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Abstract

A well-balanced Runge-Kutta discontinuous Galerkin method is presented for the numerical solu-
tion of multilayer shallow water equations with mass exchange and non-flat bottom topography. The
governing equations are reformulated as a nonlinear system of conservation laws with differential source
forces and reaction terms. Coupling between the flow layers is accounted for in the system using a
set of exchange relations. The considered well-balanced Runge-Kutta discontinuous Galerkin method
is a locally conservative finite element method whose approximate solutions are discontinuous across
the inter-element boundaries. The well-balanced property is achieved using a special discretization
of source terms that depends on the nature of hydrostatic solutions along with the Gauss-Lobatto-
Legendre nodes for the quadrature used in the approximation of source terms. The method can also
be viewed as a high-order version of upwind finite volume solvers and it offers attractive features for
the numerical solution of conservation laws for which standard finite element methods fail. To deal
with the source terms we also implement a high-order splitting operator for the time integration. The
accuracy of the proposed Runge-Kutta discontinuous Galerkin method is examined for several exam-
ples of multilayer free-surface flows over both flat and non-flat beds. The performance of the method
is also demonstrated by comparing the results obtained using the proposed method to those obtained
using the incompressible hydrostatic Navier-Stokes equations and a well-established kinetic method.
The proposed method is also applied to solve a recirculation flow problem in the Strait of Gibraltar.

Keywords. Discontinuous Galerkin method; Well-balanced discretization; Runge-Kutta scheme; Multi-
layer shallow water equations; Free-surface flows; Mass exchange; Wind-driven flows; Strait of Gibraltar

1 Introduction

The incompressible Navier-Stokes equations have been well established as accurate tools for modelling
and simulating water flows, see [10, 47] among others. However, for free-surface flows, these equations
become difficult to numerically solve mainly due to the hydrostatic assumption on the pressure and the
presence of moving boundaries within the flow domain. On the other hand, assuming that the pressure is
hydrostatic and the vertical scale is far smaller than the horizontal scale, the shallow water equations can
be derived by depth-averaging the three-dimensional Navier-Stokes equations, see for instance [1]. Indeed,
shallow water equations have been widely used in modelling many engineering applications in free-surface
flows and hydraulics such as tides in coastal regions, floods in rivers, water flows in reservoir, and open
channel flows among others, see for example [33, 43]. However, because these equations are derived based
on depth-averaged procedures, the vertical velocity component is not resolved in these models and the
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bed friction is derived only in terms of the mean flow velocity rather than the velocity near the bottom.
Hence, the three-dimensional modeling of hydraulics is required for an accurate representation of the flow
structures, especially for recirculation flows and for solution of near-field problems involving sediment
transport in rivers and coastal engineering. In the recent years, research in shallow water flows has been
shifted to overcome the shortcomings of this type of modeling namely, the use of single velocity profile
for the entire depth of the water flow. This has conducted to the introduction of multilayer shallow
water equations for geophysical free-surface flows. For example, two-layer shallow water equations have
been proposed to model immiscible fluids in [16, 24]. More recently, multilayer shallow water equations
with mass exchange terms have been studied in [6, 13, 4, 11] among others. The governing equations
in these multilayer models have been derived using a P0 finite element discretization of the vertical
velocity in the three-dimensional incompressible Navier-Stokes equations. This class of multilayer shallow
water equations avoid the computationally demanding methods needed to solve the three-dimensional
incompressible Navier-Stokes equations with free-surface but at the same time providing stratified flow
velocities since the pressure distribution is still assumed to be hydrostatic. In the current study, the
free-surface flow problem is approximated as a layered system made of multiple shallow water systems of
different water heights but coupled through mass-exchange terms between the embedded layers. These
water layers may also differ in terms of density, viscosity, compressibility and potential for mixing among
others. Recently, multilayer shallow water equations have been subject of various research studies and
have been used for modelling a variety of free-surface flows such as estuaries, bays and other nearshore
regions where water free-surface flows interact with the bed geometry and wind shear stresses, see for
example [6, 13, 4].

The Runge-Kutta Discontinuous Galerkin (RKDG) method belongs to a class of finite element methods
which uses discontinuous piecewise polynomials for the numerical solution and for the test functions
whereas, the time integration is performed using an explicit third-order Runge-Kutta scheme. During
the recent years, the RKDG method has been investigated for many practical applications in engineering,
see [8] for a review and further references are therein. The RKDG method has also been implemented
for solving the standard single-layer shallow water equations, see for instance [2, 12, 25]. Extension of
the RKDG method for two-layer shallow water equation of immiscible fluids has also been presented
in [21, 20]. Based on the results reported in these references and other in the literature, the RKDG
method has proven to offer (i) the ability to preserve the advantages of the conventional finite element
method to handle complicated geometries, (ii) the implementation of mesh adaptation without need
of continuity assumptions on the conformity of the finite elements, (iii) the possibility to increase the
accuracy of the overall method by increasing the degree of the approximating polynomials locally, thus
allowing an efficient p-adaptivity for each element independently of its neighbors (iv) the efficient parallel
implementation, since each element solution communicates with its immediate neighbors only regardless
of the order of accuracy, and (v) the capability to handle calculations of gradually varying flows as well
as rapidly varying flows over both flat and non-flat beds. In the present work, using the hydrostatic
reconstruction, we develop a well-balanced RKDG method that is efficient and high-order accurate to
solve the multilayer shallow water equations without relying on the Riemann-solver based finite volume
methods. This objective is achieved by using a second-order splitting operator for the time integration
combined with a hydrostatic reconstruction to reconstruct well-balanced discretization of flux gradients
and source terms in the system. It should be stressed that hydrostatic reconstruction has been first
developed in [5] for single-layer shallow water equations and applied later to free-surface water flows in
[32] and to blood flows in [27]. To the best of our knowledge, solving multilayer shallow water equations
with exchange terms using the RKDG method is presented for the first time. Several numerical examples
are presented to demonstrate the performance of the proposed RKDG method to accurately solve the
multilayer shallow water equations. We verify the model capability of calculating vertical distributions
of the water velocity for the multilayer shallow water flows over both flat and non-flat beds. We also
compare the results obtained using the RKDG method to the results obtained using the incompressible
Navier-Stokes equations for a dam-break problem. The performance of the proposed RKDG method for
resolving recirculation flows in the Strait of Gibraltar is also investigated. Numerical results presented
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in the current study demonstrate high resolution of the RKDG method and confirm its capability to
provide highly accurate solutions for multilayer free-surface flows with mass exchange.

This paper is organized as follows. In Section 2 we present a brief description of the governing equations
for multilayer free-surface flows with mass exchange. Formulation of the Runge-Kutta discontinuous
Galerkin method for solving these equations is discussed in Section 3. This section includes the finite
element method for space discretization and the Runge-Kutta scheme for the time integration. Numerical
results and examples are presented in Section 4. Section 5 contains conclusions.

2 Equations for multilayer free-surface flows

Using a vertical P0-type discretization of the horizontal velocity, the equations for three-dimensional hy-
drostatic incompressible Navier-Stokes equations with free surface yields the so-called multilayer shallow
water equations, see [6, 13] for detailed derivations of these equations. The water exchange between the
layers is accounted for in these equations through source terms included in the momentum equations.
Thus, the governing equations are defined as

∂H

∂t
+

M∑
α=1

∂

∂x
(lαHuα) = 0,

(1)
∂

∂t
(lαHuα) +

∂

∂x

(
lαHu

2
α +

1

2
glαH

2

)
= −glαH

∂Z

∂x
+ Suα + Sµα + Sbα + Swα ,

where uα(x, t) is the local water velocity for the αth layer, Z(x) is the topography of the flow domain, g
is the gravitational acceleration, H(x, t) is the water height of the whole flow system and lα denotes the
relative size of the αth layer satisfying the conditions

lα > 0,
M∑
α=1

lα = 1.

