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THE RECTANGULAR PEG PROBLEM

JOSHUA EVAN GREENE AND ANDREW LOBB

Abstract. For every smooth Jordan curve γ and rectangle R in the Euclidean plane, we show that

there exists a rectangle similar to R whose vertices lie on γ. The proof relies on the theorem of
Shevchishin and Nemirovski that the Klein bottle does not admit a smooth Lagrangian embedding

in C2.

The result of this paper is the solution of the Rectangular Peg Problem for smooth Jordan curves:

Theorem. For every smooth Jordan curve γ and rectangle R in the Euclidean plane, there exists a
rectangle similar to R whose vertices lie on γ.

Proof. We consider the Euclidean plane C with complex coordinate z = x+ i · y and take another copy
with complex coordinate w = r · eiθ. In these coordinates, the standard symplectic structure on C2 is
given by ω = dx ∧ dy + r · dr ∧ dθ. Consider the maps l, g : C2 → C2 defined in a mix of complex and
polar coordinates by

l : (z, w) 7→
(
z + w

2
,
z − w

2

)
and g : (z, r, θ) 7→ (z, r/

√
2, 2θ).

The map l is a diffeomorphism and satisfies l∗(ω) = ω/2. Away from C×{0}, the map g is smooth and
satisfies g∗(ω) = ω. The Jordan curve γ is Lagrangian in C, so both the product γ × γ and its image
L = l(γ × γ) are smooth, Lagrangian tori in C2, noting that Lagrangians with respect to ω coincide
with those with respect to ω/2. For any φ ∈ R, the map

Rφ : C2 → C2 : (z, r, θ) 7→ (z, r, θ + φ)

is a symplectomorphism. Fixing a choice 0 < φ ≤ π/2, Lφ = Rφ(L) is another smooth, Lagrangian
torus. By construction, g ◦ l(z, w) = g ◦ l(z′, w′) if and only if {z, w} = {z′, w′}. It follows that
M = g(L) and Mφ = g(Lφ) are both homeomorphic to a Möbius band Sym2(γ) and are smooth and
Lagrangian away from C× {0}.

The map Rπ preserves each of L and Lφ, and it fixes γ×{0}, where these two tori intersect cleanly:
Tp(γ × {0}) = TpL ∩ TpLφ at each point p ∈ γ × {0}. We perform a Lagrangian smoothing of L ∪ Lφ
along γ×{0} according to Proposition 1.1 below. The result is a smoothly immersed Lagrangian torus
in C×C that coincides with L∪Lφ away from a neighborhood of γ×{0}, is disjoint from C×{0}, and
on which Rπ acts as a fixed-point free involution. Its image under g is therefore a smoothly immersed,
Lagrangian Klein bottle K which coincides with M ∪Mφ outside of a neighborhood of γ × {0} and is
embedded within this neighborhood. Shevchishin and Nemirovski have shown that there is no smoothly
embedded, Lagrangian Klein bottle in C2 [12, 17]. Therefore, M and Mφ must intersect at a point

away from γ×{0}, so L and Lφ do as well, say at the point (z, rei(θ+φ)). It follows that the four points

z ± reiθ and z ± rei(θ+φ) all lie on the Jordan curve γ. These points form the vertices of a rectangle
whose diagonals meet at an angle of φ. As φ ∈ (0, π/2] was arbitrary, the proof is complete. �
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The proof establishes somewhat more:

Porism. For every smooth Jordan curve γ and smooth map φ : [0,∞)→ (0, π), there exists r > 0 such
that γ contains the vertices of a rectangle of diameter r whose diagonals meet at angle φ(r). �

We simply note that the map

Sφ : C2 → C2 : (z, r, θ) 7→ (z, r, θ + φ(2r))

is a symplectomorphism, so Lφ = Sφ(L) is a Lagrangian torus, invariant under Rπ and meeting L
cleanly along γ × {0}. The main result covers the case of a constant function φ.

1. Lagrangian smoothing.

We now turn to the smoothing used in the proof of the theorem:

Proposition 1.1. One may remove a neighborhood of γ×{0} in L∪Lφ and replace it with two disjoint
Lagrangian annuli. The surgery may be performed so as to result in a smoothly immersed Lagrangian
torus T such that Rπ(T ) = T and T is disjoint from C× {0}.

