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Abstract

In a typical smart city, drones can collect (or sense) massive amount of data,
that is sent to a computing capability for further analysis to make useful de-
cision making without human intervention. This data is relayed to the Cloud
for processing and analysis due to its large-scale infrastructural capabilities.
However, the key goal of the drone deployment in smart city scenarios or ur-
ban environments is to provide timely and quick response alongside providing
an energy-efficient service delivery. Thus, we need a sustainable solution that
can be deployed locally (closer to the data source) in a smart city, to pro-
cess or analyze the data (generated from smart city sources) and provide
timely decision making for smart city applications. Edge computing, popu-
larly known as the “cloud close to the ground”, can provide computational
and processing facilities at edge of the network in a smart city. Hence, Edge
computing act as an effective alternative solution to process and analyze the
data closer to the point of it’s generation. Looking into the above discus-
sion, We propose a novel drone-edge coalesce that provides an energy-aware
data processing mechanism for sustainable service delivery in the multi-drone
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smart city networks. In this model, the edge computing layer is deployed to
process and store the data sensed and collected by drones in a smart city. In
this context, an adaptive edge node selection mechanism has been designed
on the basis of decision tree approach. In this coalesce, we have to deal with
the conventional problems related to the collision and congestion while pro-
viding low-latency and sustainable data transmission in a smart city. So, We
have designed an energy-aware multi-purpose algorithm that avoids collisions
and provides a congestion free data transmission. The proposed coalesce is
validated in a simulated environment on the basis of several performance
metrics such as, throughput, end-to-end delay and energy consumption.

Keywords: Drone Networks, Edge Computing, Energy Efficiency, Quality
of Service, Smart City, Sustainable City

1. Introduction

In the past decade, due to the emergence of various kind of smart city
use cases, the consumer grade drones or Unmanned Aerial Vehicles (UAVs)
have been gained tremendous popularity in various applications ranging from
aerial photography to environmental protection and further to the delivery
of goods [51, 50]. The capability to improvise the overall efficiency and pro-
ductivity and redefining the smart city services along with a reduction in
the operation costs has increased the demand for drones in an exponential
manner. Thus, the adoption of drone technology among various civilian,
commercials and government services moved ahead from the experimental
stage to the implementation stage quickly. From the past few decades, the
smart city concept is trying to gain a wider attention by providing sustainable
chain of end user services, Drones are seen as key enabler for the smart city
applications by offering a cost-effective solution for almost everything. The
growing interest from a number of consumer-oriented commercial activities
expanded the scope and scale of drone applicability in multi-varied smart city
environment [12, 47]. As a result, the integration of drones with 5G technol-
ogy paved the way to provide an on-demand uninterrupted Internet services
to various consumers with minimal capital and operational investment [49].
Moreover, with advancement sin the Internet of Things (IoT), these days
the drones are being utilized to collect data from smart devices and sensors
deployed in various smart city use case scenarios (such as smart grid, smart
electric meters, large-scale industrial setup, intelligent transportation, etc)
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[46, 4].
Moving further, drones can very useful by enabling the live video, cap-

turing the sensors data and performing lightweight analytic on board. For
instance [1], recently a natural disaster hit the Uttarakhand region in In-
dia, where an avalanche barrelled down from a breaking glacier. Here, there
drones were flown to examine the large affected area and a human detection
algorithm on live video streaming helped in the search and rescue mission.
In such scenarios, a swarm of drones or multi-drone network can be utilized
for efficient and successfully accomplishment of the given tasks in timely
manner. The swarm of drones can be deployed as aerial base station to
capture the data from sensors, inspection of gas pipelines, analyzing traffic
movement and to conduct the various geographical surveys on hard-to-reach
places. Despite its numerous benefits, there are some concerns that need to
be understood and addressed in a timely manner in order to utilize the full
drone capabilities. Drones can collect (or sense) massive amount of data,
that is sent to a computing capability for further analysis to make useful
decision making with human intervention.