The water height hα(x, t) of the αth layer is defined as a fraction of the total water height by

~α = lαH, α = 1, . . . ,M,

where M is the total number of layers in the flow domain, see Figure 1 for an illustration. Note that
the relative size lα is prescribed a priori and all the layers are assumed to have the same water density.
In (1), the source term Suα is related to the momentum exchanges between the layers which is defined
through the vertical P0 discretization of the flow as

Suα = uα+1/2Gα+1/2 − uα−1/2Gα−1/2, (2)

with the mass exchange terms Gα−1/2 and Gα+1/2 are calculated by

Gα−1/2 =


0, if α = 1,

α−1∑
β=1

∂ (~βuβ)

∂x
− lβ

M∑
γ=1

∂ (~γuγ)

∂x

 , if α = 2, 3 . . . ,M,

(3)

Gα+1/2 =


α∑
β=1

∂ (~βuβ)

∂x
− lβ

M∑
γ=1

∂ (~γuγ)

∂x

 , if α = 1, 2, . . . ,M − 1,

0, if α = M,

(4)
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Figure 1: Schematic of a multilayer free-surface flow system.

and the interface velocities uα−1/2 and uα+1/2 are evaluated using an upwind procedure following the
sign of the mass exchange terms (3) and (4) as

uα−1/2 =


uα−1, if Gα−1/2 ≥ 0,

uα, if Gα−1/2 < 0.

uα+1/2 =


uα, if Gα+1/2 ≥ 0,

uα+1, if Gα+1/2 < 0.

(5)

The vertical kinematic eddy viscosity terms Sµα in (1) account for the friction between the neighboring
layers as

Sµα =



2ν
u2 − u1

(l2 + l1)H
, if α = 1,

2ν
uα+1 − uα

(lα+1 + lα)H
− 2ν

uα − uα−1

(lα + lα−1)H
, if α = 2, 3, . . . ,M − 1,

−2ν
uM − uM−1

(lM + lM−1)H
, if α = M,

(6)

where ν is the eddy viscosity. The external friction terms Sbα and Swα in (1) are defined by

Sbα =


−τb
ρ
, if α = 1,

0, if α = 2, 3, . . . ,M,

Swα =


0, if α = 1, 2, . . . ,M − 1,

τw
ρ
, if α = M,

(7)

with ρ is the water density, τb and τw are respectively, the bed shear stress and the shear of the blowing
wind defined by the water velocity u1 and the wind velocity w as

τb = ρCbu1 |u1| , τw = ρCww |w| , (8)

where Cb is the bed friction coefficient and Cw is the wind friction coefficient given by [38]

Cb =
gn2

b

H1/3
, Cw =

σ2ρa
H

,

with nb is the Manning roughness coefficient at the bed, w the wind velocity at 10 m above the water
surface, σ2 the wind stress coefficient and ρa the air density. It should be noted that in the multilayer
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system (1), the internal friction term Sµα models the friction between neighboring layers, the bed-friction
forcing term Sbα is acting only on the lower layer, and the wind-driven forcing term Swα is acting only on
the upper layer. More details on rigorous derivations of the multilayer shallow water system (1) from
the three-dimensional incompressible Navier-Stokes equations can be found in [6, 13]. Note that the
multilayer shallow water equations (1) can also be rearranged in a compact vector form as

∂W

∂t
+
∂F(W)

∂x
= Q(W) + R(W), (9)

where W is the vector of conserved variables, F the vector of flux functions, Q and R are the vector of
source terms

W =



H

Hu1

Hu2

...

HuM


, F(W) =



M∑
α=1

lαHuα

Hu2
1 +

1

2
gH2

Hu2
2 +

1

2
gH2

...

Hu2
M +

1

2
gH2


, Q(W) =



0

−gH ∂Z

∂x

−gH ∂Z

∂x
...

−gH ∂Z

∂x


,

R(W) =



0

1

l1

(
u3/2G3/2 −

τb
ρ

+ 2ν
u2 − u1

(l2 + l1)H

)
1

l2

(
u5/2G5/2 − u3/2G3/2 + 2ν

u3 − u2

(l3 + l2)H
− 2ν

u2 − u1

(l2 + l1)H

)
...

1

lM−1

(
uM−1/2GM−1/2 − uM−3/2GM−3/2 + 2ν

uM − uM−1

(lM + lM−1)H
− 2ν

uM−1 − uM−2

(lM−1 + lM−2)H

)
1

lM

(
−uM−1/2GM−1/2 +

τw
ρ
− 2ν

uM − uM−1

(lM + lM−1)H

)



.

Note that it is difficult to derive explicit analytical expressions for the (M + 1) eigenvalues of the system
(9) and it is also not evident that the system (9) is hyperbolic as its associated eigenvalues may become
complex. In this case, the multilayer system (9) yields to the so-called Kelvin-Helmholtz instability at
the interface separating the water layers. However, an estimation of the eigenvalues in the multilayer
model (9) may be used for controlling the timestep size in the numerical simulations. In this study we
consider the asymptotic analysis reported in [6]. Thus, we suppose that all the velocities (uα)α=1,...,M

are close to the mean velocity u. A first-order approximation of the two barotropic eigenvalues yields

λ±ext = um ±

√√√√g
M∑
α=1

~α +O
(
|uβ − u|2

)
β=1,...,M

, um =

M∑
α=1

~αuα

M∑
α=1

~α

, (10)
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A zeroth-order approximation of the 2(M − 1) barotropic eigenvalues associated with (M − 1) interfaces
gives

λ
±,α+ 1

2
int = u±

√√√√1

2
g

M∑
α=1

~α +O (|uβ − u|)β=1,...,M , α = 1, . . . ,M − 1. (11)

Notice that the eigenvalues (10)-(11) are approximations for eigenvalues of the original system using the
water heights ~α instead of the total height H. This results in a system of 2M equations for which each
layer has two eigenvalues. It should also be stressed that for the numerical methods studied in [4], the
eigenvalues associated with the single-layer counterpart of the system (1) have been used to adjust the
time steps during the time integration process.

3 Runge-Kutta discontinuous Galerkin method

For the numerical solution of the multilayer shallow water system (9) we consider the Runge-Kutta scheme
for the time integration and the discontinuous Galerkin (DG) method for the space discretization. Here,
we divide the time interval into subintervals [tn, tn+1] with length ∆t = tn+1− tn and we use the notation
Wn to denote the value of a generic variable W at time tn. To deal with the source terms Q(W) and
R(W) in (9) we consider a second-order splitting method studied in [48] which consists of the following
steps:

Step 1: solve for W∗

∂W∗

∂t
= R(W∗), t ∈ (tn, tn+1/2],

(12)
W∗(tn) = W(tn).

Step 2: solve for W∗∗

∂W∗∗

∂t
+
∂F(W∗∗)

∂x
= Q(W∗∗), t ∈ (tn, tn+1],

(13)
W∗∗(tn) = W∗(tn+1/2).

Step 3: solve for W∗∗∗

∂W∗∗∗

∂t
= R(W∗∗∗), t ∈ (tn+1/2, tn+1],

(14)
W∗∗∗(tn+1/2) = W∗∗(tn+1).

The full time integration of the system (9) is complete once a time-stepping scheme is chosen for the
solution of the three steps (12)-(14). In the current work, we consider the third-order explicit Runge-
Kutta method proposed in [39] to solve the systems (12), (13) and (14). Thus, the procedure to advance
the solution of an equation of the structure (12) from the time tn to the next time tn+1 can be achieved
by

W(1) = Wn + ∆tR(Wn),

W(2) =
3

4
Wn +

1

4
W(1) +

1

4
∆tR(W(1)), (15)

Wn+1 =
1

3
Wn +

2

3
W(2) +

2

3
∆tR(W(2)),

where we have dropped the asterix of the variables for ease of notation. The formulation of the third-
order explicit Runge-Kutta method for the stages (13) and (14) is carried out in the same manner as in
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(15). Note that the main advantage of this scheme lies on the fact that (15) is a convex combination of
the first-order Euler steps which exhibits strong stability properties. Therefore, the scheme (15) is TVD,
third-order accurate in time, and stable under the standard Courant-Friedrichs-Lewy (CFL) condition.
It should be stressed that the overall accuracy of the method is second-order since the splitting (12)-(14)
is second-order accurate.

