiangtang Terrane (Figs 4d-e).         |
| 209 | Detrital zircon ages from two Upper Permian sandstone samples from the Jipuria          |
| 210 | Formation from the Jiaco area (Fig. 1c) yield a similar range of ages from 3630 to 247  |
| 211 | Ma, with five main peaks at ca. 945, 528, 463, 350, and 260 Ma (Fig. 4b). Detrital      |
| 212 | zircon ages from one Upper Permian sandstone sample from the Jipuria Formation in       |
| 213 | the Ritu area (B19T17; Fig. 1d) range from 2664 Ma to 247 Ma, with five main peaks      |
| 214 | at ca. 1870, 456, 363 299, and 256 Ma (Fig. 4a). These age distributions are            |
| 215 | significantly different from those of the Carboniferous-Lower Permian strata in the     |
| 216 | South Qiangtang Terrane (Fig. 4).                                                       |
| 217 |                                                                                         |

#### 4.3 Zir on Hf isotope data 218

Zircon Hf isotope data are presented in Table S5. Detrital zircons with ages of 219 285-248 Ma from the Upper Permian sandstone samples from the Jipuria Formation 220

have  $\epsilon$ Hf (t) values of -15.1 to +12.5, with T<sub>DM2</sub> ages (two-stage Hf model ages) in the range of 489–2241 Ma (Fig. 5).

223

## 224 **5. Discussion**

### 225 5.1 Age of the Jipuria Formation in the South Qiangtang Terrane

The age of the Jipuria Formation in the Jiaco area of the middle South 226 Qiangtang Terrane is currently unconstrained, owing to a lock of fossils. Andesite 227 and pyroclastic rocks in the Jipuria Formation indicate magmatic eruptions occurred 228 during deposition of the formation (Liang et al., 1983, Va and Liu., 1997; Mou et al., 229 2010; Fig. 2); therefore, the depositional age of the Jupuria Formation should be close 230 to the voungest zircon age (Malusa et al., 2011, Cawood et al., 2012; von Evnatten 231 and Dunkl, 2012). To reasonably constrain the depositional age of the Jipuria 232 Formation, we used the mean age of the youngest three or more grains that overlap in 233 age at  $2\sigma$  (YC2 $\sigma$ ). This method has proved effective in sandstones from the Colorado 234 Plateau (Dickinson and Gelas, 2009). In the Jiaco area, sandstone samples from the 235 Jipuria Formation yield Law Permian YC2 $\sigma$  ages of 259 ± 11 Ma (n = 5) and 257 ± 11 236 Ma (n = 5), which a esimilar to those of the Jipuria Formation in the Ritu area (YC2 $\sigma$ 237 =  $255 \pm 8$  Ma, f = 10; Fig. S2). These YC2 $\sigma$  ages (259–255 Ma), together with Late 238 Permian fossil eported in the Ritu area (Wu and Lan, 1990; Zhang et al., 2013), 239 provide strong evidence that the Jipuria Formation in the South Qiangtang Terrane is 240 of Urper Permian age. 241

242

Ň

5.2 Provenance analysis: A 280–260 Ma sedimentary provenance change in the

# South Qiangtang Terrane 244 Prior to provenance analysis, it is necessary to consider the paleoposition of the 245 South Qiangtang Terrane during the Carboniferous-Permian. The gracial marine 246 diamictites (Fig. 3a) that formed as a result of the Late Carboniferous Farly Permian 247 Gondwanan glaciation (ca. 300 Ma; Jin et al., 2002; Fielding (a) 2008; Zhang et al., 248 2013; Fan et al., 2015) are widespread in the South Qiangtang Terrane (Fan et al., 249 2015). This indicates that the South Qiangtang Tetrane was located near the 250 Gondwana Continent during the Late Carboniferous Early Permian period. The 251 distinctive ca. 950 Ma age peak observed in the Carboniferous–Lower Permian strata 252 (Fig. 4) in the South Qiangtang Terrane is consistent with the emplacement of the 253 990–900 Ma granitoids of the Indian mergin of Gondwana (Zhu et al., 2013). These 254 observations, together with the similarities between the Early Permian fossils (Zhang 255 et al., 2012a, b, 2013, 2014) and magmatic activity (e.g., the 300-260 Ma mafic 256 magmatism; Zhai et al., 2013, Wang et al., 2019) of the South Qiangtang Terrane and 257 the northern Indian margin of Gondwana (i.e., the Himalayas; Shellnutt et al., 2014) 258 indicate that the South Diangtang Terrane was part of the northern Indian margin of 259 Gondwana during the Carboniferous-Early Permian (Zhang et al., 2012a; Zhu et al., 260 2013; Metcalf 2013; Zhai et al., 2013; Liao et al., 2015; Chen et al., 2017). 261

262 Paleogeographic analysis indicates that the Indian margin of Gondwana was an
263 er signal zone, and the South Qiangtang Terrane was in a passive margin depositional
264 setting during the Late Carboniferous–Early Permian (Fan et al., 2015). The Indian

margin of Gondwana may therefore be the source of the Upper Carboniferous–Lower
Permian deposits in the South Qiangtang Terrane (Fan et al., 2015). The youngest
zircon age peak of ca. 550 Ma in the Upper Carboniferous–Lower Permian strata is
far older than the depositional age (ca. 300 Ma; Figs 4c–d), and thus prevides strong
evidence for the stable Indian margin of Gondwana source.

The presence of abundant angular to subangular volcime (e.g., basalts) and 270 sedimentary (e.g., limestones) lithic fragments in the Upper Permian sandstone of 271 the South Qiangtang Terrane (Figs 3d-e) indicate that their provenance lies in a 272 tectonically active rather than stable setting such as the Indian margin of 273 Gondwana. In addition, these samples plot in the recycled orogen sector in quartz-274 feldspar–lithic fragment (QFL) and monorystalline quartz–feldspar–total lithic 275 fragments (QmFLt) discrimination dagrams (Fig. 6). Moreover, many detrital 276 zircons in the Upper Permian sand of the South Qiangtang Terrane yield ages 277 (490–247 Ma) with peaks at ca. 460, 355, 290 and 260 Ma, which are not observed in 278 the age spectra of the Carbonnerous–Lower Permian sandstones (Figs 4, 7). These 279 observations provide evidence that a significant sedimentary provenance change 280 occurred between the Carboniferous-Early Permian and the Late Permian in the 281 South Qiangtang Terrane. 282

Lithic fragments in the Upper Permian sandstone are mostly poorly sorted, and an angular to subangular in shape (Figs 3d–e), indicating near-source deposition. Lithic fragments in the Upper Permian sandstone in the Jiaco area are dominated by limestone and basalt (Figs 3d–e), similar to that observed in the

rocks of the Lower-Middle Permian Lugu Formation in the South Qiangtang Terrane 287 (Fig. 2; Zhang et al., 2012a). Detrital zircons (299–285 Ma) in the Upper Permian 288 sandstone in the Ritu area mostly exhibit weak and broad zoning in CL images (Fig. 289 S1), and the detrital zircon grain with an age of 285 Ma has a  $\varepsilon$ Hf (malue of +6.9) 290 (Table S5), both of which are similar to those of the 300–279 Ma masic rocks (e.g., 291 mafic dike swarms, +4.2 to +15.8; Fig. 1b; Zhai et al., 2013; Wang Val., 2019) in the 292 South Qiangtang Terrane. In the Upper Permian sandstone, the 490–445 Ma zircon 293 ages with a peak at ca. 460 Ma, and the 384-334 Mavircon ages with a peak at ca. 294 355 Ma (Fig. 7) indicate Ordovician and Late Devonian-Early Carboniferous 295 magmatism occurred in the source region. This corresponds with the magmatism in 296 the South Qiangtang Terrane (Fig. 1b); for example, magmatism occurred at 500–450 297 Ma in a 300 km-long belt from Benson co in the east to Dawashan in the west (Fig. 298 1b; Hu et al., 2015; Xie et al., 2017, Und et al., 2019; Xu et al., 2020), and the 360-299 350 Ma magmatism occurred in the Gangmuco area in the South Qiangtang Terrane 300 (Fig. 1b; Wang et al., 2015a). These observations, together with the basal 301 unconformity of the Upper Permian Jiapuria Formation (Fig. 2) that indicates uplift 302 and erosion of the Coth Qiangtang Terrane, provide strong evidence that the source 303 of the Upper Fermian sandstone is derived from the erosion of sedimentary and 304 magmatic rock In the South Qiangtang Terrane. 305

