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Input methods for interaction in smartphone-based virtual and mixed reality (VR/MR) are currently based on uncomfortable
head tracking controlling a pointer on the screen. User fixations are a fast and natural input method for VR/MR interaction.
Previously, eye tracking in mobile VR suffered from low accuracy, long processing time and the need for hardware add-ons such
as anti-reflective lens coating and infrared emitters. We present an innovative mobile VR eye tracking methodology utilizing
only the eye images from the front-facing (selfie) camera through the headset’s lens, without any modifications. Our system
first enhances the low-contrast, poorly lit eye images by applying a pipeline of customised low level image enhancements
suppressing obtrusive lens reflections. We then propose an iris region-of-interest detection algorithm that is run only once. This
increases the iris tracking speed by reducing the iris search space in mobile devices. We iteratively fit a customised geometric
model to the iris to refine its coordinates. We display a thin bezel of light at the top edge of the screen for constant illumination.
A confidence metric calculates the probability of successful iris detection. Calibration and linear gaze mapping between the
estimated iris centroid and physical pixels on the screen results in low latency, real-time iris tracking. A formal study confirmed
that our system’s accuracy is similar to eye trackers in commercial VR headsets in the central part of the headset’s field-of-view.
In a VR game, gaze-driven user completion time was as fast as with head tracked interaction, without the need for consecutive
head motions. In a VR panorama viewer, users could successfully switch between panoramas using gaze.
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1 INTRODUCTION
Low-cost mobile Virtual & Mixed Reality (VR/MR) headsets, i.e., a mobile phone placed in an inexpensive
cardboard or plastic case, represent a cheap, widely available medium for immersive VR/MR. Accurate eye tracking
requires infrared illumination and cameras, unavailable on cheap mobile VR headsets. In this paper, we propose a
mobile VR eye tracking methodology, utilizing eye images from the front-facing (selfie) camera without headset
modifications or add-on hardware, contrary to previous work. The achieved eye tracking accuracy is similar to eye
trackers in commercial VR headsets in the central Field-of-View (FoV) of about 20°of visual angle.
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Fig. 1. (a) Unmodified mobile VR headset with smartphone (b) Original image as captured from the front-facing
camera with reflections on headset’s lens and eye cornea (c) Cropped RoI (d) Enhanced image (e) Iris contour
(yellow) and center (red) estimation (f) User interacts with the gaze-aware VR environment.

Prior work has demonstrated that eye fixations are a natural input method for interaction with head-worn displays
[8, 35]. Until now, input methods for interaction in mobile VR are usually limited to uncomfortable head tracking
controlling a pointer on the screen or occasionally, using the side button of the case. Separately purchased gamepads
have limited degrees of freedom employing a four-way digital cross, compatible with only a few applications.

Current eye tracking in headsets, such as the HTC Vive Pro Eye, relies on the enhanced pupil contrast provided
by infrared (IR) light emitters. In mobile VR, illumination only emanates from the smartphone’s screen. Robust
eye tracking is, therefore, harder as light on the visible spectrum does not provide as much iris-pupil contrast as
infrared. Thus, eye illumination and eye tracking depend on the displayed content. When the illumination is too
strong, obtrusive reflections emerge on the headset’s lens making eye detection hard. When the illumination is too
weak, eye tracking fails as the iris is barely visible. Initial attempts for mobile VR eye tracking either involved
add-on hardware such as mirrors [15], anti-reflective layers to combat reflections [16], or low-accuracy deep
learning running on an external computer [3] (Section 2). Our proposed technique improves upon previous work by
customising an eye tracking pipeline, from image acquisition to processing to gaze mapping, to address mobile
VR’s challenges for iris detection, e.g., the lens reflections, the oblique placement of the camera and the mobile
hardware performance. A preliminary outline of our work was presented as a poster [7].

We first improve eye illumination. We display a thin, imperceptible bezel of light placed outside of the observer’s
field-of-view, for adequate illumination. As screen content and illumination generate obtrusive lens reflections, we
assemble a pipeline of low-level image enhancements specifically to suppress them (Figure 1). The now refined
captured images, otherwise suffering from low contrast and poor lighting, carry easily detected features used to
fit a geometric model to the iris. For this, we utilize an accelerated version of the original Hough Transform [40],
the ’Hough Gradient’ method that detects elliptical shapes efficiently in terms of computing time and customize it
further to be highly sensitive to circular features, i.e., the iris as seen through the phone camera. Our model, based
on a set of fitting confidence metrics, obtains an accurate estimation of the iris center in most cases. We conclude
our pipeline by proposing purpose-specific calibration and gaze mapping algorithms to map the detected eye center
co-ordinates to screen coordinates.

Our contribution is threefold. First, we present a computationally efficient, eye tracking technique for smartphone-
based VR, also directly applicable to video-based MR. Our method uses eye images captured from the front camera
of a smartphone, through the headset’s lens and without an added infrared light source or other modifications
(Section 3, 4). Second, we perform an eye tracking accuracy and precision study. Our eye tracker performs similar
to trackers in commercial headsets when the eyes move in the central field-of-view. We devise user interface (UI)
and content design guidelines to assist accurate interaction in gaze-aware VR (Section 5.1). Third, we demonstrate
the strengths of our eye tracking pipeline over head tracking in a VR evaluation study. Eye-driven task completion
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time is at par with head tracked interfaces, without the cumbersome head motions (Section 5.2). We showcase a
practical use of the system in a VR panorama viewer (Section 5.3).

2 RELATED WORK
The proposed eye tracking pipeline for mobile VR is based on successful iris detection and tracking in real-time.
We start by reviewing previous image processing methods widely adopted in eye tracking (Sections 2.1 & 2.2), that,
however, often fail to work for eye tracking in mobile VR mainly because of low light and lens reflections. We
proceed by discussing gaze mapping models for calculating users’ point of gaze (Section 2.3). We conclude by
detailing previous work on eye tracking in mobile VR (Section 2.4).

2.1 Model-based vs feature-based algorithms
Eye tracking techniques can be classified as feature-based and model-based [31]. Feature-based detect a key feature,
e.g. the dark pupil, by relying on pixel intensity levels or intensity gradients. Whether the key feature selected is
present or not, is decided upon a user-selected pixel intensity threshold based on application goals. According to
the iris-appearance hypothesis for dark-pupil eye tracking, the pupil is the darkest element to detect [39].