For the space discretization, the computational domain is partitioned into a finite set ofK non-overlapping
elements Ωk = [xk−1/2, xk+1/2], such that

Ω =
K⋃
k=1

Ωk.

We denote by hk = xk+1/2 − xk−1/2 the length of element Ωk in the discretized domain. As in the
conventional finite element methods, the global solution is represented by a direct summation of local
polynomial approximations of order Np − 1 as

W(x) 'Wh(x) =
K⊕
k=1

Wk
h(x),

and in each element Ωk at a fixed time, the solution is locally given by a combination of Np shape
functions as

W(xk, t) 'Wk
h (x, t) =

Np∑
n=1

W̃ k
n (t)Ψn (x) =

Np∑
i=1

W k(xi, t)l
k
i (x) , (16)

where Ψ =
(
Ψ1,Ψ2, . . . ,ΨNp

)T
and L =

(
l1, l2, . . . , lNp

)T
are the modal and the nodal basis functions,

respectively. Here, li(x), i = 1, . . . , Np are the Lagrange polynomials defined on the set of nodes used in
combination with the chosen orthogonal basis. The basis functions Ψn, n = 1, . . . , Np are selected such
that Wk

h ∈ VNk , where the approximation space VNk is the set of polynomials of at most order N in each
element and defined as

VNk =
{
W : W k ∈PN (Ωk) , ∀Ωk ∈ Ω

}
. (17)

Usually, the modal representation Ψ is based on the normalized Legendre polynomials Pn(x) of order n
and it is reconstructed from a class of orthogonal Jacobi polynomials as

Ψn (x) =
Pn−1(x)
√
γn−1

, γn =
2√

2n+ 1
.

Note that the orthonormality property of this basis set is invoked by∫ 1

−1
Ψn(x)Ψm(x)dx = δnm,

with δnm denotes the Kronecker delta. In general, the nodal representation L is based on the Lagrange
polynomials defined on the set of nodes {xj}

Np

j=1 ⊂ Ωk and it is used in combination with the chosen
orthogonal basis Ψ. Again, this basis satisfies the cardinal property

lki (xj) = δij ,

and the nodal degrees of freedom W (xj , t) are defined as

W (xj , t) =

Np∑
n=1

W̃n(t)Ψn (xj) , j = 1, · · · , Np. (18)
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From these equations (18) and by interpolating the basis functions, we establish the following relationship
between the coefficients of the modal and nodal expansions

Wk = V W̃k, (19)

where W̃k =
(
W̃1, W̃2, . . . , W̃Np

)T
is the vector of the modes, Wk =

(
W (x1),W (x2), . . . ,W (xNp)

)T
the vector of nodal degrees of freedom and V the generalized Vandermonde matrix with entries

Vji = Ψi(xj), i, j = 1, . . . , Np.

A relation between the modal and nodal basis functions can also be obtained using V as

Ψ (x) = V TL (x) . (20)

It is worth remarking that the Vandermonde matrix V is a key for establishing the duality between
modal and nodal representation provided that this matrix is nonsingular. Thus, a condition for stable
and accurate simulations using the RKDG method lies on the fact that the generalized Vandermonde
matrix V must be well-conditioned. In the current study, to guarantee this condition we use the Legendre-
Gauss-Lobatto nodal points xj . It well known that these nodes, derived from the electrostatics principle,
have a good Lebesgue constant, see for example [19, 18].

In what follows we focus on the nodal representations only but the passage from the nodal to modal
formulations is straightforward using the above relations. Hence, we represent the polynomial approxi-
mations of the local source term Qk

h and the local flux function Fk
h as

Qk
h (x, t) =

Np∑
i=1

Qk(xi, t)l
k
i (x) , Fk

h(Wh (x, t)) =

Np∑
i=1

Fk(xi, t)l
k
i (x) , ∀ x ∈ [xkL, x

k
R]. (21)

As in the conventional finite element methods, a weak form for the multilayer shallow water equations is
obtained by multiplying (9) with Lagrange test function lki (x) and integrating over the local element Ωk.
Hence, using integration by parts, the weak form of the system (9) reads for i = 1, . . . , Np,∫

Ωk

(
∂Wk

h

∂t
lki − Fk

h(Wk
h)
∂lki
∂x

)
dx+

(
F̃k+1/2l

k
i (x−k+1/2)− F̃k−1/2l

k
i (x+

k−1/2)
)

=

∫
Ωk

Q(Wk
h)lki (x) dx, (22)

where F̃k+1/2 = F
(
W−

h,k+1/2,W
+
h,k+1/2

)
is a numerical flux function which allows information to be

passed between the individual elements as the global approximation Wh may be discontinuous over
internal spatial element interfaces. Here, we denote by W+

h,k+1/2 and W−
h,k+1/2 the limit values of Wh

at xk+1/2 from the right cell Ωk+1 and from the left cell Ωk, respectively.

Note that this feature is certainly desirable for several problems with internal discontinuities such as
those appearing in shock waves. In practice, the choice of the numerical flux F̃ can be any two-point
monotone Lipschitz function that is consistent and conservative, see for instance [37]. In the current
work, we consider the Lax-Friedrichs flux defined by

F̃
(
W−

h ,W
+
h

)
=

1

2

(
F(W−

h ) + F(W+
h )
)
− 1

2
λ
(
W+

h −W−
h

)
· n̂, (23)

where n̂ is the unit normal vector on ∂Ωk and the characteristic speed λ is calculated as

λ = max
1≤α≤M−1

(∣∣λ+
ext

∣∣ , ∣∣λ−ext∣∣ , ∣∣∣∣λ+,α+ 1
2

int

∣∣∣∣ , ∣∣∣∣λ−,α+ 1
2

int

∣∣∣∣) , (24)

with λ±ext and λ
±,α+ 1

2
int are the approximated eigenvalues in (10) and (11), respectively. Note that other

numerical fluxes can also be used in (23) without major conceptional modifications.
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3.1 Well-balanced reconstruction

The treatment of the source terms in shallow water equations presents a challenge for many numerical
methods. For single layer problems, a class of well-balanced RKDG methods has been investigated in
[44, 14, 36, 29] among others. Extension of these techniques to the multilayer shallow water equations
(9) is not trivial. In the current study, we adapt the hydrostatic reconstruction originally developed in
[5] to our RKDG method. The extension of this method to the RKDG method for the conventional
shallow water equations was first proposed in [46], its application to Euler systems of gas dynamics was
investigated in [28] and to blood flow problems in [27]. Hence, the source term approximation Q in (22) is
reconstructed such that the C-property is satisfied. Recall that a numerical method is said to satisfy the
well-established C-property for the equations (9) if it is compatible with quiescent steady-state solution

Hn + Z = C = constant, unα = 0, α = 1, . . . ,M. (25)

To preserve this condition in our RKDG method, discretizations of the source term Q and the solution W
are projected into the same space VNk using least-squares techniques. Thus, the well-balanced property
is obtained by modifying the approximation (22) as∫

Ωk

(
∂Wk

h

∂t
lki − Fk

h(Wk
h)
∂lki
∂x

)
dx+

(
F̃L
k+1/2l

k
i (x−k+1/2)− F̃R

k−1/2l
k
i (x+

k−1/2)
)

=

∫
Ωk

Q(Wk
h)lki (x) dx, (26)