306 In conclusion, the source of the Upper Carboniferous–Lower Permian strata in
307 the South Qiangtang Terrane lies in the stable Indian margin of Gondwana, whereas
308 the Upper Permian strata are derived from the active South Qiangtang Terrane (Fig. 7).

The sedimentary provenance changed significantly between the Late Carboniferous-309 Early Permian and Late Permian periods. The angular unconformity between the 310 Lower Permian Tunlonggongba and Upper Permian Jipuria formations in the Ritu 311 area (Fig. 2; Liang et al., 1983; Zhang et al., 2019) indicate that the western South 312 Qiangtang Terrane must have been uplifted after deposition of the Lower Permian 313 Tunlonggongba Formation, which marks the point at which the provenance changed 314 (Figs 2, 7). The same observations (Figs 2, 7) further suggest that the provenance 315 change may have started in the Early Permian (ca. 282 Ma), and continued into the 316 Middle Permian (273–260 Ma). 317

- 318
- 5.3 Cause of the 280–260 Ma sedimentary provenance change in the South

#### 320 **Qiangtang Terrane**

The cause of the 280–260 Ma sedimentary provenance change in the South 321 Qiangtang Terrane is debated. Extensive magmatism occurred at 300-279 Ma in 322 South Qiangtang, Baoshan, Himalayas and Panjal along the northern Indian margin of 323 Gondwana, over an area greater than  $2 \times 10^6$  km<sup>2</sup> (Zhai et al., 2013; Zhu et al., 2013; 324 Shellnutt et al., 2017; Liao et al., 2015; Wang et al., 2019). This magmatism is 325 characterised by many dike swarms and basalts (Zhai et al., 2013; Wang et al., 2014; 326 Fig. 1b). Where rock geochemical data indicate that the mafic dike swarms are 327 tholeicic in composition, exhibit relative enrichment in light rare earth elements, and 328 have high Nb, Ta and Ti contents, which is typical of intra-plate basalts (Zhai et al., 329 2013; Wang et al., 2014, 2019; Liao et al., 2015). They show consistently positive 330

 $\epsilon$ Nd(t) (e.g., +2.3 to +7.6 in the South Qiangtang Terrane) and  $\epsilon$ Hf(t) (e.g., +4.2 to 331 +15.8 in the South Qiangtang Terrane; Zhai et al., 2013; Wang et al., 2019) values. 332 These results indicate that the 300–279 Ma magmatism was most likely derived from 333 an enriched subcontinental lithospheric mantle source and triggered the mantle 334 plume-induced rifting process occurring on the northern Indian margin of Gondwana 335 (Zhai et al., 2013; Wang et al., 2014, 2019; Liao et al., 2015). 336 The 280–260 Ma sedimentary provenance change in the South Qiangtang 337 Terrane closely follows the 300–279 Ma rift magmatism in time and space. We infer 338 that the 280–260 Ma sedimentary provenance change in the South Qiangtang Terrane 339 was caused by the widespread 300–279 Ma rift magmatism. This process resulted in 340 uplift of the northern Indian margin of Gondwana (e.g., the South Qiangtang) and a 341 change of depositional environment from marine to terrestrial at 280–260 Ma (Figs 2, 342 7). This uplift resulted in erosion of Ordovician, Late Devonian–Early Carboniferous 343 and Permian magmatic and sedimentary rocks, which changed the sedimentary 344 345 provenance signature of the area significantly. The rifting magmatism at 300–279 Ma may represent the early stage of rifting, 346 and the 280–260 Magedimentary provenance change may represent the late stage (Fig. 347 8). The rifting magmatism and subsequent sedimentary provenance change represent 348 a complete Eury-Middle Permian (300-260 Ma) rifting process on the northern 349