Here Lφ may denote either Rφ(L) or Sφ(L) from the previous section. A posteriori we obtain a
Lagrangian smoothing of M ∪Mφ nearby the common boundary ∂M = ∂Mφ = γ × {0} ⊂ C × {0},
but we found it more direct to work rather with L ∪ Lφ, due to the non-smoothness of g at C× {0}.

Proposition 1.1 will not come as a surprise to symplectic geometers, although we could not locate the
desired result in the literature. It can be phrased as a consequence of a simple case of the equivariant
Darboux-Weinstein theorem in the presence of a compatible clean intersection of Lagrangians. We shall
prove the proposition by establishing a linear local model for L∪Lφ near γ×{0}. The local model is the
4-manifold X = S1×R×R×R with coordinates (θ, s, t1, t2), symplectic form ωX = dθ∧dt1 +ds∧dt2,
and symplectic involution

I : X → X : (θ, s, t1, t2) 7→ (θ,−s, t1,−t2).

It contains Lagrangian submanifolds L0 = {t1 = t2 = 0} and L1 = {s = t1 = 0}, which intersect each
other cleanly in Γ = {s = t1 = t2 = 0}.

Proposition 1.2. There exists a symplectomorphism

Ψ: N (Γ)→ N (γ × {0})

from a neighborhood of Γ in X to a neighborhood of γ × {0} in C2 such that

(1) Ψ(Γ) = γ × {0},
(2) Ψ(L0 ∩N (Γ)) = L ∩N (γ × {0}),
(3) Rπ ◦Ψ = Ψ ◦ I, and
(4) Ψ(L1 ∩N (Γ)) = Lφ ∩N (γ × {0}).

Proof of Proposition 1.1. Let A = {(s, t2) ∈ R2 : st2 = 0} denote the union of the usual axes in
Euclidean space. Under the map Ψ−1 of Proposition 1.2, the union of the Lagrangians L ∪ Lφ nearby
γ×{0} is taken to S1×A×{0}, where we have exchanged coordinates t1 and t2. We pick a smoothing
B of A ⊂ R2 near the origin whose components are exchanged by I (which acts as rotation by π on this
plane). Observe that S1×B×{0} is Lagrangian with respect to ωX . Replacing (L∪Lφ)∩N (γ×{0})
by Ψ((S1 ×B × {0}) ∩N (Γ)) gives the desired smoothing. �
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The technical work of this section, then, is to derive Proposition 1.2. The next lemma is phrased
for our situation and is a case of the Equivariant Darboux-Weinstein Theorem [2, Theorem 3.2].

Lemma 1.3. Suppose that ω0 and ω1 are symplectic forms in a neighborhood of L0 ⊂ X for which L0

is Lagrangian and which satisfy I∗(ωi) = ωi for i = 0, 1. Then there exist neighborhoods U0 and U1 of
Γ and a diffeomorphism

σ : U0 → U1

such that σ commutes with I, σ∗ω1 = ω0, and σ restricts to the identity on L0 ∩ U0. �

Next we use Lemma 1.3 to obtain a local model for the Lagrangian L near γ × {0}. It establishes
Proposition 1.1 apart from the final item.

Lemma 1.4. There exists a symplectomorphism

F : N (Γ)→ N (γ × {0})
from a neighborhood of Γ in X to a neighborhood of γ × {0} in C2 such that

(1) F (Γ) = γ × {0},
(2) F (L0 ∩N (Γ)) = L ∩N (γ × {0}), and
(3) Rπ ◦ F = F ◦ I.

Proof. Parametrize the Jordan curve γ ⊂ C as γ(θ), where θ ∈ S1. Now, γ × {0} is a submanifold of
L, so using the restriction of the standard metric on C2 to L, the exponential map

(θ, s) 7→ exp(γ(θ),0)(s)

identifies a neighborhood of γ × {0} within its normal bundle inside TL with a tubular neighborhood
of γ × {0} in L. Since the standard metric is invariant under Rπ, we have that Rπ preserves geodesics
in L. It follows that we have

(θ,−s) 7→ Rπ(exp(γ(θ),0)(s)).

Next we take a smooth choice of orthonormal basis {v1θ , v2θ} for (TL)⊥|(γ(θ),0) (the orthogonal comple-

ment to TL along γ) such that v1θ ∈ T(γ(θ),0)(C×{0}). Note that (Rπ)∗(v
1
θ) = v1θ and (Rπ)∗(v

2
θ) = −v2θ .