Note that, compared with the standard RKDG approximation (22), we can observe that the single-valued
numerical fluxes F̃k+1/2 and F̃k−1/2 in (26) are replaced by the left flux F̃L

k+1/2 and the right flux F̃R
k−1/2,

respectively. In addition, the approximation (26) can also be reformulated as∫
Ωk

(
∂Wk

h

∂t
lki − Fk

h(Wk
h)
∂lki
∂x

)
dx+

(
F̃k+1/2l

k
i (x−k+1/2)− F̃k−1/2l

k
i (x+

k−1/2)
)

=∫
Ωk

Q(Wk
h)lki (x) dx+

(
F̃k+1/2 − F̃L

k+1/2

)
lki (x−k+1/2)−

(
F̃k−1/2 − F̃R

k−1/2

)
lki (x+

k−1/2). (27)

Here, the left hand side of (27) is the standard DG method and the right hand side is our new approx-
imation to the source terms. In this study, the numerical fluxes F̃L

k+ 1
2

and F̃R
k− 1

2

in (26) are defined

by

F̃L
k+ 1

2

= F

(
W∗,−

h,k+ 1
2

,W∗,+
h,k+ 1

2

)
+



0

g

2

(
H−
h,k+ 1

2

)2

− g

2

(
H∗,−
h,k+ 1

2

)2

...

g

2

(
H−
h,k+ 1

2

)2

− g

2

(
H∗,−
h,k+ 1

2

)2


, (28)

and

F̃R
k− 1

2

= F

(
W∗,−

h,k− 1
2

,W∗,+
h,k− 1

2

)
+



0

g

2

(
H+
h,k− 1

2

)2

− g

2

(
H∗,+
h,k− 1

2

)2

...

g

2

(
H+
h,k− 1

2

)2

− g

2

(
H∗,+
h,k− 1

2

)2


. (29)
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It should be pointed out that the reconstruction of the numerical fluxes F̃R
k− 1

2

and F̃L
k+ 1

2

are vital for the

well-balanced property and the following conditions

F̃L
k+ 1

2

= F

(
W−

h,k+ 1
2

)
and F̃R

k− 1
2

= F

(
W+

h,k− 1
2

)
should be satisfied. In our reconstruction, the solutions H∗,+

h,k+ 1
2

and H∗,−
h,k+ 1

2

in (28) and (29) are approx-

imated as

H∗,+
h,k+ 1

2

= max

(
0, H+

h,k+ 1
2

− Z+
h,k+ 1

2

+ max

(
Z−
h,k+ 1

2

, Z+
h,k+ 1

2

))
,

(30)

H∗,−
h,k+ 1

2

= max

(
0, H−

h,k+ 1
2

− Z−
h,k+ 1

2

+ max

(
Z−
h,k+ 1

2

, Z+
h,k+ 1

2

))
.

Note that a similar hydrostatic reconstruction to (30) has been implemented in [5] for single-layer shallow
water equations. The intermediate solutions W∗,±

h,k+ 1
2

and W∗,±
h,k− 1

2

needed to evaluate the new numerical

fluxes F̃R
k− 1

2

and F̃L
k+ 1

2

are obtained using the approximations (30). Once these numerical fluxes are

reconstructed, the right hand side term in (27) is computed as a volume contribution (evaluated using
the projected bed elevation Zh) and a surface contribution of the previous fluxes.

Notice that by construction the RKDG formulation (27) is local and inherently discontinuous. To rewrite
(27) in a matrix form we define the elemental integrals

Mk
ij =

∫
Ωk

lki (x)lkj (x)dx, Skij =

∫
Ωk

lki (x)
dlkj (x)

dx
dx. (31)

Thus, the RKDG approximation (27) can be reformulated in a matrix form as

Mk dW
k
h

dt
−
(
Sk
)T

Fk
h +

(
F̃k+ 1

2
δNpj − F̃k− 1

2
δ1j

)
=

MkQk
h +

(
F̃k+ 1

2
− F̃L

k+ 1
2

)
δNpj −

(
F̃k− 1

2
− F̃R

k− 1
2

)
δ1j , (32)

where Wk
h =

(
Wk

h(xk1),Wk
h(xk2), . . . ,Wk

h(xkNp)
)T

, Fk
h =

(
Fk
h(xk1),Fk

h(xk2), . . . ,Fk
h(xkNp)

)T
and F̃ is the

vector of the associated numerical fluxes in (23). In (32), Mk and Sk are respectively, the mass and
stiffness matrices the entries of which are given in (31). Here, to enable an efficient and accurate compu-
tation of the mass and the stiffness matrices in (31), we first introduce a nonsingular mapping from the
reference element I = [−1, 1] to the kth element Ωk as

ξ 7−→ x(ξ) = xkL +
1 + ξ

2
hk, ξ ∈ I.

We also evaluate the elemental mass and the stiffness matrices (31) in terms of the computational variables
ξ as

Mk
ij =

hk
2

∫ 1

−1
li(ξ)lj(ξ)dξ =

hk
2
Mij , Skij =

∫ 1

−1
li(ξ)

dlj(ξ)

dξ
dξ = Sij ,

withM and S are the equivalent standard mass and stiffness matrices, respectively. Note that using the
explicit expressions of derivatives of the basis functions Ψj and the duality between nodal and modal
representations, the computation of these matrices can be carried out in a straightforward manner, see
for example [21, 17]. Thus, the semi-discrete formulation (32) becomes

hk
2
M

dWk
h

dt
−
(
Sk
)T

Fk
h =

hk
2
MQk

h +
(
F̃R
k− 1

2

δ1j − F̃L
k+ 1

2

δNpj

)
, (33)
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which can be reformulated as a system of ordinary differential equations for the following compact form

dW

dt
= H (W) ,

(34)
W(0) = W0,

where H is the spatial discretization in (33) and W0 is a given initial data, compare [21, 20] for a similar
detailed derivation of (34).

The time integration of the equations (34) is carried out using the explicit third-order Runge-Kutta
scheme. The implementation of this method is performed using the same steps as in (15) and for brevity
will not be repeated here. In the current work, to eliminate non-physical oscillations and to obtain
high-order stability for the high space discretization k ≥ 1, a slope limiter procedure is performed after
each inner stage in the Runge-Kutta time stepping. There exist several choices for the slope limiters to
be implemented for the RKDG method, see for instance [22, 49] for an overview. In our simulations,
we use the Total Variation Diminishing (TVD) limiter studied in [9, 23, 39, 41] among others. Note
that other slope limiter functions can also be applied in our RKDG method without major conceptional
modifications.

4 Numerical examples

Numerical results for several test examples of multilayer free-surface flows are presented in this section.
We examine the performance of our well-balanced RKDG method for dam-break flow problems and
wind-driven recirculation flows in both flat and non-flat beds. We also present numerical comparisons
to the well-established kinetic method studied in [35] and a finite volume (FV) method proposed in
[4]. The results obtained using the RKDG method for a dam-break problem are also compared to
those obtained using the three-dimensional model for free-surface flows. Here, the three-dimensional
hydrostatic incompressible Navier-Stokes equations are solved using the TELEMAC-3D software∗. In
our simulations, the total water height H and the total number of layers M are given whereas, the water
height ~α at each αth layer is equidistantly calculated as

~α = lαH, with lα =
1

M
, α = 1, 2, . . . ,M.

In addition, the courant number is set to Cr = 0.85 in all the examples and the time stepsize ∆t is
adjusted at each step according to the CFL condition

∆t = Cr min
1≤k≤K

 hk

max
1≤α≤M−1

(∣∣λ+
ext

∣∣ , ∣∣λ−ext∣∣ , ∣∣∣∣λ+,α+ 1
2

int

∣∣∣∣ , ∣∣∣∣λ−,α+ 1
2

int

∣∣∣∣)
,

where λ±ext and λ
±,α+ 1

2
int are the approximated eigenvalues in (10) and (11), respectively. For a better

insight in the results we also generate the two-dimensional velocity fields from our RKDG results using
the post-processing procedure described in [6]. Thus, the vertical velocity v is computed using the
divergence-free condition from the incompressible Navier-Stokes equations as

∂u

∂x
+
∂v

∂z
= 0. (35)

To obtain the vertical velocity v, the equation (35) is integrated for each layer assuming non-penetration
boundary conditions at the bottom. We refer to [6] for more details on the computation of vertical
velocity for multilayer shallow water equations.