- 350 Indiar margin of Gondwana.
- 351

# 352 5.4 Opening of the Meso-Tethys Ocean

| <ul> <li>Qiangtang Terrane from the Indian margin of Gondwana (Yin and Harrson 20</li> <li>Metcalfe, 2013; Zhai et al., 2013; Liao et al., 2015; Chen et al., 2017) The Ear</li> <li>Middle Permian (300–260 Ma) rifting process on the northern Indian margin</li> <li>Gondwana (eg., the South Qiangtang) may represent the unital opening of</li> <li>Meso-Tethys Ocean. This interpretation is also supported by the following three li</li> <li>of evidence.</li> <li>(1) The parent material of the Late Carboniferous carly Permian glacial mar</li> <li>diamictites and sandstones (ca. 300 Ma) in the routh Qiangtang Terrane was deri</li> <li>directly from the Indian margin of Gondwans (Fig. 7; Fan et al., 2015). This indice</li> <li>that the South Qiangtang Terrane was still connected to the Indian margin</li> <li>Gondwana at least during the Late Carboniferous–Early Permian (ca. 300 Ma; I</li> <li>9a). The initial opening of the Meso-Tethys must have occurred after this time.</li> <li>(2) The ages of the oldert MORB-type and OIB-type ophiolites in the BNSZ</li> <li>Late Permian–Early Triveste (260–250 Ma; Huang et al., 2012; Wang et al., 201</li> <li>Bong et al., 2016; Zhung et al., 2016, 2017) indicating that development of</li> <li>Meso-Tethys oceane crust occurred during this period. The 300–279 Ma rift</li> <li>magmatism marks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20</li> <li>Liao et al., 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260</li> </ul> | 353 | The opening of the Meso-Tethys Ocean was genetically the rifting of the South           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------|
| <ul> <li>Metcalfe, 2013; Zhai et al., 2013; Liao et al., 2015; Chen et al., 2017) The Ear</li> <li>Middle Permian (300–260 Ma) rifting process on the northern Indian margin</li> <li>Gondwana (eg., the South Qiangtang) may represent the initial opening of</li> <li>Meso-Tethys Ocean. This interpretation is also supported by the following three li</li> <li>of evidence.</li> <li>(1) The parent material of the Late Carboniferous carly Permian glacial mar</li> <li>diamictites and sandstones (ca. 300 Ma) in the fourth Qiangtang Terrane was derived</li> <li>directly from the Indian margin of Gondwana (Fig. 7; Fan et al., 2015). This indicat</li> <li>that the South Qiangtang Terrane was still connected to the Indian margin</li> <li>Gondwana at least during the Late Carboniferous–Early Permian (ca. 300 Ma; I</li> <li>9a). The initial opening of the Meso-Tethys must have occurred after this time.</li> <li>(2) The ages of the oldest MORB-type and OIB-type ophiolites in the BNSZ</li> <li>Late Permian–Early Triassie (260–250 Ma; Huang et al., 2012; Wang et al., 201</li> <li>Dong et al., 2016; Anong et al., 2016, 2017) indicating that development of</li> <li>Meso-Tethys oceane crust occurred during this period. The 300–279 Ma rift</li> <li>magmatism marks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20</li> <li>Liao e and 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260</li> </ul>                                                                               | 354 | Qiangtang Terrane from the Indian margin of Gondwana (Yin and Harrison 2000;            |
| <ul> <li>Middle Permian (300–260 Ma) rifting process on the northern Indian margin</li> <li>Gondwana (eg., the South Qiangtang) may represent the initial opening of</li> <li>Meso-Tethys Ocean. This interpretation is also supported by the following three li</li> <li>of evidence.</li> <li>(1) The parent material of the Late Carboniferous Early Permian glacial mar</li> <li>diamictites and sandstones (ca. 300 Ma) in the pouth Qiangtang Terrane was derived</li> <li>directly from the Indian margin of Gondwana (Fig. 7; Fan et al., 2015). This indication</li> <li>that the South Qiangtang Terrane was still connected to the Indian margin</li> <li>Gondwana at least during the Late Carboniferous–Early Permian (ca. 300 Ma; I</li> <li>9a). The initial opening of the Meso-Tethys must have occurred after this time.</li> <li>(2) The ages of the oldest MORB-type and OIB-type ophiolites in the BNSZ</li> <li>Late Permian–Early Triassie (260–250 Ma; Huang et al., 2012; Wang et al., 201</li> <li>Bong et al., 2016; Zhang et al., 2016, 2017) indicating that development of</li> <li>Meso-Tethys oceanic crust occurred during this period. The 300–279 Ma rift</li> <li>magmatism mixes the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20</li> <li>Liao and 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260</li> </ul>                                                                                                                                                                        | 355 | Metcalfe, 2013; Zhai et al., 2013; Liao et al., 2015; Chen et al., 2017). The Early-    |
| <ul> <li>Gondwana (eg., the South Qiangtang) may represent the unitial opening of</li> <li>Meso-Tethys Ocean. This interpretation is also supported by the following three li</li> <li>of evidence.</li> <li>(1) The parent material of the Late Carboniferous, carly Permian glacial man</li> <li>diamictites and sandstones (ca. 300 Ma) in the fourh Qiangtang Terrane was derived</li> <li>directly from the Indian margin of Gondwata (Fig. 7; Fan et al., 2015). This indicat</li> <li>that the South Qiangtang Terrane way still connected to the Indian margin</li> <li>Gondwana at least during the Late Carboniferous–Early Permian (ca. 300 Ma; I</li> <li>9a). The initial opening of the Meso-Tethys must have occurred after this time.</li> <li>(2) The ages of the oldest mORB-type and OIB-type ophiolites in the BNSZ</li> <li>Late Permian–Early Triassie (260–250 Ma; Huang et al., 2012; Wang et al., 201</li> <li>Bong et al., 2016; Quang et al., 2016, 2017) indicating that development of</li> <li>Meso-Tethys oceanic crust occurred during this period. The 300–279 Ma rift</li> <li>magmatism mucks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20</li> <li>Liao and 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260</li> </ul>                                                                                                                                                                                                                                                             | 356 | Middle Permian (300–260 Ma) rifting process on the northern Indian margin of            |
| <ul> <li>Meso-Tethys Ocean. This interpretation is also supported by the following three li of evidence.</li> <li>(1) The parent material of the Late Carboniferous carly Permian glacial mar diamictites and sandstones (ca. 300 Ma) in the coult Qiangtang Terrane was deri directly from the Indian margin of Gondwana (Fig. 7; Fan et al., 2015). This indica that the South Qiangtang Terrane was still connected to the Indian margin Gondwana at least during the Late Carboniferous–Early Permian (ca. 300 Ma; I</li> <li>9a). The initial opening of the Meso-Tethys must have occurred after this time.</li> <li>(2) The ages of the oldest MORB-type and OIB-type ophiolites in the BNSZ</li> <li>Late Permian–Early Triassic (260–250 Ma; Huang et al., 2012; Wang et al., 201</li> <li>Bong et al., 2016; Zhong et al., 2016, 2017) indicating that development of</li> <li>Meso-Tethys oceanic crust occurred during this period. The 300–279 Ma rift</li> <li>magmatism marks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20</li> <li>Liao et al., 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                             | 357 | Gondwana (eg., the South Qiangtang) may represent the mitial opening of the             |
| <ul> <li>of evidence.</li> <li>(1) The parent material of the Late Carboniferous Early Permian glacial mandiamictites and sandstones (ca. 300 Ma) in the fourn Qiangtang Terrane was derived directly from the Indian margin of Gondwarta (Fig. 7; Fan et al., 2015). This indicates that the South Qiangtang Terrane was still connected to the Indian margin</li> <li>Gondwana at least during the Late Carboniferous–Early Permian (ca. 300 Ma; I</li> <li>9a). The initial opening of the Meso Tethys must have occurred after this time.</li> <li>(2) The ages of the older t MORB-type and OIB-type ophiolites in the BNSZ</li> <li>Late Permian–Early Triessie (260–250 Ma; Huang et al., 2012; Wang et al., 201</li> <li>Dong et al., 2016; Anang et al., 2016, 2017) indicating that development of</li> <li>Meso-Tethys oceanic crust occurred during this period. The 300–279 Ma rift</li> <li>magmatism marks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20</li> <li>Liao e and 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 358 | Meso-Tethys Ocean. This interpretation is also supported by the following three lines   |
| <ul> <li>(1) The parent material of the Late Carboniferous Early Permian glacial mar</li> <li>diamictites and sandstones (ca. 300 Ma) in the Youth Qiangtang Terrane was derived</li> <li>directly from the Indian margin of Gondwara. (Fig. 7; Fan et al., 2015). This indicates</li> <li>that the South Qiangtang Terrane was still connected to the Indian margin</li> <li>Gondwana at least during the Late Carboniferous–Early Permian (ca. 300 Ma; I</li> <li>9a). The initial opening of the Meso-Tethys must have occurred after this time.</li> <li>(2) The ages of the oldert MORB-type and OIB-type ophiolites in the BNSZ</li> <li>Late Permian–Early Triassic (260–250 Ma; Huang et al., 2012; Wang et al., 201</li> <li>Bong et al., 2016; Chang et al., 2016, 2017) indicating that development of</li> <li>Meso-Tethys oceanic crust occurred during this period. The 300–279 Ma rift</li> <li>magmatism marks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20</li> <li>Liao mark, 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 359 | of evidence.                                                                            |
| <ul> <li>diamictites and sandstones (ca. 300 Ma) in the fourth Qiangtang Terrane was derived in the Indian margin of Gondwarts (Fig. 7; Fan et al., 2015). This indication that the South Qiangtang Terrane was still connected to the Indian margin Gondwana at least during the Late Carooniferous–Early Permian (ca. 300 Ma; Fig. 7). The initial opening of the Meso-Tethys must have occurred after this time.</li> <li>(2) The ages of the oldest MORB-type and OIB-type ophiolites in the BNSZ Late Permian–Early Tripsste (260–250 Ma; Huang et al., 2012; Wang et al., 2013</li> <li>Dong et al., 2016; Zhang et al., 2016, 2017) indicating that development of Meso-Tethys oceanic crust occurred during this period. The 300–279 Ma rift magmatism marks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20 Liao et al., 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 360 | (1) The parent material of the Late Carboniferous Early Permian glacial marine          |
| <ul> <li>directly from the Indian margin of Gondwane (Fig. 7; Fan et al., 2015). This indica</li> <li>that the South Qiangtang Terrane was still connected to the Indian margin</li> <li>Gondwana at least during the Late Carooniferous–Early Permian (ca. 300 Ma; I</li> <li>9a). The initial opening of the Meso-Tethys must have occurred after this time.</li> <li>(2) The ages of the oldest NIORB-type and OIB-type ophiolites in the BNSZ</li> <li>Late Permian–Early Triessle (260–250 Ma; Huang et al., 2012; Wang et al., 201</li> <li>Bong et al., 2016; Anang et al., 2016, 2017) indicating that development of</li> <li>Meso-Tethys oceanic crust occurred during this period. The 300–279 Ma rift</li> <li>magmatism marks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20</li> <li>Liao et al., 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 361 | diamictites and sandstones (ca. 300 Ma) in the fourth Qiangtang Terrane was derived     |
| <ul> <li>that the South Qiangtang Terrane way still connected to the Indian margin</li> <li>Gondwana at least during the Late Carooniferous–Early Permian (ca. 300 Ma; I</li> <li>9a). The initial opening of the Meso-Tethys must have occurred after this time.</li> <li>(2) The ages of the oldest MORB-type and OIB-type ophiolites in the BNSZ</li> <li>Late Permian–Early Tripssie (260–250 Ma; Huang et al., 2012; Wang et al., 201</li> <li>Dong et al., 2016; Anang et al., 2016, 2017) indicating that development of</li> <li>Meso-Tethys oceanic crust occurred during this period. The 300–279 Ma rift</li> <li>magmatism marks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20</li> <li>Liao et al., 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 362 | directly from the Indian margin of Gondwart, (Frg. 7; Fan et al., 2015). This indicates |
| <ul> <li>Gondwana at least during the Late Carooniferous–Early Permian (ca. 300 Ma; I</li> <li>9a). The initial opening of the Meso-Tethys must have occurred after this time.</li> <li>(2) The ages of the oldest MORB-type and OIB-type ophiolites in the BNSZ</li> <li>Late Permian–Early Triessle (260–250 Ma; Huang et al., 2012; Wang et al., 201</li> <li>Dong et al., 2016; Zhang et al., 2016, 2017) indicating that development of</li> <li>Meso-Tethys oceanic crust occurred during this period. The 300–279 Ma rift</li> <li>magmatism mucks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20</li> <li>Liao et al., 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 363 | that the South Qiangtang Terrane was still connected to the Indian margin of            |
| <ul> <li>9a). The initial opening of the Meso-Tethys must have occurred after this time.</li> <li>(2) The ages of the oldert MORB-type and OIB-type ophiolites in the BNSZ</li> <li>Late Permian–Early Triessne (260–250 Ma; Huang et al., 2012; Wang et al., 201</li> <li>Dong et al., 2016; Zhang et al., 2016, 2017) indicating that development of</li> <li>Meso-Tethys oreance crust occurred during this period. The 300–279 Ma rift</li> <li>magmatism marks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20</li> <li>Liao ar, 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 364 | Gondwana at least during the Late Carooniferous-Early Permian (ca. 300 Ma; Fig.         |
| (2) The ages of the oldert MORB-type and OIB-type ophiolites in the BNSZ<br>Late Permian–Early Trisssie (260–250 Ma; Huang et al., 2012; Wang et al., 201<br>Dong et al., 2016; 7nang et al., 2016, 2017) indicating that development of<br>Meso-Tethys oceanic crust occurred during this period. The 300–279 Ma rift<br>magmatism marks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20<br>Liao crait, 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 365 | 9a). The initial opening of the Meso-Tethys must have occurred after this time.         |
| Late Permian–Early Triessie (260–250 Ma; Huang et al., 2012; Wang et al., 201<br>Dong et al., 2016; Zhang et al., 2016, 2017) indicating that development of<br>Meso-Tethys oceanic crust occurred during this period. The 300–279 Ma rift<br>magmatism marks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20<br>Liao et al., 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 366 | (2) The ages of the oldest MORB-type and OIB-type ophiolites in the BNSZ are            |
| Dong et al., 2016; Zhong et al., 2016, 2017) indicating that development of<br>Meso-Tethys oceanic crust occurred during this period. The 300–279 Ma rift<br>magmatism marks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20<br>Liao et al., 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 367 | Late Permian-Early Triessle (260-250 Ma; Huang et al., 2012; Wang et al., 2015b;        |
| Meso-Tethys oceanic crust occurred during this period. The 300–279 Ma rift<br>magmatism marks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20<br>Liao early 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 368 | Dong et al., 2016; 7 nong et al., 2016, 2017) indicating that development of the        |
| magmatism micks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 20<br>Liao can, 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 369 | Meso-Tethys oceanic crust occurred during this period. The 300-279 Ma rifting           |
| 371 Liao et al., 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 370 | magmatism marks the early stage of the rifting process (Figs 8, 9b; Metcalfe, 2013;     |
| 272 (Fig. 2.0.) The 2(0.250)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 371 | Liao and 2015; Chen et al., 2017; Wang et al., 2019) and the 280–260 Ma                 |
| 372 securientary provenance change marks the late stage (Figs 8, 9c). The 260–250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 372 | setimentary provenance change marks the late stage (Figs 8, 9c). The 260-250 Ma         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 373 | ophiolites in the BNSZ represent the oceanic crust after ocean opening (Figs 8, 9d).    |
| 272 onhighted in the RNSZ represent the oceanic crust after ocean opening (Figs & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3/3 | opinomes in the DIVSZ represent the oceanic crust after ocean opening (Figs 8, 90)      |