Model-based approaches find the best fitting circle or ellipse of the pupil. Due to iterative searches of the
model parameter space, model-based methods yield a more precise estimate of the pupil center than feature-based,
but at a higher computational cost. Therefore, their use is limited in time-critical mobile VR eye tracking, as
resources are scarce and dropping frames is not an option. Also, a real-time eye tracking system cannot solely
rely on feature-based methods due to the highly variable illumination, resulting in highly variable appearance of
key features searched, making stable iris detection impossible. Model-based approaches have been employed for
eye tracking on tablets from a hand-held distance [41]. Mobile VR eye tracking suffers from an additional set of
challenges compared to eye tracking on tablets, such as dealing with lens reflections and low visibility.

Standard eye tracking using infrared light aims for a trade-off between run-time performance and accuracy by
combining model and feature-based approaches[28]. The Starburst algorithm achieves a good trade-off between
run-time performance and accuracy by combining model and feature-based methods [31]. The algorithm iteratively
locates the pupil center as the mean of points which exceed a differential luminance threshold along the rays
extending from the last best guess. ScreenGlint extracts a rectangle based on the assumption that the darkest area in
the image corresponds to the iris, in which ellipse fitting and iris segmentation techniques are then applied [19].

Inspired by desktop eye tracking, our mobile VR methodology first deploys a feature-based algorithm to
determine the approximate position of the iris and then a purpose-specific, computationally efficient model-based
approach to obtain an accurate estimation of the iris center.

2.2 Eye, iris & pupil detection
There are several ways to detect a circular shape in an image. Ellipse-fitting methods are commonly used in the field
of eye tracking to locate the iris or the pupil. The simplest way to fit an ellipse to a set of data is using the direct least
squares method [11], which requires at least five points as input. However, this method is not applicable to most eye
tracking systems, as the input images contain pixels which do not correspond to the pupil or eye boundary. These
pixels are leftover image noise, representing other noticeable features such as eyelids or reflections, troublesome to
remove.

Feature-based methods include K-means segmentation to segment the dark pupil from the background and
locating the darkest area, based on the iris-appearance hypothesis, according to which the pupil is the darkest
element in the image [34, 39]. The more robust ellipse-fitting methods are either voting or search-based. Hough
transform and Random Sample Consensus (RANSAC) are primary examples of voting-based and search-based
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methods respectively [10]. Voting-based methods are exhaustive and thus accurate, but computationally expensive.
Searching-based methods test subsets of possible ellipses over many iterations and select the best iteration.

In the SET method, the convex hull segments of thresholded regions are fit to sinusoidal components that
compose the circle corresponding to the eye [22]. ElSe [13], PuRe [34], ExCuSe [12], and Pupil [26] methods use
morphological edge filters to thin, straighten or separate lines so that ellipse fitting can be successfully applied.

The main drawback of most image processing algorithms above, is that they heavily rely on the enhanced pupil
contrast provided by the infrared light of specialized eye trackers. Our eye tracking pipeline strives for accurate
eye detection on the visible spectrum based only on the front camera capture of a standard mobile phone without
infrared lighting.

2.3 From eye coordinates to screen coordinates
Calculating the user’s point of gaze requires a conversion of the eye tracker’s estimated iris center to screen
locations. The conversion to screen coordinates is accomplished by a mapping function, determined per user
through calibration, i.e. by fixating on a set of target points of known positions [26, 31, 38]. The mapping function
should minimize calibration errors and correct distortions between the eye tracker and screen as much as possible.
The selection of the appropriate mapping function is a critical factor for high eye tracking accuracy. Mapping
functions range from linear & nonlinear polynomials [25, 38], geometric-based to neural network-based, and
support vector regression-based (SVR) functions [42, 43]. Previous research has shown that no single mapping
function is ideal for all eye tracking applications. Counter-intuitively, high order polynomials or complex geometry-
based models do not improve accuracy over simpler linear functions in eye tracking scenarios with limited head
movement [6]. Furthermore, increasing the number of calibration points beyond approximately 12, does not yield
any meaningful improvements [25]. Our initial lab tests corroborate previous work, as high order polynomials
did not improve accuracy, nor did an increased amount of calibration points. Based on the above and driven by
our requirement for high accuracy and low latency, we employ the computationally more efficient linear mapping
function to infer the gaze point.

2.4 Eye tracking in mobile VR
A preliminary attempt for smartphone-based eye tracking in mobile VR relied on coating the headset lenses with
an anti-reflective layer which is a complicated alteration for the average smartphone user [16]. Another approach,
realised on a Google Cardboard headset, compared reflected images of on-screen content on the surface of the eye,
known as Purkinje images, to pre-calibrated images to infer an estimated gaze position [15]. This approach did
not work in real-time, was not implemented on the mobile device, required add-ons such as mirrors for achieving
wall-clock synchronization between camera frames and display frames and functioned only on a specific set of
calibrated Purkinje images, limiting applicability. More recently, coarse gaze tracking on a smartphone-based
VR headset used a Convolutional Neural Network (CNN) trained on a large number of peri-ocular images. The
network was able to predict one of five fixed gaze locations[3]. The reported system’s accuracy of nearly 10° when
calibrated is prohibitive for real-time gaze-based interaction. We note that commercial eye trackers in VR headsets
offer an accuracy of less than 1° in the central FoV. In addition, the approximate gaze location was computed on a
laptop, therefore, the system’s performance and latency were never tested on a mobile device. Other approaches
employing CNNs to infer eye pose relative to the head from a single image did not address the specific challenges
of low contrast and illumination of real-time VR mobile eye tracking [30]. Photosensor oculography (PSOG) [27]
and LiGaze [32] require a new type of sensor that is unavailable in smartphones. Gaze prediction based on machine
learning specifically for games, associated game variables with player actions, but cannot be generalized to real-time
mobile VR eye tracking in any context [29]. ScreenGlint utilizes a smartphone and its front-facing camera for
tracking the user’s gaze by exploiting the screen’s reflection on the cornea [19], however, this approach was only
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tested when holding the smartphone at a distance and not inside a VR headset. A comprehensive review of generic
gaze estimation techniques can be found here [24].

3 CHALLENGES AND SYSTEM OVERVIEW
In this section, we describe the technical challenges of mobile VR eye tracking, along with our proposed solutions.

Headset lens reflections: The lens of the mobile VR head-worn case is situated between the captured eye and
the smartphone’s front facing camera. As a result, reflections of variable shape, size and intensity emerging from
the displayed content are cast onto the lens. Consequently, a large part of the iris may be occluded (Figure 2). Iris
detection becomes a non-trivial task.