∗See http://www.opentelemac.org for more details on the TELEMAC-3D software.
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4.1 Accuracy problems

We present numerical results for a class of test examples to investigate the accuracy of the proposed
RKDG method for solving the multilayer shallow water equations. We first examine the performance
of the RKDG method using different degrees of the polynomial approximation and different numbers of
gridpoints. To this end we consider the frictionless two-layer version of the problem (1) reformulated as

∂H

∂t
+
∂~1u1

∂x
+
∂~2u2

∂x
= 0,

∂~1u1

∂t
+

∂

∂x

(
~1u

2
1 + g~2

1

)
= −g~1

∂Z

∂x
+ u3/2G3/2 + 2ν

u2 − u1

~1 + ~2
, (36)

∂~2u2

∂t
+

∂

∂x

(
~2u

2
2 + g~2

2

)
= −g~2

∂Z

∂x
− u3/2G3/2 − 2ν

u2 − u1

~1 + ~2
,

where ~1 = ~2 =
1

2
H, G3/2 =

1

2

(
∂~1u1

∂x
− ∂~2u2

∂x

)
and

u3/2 =


u1, if G3/2 ≥ 0,

u2, if G3/2 < 0.

Here, we solve the equations (36) in the spatial domain [0, 1] on a non-flat bottom defined as

Z(x) = sin2 (πx) ,

and subject to the following initial conditions

H(x, 0) = 5 + ecos(2πx) − Z(x), u1(x, 0) = u2(x, 0) = 0.

The viscosity coefficient ν = 0.001 m2/s, the gravity g = 9.81 m/s2 and periodic boundary conditions
are used. Note that a similar test example has been presented in [45] for the standard single-layer shallow
water equations. In order to quantify the errors in this example, a reference solution computed using
a fine mesh of 16000 gridpoints and a degree of polynomial approximation N = 5 is used as an exact
solution. We compute the numerical solutions at time t = 0.15 using different numbers of gridpoints K
and approximation orders N . We consider the relative L1-error defined as

L1-error =

K∑
k=1

∣∣∣Unk −Uk(xk, t)
∣∣∣∆x

K∑
k=1

∣∣∣Uk(xk, t)
∣∣∣∆x , (37)

where Unk and Uk(xk, t) are respectively, the computed and exact solutions at gridpoint xk and time t,
whereas K stands for the number of gridpoints used in the spatial discretization. The obtained results for
the total water height H and the interface velocity u1 are summarized in Table 1 using different values
of N and K. It is evident that increasing the degree of the polynomial approximation or the number of
gridpoints in the computational domain, the errors are relatively small, however the errors in the water
height H are consistently lower than the errors in the velocity u1. For the considered flow conditions
in this test example, we observe that nearly the optimal convergence rates are achieved in our RKDG
method using the L1-error norm for both solutions H and u1. Similar results, not reported here for
brevity, have been observed in the errors obtained for the velocity u2. It is worth pointing out that the
method with P k elements should give a uniform (k + 1)th order of accuracy however, we only observe
convergence rates of kth order in Table 1. This may be attributed to the fact that these convergence rates
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Table 1: Errors for the accuracy test problem using different numbers of gridpoints and approximation
orders in the RKDG method.

Errors in H
K N = 1 Rate N = 2 Rate N = 3 Rate N = 4 Rate N = 5 Rate

50 2.65945E-01 — 1.62427E-01 — 1.07812E-01 — 8.5713E-02 — 6.8870E-02 —
100 1.35296E-01 0.98 4.13451E-02 1.97 1.37310E-02 2.97 5.4620E-03 3.97 2.1958E-03 4.97
200 6.83076E-02 0.99 1.04443E-02 1.99 1.73551E-03 2.98 3.4542E-04 3.98 6.9480E-05 4.98
400 3.42248E-02 1.00 2.61832E-03 2.00 2.17691E-04 3.00 2.1678E-05 3.99 2.1818E-06 4.99
800 1.69002E-02 1.02 6.48258E-04 2.01 2.69112E-05 3.02 1.3408E-06 4.02 6.7522E-08 5.01

Errors in u1

K N = 1 Rate N = 2 Rate N = 3 Rate N = 4 Rate N = 5 Rate

50 3.93517E-01 — 1.88545E-01 — 1.34092E-01 — 1.00796E-01 — 8.1081E-02 —
100 2.00892E-01 0.97 4.81266E-02 1.97 1.71136E-02 2.97 6.42321E-03 3.97 2.5870E-03 4.97
200 1.01848E-01 0.98 1.21996E-02 1.98 2.16906E-03 2.98 4.06209E-04 3.98 8.1972E-05 4.98
400 5.12782E-02 0.99 3.07111E-03 1.99 2.73018E-04 2.99 2.54938E-05 3.99 2.5794E-06 4.99
800 2.54619E-02 1.01 7.62474E-04 2.01 3.38915E-05 3.01 1.57688E-06 4.02 8.0049E-08 5.01

are computed using a reference solution and not the genuine analytical solution of the problem. Thus,
the numerical errors inherited in this reference solution may lead to a deterioration in the convergence
rates of the method.

To examine the well-balanced property of the proposed RKDG method for multilayer shallow water flows,
we consider the problem of a lake at rest flow studied in [4]. This test example has been first proposed in
[7] to test the conservation property of numerical methods for the conventional single-layer shallow water
equations over non-flat beds. The lake bed is irregular and it is a good illustration of the significance of
the numerical treatment for the source terms for practical applications to natural watercourses. Here, it
is expected that the total water free-surface remains constant and the water velocity should be zero at all
times. As in [7, 4], we consider a mesh with 100 gridpoints and the obtained results are displayed at time
t = 10800 s with the degree of the polynomial approximation set toN = 3. The obtained numerical results
for the water interfaces and the water free-surface along with the considered lake bed are displayed in
Figure 2. We present results obtained using the 10-layer and 20-layer models and for comparison reasons,
the errors in the difference between the exact and the computed total water free-surface using 5-layer,
10-layer and 20-layer models are also exhibited in Figure 3. It is clear from the results shown in both
Figure 2 and Figure 3 that the water free-surface remains constant during the simulation times and the
proposed RKDG method preserves the C-property to the machine precision. It should be noted that
the performance of the proposed RKDG method is very interesting as the obtained solutions satisfy the
conservation property even when coarse meshes are used without requiring complicated discretizations
to balance the source terms and flux gradients in the multilayer shallow water equations.

4.2 Dam-break problem on a flat bottom

We consider a dam-break problem over a flat bottom in the computational domain [−50, 50] equipped
with the following initial conditions

H(x, 0) =


2, if x ≤ 0,

1, if x > 0,

uα(x, 0) = 0.

This example has been solved in [6] using the kinetic scheme and in [4] using a class of finite volume
methods. Therefore, we use the same dimensionless viscosity coefficient ν = 0.01, the gravity g = 2
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Figure 2: Results obtained for water interfaces (dashed blue lines) and water free-surface (solid black
line) for the lake at rest flow at time t = 10800 s using 10-layer model (left plot) and 20-layer model
(right plot).

Figure 3: Differences between the exact and the computed total water free-surface for the lake at rest
flow at time t = 10800 s using 5-layer, 10-layer and 20-layer models.

and the friction coefficient κ = 0.1 as in [6, 4]. The computational domain is discretized in 100 and
200 elements, the degree of the polynomial approximation is set to N = 3, and numerical results are
presented at time t = 14.