| 374 | From earliest to latest, the 300-279 Ma rift magmatism, 280-260 Ma sedimentary         |
|-----|----------------------------------------------------------------------------------------|
| 375 | provenance change, and 260–250 Ma ophiolites complete the geological record of the     |
| 376 | rifting to opening process of the Meso-Tethys Ocean (Fig. 8), which provides strong    |
| 377 | evidence that the Meso-Tethys Ocean opened during the Early-Middle regulation (300-    |
| 378 | 260 Ma).                                                                               |
| 379 | (3) Previous paleontological studies have show that a significant                      |
| 380 | paleobiogeographic change from a peri-Gondwanan to transitional affinity (the          |
| 381 | Tethyan Cimmerian subregion) occurred in the South Qiangtang Terrane from the          |
| 382 | Artinskian to the Kungurian (Zhang et al., 2012b, 2014; Shen et al., 2016). This       |
| 383 | transition was the result of the effects of the northward drift of the South Oiangtang |

- Terrane (Zhang et al., 2012b), which provides further evidence that the opening of the
- Meso-Tethys Ocean occurred during Early–Middle Permian (300–260 Ma).
- 386

# 387 6. Conclusions

- (1) A significant change in redimentary provenance occurred between 280–260
  Ma in the South Qiangtang wrane of the Tibetan Plateau.
- 390 (2) The 280–260 Ma provenance change is associated with the development of
  391 the rift-related magnatism at 300–279 Ma on the northern Indian margin of
  392 Gondwana (e.g. south Qiangtang).
- 393 (3) The 300–279 Ma magmatism and the subsequent 280–260 Ma sedimentary
  394 proven nee change represent a complete Early–Middle Permian (300–260 Ma) rifting
  395 process, which marks the opening of the Meso-Tethys Ocean.
- 396