Choosing appropriate neighborhoods, we have a diffeomorphism

F ′ : N ′(Γ)→ N ′(γ × {0}) : (θ, s, t1, t2) 7→ exp(γ(θ),0)(s) + t1v
1
θ + t2v

2
θ .

Since Rπ is a linear map, we have

F ′ : (θ,−s, t1,−t2) 7→ Rπ(exp(γ(θ),0)(s) + t1v
1
θ + t2v

2
θ).

Hence we observe that F ′ satisfies all the required properties except possibly being a symplectomor-
phism. We now apply Lemma 1.3 to ω0 = ωX and ω1 = F ′∗(ω). Set N (Γ) = σ−1(N ′(Γ) ∩ U1), set
F = F ′ ◦ σ on N (Γ), and set N (γ × {0}) = im(F ). These neighborhoods and this map now fulfill the
desired conditions. �

It only remains to take account of the second Lagrangian Lφ; we write L2 = F−1(Lφ).

Lemma 1.5. There exists a symplectomorphism

G : U → V

defined on neighborhoods U and V of Γ such that

(1) G restricts to the identity on L0,
(2) G ◦ I = I ◦G, and
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(3) G(L2 ∩ U) = L1 ∩ V .

The following proof is based on that due to Poźniak [14], from which we have extracted the definition
of the map G and checked the required properties “by hand”.

Proof. Observe that L2 is a Lagrangian within a neighborhood of Γ that intersects L0 cleanly in Γ.
Poźniak argues that there exists a neighborhood U of Γ in X within which L2 ∩ U is the graph of a
function defined over L1; that is, there exist functions α, β : S1 × R→ R such that

L2 ∩ U = {(θ, α(θ, t), β(θ, t), t) : (θ, t) ∈ S1 × R} ∩ U.
See [14, Proposition 3.4.1 and Lemma 3.4.2], and note that we reverse the roles of L1 and L2 compared
with what appears there. We define the map

G : U → X : (θ, s, t1, t2) 7→ (θ, s− α(θ, t2), t1 − β(θ, t2), t2),

let V denote its image, and check that the asserted properties of G hold in turn.

Firstly, since Γ ⊂ L1 ∩ L2, we have α(θ, 0) = 0 and β(θ, 0) = 0. Property (1) then follows.

Secondly, since I(L2) = L2, we have α(θ,−t) = −α(θ, t) and β(θ,−t) = β(θ, t). We compute

G ◦ I(θ1, s, t1, t2) = G(θ,−s, t1,−t2)

= (θ,−s− α(θ,−t2), t1 − β(θ,−t2),−t2)

= I(θ, s+ α(θ,−t2), t1 − β(θ,−t2), t2)

= I ◦G(θ, s, t1, t2).

Property (2) then follows.

Thirdly, property (3) follows at once from the definition of G.

Finally, since L2 is Lagrangian, ωX((1, ∂θα, ∂θβ, 0), (0, ∂tα, ∂tβ, 1)) = 0; hence ∂tβ + ∂θα = 0. We
compute

G∗ωX = dθ ∧ d(t1 − β(θ, t2)) + d(s− α(θ, t2)) ∧ dt2
= dθ ∧ (dt1 − (∂θβ)dθ − (∂t2β)dt2) + (ds− (∂θα)dθ − (∂t2α)dt2) ∧ dt2
= dθ ∧ dt1 + ds ∧ dt2 + (∂t2β + ∂θα)dt2 ∧ dθ
= dθ ∧ dt1 + ds ∧ dt2
=ωX .

Therefore, G is a symplectomorphism. �

Proof of Proposition 1.2. Set Ψ = F ◦ (G−1) with the maps F and G of Lemmas 1.4 and 1.5. �

2. Discussion.

In 1911, Toeplitz posed the Square Peg Problem, which asks whether every continuous Jordan curve
in the Euclidean plane inscribes (contains the vertices of) a square [19]. It remains open to this day. The
Rectangular Peg Problem (for smooth Jordan curves) grew out of it [10, Conjecture 8]. Our solution
fits into a long line of attack on these problems which involves identifying the inscribed feature with
the (self-)intersection of an associated geometric-topological object. The arguments tend to be quite
short, once the appropriate outlook and auxiliary result are identified.

In 1913, Emch solved the Square Peg Problem for smooth convex curves [3]; and in 1929, Schnirelman
solved it for smooth Jordan curves [15]. In fact, both required weaker hypotheses than smoothness.
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They laid the groundwork for later approaches, introducing the idea of configuration spaces and argu-
ments involving homology and bordism.