In Figure 4 we display the water heights obtained using our RKDG method compared to the kinetic and
FV methods using 10 layers on the considered meshes. For comparison reasons we have also included
with these results a reference solution obtained on a fine mesh with 10000 elements using the kinetic
method. As expected for most dam-break problems, the flow structure consists of a shock wave traveling
downstream and a rarefaction wave traveling upstream in the computational domain. As it can be
seen from the results presented in Figure 4, the solutions obtained using the kinetic and FV methods
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Figure 4: Free-surface results for 10-layer model at time t = 14 obtained using 100 elements (left plot)
and 200 elements (right plot) for the dam-break on a flat bottom.

Figure 5: Velocity results for the 10-layer model at time t = 14 obtained using 100 elements (left plot)
and 200 elements (right plot) for the dam-break on a flat bottom. Dashed lines refer to the velocity at
the interfaces and solid lines to the mean velocity.

on the coarse mesh with 100 elements are more diffusive than the RKDG solutions. Obviously, this
numerical diffusion is reduced by refining the mesh from 100 to 200 elements but still the RKDG method
produces the most accurate results followed by the FV method. The same accuracy has been observed
for comparisons not included here, for 20 layers in the model. It is evident that the proposed RKDG
method performs well for this dam-break flow problem and it correctly captures the rarefaction wave and
the shock without need for very fine meshes in the simulations. In Figure 5 we illustrate the velocity
at the water interfaces between the layers obtained using 10 layers on the considered meshes with 100
and 200 elements. The mean velocity is also depicted along the water velocities in these figures. It is
clear from the velocity profiles presented in Figure 5 that the RKDG method accurately resolves this
test example and it produces numerical results similar to those obtained using the FV method in [4].
Therefore, the performance of our RKDG method is very attractive since the computed solutions remain
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Figure 6: Water free-surface at time t = 0 (left plot) at time t = 14 (right plot) for the three-dimensional
simulation of dam-break on a flat bottom.

stable and highly accurate without requiring solvers for Riemann problems or linear systems of algebraic
equations in the hyperbolic parts.

Next we compare the results obtained using the multilayer shallow water model to those obtained using
the TELEMAC-3D model and the three-dimensional incompressible Navier-Stokes equations for this test
example. In Figure 6 we present the initial water free-surface and the result obtained at time t = 14
for the three-dimensional simulations. Here, a mesh with 9840 elements and 5907 nodes is used in the
three-dimensional computations along with a fixed time step ∆t = 0.01. A comparison between the cross-
section of the TELEMAC-3D results at y = 5 and those obtained using the RKDG method with 200
elements for 10-layer model is depicted in Figure 7. It is clear from these results that the location and the
speed of the moving water front obtained using the multilayer model agree well to those computed using
the TELEMAC-3D model. Note that fluctuations with different amplitudes appear in the TELEMAC-3D
results which are completely absent in the results obtained using the multilayer model. These fluctuations
are mainly cause by the turbulent effects accounted for in the TELEMAC-3D model and are also in good
agreement with the experimental data reported in [34] for this class of dam-break flows.

In Figure 8 we present the velocity profiles at the location x = 8 obtained using these models at time
t = 14. Here, we consider 5-layer, 10-layer and 20-layer in our simulations using the mesh with 200
elements. It is clear that the flow velocity varies within the water depth which is not the case in the
standard single-layer shallow water equations widely used in the literature to model dam-break problems.
For example, at the location x = 8 in the computational domain, the water velocity at the surface is
more than six times higher than the water velocity at the bottom. As can be seen from Figure 8, an
increase of the number of layers in the one-dimensional multilayer model yields a consistent convergence to
the velocity profile obtained using the three-dimensional incompressible Navier-Stokes equations. These
results are a clear indication that it is possible to efficiently resolve the vertical variation in the water
velocity using one-dimensional multilayer shallow water equations without need to the three-dimensional
incompressible Navier-Stokes equations with moving boundary conditions. Indeed, for the considered
dam-break conditions, the RKDG method generates numerical results as accurate as those simulated
using the three-dimensional incompressible Navier-Stokes equations subject to free-surface conditions but
with a very low computational cost as only a set of one-dimensional multilayer equations are considered.
As pointed out before, the discrepancy between the results obtained using the TELEMAC-3D model and
those obtained using the RKDG method in Figure 8 is due to the turbulent effects accounted for in the
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Figure 7: Comparison between TELEMAC-3D and RKDG results obtained for the water free-surface
(left plot) and velocity (right plot) using 10-layer model at time t = 14 for the dam-break on a flat
bottom.

Figure 8: Profiles of the velocity at x = 8 obtained using a mesh with 100 elements at time t = 14 for
the dam-break on a flat bottom.

model for dam-break problems using the TELEMAC-3D software.

4.3 Wind-driven recirculation flow on a flat bottom

In this example we consider a class of wind-driven recirculation problems in closed flow domains studied
in [38, 4] among others. It is necessary to point out that this recirculation features of the water flow
can not be captured using the conventional single-layer shallow water equations. Hence, the present test
example is served as a prototype to verify the performance of multilayer shallow water flows to reproduce
such phenomena, see for instance [6, 42, 4]. Here, the multilayer system (1) is solved in a closed lake
16 m long with flat bottom topography and filled at 2 m. The water flow enters the lake from the left
boundary with a speed of w = 20 m/s and it flows towards the right exit of the lake. At later time,
due to the wind effects, the water flow changes the direction pointing towards the right coast of the
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Figure 9: Velocity fields obtained for the recirculation flow on a flat bottom with 10-layer model (first
row) and 20-layer model (second row) using the kinetic method (left column) and the RKDG method
(right column) on a mesh of 16 elements at time t = 20 s. Colors represent the magnitude of the velocity.

lake. The flow parameters are those used in [4] including, viscosity coefficient ν = 0.1 m2/s, friction
coefficient κ = 0.00001 m/s, wind stress coefficient σ2

s = 0.0015, water density ρ = 1000 kg/m3, air
density ρa = 1.2 kg/m3 and gravity g = 9.81 m/s2. The computations are performed for this example
using 16 elements and a degree of polynomial approximation N = 3.

Figure 9 exhibits the velocity fields obtained at time t = 20 s for 10-layer and 20-layer models using the
kinetic and RKDG methods on a mesh of 16 elements. As can be seen, a central recirculation has been
generated in the flow domain and the center of this vortex is clearly affected by the number of layers
used in the computations. It is also clear that the RKDG results are more accurate than those obtained
using the kinetic method. Note the excessive numerical diffusion in the results obtained using the kinetic
method in Figure 9. For the considered flow conditions, the kinetic method fails to accurately resolve the
wall effects on the velocity fields whereas those effects are well captured by the RKDG method. As in the
previous test example, we also display in Figure 10 the velocity profiles at the location x = 6 m obtained
using different numbers of layers at time t = 20 s. Here, we consider the 5-layer, 10-layer, 20-layer and
30-layer models using the mesh with 16 elements. For comparison reasons, we also include a reference
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Figure 10: Velocity profiles at x = 6 m obtained at time t = 20 s for the recirculation flow on a flat
bottom using different numbers of layers.

solution for the velocity obtained using 50-layer model and a very fine mesh of 16000 elements. It is
clear that an increase of number of layers in the model results in a perfect convergence to the reference
solution. For this example, the differences between results for the vertical velocity depicted in Figure 10
using 10-layer, 20-layer and 30-layer models are minimal. In addition, the presented results for this wind-
driven recirculation flow problem demonstrate the ability of our RKDG method to capture the small flow
features within the channel without generating spurious oscillations. For example, a simple inspection
of these results shows that the wall flow pattern is accurately resolved by the proposed well-balanced
RKDG method.