### 397 Acknowledgments

We sincerely thank Xiao-Wen Zeng, Hang Li, Hao Wu, and Yun-Peng Yu for the help 398 in the field. This research was supported by the Second Tibetan Plateau Scientific 399 Expedition and Research (STEP) Program (Grant No. 2019OZKK0705), the National 400 Science Foundation of China (Grant No. 41972236, 41702227), and Suf-determined 401 Foundation of Key Laboratory of Mineral Resources Evaluation in Northeast Asia, 402 Ministry of Natural Resources of China (DBY-ZZ-18-04). All lata are provided in the 403 present manuscript and supporting information. The latter includes Figures S1-2 and 404 and is available at https://zenode.org/deposit/3754981 405 Tables S1-5 (DOI: 10.5281/zenodo.3754981). The data archiving process is underway awaiting approval 406 of the curator. 407

408

#### 409 **References**

- Allègre, C.J., Courtillot, V., Tapponnie, P., and other 32 co-authors., 1984. Structure
- and evolution of the Hingalaya–Tibet orogenic belt. Nature 307, p. 17–22.
- Anderson, T., 2002. Correction of common lead in U–Pb analyses that do not report
   <sup>204</sup>Pb. Chemical Geology 192, 59–79.
- 414 Cawood, P.A., Hawkesworth, C.J., Dhuime, B., 2012. Detrital zircon record and 415 tectonic string. Geology 40, 875–878.
- Chen S., Shi, R.D., Fan, W.M., Gong, X.H., Wu, K., 2017. Early Permian mafc
  kes in the Nagqu area, Central Tibet, China, associated with embryonic oceanic
  crust of the Meso-Tethys Ocean. Journal of Geophysical Research: Solid Earth

- 419 122, 4172–4190.
- 420 Dickinson, W., Gehrels, G., 2009. Use of U-Pb ages of detrital zircons to infer
- 421 maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic
- database. Earth and Planetary Science Letters 288, 115–125.
- 423 Dickinson, W.R., 1985. Interpreting provenance relations from denital modes of
  424 sandstones. In: Provenance of Arenites. Springer, 333–361.
- 425 Dong, Y.L., Wang, B.D., Zhao, W.X., Tang, T.N., Xu, J.F., 201, Discovery of eclogite
- 426 in the Bangong Co-Nujiang ophiolitic mélangy central Tibet, and tectonic
- 427 implications. Gondwana Research 35, 115–123
- 428 Fan, J.J., Li, C., Wang, M., Xie, C.M., Xu, N., 2015. Features, provenance, and
- tectonic significance of Carboniferors Permian glacial marine diamictites in
  the Southern Qiangtang–Bac than block, Tibetan Plateau. Gondwana
  Research 28, 1530–1542.
- Fan, J.J., Li, C., Wang, M., Liu, Y.M., Xie, C.M., 2017. Remnants of a Late Triassic
  ocean island in the Guferg area, northern Tibet: Implications for the opening and
  early evolution of the Eangong–Nujiang Tethyan Ocean. Journal of Asian Earth
- 435 Sciences 135, 35-50.
- Fan, J.J., Li, C, Wang, M., Xie, C.M., 2018. Reconstructing in space and time the
  closure of the middle and western segments of the Bangong–Nujiang Tethyan
  Grean in the Tibetan Plateau. International Journal of Earth Sciences 107, 231–
  439
- 440 Fan, J.J., Niu, Y., Liu, Y.M., Hao, Y.J., 2020. Timing of closure of the Meso-Tethys

| 441 | Ocean: Constraints from remnants of a 141-135 Ma ocean island within the                 |
|-----|------------------------------------------------------------------------------------------|
| 442 | Bangong–Nujiang Suture Zone, Tibetan Plateau. Geological Society of America              |
| 443 | Bulletin, DOI:10.1130/B35896.1                                                           |
| 444 | Fielding, C.R., Frank, T.D., Isbell, J.L., 2008. Resolving the Late Palerzcic Ice Age in |
| 445 | Time and Space: Geological Society of America Special Paper 441                          |
| 446 | Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Verslogel, A., Ding, L.,    |
| 447 | Guynn, J., Martin, A., McQuarrie, N., Yin, A., 2011. Detrital zircon                     |
| 448 | geochronology of preTertiary strata in the Tibetan Himalayan orogeny. Tectonics          |
| 449 | 30, TC5016.                                                                              |
| 450 | Geng, Q., Zhang, Z., Peng, Z., Guan, J., Zhu, X, Mao, X., 2016. Jurassic–Cretaceous      |
| 451 | granitoids and related tectono-metallogenesis in the Zapug-Duobuza arc, western          |
| 452 | Tibet. Ore Geology Reviews 77, 16 –175.                                                  |
| 453 | Goolaerts, A., Mattielli, N., de Jong, D. Weis, D., Scoates, J.S., 2004. Hf and Lu       |
| 454 | isotopic reference values for the zircon standard 91500 by MC-ICP-MS.                    |
| 455 | Chemical Geology 206,                                                                    |
| 456 | Hao, L.L., Wang, Q., Zlang, C., Qu, Q., Yang, J.H., Dan, W., Jiang, Z.Q., 2019.          |
| 457 | Oceanic plateau subduction during closure of the Bangong-Nujiang Tethyan                 |
| 458 | Ocean: Insights from central Tibetan volcanic rocks. Geological Society of               |
| 459 | Americ: Fulletin 131, 864–880.                                                           |
| 460 | Hu, P.Y. Zhai, Q.G., Jahn, B.M., Wang, J., Li, C., Lee, H.Y., Tang, S.H., 2015. Early    |
| 461 | Or ovician granites from the South Qiangtang terrane, northern Tibet:                    |
| 462 | emplications for the early Paleozoic tectonic evolution along the Gondwanan              |
| 463 | proto-Tethyan margin. Lithos 220-223, 318-338.                                           |

| 464 | Hu, P.Y., Zhai, Q.G., Jahn, B.M., Wang, J., Chung, S.L., Lee, H.Y., Tang, S.H., 2017.     |
|-----|-------------------------------------------------------------------------------------------|
| 465 | Late Early Cretaceous magmatic rocks (118–113 Ma) in the middle segment of                |
| 466 | the Bangong-Nujiang suture zone, Tibetan Plateau: Evidence of lithospheric                |
| 467 | delamination. Gondwana Research 44, 116–138.                                              |
| 468 | Hu, Z.C., Liu, Y.S., Gao, S., Liu, W.G., Zhang, W., Tong, X.R., Lin, L., Zong, K.Q.,      |
| 469 | Li, M., Chen, H.H., Zhou, L., Yang, L., 2012. Improved in situ Hf isotope ratio           |
| 470 | analysis of zircon using newly designed X skimmer concard Jet sample cone                 |
| 471 | in combination with the addition of nitrogen by laser ablation multiple collector         |
| 472 | ICP–MS. Journal of Analytical Atomic Spectrometry 27, 1391–1399.                          |
| 473 | Huang, Q.S., Shi, R.D., Ding, B.H., Liu, D.L., Zhang, X.R., Fan, S.Q., Zhi, X.C.,         |
| 474 | 2012. Re-Os isotopic evidence of MOR-type ophiolite from the Bangong Co                   |
| 475 | for the opening of Bangong-Nujiang Tethys Ocean. Acta Petrologica et                      |
| 476 | Mineralogica 21, 465–478 (in Spinese with English abstract).                              |
| 477 | Ingersoll, R.V., Bullard, T.F., Ford, P.L., Grimm, J.P., Pickle, J.D., Sares, S.W., 1984. |
| 478 | The effect of grain size n detrital modes: a test of the Gazzi-Dickinson                  |
| 479 | point-counting method Journal of Sedimentary Research 54, 103–116.                        |
| 480 | Jin, X.C., 2002, Carbovife ous-Permian sequences of Gondwana affinity in southwest        |
| 481 | China and their paleogeographic inplications. Journal of Asian Earth Sciences 20,         |
| 482 | 633-646                                                                                   |
| 483 | Kapp, C., DeCelles, P.G., Gehrels, G.E., Heizler, M., Ding, L., 2007. Geological          |
| 484 | Roords of the Lhasa–Qiangtang and Indo–Asian collisions in the Nima area of               |
| 485 | Central Tibet. Geological Society of America Bulletin 119, 917–932.                       |
| 486 | Li, J.X., Qin, K.Z., Li, G.M., Richards, J.P., Zhao, J.X., Cao, M.J., 2014.               |