Corneal reflections: Due to the small distance between the user’s eye and the smartphone’s screen, reflections
on the eye’s cornea are also expected (Figure 4). These reflections introduce noise during the image processing
stage and decrease gaze estimation accuracy. We apply a series of image processing operations intended to first
suppress reflections and then expand the contrast of the residual eye image to improve iris visibility (Section 4.2).

Content limitations: In contrast to specialized eye tracking devices, eye illumination solely depends on displayed
content. If the displayed content is too dark, the eye will not be illuminated enough for the iris to be detected. We
display a thin, imperceptible, bright-white bezel of light along the upper edge of the screen, 18 pixels high (0.14cm
at 326ppi) providing sufficient illumination at all times. The total area of the thin bezel is only 2.4% of the entire
FoV, thus it is unlikely it alters the perceived brightness of the scene.

Position of front-facing camera: Most smartphones’ front camera is at an oblique position with respect to
the eye. This results to a distorted view of the eye, complicating pupil registration. Our customised circle fitting
algorithm iteratively improves upon an initial pupil location estimate to maximize accuracy (Section 4.2).

Hardware and performance: Eye tracking involves simultaneously executing several, time-critical processes
including video capture, image cropping & enhancement and coordinate systems re-mapping. The simultaneous
operation of eye tracking and a VR application can easily overwhelm even the latest generation of smartphones.
Our system works without requiring computationally-heavy machine learning classifiers, enabling its fast execution
even on older generation smartphones or cheap current generation ones.

We now describe the main components of our mobile VR eye tracker addressing the challenges analysed above
(Figure 3). To demonstrate that our technique works on older generation hardware, an Apple iPhone 6S was
employed as the eye tracking device. Its 4.7” display has a resolution of 1334x750, 326ppi. The device comes with
a 5MP front camera with 720p@30fps video capture capability, along with a 1.84GHz dual-core CPU and 2GB
RAM. We placed the mobile phone in a commodity head mounted case for mobile VR with head straps, without
infrared lighting or any modification. We employed the OpenCV iOS framework for image processing [1]. The eye
tracking evaluation environment and VR apps were developed in Xcode, Apple’s native integrated development
environment for iOS applications [2]. The system operates in three distinct stages:

Stage 1 - Iris ROI detection: We first detect an approximate eye position in the captured images to reduce the
search space in the following stages. We employ circle fitting on the images as captured by the front camera. The
Region of Interest (ROI) is calculated and cropped only once, before calibration (Figure 1b, resulting image 1c)
(Section 4.1).

Stage 2 - Image enhancement and calibration: We improve iris visibility by enhancing the contrast of the
iris and suppressing the intensity of bright highlights (Figure 1c, resulting image 1d). We proceed with system
calibration. Any further circle fitting occurs now only on the cropped ROI region. Based on calibration data we
calculate the mapping functions, which convert the detected iris center positions to screen coordinates (Section 4.2).

Stage 3 - Real-time iris tracking: Now the system is ready to conduct iris tracking utilizing new frames of
the eye as captured by the front camera. We re-apply the iris visibility enhancements, as in the previous stage, to
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Fig. 2. Image histogram with: no lens reflections (top), strong lens reflections (bottom) with a visible peak of high
intensity values.

the cropped images which include the ROI region determined in the first stage. We then re-apply circle fitting to
determine the iris centre. Using the mapping function, we determine the final gaze point on the screen, resulting to
real-time iris tracking (Section 4.3).

In summary, Stages 1 and 2 run only once before entering Stage 3. During Stages 1 and 2, visibility enhancement
and circle fitting are conducted to perform calibration. Visibility enhancement and circle fitting are re-applied
during Stage 3, but this time for gaze mapping.

4 MOBILE VR EYE TRACKING
In this section we describe each stage in detail.

4.1 Stage 1: Iris ROI detection
Images of the eye, as captured from the mobile phone front-facing camera, contain irrelevant information, such as
the plastic parts surrounding the lenses (Figure 1b). Only a small section of the captured image is useful to track
the iris (Figure 1c). We drastically reduce image size by cropping the ROI which corresponds to the eye and its
surrounding area. This operation, designed to only be run once, has a positive effect on the iris tracking speed in
subsequent stages, as the iris search space is significantly smaller. Consequently, less system resources are required,
making real-time mobile eye tracking possible.

To calculate a conservative ROI, that ensures the iris is visible irrespective of gaze, the user is asked to fixate on
a set of 12 target squares (20x20 pixels each) that cover the entire screen and presented one at a time. We apply our
customised circle-fitting algorithm to detect the iris position within the captured images, as described below.
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Hough Gradient
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of each candidate circle
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of Circle with highest

confidence ω

IMAGE PRE-PROCESSING

IRIS DETECTION

Fig. 3. Flowchart depicting the steps involved in processing the original image to calculate the iris center position.

Fig. 4. ROI detection provides as input to the next process a subsection of the captured images, representing the
detected ROI rectangle. Two strong reflections are also visible - one on the headset’s lens and one on the cornea.

4.1.1 Circle fitting on the iris contour. Captured images vary in brightness, reflections and iris saliency. Thus,
we customised the Hough gradient function, a cost-efficient version of the Hough transform [40], to be highly
sensitive to circular features in the image so that circle fitting is successful under all illumination conditions. The
original Hough transformation was found to be computationally inefficient when it comes to circle detection
[20, 40], therefore, we developed a customized accelerated Hough transformation which is highly sensitive to
circular features such as the iris. The Hough gradient method utilizes the slope information of edges, by calculating
the Sobel derivatives [14] in the background. Using this gradient, every point along an imaginary line indicated by
the slope, within a specified minimum and maximum distance, is incremented in the accumulator as a potential
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center. An estimated center is kept if it has sufficient support from the nonzero pixels in the edge image, also
referred to as “votes” in bibliography, and if it is at a sufficient distance from previous centers [5]. This helps reduce
the computational cost of the problem, by requiring a 2D accumulator, e.g., a data structure constructed by the
algorithm to obtain the object candidates as local maximas, as opposed to a 3D accumulator required by the classic
Hough transform method.

The accuracy of the derived results in relation to candidate iris circles depends greatly on the given function’s
parameters and especially the accumulator threshold. The higher the threshold value, the fewer and more accurate
candidate iris circles are returned. However, too high a value can lead to detection failure. Our experiments showed
that there is no specific optimal accumulator threshold, as captured images from within the headset significantly
vary in brightness, visible reflections, iris contrast and saliency. We therefore use a fixed fail-safe threshold which
makes the function extremely sensitive to any circular feature. Even in the most challenging scenarios of poor eye
saliency, the algorithm will always return 𝑘 ≥ 1 candidate iris circles 𝐶1..𝑘 . However, most of these candidates will
be false positives. To determine which one of the 𝑘 candidates is the actual iris, we devise a confidence metric that
indicates each candidate’s probability to match the circumference of an iris.