4.4 Transcritical flow over a bump

We turn our attention to test examples for multilayer shallow water flows over non-flat beds. We first
consider the example of a flow over a frictionless parabolic bump investigated in [13]. Hence, the bed is
given as

Z(x) = max
(

0, 0.2− 0.05 (x− 10)2
)
,

and at initial time, the system is at rest with the total water height given by

H(x, t) = 0.33 m− Z(x).

As in [13], the computational domain is 20 m long, the kinematic viscosity ν = 0.0001 m2/s and the
gravity constant g = 9.81 m/s2. For the boundary conditions, we consider an upstream boundary
condition on the water discharge Huα = 0.36α−1

M m2/s and a downstream boundary condition on the
water level equal to H = 0.33 m. In our simulations, the degree of the polynomial approximation N = 6
and steady-state solutions are presented.

A mesh convergence study is also performed for this test example to assess the accuracy of the proposed
RKDG method. The obtained results for the water height at the interfaces using 50, 100, 200 and 400
elements are depicted in Figure 11. We present results obtained for 10-layer and 20-layer models and we
also include a zoom in the results for a better comparison. As expected, the flow reaches the stationary
regime and yields a transition between subcritical and supercritical flow conditions forming an hydraulic
jump over the bump. Under the considered flow conditions, the effects of mesh refinements on the free-
surface seems to be minimal outside the region of the hydraulic jump. However, these effects become
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Figure 11: Free-surface profiles obtained for the transcritical flow over a bump using 10-layer model and
different meshes at the steady state.

Figure 12: Distribution of the velocity intensity for the transcritical flow over a bump using 10-layer
model (left plot) and 20-layer model (right plot) at the steady state.

more pronounced at the shock regions and more accurate results are obtained for fine meshes, compare
the zoom plot in Figure 11. This ensures grid convergence of the numerical results using the RKDG
method. For this test example, increasing the number of elements in the simulations results in a small
difference in the results but at high computational cost. Here, increasing the number of elements from
200 to 400 results in an increase in the CPU time of more than 3.5 times. Therefore, bearing in mind
the slight change in the results from the mesh with 200 elements and the mesh with 400 elements at the
expense of rather significant increase in the computation time, the mesh with 200 elements is believed
to be adequate to obtain computational results free of grid effects for the considered multilayer shallow
water problem of transcritical flow over a bump.

In Figure 12 we present the distribution of velocity intensities for 10-layer and 20-layer models using the
mesh of 200 elements. High velocity intensities are detected when the water flows over the bump with a
noticeable difference in these intensities between the 10-layer and 20-layer models. It is also clear that a
sharper hydraulic jump is obtained in the results obtained using the 20-layer model than those obtained
using the 10-layer model. The proposed RKDG method resolves the correct dynamics for this multilayer
flow problem and converges to the expected steady-state solution. As can be seen, there is no numerical
instability or smearing in the computed solution at the hydraulic jump as those visible in the results
reported in [13]. The proposed RKDG method accurately resolves this multilayer flow over a bump
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Figure 13: Velocity fields obtained for the wind-driven recirculation flow problem at time t = 50 s using
10-layer model (first column) and 20-layer model (second column) and different values of the viscosity.
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Figure 14: Velocity profiles at x = 12.2 m obtained for the wind-driven recirculation flow problem at
time t = 50 s using 10-layer model (left plot) and 20-layer model (right plot) and different values of the
viscosity.

without exhibiting nonphysical oscillations. The results obtained for this test example also demonstrate
that our well-balanced RKDG method performs very satisfactorily for this multilayer shallow water flow
problem since it does not produce excessive numerical dissipation in the moving fronts and no spurious
oscillations have been detected near the hydraulic jump over the bump in the computational domain.

4.5 Wind-driven recirculation flow over a hump

This test example consists of a wind-driven recirculation flow over a hump using the multilayer shallow
water equations. The objectives of this flow problem are to examine the ability of the proposed RKDG
method to recover recirculation flows over non-flat beds and also to assess the effects of viscous terms
on the multilayer system. Here, we solve the equations (1) in a channel 20 m long with a non-flat bed
defined as

Z(x) = 0.2 exp
(
−0.42(x− 10)2

)
.

We assume an uniform wind stress of σ = 1.5 N/m2 applied at the surface which is equivalent to a wind
speed of w = 20 m/s blowing from the left of the channel. Initially, the system is at rest with the total
water height given by

H(0, x) = 1 m− Z(x).

The computational domain is discretized into 40 elements, the degree of the polynomial approximation
is fixed to N = 3 and the computed water velocity fields are illustrated in Figure 13 at time t = 50 s
using 10 and 20 layers. We present results obtained using four different values of the viscosity coefficients
namely, ν = 0.0001, 0.001, 0.01 and 0.1. It is clear from the presented results that the RKDG method
performs well for this multilayer problem over non-flat topography and it captures the expected water
dynamics. For instance, no spurious oscillations are detected on the water free-surface or near the bed
without need for very fine meshes in the computational domain or high polynomial degrees in the RKDG
method. On the other hand, increasing the number of layers in the system from 10 to 20 layers results
in a smooth and fully symmetric velocity field for all selected values of the viscosity coefficient ν.

The effects of the viscosity coefficient ν in the computational results for this test example can also be seen
in Figure 13. Note that from the definition of the vertical kinematic eddy viscosity (6), the coefficient ν
allows for the exchange between the layers in the system (1). In Figure 14 we present the velocity profiles
in a point situated behind the hump at x = 12.2 m using 10 and 20 layers for the considered values of the
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Figure 15: Schematic map of the Strait of Gibraltar along with relevant locations (left plot) and the
bathymetry used for the one-dimensional simulations (right plot).

viscosity coefficient ν. It is clear that the velocity profile changes from straight to curved lines for small
values of the viscosity coefficient. The convergence with respect to the number of layers can also be noted
in the results presented in Figure 14. Weak exchange between the layers is expected for small values of
the coefficient ν and this exchange becomes strong for large values of the coefficient ν. In addition, for
small values of ν only one global recirculation is detected in the flow domain however, for ν > 0.01 two
local recirculations are detected in the domain. For these large values of the viscosity coefficient, the flow
is reversed at the center of the hump and it forms two vertices recirculating at the left and right sides of
the hump. It should also be stressed that the global discharge for the whole flow in this system is equal
to zero but the local water discharge for each layer is not prescribed a priori. Furthermore, solving the
multilayer system without mass exchange terms (i.e. G = 0 and ν = 0) yields a flow at rest which is
similar to the one obtained using the canonical single-layer model. Under the considered flow conditions,
it has been shown that it is possible to resolve recirculation flow problems using only one global mass
equation for the entire one-dimensional multilayer shallow water system.

Figure 16: Distribution of the velocity fields for the recirculation flow problem in the Strait of Gibraltar
using 10-layer model for a wind speed w = 10 m/s (left plot) and w = 15 m/s (right plot).
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Figure 17: Velocity profiles at three different locations for the recirculation flow problem in the Strait of
Gibraltar subject to a Levant wind with speed w = 15 m/s using different numbers of layers.