1.1. How can drones contribute towards a sustainable smart city?

Smart city is a concept that prioritizes technology to improve the life
of citizens by providing them with efficient and cost-effective services. Ac-
cording to a report by IDC [27], the spending on smart city technology is
expecting to reach $135 billion by the end of 2021. In this regard, one of
the most fascinating combination is related to the integration of drones in
every vertical of a smart city. If we weave the drones in to the smart city
fabric, it would act as a game changer for a wide range of smart city ap-
plications. In the past, drones were considered as a machine of destruction
(like warfare or defence activities), but these days the drones are flying be-
yond the initially conceptualized horizons. Drone are capable to provide and
sustain key services related to smart cities in a cost-effective manner. Even
more, the drone-supported day-to-day municipal operations in smart cities
can help to achieve the larger sustainable smart city goals concerning the
improvement in the living of residents. Drone are expected to play a key role
in many smart city applications, like, merchandise delivery, infrastructure
planning and inspection, crowd management, natural disaster management,
health emergencies, smart transportation, civil security and safety, and smart
transportation. Fig. 1 shows different verticals of drone applications in smart
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city. A brief discussion on the application of drones in smart city use case
scenarios is provided below.

Figure 1: Applications of drones in a smart city.

1.1.1. Smart Transportation and Traffic Management

The biggest contribution of drones in smart city revolves around the con-
cerns of smart transportation. One of the key challenges of transportation
sector that has scourged smart city is traffic, ever-reliable rush hour and
congestion [29]. The core and reasonable solution to this problem is related
to the provisioning of basic information concerning the reasons behind the
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congestion and traffic chaos, the active status of road conditions, and other
unpredictable reasons. The on-road cameras can be useful to collect such
information, but they lack in advanced intelligence required for traffic regu-
lation decision making. Here, the drones can play a key enabler as they can
collect data and then deliver it to the decision making controller (the cloud)
in almost near to real time. Even, drones can collect the data and provide
live feeds (even from hidden angles that cameras cant cover) through their
high visibility and mobility. This can help to sustain the basic requirements
or the backbone of a city by uniformly regulating the traffic. Traffic, conges-
tion and road chaos has direct or indirect impact of the day to day routine
or mind set of the smart city citizens also. Even, a fully regulated traffic
can help to reduce the overall carbon emissions and fuel spending of citizens.
So, this way drones not only act as enabler for sustainable cities but also
impacts the overall society. Drones can help to find parking slots, cutting
the travel time to find a parking slot, help create transit routes in emergency
conditions, and identify green routes.

1.1.2. Natural disaster monitoring and Health Emergencies

The next biggest area of drone application is related to the natural dis-
asters or any unconventional emergency situations (like health emergencies,
pandemics like COVID). Drones can help to monitor in a more comprehen-
sive manner covering every nook and corner and the monitored information
can be analyzed to take precautionary actions as and when required. They
help in real time critical situation analysis, circumstance analysis, and even
control measures is unconventional situations that can he harmful to lives.
Moreover, drones can be used to provide emergency medical supplies and life
supporting equipment in a quick manner and at locations where any delay
in supply can endanger human lives. For instance, Zipline, a drone delivery
service has collaborated with the Government of Ghana to deliver the CO-
VAX vaccines in order to handle the logistic challenges [9, 3, 2, 48]. This
helps to enhance and improvise the response of cities to the health needs and
emergency governance concerning the public.

1.1.3. Drone Delivery Industrial/Commercial Use Cases

These days drone are very popular for providing quick and cost-effective
deliveries related to various segments like, medicines, merchandise, food, par-
cel, etc. Some examples are discussed below based on there categories.
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• Essential Stuff and Medicine: There are some instances where a
contact less delivery is the biggest requirement without any human
intervention. For example, in COVID pandemic, contact-less delivery
has been on boom but still there was human intervention. Drones can
play a vital role in pandemic time and help to provide contact-less
deliveries at the consumer door step [25]. Even for an isolating patient,
drones can not only contact less delivery of medicines but also provide a
quick delivery. Moreover, drones have been used for the delivery of first
aid and sensitization drives across cities during the lockdown in many
countries [24]. There have been instances where life saving organs were
delivered for timely transplants using drones in congested cities [28].
In this way, the drones can be useful to provide medical delivery and
participate in sensitization to benefit the overall city services or society.

• e-commerce: In some major cities, parcel delivery using drones is very
popular these days. Topmost logistic companies like, DHL [23], Anavia
[18] and Amazon [22] have adopted drone delivery in the cities using
automated mechanism. Some instances like [26] have used drones in
marine deliveries also where the containers are delivered to consumers
locations. In context to cities, it is expected that drones can help to
reduce the carbon footprints and provide timely services to the citizens.

• Grocery and Food delivery: There have been several instances
where food and grocery has been delivered using drones. For example,
7 Eleven [21] have relied on drones to deliver the grocery to their cus-
tomers. Even more, the famous pizza company, Dominos, have adopted
drones to deliver pizzas to its customers in a timely way [19, 33]. A
famous taco outlet have designed a special tacocopter to deliver tacos
in San Fanscisco [20].