22 / 32

- 487 Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic
- 488 intermediate- felsic intrusions in central Tibet: petrogenetic and ectonic
  489 implications. Lithos 198–199, 77–91.
- 490 Li, S., Yin, C., Guilmette, C., Ding, L., Zhang, J., 2019. Birth and demise of the
- Bangong-Nujiang Tethyan Ocean: A review from the Gerze area of central Tibet.
- 492 Earth-Science Reviews 198, 102907.
- Li, S.M., Wang, Q., Zhu, D.C., Cawood, P.A., Stern, R.J., Weinberg, R., Zhao, Z.D.,
- 494 Mo, X.X., 2020. Reconciling Orogenic Drivers for the Evolution of the 495 Bangong-Nujiang Tethys During Middle-Law Jurassic. Tectonics 39, 496 e2019TC005951.
- Li, X.K., Chen, J., Wang, R.C., Li, C., 2018. Temporal and spatial variations of Late
  Mesozoic granitoids in the SW Qiangtang, Tibet: Implications for crustal
  architecture, Meso-Tethyar evolution and regional mineralization.
  Earth-Science Review 185, 374–396.
- Liang, D.Y., Nie, Z.T., Goo, T.Y., Xu, B.W., Zhang, Y.Z., Wang, J.P., 1983.
  Permo-Carboniferous Gondwana-Tethys facies in southern Karakoran Ali,
  Xizang (Tile), Earth Science 19, 9–27 (in Chinese with English abstract).
- Liang, X., Sun X., Wang, G., Gao, J., An, X., 2020. Sedimentary Evolution and
  Provence of the late Permian-middle Triassic Raggyorcaka Deposits in
  North Qiangtang (Tibet, Western China): Evidence for a Forearc Basin of the
  Longmu Co-Shuanghu Tethys Ocean. Tectonics 39, e2019TC005589.
- Liao, S.Y., Wang, D.B., Tang, Y., Yin, F.G., Cao, S.N., Wang, L.Q., Wang, B.D., Sun,

| 509 | Z.M., 2015. Late Paleozoic Woniusi basaltic province from Sibumasu terrane:            |
|-----|----------------------------------------------------------------------------------------|
| 510 | Implications for the breakup of eastern Gondwana's northern margin.                    |
| 511 | Geological Society of America Bulletin 127, 1313–1330.                                 |
| 512 | Liu, B.P., Cui, X.S., 1983. Discovery of Eurydesma-fauna from Rates northwest          |
| 513 | Xizang (Tibet), and its biogeographic significance. Earth Science-Journal of           |
| 514 | Wuhan College of Geology 19, 79–92 (in Chinese with English abstract)                  |
| 515 | Liu, D., Shi, R., Ding, L., Huang, Q., Zhang, X., Yue, Y., Zhang, L., 2017. Zircon U-  |
| 516 | Pb age and Hf isotopic compositions of Motozoic granitoids in southern                 |
| 517 | Qiangtang, Tibet: Implications for the subduction of the Bangong-Nujiang               |
| 518 | Tethyan Ocean. Gondwana Research 41, 157–172.                                          |
| 519 | Liu, Y., Li, S., Santosh, M., Cao, H., Yu, S., Wang, Y., Zhou, J., Zhou, Z., 2019. The |
| 520 | generation and reworking of continental crust during early Paleozoic in                |
| 521 | Gondwanan affinity terranes from the Tibet Plateau. Earth-Science Reviews 190,         |
| 522 | 486–497.                                                                               |
| 523 | Liu, Y.S., Gao, S., Hu, Z.C., Gao, C.G., Zong, K.Q., Wang, D.B., 2010. Continental     |
| 524 | and oceanic crust recycling-induced melt-peridotite interactions in the Trans-         |
| 525 | North China (rogen: U-Pb dating, Hf isotopes and trace elements in zircons             |
| 526 | from mant'e xenoliths. Journal of Petrology 51, 537–571.                               |
| 527 | Ludwig, K.J., 2003. ISOPLOT 3.0. Berkeley Geochronology Center Special                 |
| 528 | Pablication 4, 70.                                                                     |
| 529 | LugA.B., Fan, J.J., Hao, Y.J., Li, H., Zhang, B,C, 2020. Aptian Flysch in Central      |
| 530 | Tibet: Constraints on the Timing of Closure of the Bangong-Nujiang Tethyan             |

531

533

Ocean. Tectonics, 39, e2020TC006198.

532 Ma, A., Hu, X., Garzanti, E., Han, Z., Lai, W., 2017. Sedimentary and ectonic

evolution of the southern Qiangtang basin: Implications for the LhasaQiangtang

- collision timing. Journal of Geophysical Research: Solid Earth 122, 1790–4813.
- 535 Malusa, M.G., Villa, I.M., Vezzoli, G., Garzanti, E., 2011. Detrital geochronology of
- unroofing magmatic complexes and the slow erosion of oncocene volcanoes in
  the Alps. Earth and Planetary Science Letters 301, 324–336/
- 538 Metcalfe, I., 2013. Gondwana dispersion and Asian accretion: tectonic and 539 palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences 66,
- 540 1–33.
- Mou, S.Y., Wang, C.W., Wang, M., Chen, R., Zeng, C.X., 2010. 1:250000 geological
  survey report of Nagqu county, Tiket, Wuhan: China University of Geosciences
- 543 Press (in Chinese).
- 544 Nie, Z.T., Song, Z.M., 1983a. Fusiclinids of Lower Permian Qudi Formation from
- Rutog of Xizang (Tiber), china. Earth Science-Journal of China University of Geosciences 29–42 (in chinese with English abstract).
- 547 Nie, Z.T., Song, ZM., 1983b. Fusulinids of Lower Permian Tunlonggongba 548 Formation from Rutog of Xizang. Earth Science-Journal of Wuhan College of 549 Geology 0, 43–55 (in Chinese with English abstract).
- Nie, T., Song, Z.M., 1983c. Fusulinids of Lower Permian Maokouan Longge
  formation from Rutog, Xizang (Tibet), China. Earth Science-Journal of Wuhan
  College of Geology 19, 57–68 (in Chinese with English abstract)