4.1.2 Confidence metric. The confidence metric is based upon two purpose-specific, experimentally validated
indicators ℎ1 and ℎ2:
ℎ1: In dark-pupil eye tracking, where the light source is off-axis with respect to the camera, it is assumed that the

darkest region of a captured image corresponds to the iris.
ℎ2: The iris appears as a darker circular region surrounded by a brighter region, regardless of the lighting

conditions. If the mean intensity of the candidate iris segment is lower than the mean intensity of the surrounding
region, the candidate is a possible iris. The higher the contrast, the higher the confidence.

We compute the confidence value 𝜔 of each candidate circle 𝐶𝑖 by multiplying ℎ1, ℎ2 with their corresponding
weights 𝑤1, 𝑤2:

𝜔 (𝐶𝑖 ) = ℎ1 (𝐶𝑖 ) ·𝑤1 + ℎ2 (𝐶𝑖 ) ·𝑤2 (1)

Weights 𝑤1 and 𝑤2 were experimentally determined by investigating the effect of each indicator on iris detection
accuracy, in lab tests, using eye images with varying eye saliency scenarios as input. Though both indicators
influenced detection accuracy, it was shown that ℎ2 is a more robust indicator compared to ℎ1. This can be largely
attributed to the fact that ℎ1 is invalidated in scenarios where bright highlights fall onto the iris or for lighter eye
colors, increasing the brightness of the otherwise dark iris. We experimentally set 𝑤1 = 1 and 𝑤2 = 1.9, although
value-pairs of a similar ratio are also applicable. The circle with the highest confidence value is selected as the best
circle (𝐶𝑎), with its center ®𝑒𝑎 = (𝑥𝑒 , 𝑦𝑒 ) representing the estimated iris center position. When none of the candidate
circles’ confidence value 𝜔 (𝐶𝑎) passes an experimentally defined threshold 𝑇 , gaze estimation for that frame fails.
The frame is rejected and the returned gaze position is identical to the latest successful prediction.𝑇 was selected as
such, to maximize iris detection accuracy in lab tests and is always fixed at 𝑇 = 65. A balanced 𝑇 value is essential;
too high a value of T could result in rejecting accurate fits, while a too low value of T could result in accepting poor
iris fits, thus degrading accuracy. Figure 5 depicts a set of random iris frames and their respective confidence values.
Thus the iris center coordinates ®𝑒 for any given frame are equal to:

®𝑒 =
{
®𝑒𝑎, if 𝜔 (𝐶𝑎) ≥ 𝑇

®𝑒𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 , otherwise
, 𝜔 (𝐶𝑎) = max

𝑖=1..𝑘
𝜔 (𝐶𝑖 ) (2)

4.1.3 ROI calculation. Upon fixating on all 12 targets, the iris ROI is defined as a rectangle, with its center
being the average of the 12 recorded iris center positions. ROI length and width are calculated per user based on
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ω=79 ω=131 ω=123ω=134ω=83

Fig. 5. The higher the confidence value 𝜔, the higher the probability the candidate circle corresponds to the iris.
Challenging conditions (e.g. obtrusive reflections, eye angle in respect to the camera) yield lower confidence scores.

the minimum and maximum 𝑥 and 𝑦 coordinates of the estimated iris center positions and an average iris pixel
radius. This is to ensure that the iris survives cropping for all possible eye positions.

For real-time eye tracking the defined iris ROI (calculated only once, Figure 4) is cropped from all input images,
before they are fed forward to the pipeline. This allows for a drastic decrease in the input’s size by almost 8 times,
greatly reducing CPU usage, thus, enabling real-time eye tracking on a mobile device.

4.2 Stage 2: Image enhancement and calibration
4.2.1 Improving iris visibility. The smartphone’s camera captures the eye ROI at a rate of 30 fps. We convert
input images to grey-scale and downscale them by a factor of two, to further reduce computational cost without
reduction of the visual information required. Accurately tracking the iris is impossible as images suffer from poor
contrast and obtrusive reflections. We apply a pair of selected low level image enhancements, that we found result
in a more salient iris in mobile VR. We perform reflections suppression and histogram equalisation.

Reflection suppression: The iris may be occluded by screen reflections on the HMD lens or the eye’s cornea
and sclera. Accurately removing reflections is not trivial. However, for eye tracking it is unnecessary as we only
need to accurately suppress reflections, to ensure the iris circumference is identified as accurately as possible.

To suppress reflections, salient highlights can be detected as an abrupt peak of high intensity values in the
histogram. We first estimate a high intensity threshold in real-time per frame, equal to the local maximum of the
histogram derivatives in the high intensity part of the spectrum. The intensity of pixels with values higher than the
intensity threshold (i.e., reflections) is suppressed, by averaging such pixels with their lower intensity neighbouring
pixels. These neighboring pixels have intensity values lower than the threshold, and as such are not considered part
of the reflection.

Histogram equalisation: Eye images captured from within the headset suffer from poor contrast due to the low
light conditions. The intensities of such images are restricted in a narrow range of values. Histogram equalisation
can expand low contrast image areas by spreading out their most frequent intensity values to cover the entire
available dynamic range, resulting in a more uniform intensity distribution. In our system we employ Contrast
Limited Adaptive Histogram Equalisation (CLAHE) [44], a more sophisticated variant of histogram equalisation.
CLAHE locally improves contrast by segmenting the image and individually applying histogram equalisation to
each segment. Usage of CLAHE resulted in higher eye tracking accuracy in comparison to standard equalisation.
The outcome of the operation is a more salient iris (Figure 1d).

4.2.2 Eye tracker calibration. Calculating eye fixations requires mapping the estimated iris center coordinates to
pixel locations on the user’s screen. The conversion is accomplished by a mapping function, whose parameters are
determined through a calibration procedure (Figure 6). During calibration the user is asked to fixate on 12 additional
targets in known positions. These 12 targets are different to the 12 targets fixated during stage 1: for accurate
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Fig. 6. Calibration procedure flowchart (n=calibration points).

calibration, the procedure is repeated after ROI detection and image enhancement operations. The calibration
procedure lasts for about 30 seconds.

As the viewer fixates on each target 𝑖 ∈ [0, 11] with screen coordinates ®𝑠𝑖 = (𝑥𝑠 , 𝑦𝑠 ) the iris center position
®𝑒𝑖 = (𝑥𝑒 , 𝑦𝑒 ) is computed and recorded along with the corresponding target screen coordinates ®𝑠𝑖 , resulting in 12
pairs of {®𝑠𝑖 , ®𝑒𝑖 }.