1.1.4. Infrastructure Planning and Inspection

One of the key areas of concern in cities is to inspect the ageing build
infrastructure as normal eye or cameras cant reach every nook and corner.
Drones can be useful in inspecting such cites and using theta information,
the city authorities can take remedial actions. This can be very useful at
historic sites which are old and any damage can hamper the tourist lookout
and even endanger tourist lives. Moreover, drones can even help to moni-
tor the development of new buildings by collecting the real time information
related to the construction site and send them to the development team to
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plan effectively. This way drones can contribute is the planning, construction
and inspection of build infrastructure in cities. In Canada [38], the use of
drones for the above mentioned concerns is legal under the current regula-
tory framework. For example, Industrial Skyworks, a Canadian company is
already assisting and conducting inspections [38].

1.1.5. Civil Security and Safety

Drone provide a promising contribution in the security and safety of cit-
izens, like the information shared by drone scan be useful to protect people
from being caught in extremely uneventful situations (such as, disasters).
Drones can help to provide quick response in emergency conditions and can
hover across various locations in cities to monitor the security situation. This
way drones can be extremely beneficial to ensure citizen security and safety
and protect cities from critical situations.

1.1.6. Crowd Management

In major events like concerts and sports tournaments, drones can help
to manage the crowd and monitor any uneventful activities. Generally, after
such crowded events, cities face a huge rush on road and drone scan be helpful
in such scenarios to assist, diver and provide transit routes to traffic. This
way it can help the city authorities to monitor the large crowd events and
help to protect citizens from any mundane (like traffic chaos).

1.1.7. Internet Connectivity

One of the initial use case where drones have been very popular was
to provide temporary Internet connectivity (like 5G network) in areas that
are considered black spots. The connectivity provided by drones can enable
faster connection speeds and allow citizens to connect to the Internet in an
un-disrupted manner. In case of any fault or failure in connectivity, drones
can be deployed to provide temporary connectivity so as to facilitate citizens
seamless services and avoid disruption in city operations.

1.2. How to process the massive data collected by drones in a
smart city?

After looking into the above drone applications in a smart city, one of the
key concern is the data collected by the drones. This data comes under the
category of big data as it satisfies all the major attributed related to volume,
velocity, variety, value and veracity. Now, the key challenge is to process
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this data in a timely manner in order to provide effective service delivery in
the smart cities. Generally, this data is relayed to the Cloud for processing
and analysis due to its large-scale infrastructural capabilities. However, the
key goal of the drone deployment in smart cities or critical environment is to
provide timely and quick response. Like, for a rescue mission (due to land
slide) in a densely populated forest, any delay in the identification of humans
or critical infrastructure can be damaging. Thus, we need a solution that can
be deployed locally (closer to the location of the data source), to process or
analyze the data and provide timely decision making.

Edge computing, popularly known as the “cloud close to the ground”,
can provide computational and processing facilities at edge of the network
[17, 53]. The edge devices are widely distributed to support real-time data
processing and reduces the need to relay data to the Cloud to a large extent
[6, 57]. The close proximity of the to data and the compute facility can
provide numerous benefits such as, faster insights and quicker response times
[36, 37]. Moreover, in the past few years, the modern technology are focusing
to automate the systems and processes by relying on the data collected by
drones from the connected devices. However, the anomalous scale and com-
plexity of data produced by the connected devices often suppress network
bandwidth and burdened the infrastructure capabilities [8]. Transferring of
all device generated data to and fro cloud may results into the bandwidth and
latency bottlenecks. Hence, Edge computing act as an effective alternative
solution to process and analyze the data closer to the point of it’s generation
[13, 45]. This way we can reduces the latency as there is no need of transfer
data over the network to the cloud, thereby omitting the round-trip delay
between data source and the remote cloud. These benefits are not restricted
to just hosting, but it also helps to improves the Quality of Service (QoS)
and assists the communication during the critical circumstances, on-the-go
or on-the-demand communications (ad-hoc) [7].