| 553 | Pan, G.T., Wang, L.Q., Li, R.S., Yuan, S.H., Ji, W.H., Yin, F.G., Zhang, W.P., Wang,   |
|-----|----------------------------------------------------------------------------------------|
| 554 | B.D., 2012. Tectonic evolution of the Qinghai–Tibet Plateau. Journal of Asian          |
| 555 | Earth Sciences 53, 3–14.                                                               |
| 556 | Shellnutt, J.G., Bhat, G.M., Wang, K.L., Brookfeld, M.E., Jahn, B.M., Dortal, J., 2014 |
| 557 | Petrogenesis of the flood basalts from the Early Permian Panjal Typs, Kashmir,         |
| 558 | India: Geochemical evidence for shallow melting of the mantle. Lithos 204, 159–        |
| 559 | 171.                                                                                   |
| 560 | Shen, S.Z., Sun, T.R., Zhang, Y.C., Yuan, D.X., 2014, An upper Kungurian/lower         |
| 561 | Guadalupian (Permian) brachiopod fauna from the South Qiangtang Block in               |
| 562 | Tibet and its palaeobiogeographical implications. Palaeoworld 25, 519–538.             |
| 563 | Shi, R.D., Yang, J.S., Xu, Z.Q., Qi, X.X., 2008. The Bangong Lake ophiolite (NW        |
| 564 | Tibet) and its bearing on the ectonic evolution of the Bangong-Nujiang                 |
| 565 | suture zone. Journal of Asian Earth Sciences 32, 438–457.                              |
| 566 | Tang, Y., Zhai, Q.G., Chung, S.L., Hu, P.Y., Wang, J., Xiao, X.C., Song, B., Wang,     |
| 567 | H.T., Lee, H.Y., 2020. First mid-ocean ridge-type ophiolite from the                   |
| 568 | Meso-Tethys suture zone in the north-central Tibetan plateau. Geological Society       |
| 569 | of America Bulletin 132, 2202–2220.                                                    |
| 570 | Torsvik, T.H., cocks. L.R.M., 2013. Gondwana from top to base in space and time.       |
| 571 | Gondwan Research 24, 999–1030.                                                         |
| 572 | von Ernation, H., Dunkl, I., 2012. Assessing the sediment factory: the role of single  |
| 573 | Grain analysis. Earth-Science Reviews 115, 97–120.                                     |
| 574 | Wang, B.D., Wang, L.Q., Xu, J.F., Chen, L., Zhao, W.X., Liu, H., Peng, T.P., Li, X.B., |

| 575 | 2015b. The discovery of high-pressure granulite at Shelama in Dongco area              |
|-----|----------------------------------------------------------------------------------------|
| 576 | along the Bangong Co-Nujiang River suture zone and its tectonic significance.          |
| 577 | Geological Bulletin of China 34, 1605–1616 (in Chinese with English abs rect).         |
| 578 | Wang, B.D., Wang, L.Q., Chung, S.L., Chen, J.L., Yin, F.G., Liu, H., CI, X.B., Chen,   |
| 579 | L.X., 2016. Evolution of the Bangong–Nujiang Tethyan ocean. Insights from the          |
| 580 | geochronology and geochemistry of mafic rocks within ophiontes. Lithos 245,            |
| 581 | 18–33.                                                                                 |
| 582 | Wang, M., Li, C., Wu, Y.W., Xie, C.M., 2014. Geochronology, geochemistry, Hf           |
| 583 | isotopic compositions and formation mechanism cradial mafe dikes in northern           |
| 584 | Tibet. International Geology Review 56, 187–205.                                       |
| 585 | Wang, M., Li, C., Xie, C.M., Xu, J.X., Li, XX, 2015a. U–Pb zircon age, geochemical     |
| 586 | and Lu–Hf isotopic constraints of the Southern Gangma Co basalts in the Central        |
| 587 | Qiangtang, northern Tibet. Tectonophysics 657, 219–229.                                |
| 588 | Wang, M., Li, C., Zeng, X.W., Li, H., Fan, J.J., Xie, C.M., Hao, Y.J., 2019.           |
| 589 | Petrogenesis of the southern Qiangtang mafe dykes, Tibet: Link to a late               |
| 590 | Paleozoic mantle plume on the northern margin of Gondwana? Geological                  |
| 591 | Society of America Bulletin 131, 1907–1919.                                            |
| 592 | Wiedenbeck, M., Ané, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Quadt, A.V., |
| 593 | Roddick, C., Spiegel, W., 1995. Three natural zircon standards for U–Th–Pb,            |
| 594 | Frace element and REE analyses. Geostandards and Geoanalytical                         |
| 595 | Research 19, 1–23.                                                                     |
| 596 | Woodhead, J., Hergt, J., Shelley, M., Eggins, S., Kemp, R., 2004. Zircon Hf-isotope    |
| 597 | analysis with an excimer laser, depth profiling, ablation of complex geometries,       |

27 / 32

| 598 | and concomitant age estimation. Chemical Geology 209, 121-135.                              |
|-----|---------------------------------------------------------------------------------------------|
| 599 | Wu, H., Sun, S., Liu, H., Chu, H., Ding, W., 2018. An Early Cretaceous slab yindow          |
| 600 | beneath central Tibet, SW China: Evidence from OIB-like alkaline gabbres in the             |
| 601 | Duolong area. Terra Nova 31, 67–75.                                                         |
| 602 | Wu, R.Z., Lan, B.L., 1990. New Late Permian strata from Northwest Tibet. Journal of         |
| 603 | Stratigraphy 14, 216–221 (in Chinese with English abstract)                                 |
| 604 | Xia, D.X., Liu, S.S., 1997. The lithostratigraphy of the Tiber. Publishing House of         |
| 605 | China University of Geosciences (In Chinese).                                               |
| 606 | Xie, C.M., Li, C., Fan, J.J., Su, L., 2017. Ordevician sedimentation and bimodal            |
| 607 | volcanism in the Southern Qiangtang terrare of northern Tibet: Implications for             |
| 608 | the evolution of the northern Gondwara margin. International Geology Review                 |
| 609 | 59, 2078–2105.                                                                              |
| 610 | Xu, W., Liu, F., Dong, Y., 2020. Cambrun to Triassic geodynamic evolution of central        |
| 611 | Qiangtang, Tibet. Earth-Science Review 201, 103083                                          |
| 612 | Xu, Z., Dilek, Y., Cao, H., Yang, J., Robinson, P., Ma, C., Li, H., Jolivet, M., Roger, F., |
| 613 | Chen, X., 2015. Party-Tethyan evolution of Tibet as recorded in the East                    |

- 614 Cimmerides and West Cathaysides. Journal of Asian Earth Sciences 105, 320–
  615 337.
- Yin, A., Harrison, T.M., 2000. Geologic evolution of the Himalayan–Tibetan orogeny.
  Annual Review of Earth and Planetary Sciences 28, 211–280.
- Yuan H.L., Gao, S., Liu, X.M., Li, H.M., Günther, D., Wu, F.Y., 2004. Accurate U–Pb
  age and trace element determinations of zircon by laser ablation-inductively

620

621

353-370.