Eye tracking accuracy heavily relies on the quality of the calibration procedure. For maximum accuracy all
12 targets must be successfully fixated and recorded (i.e., iris detected with high confidence (𝜔 (®𝑒𝑖 ) ≥ 𝑇 ), see
Section 4.1.2). Involuntary blinks or saccades can inevitably occur contaminating the results. To attain the highest
data quality possible, we adjust calibration timings as follows:

1. Saccades take 200ms to initiate and 20-200ms to complete [4]. Eye position recording is paused for 𝑡𝑝 = 500
ms each time a new target gaze point is presented; this gives the user adequate time to re-adjust their gaze to the
new target.

2. Each new target point is presented for at least 𝑡𝑚 seconds, set experimentally to 𝑡𝑚 = 1500ms, enough time for
the target to be fixated accurately.

To estimate the gazed point on screen, a mapping function from iris center coordinates to screen coordinates
must be defined. It is desirable that the mapping function is minimally affected by calibration errors and geometric
distortions between the eye tracker and the screen [38]. For our mobile VR eye tracking we experimented with
both linear and non-linear mapping functions. We observed that a linear approach better suited our requirements,
as the relatively small region to be tracked can be accurately mapped using a dozen of target points. Non-linear
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mapping functions proved to be highly prone to calibration inaccuracies, in addition to being more computationally
intensive.

To determine the user’s fixation we resort to linear interpolation. A linear mapping function divides the screen
into a grid of cells and infer the point of regard (PoR) by linearly interpolating the coordinates of the grid cells
junctions. Once calibration is completed, the user’s gaze coordinates on the screen (𝑥𝑠 , 𝑦𝑠 ) can be obtained as
®𝑠 = 𝑓 (®𝑒), 𝑓 the linear mapping function:

𝑥𝑠 = 𝑓𝑥 (𝑥𝑒 , 𝑦𝑒 ) 𝑦𝑠 = 𝑓𝑦 (𝑥𝑒 , 𝑦𝑒 ) (3)

4.3 Stage 3: Real-time eye tracking
Our eye tracking pipeline for mobile VR without modifications or infrared lighting can now track the iris based
on new incoming eye frames as captured by the front camera. In each incoming frame (Figure 1b) we isolate the
eye ROI in which the iris moves (Figure 1c), using the window estimated during stage 1. As a result of this step,
both the calibration and real-time gaze mapping speed and accuracy are improved, as the algorithm has to search a
smaller space in order to locate the iris, thus reducing the possibility of failed eye detection. To determine the iris
center, we apply the same image processing techniques as in Stage 2 to suppress reflections and enhance low image
contrast (Figure 1d). The customised circle fitting technique can then be applied (Figure 1e). Once the iris center
has been successfully detected, we convert the iris center coordinates to screen coordinates, using the mapping
function determined during the calibration procedure (Stage 2).

Preliminary testing indicated that immediately mapping the estimated iris centers to screen coordinates can
exaggerate small tracking errors. As a means of low pass filtering the estimated gaze points, we average the last
𝑁𝑠 screen points. We experimented with several 𝑁𝑠 values but recommend 𝑁𝑠 = 8 (Section 5.1.4), resulting to
smoother transitions between estimated gaze points by suppressing sudden error spikes. Higher 𝑁𝑠 values result in
even smoother transitions but at the cost of lower accuracy of the gaze positions. The performance impact of the
described averaging operation is negligible (< 0.2𝑚𝑠).

Table 1 shows our system’s end-to-end latency, from the time a new frame is captured by the front facing camera
until the computation of the final estimated gaze location. Our computationally efficient algorithm, when run
simultaneously with a VR application, requires less than 19ms per frame to estimate gaze, which corresponds to an
upper frequency of about 52Hz, capped to 30Hz due to the camera refresh rate. In practice, the maximum gaze
prediction rate of 30Hz may drop momentarily when sub-optimal conditions exist, e.g. obtrusive eye lashes, low
iris-sclera contrast due to light eye color, and very high contrast screen content evoking extreme reflections. In such
cases, the algorithm may miss the iris in some frames, an issue present in most eye trackers. Our system evaluation
and user study demonstrated that gaze-tracking delays were rare and imperceptible.

5 EVALUATION OF TRACKER & APPLICATIONS
We evaluated the performance of our system by conducting two experiments and a use-case study. Experiment
1 investigated the level of accuracy and precision of the estimated gaze locations. Experiment 2 explored the
effectiveness, in terms of task completion time, of gaze-driven interaction using our eye tracking pipeline compared
to head tracked interaction in a VR game. A final use case study qualitatively evaluated the usability of our system’s
gaze-based interaction for viewing 360 VR panoramas.

5.1 Experiment 1: Accuracy and precision of eye tracking in mobile VR
Accuracy and precision measurements can be used to evaluate the validity of the estimated gaze locations of our
eye tracking system [18]. Accuracy, also known as systematic error, is defined as the average difference between
the real stimuli position and the measured gaze position. Precision, also known as variable error, indicates the
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Table 1. Execution time of processing steps, total end-to-end latency.

Mean (ms) SD (ms)
Image cropping 0.01 0.001

RGB to grayscale 0.38 0.15
Histogram equalisation 0.94 0.16

Image scaling 0.12 0.004
Reflection suppression 0.077 0.014

Hough circle fitting 1.1 0.24
Find best circle 0.074 0.008

Gaze mapping and averaging 0.2 0.02
Camera image acquisition 15.6 4.8
Total end-to-end latency 18.5 1.64

ability of the system to consistently reproduce the same gaze point from the same eye input image. One way to
characterize precision is to estimate the variation of the recorded data as the root mean square error [17].

Acceptable levels of accuracy and precision depend on the nature of the eye tracked application. In our context,
we can tolerate larger inaccuracies compared to an eye tracker that is based on specialised hardware, especially in
the periphery of vision. Due to the inherent limitations of tracking without IR light, we propose design guidelines for
the eye tracked GUI elements (Section 5.1.6). Given the nature of our setup (smartphone and mobile VR headset),
it is not straightforward to obtain ground truth data. We assume that the users participating in the evaluation
experiment were actually fixating on the points as instructed (Section 5.1.5). Users not actually fixating to the
points as instructed, can only lower our prediction accuracy measurements, never improve them.