In or around 1977, Vaughan proved the celebrated result that every continuous Jordan curve γ
inscribes a rectangle [11]. Vaughan’s simple argument was to define a continuous map v : Sym2(γ)→
C× R≥0 by sending an unordered pair of points on γ to the ordered pair consisting of their midpoint
and the length of the line segment they span. The points of self-intersection of v thus parametrize
inscribed rectangles in γ. By filling γ×{0} with a disk D ⊂ C×{0}, we extend v to a continuous map
from RP2 to C × R≥0 ⊂ R3 with the same set of self-intersections as v. Such a map contains a point
of self-intersection (in fact, a continuum of them), which corresponds to an inscribed rectangle in γ.
The fact that v contains so much self-intersection indicates that a large family of inscribed rectangles
should exist in γ, but extracting more information is a challenge.

In 1991, Griffiths claimed a solution of the smooth Rectangular Peg Problem based on elementary
intersection theory, in the spirit of Schnirelman’s work [5]. However, in 2008, Matschke identified an
irreparable error in its proof, casting doubt on the efficacy of this approach [10]. Following the discovery
of this error, the status of the Rectangular Peg Problem reverted to the cases already reported.

In 2018, Hugelmeyer salvaged some new cases of the smooth Rectangular Peg Problem [6]. He did
so by resolving Vaughan’s map into a four-dimensional version that enables the detection of rectangles’
aspect angles (the angle between the two diagonals). Define a map hn : Sym2(γ)→ C× C by sending
each unordered pair of points on γ to their midpoint and the (2n)-th power of their difference. For
n ≥ 2, the points of self-intersection of hn parametrize inscribed rectangles in γ of aspect angle equal
to an integer multiple of π/n. Hugelmeyer showed how to identify im(hn) with the image of a surface
mapped into the 4-ball with boundary on a (2n, 2n−1) torus knot in the 3-sphere. However, for n ≥ 3,
this knot does not bound a smoothly embedded Möbius band in the 4-ball: this is a result of Batson
proven using Heegaard Floer homology [1]. Hence hn contains a point of self-intersection for n ≥ 3
when γ is smooth. In particular, taking n = 3 leads to the novel case of the smooth Rectangular Peg
Problem for a rectangle of aspect angle π/3.

In 2019, Hugelmeyer sharpened this approach and recovered 1/3 of the smooth Rectangular Peg
Problem [7]. More precisely, he showed that for any smooth Jordan curve γ, the set of values φ ∈ (0, π/2]
for which γ contains an inscribed rectangle of aspect angle φ has Lebesgue measure at least π/6. The
map h1 above is a smooth embedding when γ is a smooth Jordan curve, giving rise to a smooth Möbius
band im(h1) = M ⊂ C×C. The inscribed rectangles in γ of aspect angle φ are parametrized by interior
points of intersection between M and R2φ(M). Hugelmeyer argued that this intersection is non-empty
for ≥ 1/3 of the angles φ by first introducing a novel ordering on a set of embedded Möbius bands in
C×R≥0×S1 based on how they link and then applying a result from additive combinatorics. In fact,
this ordering may be applied to recover his earlier result, as well as the case of a square.

The inspiration behind our solution was to recast the problem within the framework of symplectic
geometry, which offers greater rigidity for controlling intersections. Following Hugelmeyer’s second
approach, we wished to endow C × C with a symplectic form with respect to which M is Lagrangian
and R2φ is a Hamiltonian symplectomorphism. Then an optimistic version of the Arnold-Givental
conjecture predicts that M and Mφ = R2φ(M) should contain at least dimH∗(M ;Z/2Z) = 2 points
of intersection in their interiors. Ultimately, we were able to arrange the framework by adjusting the
map h1 into the form g ◦ l given in the proof of the theorem. We were able to circumvent proving
the required version of the Arnold-Givental conjecture by noting that M ∪Mφ is a Lagrangian Klein
bottle away from the common boundary of M and Mφ. By smoothing it and appealing to the theorem
of Shevchishin and Nemirovski, we obtained an intersection point that corresponds with the desired
inscribed rectangle in γ of aspect angle φ.
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Enjoyable accounts of the history of these problems and their relatives appear in [8, 10, 13]. Addi-
tional notable progress appears in the work of Feller and Golla, Schwartz, and Tao [4, 16, 18].
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