Zeng, Y.C., Chen, J.L., Xu, J.F., Wang, B.D., Huang, F., 2016. Sediment include 622 during subduction initiation: Geochronological and geochemical evidence from 623 the Darutso high-Mg andesites within ophiolite melange, ventral Tibet. 624 Geochemistry, Geophysics, Geosystems 17, 4859–4877. 625 Zhai, Q. G., Jahn, B.M., Su, L., Ernst, R.E., Wang, K.L., Zhang, R.Y., Wang, J., Tang, 626 S.H., 2013. SHRIMP zircon U-Pb geochronology/geochemistry and Sr-Nd-Hf 627 isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern 628 Tibet and geodynamic implications. Lithos 174, 28–43. 629 Zhai, Q.G., Jahn, B.M., Wang, J., Hu, P.Y., Chung, S.L., Lee, H.Y., Tang, S.H., Tang, 630 Y., 2016. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau. 631 Geological Society of America Punetin 128, 355–373. 632 Zhang, K.J., Xia, B., Zhang, Y.X., Liu, W.L., Zeng, L., Li, J.F., Xu, L.F., 2014. 633 Central Tibetan Meso-Tethyan oceanic plateau. Lithos 210–211, 278–288. 634 Zhang, X.Z., Wang, Q., Dong, Y.S., Zhang, C., Li, Q.Y., Xia, X.P., Xu, W., 2017. High 635 pressure granuite-factes overprinting during the exhumation of eclogites in the 636 Bangong-Nujiang suture zone, central Tibet: link to flat-slab subduction. 637 Tectonics 35, 2918–2935. 638 Zhan, Y.C., Shen, S.Z., Shi, G.R., Wang, Y., Yuan, D.X., Zhang, Y.J., 2012a. Tectonic 639 volution of the Qiangtang Block, northern Tibet during the Late Cisuralian 640 (Late Early Permian): Evidence from fusuline fossil records. Palaeogeography, 641

- 642 Palaeoclimatology, Palaeoecology 350–352, 139–148.
- Zhang, Y.C., Wang, Y., Zhang, Y.J., Yuan, D.X., 2012b. Kungurian (Late Cisuralian)
  fusuline fauna from the Cuozheqiangma area, northern Tibel and its
  palaeobiogeographical implications. Palaeoworld 21, 139–152.
- 646 Zhang, Y.C., Shi, G.R., Shen, S.Z., 2013. A review of Perima stratigraphy,
- 647 palaeobiogeography and palaeogeography of the ringha-Tibet Plateau.
  648 Gondwana Research 24, 55–76.
- 649 Zhang, Y.C., Shi, G.R., Shen, S.Z., Yuan, D.X., 2014 Permian Fusuline Fauna from
- the lower part of the Lugu Formation in the Central Qiangtang Block and its
- 651 geological implications. Acta Geologica Sirica (English Edition) 88, 365–379.
- 652 Zhang, Y.C., Zhang, Y.J., Yuan, D.X., Xu, Y., Qiao, F., 2019. Stratigraphic and
- paleontological constrains on the epening time of the Bangong-Nujiang Ocean.
- Acta Petrologica Sinica 35, 3093-3096 (in Chinese with English abstract).
- 655 Zhang, Y.X., Li, Z.M., Zhu, L.D., Zhan, K.J., Yang, W.G., Jin, X., 2016. Newly
- discovered eclogites from the Bangong Meso–Tethyan suture zone (Gaize, central Tibet, western-China): mineralogy, geochemistry, geochronology, and
- tectonic implications. International Geology Review 58, 574–587.
- Zhu, D.C., Zhao, Z.D., Niu, Y., Dilek, Y., Hou, Z.Q., Mo, X.X., 2013. The origin and
  pre-Cenologic evolution of the Tibetan Plateau. Gondwana Research 23, 1429–
- Zhu, D.C., Li, S.M., Cawood, P.A., Wang, Q., Zhao, Z.D., Liu, S.A., Wang, L.Q.,
  2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by

664

divergent double subduction. Lithos 245, 7–17.

### 665 Figure Captions

666

Figure 1 (a) Tectonic framework of the Tibetan Plateau. EKASZ, East Kunlun-667 A'nyemaqen Suture Zone; JSSZ, Jinshajiang Suture Zone; LSLSZ, Longmuco-668 Shuanghu–Lancangjiang Suture Zone; BNSZ, Bangong–Nujiang Suture Zone; IYZSZ, 669 Indus–Yarlung Zangbo Suture Zone. (b) Geological map of central Tibet showing the 670 Upper Carboniferous–Upper Permian strata. (c) Geological may of the Jiaco area. (d) 671 Geological map of the Ritu area. Cz, Cenozoic; J-K, Krassic–Cretaceous strata; T<sub>3</sub>r, 672 Upper Triassic Riganpeico Formation;  $P_{3j}$ , Upper Persian Jipuria Formation;  $P_{1-2l}$ , 673 Lower-Middle Permian Lugu Formation; Pit, Lower Permian Tulonggongba 674 Formation; P<sub>1</sub>q, Lower Permian Qudi Formation; C<sub>2</sub>P<sub>1</sub>z, Upper Carboniferous–Lower 675 Permian Zhanjin Formation; K<sub>1</sub>γ, Early Gretaceous granitoids; v, 300–279 Ma mafic 676 dike swarms. 677

678

Figure 2 Stratigraphic columns for the Upper Carboniferous–Upper Permian strata in
the Jiaco and Ritu areas of the South Qiangtang Terrane (modified after Liang et al.,
1983; Mou et al., 2010 Zhang et al., 2013, 2019).

682

Figure 3 (a) Upper Carboniferous–Lower Permian glacial marine diamictite in the South Qiangtag Terrane. (b) Clastic rocks and limestones of the Upper Permian Jipuric Formation in the South Qiangtang Terrane. (c) Photomicrograph of Upper Carboniferous–Lower Permian sandstone in the Jiaco area. (d-e) Photomicrographs of Upper Permian sandstone in the Jiaco area. (f) Photomicrograph of Upper Permian sandstone in the Ritu area. Ls, limestone lithic fragments; B, basalt lithic fragments; 31 / 32 Lm, metamorphic lithic fragments; Q, quartz; F, feldspar; Se, Sericite.

| 690 |                                                                                            |
|-----|--------------------------------------------------------------------------------------------|
| 691 | Figure 4 Summary of detrital zircon age distributions of the Carboniferour Perman          |
| 692 | sandstones of this study and previous work in the South Qiangtang Terrare. Similar         |
| 693 | main age peaks between Carboniferous and Permian strata are shown in grey bands,           |
| 694 | whereas different age peaks are shown in green bands. $n = total number of analyses.$      |
| 695 |                                                                                            |
| 696 | <b>Figure 5</b> Zircon ɛHf(t) values of the youngest detrital zircons 285–248 Ma) from the |
| 697 | Upper Permian sandstones versus age diagram                                                |
| 698 |                                                                                            |
| 699 | Figure 6 Dickinson ternary diagrams for the Upper Permian sandstones in the South          |
| 700 | Qiangtang Terrane                                                                          |
| 701 |                                                                                            |
| 702 | Figure 7 Comprehensive diagram showing the 280–260 Ma sedimentary provenance               |
| 703 | change in the South Qiangtang Terrane. SQ, South Qiangtang Terrane. Legends are            |
| 704 | the same as in Figure 2.                                                                   |
| 705 |                                                                                            |
| 706 | Figure 8 Permian geological records showing the rifting to opening process of the          |
| 707 | Meso-Tethys Ocean.                                                                         |
| 708 |                                                                                            |
| 709 | Figure 9 Schematic model showing the opening process of the Meso-Tethys                    |
| 710 | (modified after Torsvik and Cooks., 2013; Metcalfe, 2013; Zhai et al., 2013; Liao et       |
| 711 | al 215; Chen et al., 2017; Wang et al., 2019). H, Himalayas; L–T, Lhasa–Tengchong;         |
| 712 | S, Sibumasu; SQ, South Qiangtang; GI, Greater India. Red bars show the cross               |
| 713 | sections.                                                                                  |

