5.1.1 Apparatus & stimuli. We used an Apple iPhone 6S both for displaying the stimuli and tracking the eye.
We used the Shinecon VR headset. We developed an eye tracking experiment that presents 12 red (RGB: 255,0,0)
20x20 pixel target points on a 3x4 grid on black background, one at a time. The luminance of the screen was at
its highest level (500 𝑐𝑑/𝑚2). The target points were evenly distributed so that the entire visible screen space is
covered.

5.1.2 Participants. 16 users (3 female, mean age 23.9, SD 3.19) were recruited from our university to participate
in the experiment. We ensured that all users exhibited good tracking properties, i.e., not wearing glasses, having
droopy or lazy eyes, or other known eye defects. We excluded two such users, one with strabismus and one with a
cataract. Two users had blue, two green and the rest had brown-colored eyes.

5.1.3 Procedure & data recording. Users were informed about the experimental procedure during which they
fixated at the set of 12 target points displayed in a specific order one by one. Each target point is presented for
𝑡 = 3𝑠, including a 𝑡 = 1𝑠 data recording pause, so that users have enough time to adjust their gaze. Target locations
can be seen as blue asterisks in Figure 7. Each target point is displayed three times per user for validity. As the
users fixated the target points, the application recorded the following data: userID: a unique identifier for each user
of the experiment. recordID a unique incremental identifier for each tuple of recorded data. pointID: an identifier
of each of the 12 presented target points in the range [0,11]. trialID: number in the range [1,3] which identifies
the trial number the tuple belongs to. elapsedTimePoint: elapsed time a specific target point is being presented, in
milliseconds. elapsedTimeTotal: elapsed time since the beginning of the experiment, in milliseconds. Xpoint,Ypoint:
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Fig. 7. Accuracy and precision of the estimated gaze points in degrees of visual angle. Blue asterisks indicate gaze
targets. Red dots denote the mean estimated position. Red ellipses denote root mean square error for the estimated
gaze positions.

x,y coordinates of the presented target point. Xgaze,Ygaze: x,y coordinates of the estimated gaze point. Ns: numbers
of averaged samples.

5.1.4 Data analysis & results. Accuracy and precision data across all users are plotted in Figures 7 and 8. We
calculated the average accuracy and precision for each of the 12 targets and the mean accuracy averaged across all
targets, separately in X and Y axes (Table 2). In the X axis the mean accuracy across all targets was 1.17° (7.9
pixels or 0.06cm on screen). In the Y axis the mean accuracy across all targets was 1.86° (12.5 pixels or 0.1cm on
screen). Regarding individual targets, average target accuracy ranged from 0.04° in the X axis at best to 3.53° in the
Y axis at worst. Regarding precision measures, the average standard deviation across participants was 2.87° (19.3
pixels). We also show mean, minimum and maximum gaze estimation error in degrees of visual angle per subject
(Table 3). A slightly different amount of total fixations were recorded for each user. To calculate visual angles we
first estimated the iPhone’s pixel size in meters as 0.0254/326 since the iPhone 6S display has a resolution of 326
pixels-per-inch (ppi). Then used the standard formula:

𝑣𝑖𝑠𝑢𝑎𝑙𝐴𝑛𝑔𝑙𝑒 = 2∗𝑎𝑟𝑐𝑡𝑎𝑛 #𝑝𝑖𝑥𝑒𝑙𝑠 ∗ 𝑝𝑖𝑥𝑒𝑙𝑆𝑖𝑧𝑒
2 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝑆𝑐𝑟𝑒𝑒𝑛 = 2∗𝑎𝑟𝑐𝑡𝑎𝑛 #𝑝𝑖𝑥𝑒𝑙𝑠 ∗ 7.79 ∗ 10

−5

0.06
= 2∗𝑎𝑟𝑐𝑡𝑎𝑛(#𝑝𝑖𝑥𝑒𝑙𝑠∗0.0012986)

(4)
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Table 2. Mean, minimum, maximum gaze estimation error (averaged across all targets and subjects) in pixels,
degrees of visual angle and cm on screen.

avgX avgY minX maxX minY maxY
pixels 7.9 12.5 0.3 10.9 0.9 23.7

degrees 1.17 1.86 0.04 1.62 0.13 3.53
cm 0.06 0.1 0 0.08 0.01 0.18

Table 3. Mean, minimum and maximum gaze estimation error in degrees of visual angle per participant.

avgX avgY minX maxX minY maxY
P1 0.4419 0.8974 0 1.8053 0 6.2620
P2 3.8657 3.4382 0.0186 15.5288 0.6789 8.4543
P3 2.1463 1.7489 0.0461 9.9941 0 7.8432
P4 2.5499 3.6846 0.5128 6.5836 0.2328 8.1267
P5 1.9930 1.6264 0 14.3166 0.0935 6.4079
P6 0.2685 0.8367 0 0.9539 0.0081 3.7304
P7 0.9887 1.0135 0.0646 3.4018 0.0644 3.1764
P8 1.9677 2.8553 0.0656 4.8081 0.1452 6.6017
P9 0.8042 2.2598 0.0092 1.6829 0.1186 6.5690

P10 1.9303 1.7936 0 7.2897 0.0581 7.3437
P11 1.1453 2.3978 0 4.8214 0 6.1706
P12 0.8517 1.5673 0.0631 2.9059 0.3189 3.3240
P13 1.5501 1.5713 0.1661 2.9407 0.0218 4.8277
P14 1.4538 3.6420 0 4.9255 0.8184 6.1966
P15 4.9873 5.2571 0.0342 12.5118 0.5354 13.4429
P16 4.3012 3.3915 0.2338 10.8940 0.0427 8.4977

Fig. 8. Accuracy and precision of the estimated gaze points in pixels. On each box, the central mark indicates the
median. Bottom and top edges indicate the 25th and 75th percentiles. Higher is worse. The whiskers extend to the
most extreme data points not considered outliers. Outliers are plotted using the ’+’ symbol.

Sample averaging did not have a significant effect on precision. In our 30Hz tracking, given that 30 samples
per second are processed, 8-sample averaging results in less then 1

3 of a second (8/30 = 0.266s) delay for the gaze
point to shift to the latest estimated gaze position. Given that our eye tracking method is intended to be used as
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Fig. 9. Experiment 2 - eye tracking (left): VR application employing our eye tracking system. Red crosses are
estimated gaze points. Thin bezel of light on upper edge of screen. Experiment 2 - head tracking (middle): Users
position the ’reticle’ visible as a white dot on GUI elements by rotating/tilting their head. Use case study (right): Eye
tracked 360 VR panorama.

a means of user interaction, not for taking ground truth measurements, e.g., for research purposes, this simple
computationally inexpensive technique acts as a low-pass filter, with the negligible drawback of introducing a
barely noticeable delay in updating the gaze point. Additionally, it should be noted that if a sample yields a low
confidence value, e.g. due to a blink, it is excluded from the averaging window.