4.6 Recirculation flow problem in the Strait of Gibraltar

Our final test problem consists of a flow recirculation in the Strait of Gibraltar using the multilayer
shallow water equations with mass exchange. Note that this flow problem presents a realistic practical
test of multilayer shallow water flows for two major reasons. Firstly, the domain of the Strait of Gibraltar
is large including high gradients of the bathymetry and well-defined shelf regions. Secondly, the Strait
is deep and contains two water bodies with different densities, which present a challenge in the shallow
water modelling. Indeed, the basic Oceanic circulation in the Strait of Gibraltar consists of an upper
layer of cold, fresh surface Atlantic water and an opposite deep current of warmer, salty outflowing
Mediterranean water, compare for example [3, 15, 26, 40]. A schematic map of the Strait of Gibraltar
along with relevant locations is depicted in the left plot of Figure 15. The system is bounded to the north
and south by the Iberian and African continental forelands, respectively, and to the west and east by
the Atlantic ocean and the Mediterranean sea. In geographical coordinates, the Strait is 35o45′ to 36o15′

N latitude and 5o15′ to 6o05′ W longitude. Here, we consider a one-dimensional cross-section along the
Strait (obtained by a longitudinal section along the dashed line in the left plot of Figure 15) subject to
a Levant wind with speeds w = 10 m/s and w = 15 m/s blowing from the east to the west in the Strait.
Initially, the system is at rest and the computational domain and the associated bathymetry are displayed
in the right plot of Figure 15. This restricted domain has also been considered in [31] among others.
In all simulations, we have used ρa = 1200 kg/m3, g = 9.81 m/s2, ν = 0.01 m2/s, nb = 0.008 s/m1/3,
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σs = 0.0015, the computational domain is discretized into 50 elements, the degree of the polynomial
approximation is set to N = 3 and numerical results are presented for 10 layers at time t = 7.3 hours.
The purpose here is to assess the performance of the proposed RKDG method for a recirculation flow
problem in the Strait of Gibraltar using multilayer shallow water equations. This step is very important
if one wants to monitor the hydraulic linked activities such as maritime transport and fishery among
others in the Strait of Gibraltar.

In Figure 16 we display the distribution of velocity intensities and fields obtained for the 10-layer model
subject to a Levant wind with speeds w = 10 m/s and w = 15 m/s. As expected, the blowing Levant
wind generates two recirculation zones in the Strait separated by the Camarinal sill. In addition, a strong
recirculation with high velocity intensities is generated for the blowing Levant wind with w = 15 m/s
than with w = 10 m/s but in both cases high velocities have been detected near the bed topography
in the right area behind the Camarinal sill. It should be stressed that these hydraulic effects can not
be captured using the standard single-layer shallow water equations while using the three-dimensional
Navier-Stokes equations would be computationally very demanding. The effect of number of layers on
these recirculation flows has also been investigated for this problem and in Figure 17 we illustrate the
velocity profiles obtained at three different locations in the Strait of Gibraltar. Here, we consider the
Camarinal sill, Tangier basin and Tarifa narrows located at x = −24 Km, x = −32.5 Km and x = 0 Km,
respectively. Results obtained using the multilayer model with 5, 10 and 20 layers are also compared to
the reference results obtained using 50 layers and 500 elements for the considered locations. From the
velocity profiles depicted in Figure 17, it is clear that high velocity intensities are appeared on the water
free-surface compared to the bottom topography at all considered locations and the highest intensities are
detected at the Camarinal sill. The effects of the bathymetry on these velocity profiles can also be seen
in these results as more curved profile is obtained in the shallow zone at Tarifa narrows than in the deep
zones at the Camarinal sill and Tangier basin. The convergence of the reference solutions as the number
of layers is increased should also be noted in the results presented in Figure 17. The computational
results demonstrate the capability of the proposed RKDG method that can provide insight to complex
free-surface recirculation flows in large domain with irregular bathymetry.

5 Conclusions

A well-balanced Runge-Kutta discontinuous Galerkin method to solve multilayer free-surface flows with
mass exchange has been presented. The equations have been reformulated in a large system of conserva-
tion laws with source terms accounting for the friction and momentum exchange effects. The inter-layer
coupling in the flow system has been accounted for using a class of mass exchange terms between the
water layers. The method combines some features of the finite element and finite volume solvers to
yield an attractive method because of its formal high-order accuracy and its ability to resolve disconti-
nuities without generating nonphysical oscillations. The proposed Runge-Kutta discontinuous Galerkin
method can be interpreted as a stable locally conservative finite element solver whose approximate so-
lutions are discontinuous across the inter-element boundaries. To preserve the well-balanced property, a
special discretization of source terms is implemented based on the nature of hydrostatic solutions along
with the Gauss-Lobatto-Legendre nodes for the quadrature used in the approximation of source terms.
Numerical results and applications have been illustrated for several test problems of multilayer free-
surface flows on both flat and non-flat beds. The presented results demonstrate the high accuracy of the
Runge-Kutta discontinuous Galerkin method and its ability to simulate free-surface flows in the hydraulic
regimes considered. Comparisons to three-dimensional results obtained for the hydrostatic incompress-
ible Navier-Stokes equations and for a class of kinetic methods have also been included in this study.
Results obtained for a recirculation flow problem in the Strait of Gibraltar have also been illustrated
in this study. The presented results reveal good shock resolution with high accuracy in smooth regions
and without any spurious oscillations near the shock areas. Although we have restricted our simula-
tions to the one-dimensional problems, the well-balanced Runge-Kutta discontinuous Galerkin method
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investigated in the current work can be extended to multilayer free-surface flows in two space dimensions
with viscous terms, Coriolis forces and over complex topography. These and further issues are subject
of future investigations. Finally, the method presented in this paper does not straightforwardly resolve
we/dry areas in the multilayer shallow water flows. However, using ideas of wet/dry treatment developed
in [30] for standard single-layer shallow water equations, it is possible to reconstruct an efficient wet-
ting and drying treatment for two-dimensional multilayer shallow-water models using the Runge-Kutta
discontinuous Galerkin method. Results on these techniques will be reported in future works.

Acknowledgment. N. Izem is deeply grateful to the ERC fund used within the framework of the
European Project Deep Blue to support his visit to Heriot-Watt university at Edinburgh.

References

[1] M.B. Abbott. Computational hydraulics: Elements of the theory of free surface flows. Fearon-Pitman
Publishers, 1979.

[2] V. Aizinger and C. Dawson. A discontinuous Galerkin method for two-dimensional flow and transport
in shallow water. Advances in Water Resources, 25:67–84, 2002.

[3] J.I. Almazán, H. Bryden, T. Kinder, and eds G. Parrilla. Seminario Sobre la Oceanograf́ıa F́ısica
del Estrecho de Gibraltar. SECEG, Madrid, 1988.

[4] E. Audusse, F. Benkhaldoun, S. Sari, M. Seaid, and P. Tassi. A fast finite volume solver for multi-
layered shallow water flows with mass exchange. Journal of Computational Physics, 272:23–45,
2014.

[5] E. Audusse, F. Bouchut, M.O. Bristeau, R. Klein, and B. Perthame. A fast and stable well-balanced
scheme with hydrostatic reconstruction for shallow water flows. SIAM Journal on Scientific Com-
puting, 25:2050–2065, 2004.

[6] E. Audusse, M.O. Bristeau, B. Perthame, and J. Sainte-Marie. A multilayer Saint-Venant system
with mass exchanges for shallow water flows. Derivation and numerical validation. M2AN Math.
Model. Numer. Anal., 45:169–200, 2011.

[7] A. Bermudez and M.E. Vázquez-Cendón. Upwind methods for hyperbolic conservation laws with
source terms. Journal of Computers & Fluids., 23:1049–1071, 1994.

[8] B. Cockburn, G. E. Karniadakis, and C.-W. Shu (eds.). Discontinuous Galerkin methods. The-
ory, computation and applications. Lecture Notes in Computational Science and Engineering, 11.
Springer-Verlag, Berlin, 2000.

[9] B. Cockburn, S.Y. Lin, and C.-W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin
finite element method for conservation laws III: One-dimensional systems. Journal of Computational
Physics, 84:90–113, 1989.

[10] R. Codina. Numerical solution of the incompressible Navier–Stokes equations with Coriolis forces
based on the discretization of the total time derivative. Journal of Computational Physics, 148:467–
496, 1999.

[11] F. Couderc, A. Duran, and J.P. Vila. An explicit asymptotic preserving low Froude scheme for
the multilayer shallow water model with density stratification. Journal of Computational Physics,
343:235–270, 2017.

26



[12] C. Eskilsson and S. J. Sherwin. A triangular spectral/hp discontinuous Galerkin method for mod-
elling 2D shallow water equations. International Journal for Numerical Methods in Fluids, 45:605–
623, 2004.
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