An one-way ANOVA was conducted to compare the effect of the averaging window Ns on gaze estimation error
for Ns = 1, 8 and 12. There was not a significant effect of the averaging window size at the 𝑝 < .05 level for the
three conditions [F(3, 12) = 22.1, p = 0.27].

5.1.5 Discussion. Experiment 1 examines the accuracy and precision of our front camera, mobile eye tracker,
deployed without specially coated lenses, external IR light, IR cameras or other modifications. Our eye tracker
performs best and similarly to eye trackers in commercial VR headsets when the eyes move in the central part of
the headset’s FoV (about 20°of visual angle). In a recent study, the accuracy and precision of gaze estimates in
head-restrained conditions for the HTC Vive Pro Eye were evaluated [36, 37]. Average accuracy over 50 degrees
of the visual field was 4.16°, SD: 3.23 while the precision had a mean of 2.17°, SD: 0.75. In the central part of
the visual field with which we compare, accuracy for the HTC Vive Pro was 2.26°, SD: 0.73. For our mobile VR
method, in the x-axis the mean accuracy across all targets was 1.17°. In the y-axis the mean accuracy across all
targets was 1.86°. Therefore, it is shown that, indeed, our mobile VR system’s precision and accuracy in the central
FoV is similar to that of commercial systems in the central FoV.

Results consistently demonstrate a slightly higher accuracy on the x-axis than on the y-axis. We have two,
potentially inter-related, hypotheses about the slightly higher accuracy on the x-axis: (i) Due to the relative position
between the selfie camera and the eye and due to the aspect ratio of the screen, the movement of the eye on the
x-axis traces a greater distance compared to the eye’s movement on the y-axis. Movement on the x-axis, therefore,
can be discriminated better by the image processing pipeline. (ii) Due to the aspect ratio of the camera, having a
higher resolution available in the x-axis results to a higher discrimination ability compared to the y-axis.

Mean accuracy and precision decreases with eccentricity (Figure 7). This is expected and does not affect
tracking much, as the users usually move their head instead of their eyes for visual angles larger than 20° [33]. In
Section 5.1.6 we provide guidelines for GUI design that, taking the system’s accuracy into account, minimize false
positive or false negative interactions with GUI elements.

For our proof-of-concept implementation we opted to test our system on the oldest smartphone that we could use,
an iPhone 6S (manufactured 2015). During real-time evaluation we observed an average CPU usage of 54% (as
reported by XCode) for this device, which showcases the computational efficiency of our system. Image processing
operations are accelerated by approximately 5 × times on a relatively newer device (iPhone Xs, Hexa-core (2x2.5
GHz + 4x1.6 GHz)) in comparison to the iPhone 6s employed (dual-core 1.84GHz). Image acquisition performance
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is marginally improved by 2,73ms (12,87ms vs 15,6ms). Overall end-to-end latency is 5ms lower on the iPhone Xs.
These measurements were acquired with the same settings for both phones and 360x480 input image resolution.
Temporal averaging of samples did not improve accuracy nor precision (Section 5.1.4), regardless of using 1, 8 or
12 samples. Still, we recommend that 8 samples are averaged instead of no averaging, as this eliminates sudden
jumps in tracking due to e.g., blinks.

During Experiment 1, we trust that the users were actually gazing targets as instructed. Users not accurately
fixating on targets, resulting to human error, would only further decrease the accuracy and precision measures
of our system. It was noted that the system’s accuracy is highly sensitive to changes in the VR headset’s relative
position with respect to the head. The headset must be firmly mounted onto the user’s head so that it does not move
much during usage. This is feasible and was not an issue during user testing. Only the left eye is tracked based on
the smartphone’s camera location, therefore, there is no binocular tracking, thus, no depth acquisition.

5.1.6 UI & content design guidelines. Tracking accuracy and precision directly relate to the acceptable size of
any region (target) in a user interface that the system should recognize if the user fixates on, e.g., a GUI button.
A strict estimate would be to require at least 95% of the expected fixations to fall inside a target region [9]. We
obtained a different accuracy score in the X and Y axes and as such we will estimate a different recommended
target/button size for each dimension. Given that 95% of values lie within two standard deviations of the mean for
normally distributed data, the suggested 𝑆𝑤𝑖𝑑𝑡ℎ and 𝑆ℎ𝑒𝑖𝑔ℎ𝑡 of the GUI elements should be at least 99px (≈ 0.8𝑐𝑚 at
326ppi) and 125px (≈ 1𝑐𝑚 at 326ppi) respectively in the X and Y axis, according to [9]:

𝑆 = 2 × (𝑙𝑜𝑤𝑒𝑠𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) (5)

𝑆𝑤𝑖𝑑𝑡ℎ = 2 × (23.7 + 2 × 19.3) ≈ 125 (6)

𝑆ℎ𝑒𝑖𝑔ℎ𝑡 = 2 × (10.9 + 2 × 19.3) = 99 (7)

5.2 Experiment 2: Eye vs head tracking in a VR game
Experiment 2 compares task completion time employing our system with standard gyroscope-based head tracking
to investigate if mobile eye tracking hampers user performance. Two identical VR apps were created, one employing
our eye tracking pipeline and the other using standard head tracking, commonly used in “Cardboard" VR apps as
the means of input. Users were asked to complete the same task in both apps for fair comparison.

5.2.1 Procedure. We deployed a real-time eye tracking test application on our iOS device. The task emulated a
simple memory test game. The application employed a VR User Interface, splitting the smartphone’s screen in half
and displaying four buttons to be interacted using eye gaze, as shown in Figure 9.

The users were informed that they would be wearing a HMD and were presented with a set of numbered buttons
which they should memorize. Each button contained a randomly generated number, present for 𝑡 = 2𝑠. Then, the
numbers disappeared and the users were asked to select each button from the lowest to the highest number, as
memorized. In the eye tracked condition users were asked to fixate on the target button. They were not receiving
any feedback in relation to their current gaze, i.e., there was no crosshair target. In the head tracked condition a
static pointer at the center of the screen could be controlled and aligned with the targets via head movements. The
order of the two conditions was randomised. We recorded task completion time for each user. In both conditions
the timer started when the first button was activated. The buttons were activated after being fixated/pointed at for
1000ms in both conditions (𝑡 ≥ 1𝑠) to eliminate false selections, also known as the “Midas’ touch problem" [21].

5.2.2 Participants. 13 users (1 female, mean age 25.5, SD 4.1) were recruited from our university to participate
in the experiment. We ensured that all users exhibited good tracking properties as in Exp. 1 (Section 5.1.2).
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5.2.3 Results & Discussion. An independent-samples t-test was conducted to compare task completion time
between the eye tracked and the head tracked interface. There was not a significant difference in the completion
time scores for eye tracked (M=6.9s, SD=2.82s) and head tracked (M=6.88, SD=0.56s) conditions; t(24)=0.01,
p = 0.98. This showcases that our eye tracking module does not hamper task performance, while at the same
time minimizing cumbersome head motions. We observe that the SD is greater for the eye-tracked interface. We
hypothesize that this is because participants were used to head tracked interfaces in mobile VR as this is the de
facto standard form of interaction, whereas the eye tracked condition was a new form of interaction that they were
not used to. Their lack of experience, however, can only hamper their performance, not improve it.

5.3 Use case study: Eye tracking in a 360 VR panorama
We investigated perceived usability of gaze-driven interaction in a 360 VR panorama as shown in Figure 9 (right).
The goal was for users to freely express their views as regards the usability of our system based on the think aloud
usability evaluation methodology, as opposed to formal gathering of quantitative data as in Experiments 1 and 2.

Apparatus & Discussion. Several undergraduate and postgraduate computer engineering students in a university
laboratory experimented with our eye tracked VR 360 panorama viewer. The panorama viewer incorporated two
gaze-driven actions: users could look right to proceed to the next 360 image or left to go back to the previous one.
Similarly to previous tasks, the user was required to fixate their gaze left or right for a short amount of time to
prevent unintentional actions. Most users were able to successfully cycle between different panoramas by using
their gaze. 3 users with light eye color (2 green-eyed, 1 blue-eyed) yielded lower eye-tracking accuracy than users
with dark eye color. 1 user of unfavorable eye position leading to poor iris visibility from the smartphone’s front
camera, was excluded from the study. We noted that when panoramas with very high contrast and color variations
in small areas were present, the possibility of the eye being partially or completely occluded from reflections
increased, reducing the accuracy of eye tracking.

Qualitative evaluation demonstrated that users were able to switch panoramas only by fixating on panoramas’
edges, based on users’ self-report while immersed in the panorama. No buttons or other UI elements, such as dots or
rays, usually visible when VR controllers are employed for interaction were present. They were excited regarding
the ease of use of the system. In addition, the ability to freely examine the panoramas in-between gaze-driven
actions resulted in positive remarks regarding the clean interface.

6 CONCLUSIONS, LIMITATIONS AND FUTURE WORK
We presented a cost-free, mobile VR eye tracking solution based on front camera image capture, able to estimate
users’ on-screen fixations in real-time, without any additional hardware, infrared lighting or other modifications
such as added mirrors. Our eye tracker performs similarly to eye trackers in commercial VR headsets when the
eyes move in the central part of the headset’s FoV. In the x-axis the mean accuracy across all targets was 1.17°. In
the y-axis the mean accuracy across all targets was 1.86°. Mean accuracy and precision decreases when drifting
away from the centre of the viewer’s FoV. This does not affect tracking much, as users usually move their head
instead of their eyes when items of interest are placed at larger visual angles.

When using our system, users required the same time to complete a task, as when using head tracked interaction,
without the need for laborious consecutive head motions. In a 360 VR panorama, users could successfully switch
between panoramas using only gaze, freely exploring the displayed content without obtrusive GUI elements such
as buttons or dots, common when VR controllers are used. A general recommendation is that for robust eye
tracking in mobile VR using our system, the suggested size for width and height of GUI elements to be gazed at for
interaction should be at least 99 and 125 pixels respectively in the X and Y axis. For successful mobile VR eye
tracking, the used smartphone should have its front camera in such a position that the eye is visible through the
headset’s lens. Our pipeline is directly applicable to video-based MR, i.e., MR that overlays virtual elements over
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(a) (b) (c) (d)

Fig. 10. Two examples of sub-optimal content that may decrease accuracy, such as images with high intensity
colors and high contrast shapes used as panoramas (see Section 5.3). Such content inevitably produces obtrusive
reflections in the raw eye images (a, c), reducing eye saliency and thus hampering accurate gaze estimation (b, d).
In both cases our algorithm detected the approximate position of the iris with substantial error, due to the highlights
covering the iris’ edges, and thus altering its perceived shape. In cases of severe error this is reflected in the low
confidence value (𝜔=52) (a, b).

the smartphone’s main camera feed pointed to the world. An additional benefit of our solution directly relates to
user privacy and security. By enabling eye tracking without using IR imaging, the user’s iris image is not directly
usable for iris-based authentication, shown recently to be a significant security vulnerability for IR based eye
trackers [23].

Limitations. An inherent limitation of eye tracking without IR lighting is that our system’s performance depends
on iris visibility through the HMD lens as a function of the displayed content. Our system maintains its accuracy
regardless of poor eye illumination and the absence of infrared light and cameras. However, in cases when the
displayed content becomes very bright (see Figure 10), the reflections cast onto the lens of the HMD may partially
or completely occlude the eye, decreasing prediction accuracy temporarily. Thus, the presented system optimally
functions when displayed content does not include large areas of very high luminance. To keep obtrusive reflections
to a minimum, avoiding extremely bright backgrounds is suggested.

Future Work. Future work could introduce automatically-adjusted bezel illumination. This would allow the
system to adapt to e.g., significantly different lighting conditions, thus further reducing eye tracking precision
errors. We hypothesize that this could work by exploiting content characteristics to predict the expected level of
eye illumination. Furthermore, the smartphone’s accelerometer could be used to detect abrupt head movements that
shift the headset with respect to the head. We could then initiate a swift re-calibration procedure to maintain eye
tracking accuracy. Additional future work could evaluate the potential benefits of dynamically adjustable algorithm
thresholds per user, based on eye saliency and/or lighting conditions. For instance, if a user yields high confidence
values (due to salient iris, dark eye color etc.) over a sustained time period, 𝑇 can be increased so that sub-optimal
fits are rejected and only exceptionally accurate fits are kept (thus further improving overall accuracy). On the
other hand, if a user yields low circle fitting confidence scores (due to "lazy" eyes, light eye color, unfavorable
eye position in respect to the front-facing camera), 𝑇 could be decreased to compensate for the lack of “good fits”.
However, dynamically manipulating thresholds is non-trivial, due to the fact that iris saliency is not only dependent
on eye morphology, but also on the displayed content.
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