Looking into the above discussion, we have created a novel drone-edge
coalesce for efficient data processing in drone networks. However, in such an
integration, we have to deal with the conventional problems related to the
collision and congestion while providing low-latency data transmission. Var-
ious state-of-the-art solutions [11, 5, 30] have been proposed in the literature
to handle the problems related to collision-avoidance and congestion control
in drone networks. However, none of these solutions have focused on the
design of an energy-aware and sustainable solution in the multi-drone net-
works. Moreover, the adaption of such solutions in the drone-edge coalesce
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has not been validated yet. The impact of collision and congestion on drone
networks is quite high due to unpredictable mobility control, routing con-
ditions, and transmission control mechanisms. However, the high dynamics
of these factors has strong impact on connectivity and operations of drones
in any deployment. Most of the existing solutions fail to understand and
address the energy consumption related problems in drones. Due to lim-
ited battery capacity, an inefficient solution that consumes additional energy
cannot be deployed in realistic scenarios. Moreover, the energy dynamics of
drones are wide due to the dependence on multiple factors, like flight time,
link, link state, processing, and transmission. Thus, we need an efficient so-
lution to provide an energy-aware, congestion and collision-free transmission
in drone-edge coalesce.

1.3. Motivation

In a smart city, the sharing of timely information is very important to
handle various unexpected event and protect the citizens from extreme sit-
uations (like, disruption in services or traffic chaos). Drone can be easily
deployed at any location irrespective of application domain and can cover
all the dead end and corners where even human eye or cameras cant reach.
Moreover, they provide a cost-effective, flexible and timely service to gather
the information and transmit it to the edge-cloud infrastructure for efficient
decision making. This can help the city planners and Government adminis-
trators (related to Municipals) to use this data and analyze it to improve the
city services and governance. In the past there were some challenges and con-
cerns related to the legal provisions under regulatory framework for realizing
the drone deployment in the cities for supporting essential and emergency
services. But, these days most of the countries are considering to modify
the policy or cover the drone drone deployment under existing policies. For
example, the law enforcement agencies in Canada have coordinated with the
drone industry to quickly develop drone laws to facilitate such deployments.
In this context, the RCMP is already using drones for their necessary man-
dates [38]. However, the key barriers for the amalgamation of drones into
smart cities is related to the unprecedented and seamless volume and varied
data. There are several challenges related to the handling or processing of
this data in an effective manner. One of the solution was to adopt Cloud
technology, but the round trip delay can hinder the key goal of drone de-
ployment concerning timely and quick response. Thus, there is a need to
device an alternative way. As discussed previously, the Edge computing has
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been very popular in smart city applications due to its dual functionality,
i.e., processing and storage at the edge, and providing edge intelligence for
quick analysis of data. Moreover, the edge can smoothly coordinate with the
Cloud whenever higher processing capabilities are required. However, due to
distributed deployment of edge nodes across smart cities and the mobility of
drones, the selection of a suitable edge nodes becomes a challenge.

1.4. Contributions

Keeping in view of the above considerations, We propose a novel drone-
edge coalesce that provides an energy-aware and sustainable data processing
mechanism in the multi-drone networks in a smart city. Drone-Edge coa-
lesce can help to develop an effective infrastructure platform supported by
the cutting-edge technologies at no additional cost, with an overall goal of
improving the smart city sustainability and providing services to citizens at
no additional cost. The major contributions of this work are as follows.

• We have proposed a novel drone-edge coalesce model wherein the edge
computing layer is deployed to process and store the data sensed and
collected by drones.

• We have designed an energy-aware multi-purpose algorithm that avoids
collisions and provides a congestion free data transmission

• An adaptive edge node selection mechanism has been designed and
developed on the basis of decision tree approach.

• The proposed coalesce is validated in a simulated environment on the
basis of several performance metrics such as, throughput, end-to-end
delay and energy consumption.

2. Related Work

Various proposals have tried to cover some of the above raised issues but
still there are many loopholes to be considered and handled effectively. A
brief discussion on these proposals is provided below.

10



2.1. Deployment of Drones in Smart Cities and Societies
Various representative research proposals have highlighted the use of

drones in the context of smart cities and societies. In [40], the authors
proposed the use of drones for logistics in a city. The ground based trans-
portation is under huge pressure, the delay in shipments of cargo due to
traffic leads to the loss of revenue, time and most importantly the fossil fuel.
This hampers the overall vision of smart cities and growth of society through
timely delivery of services and goods. So, today it is worth to utilize the
drones for logistics delivery. Similarly, in [43], the drones have been utilized
for delivering healthcare products to different needy communities and soci-
eties in Africa. The major objective of this research is the timely deliver of
blood, drugs, vaccines, and laboratory test samples. This clearly indicate the
support of drones to the society. Moreover, in comparison to the conventional
methods, drones help to reduce the response time and CO2 emissions. Nev-
ertheless, in [14], a technique for delivery of food and small express package
in urban cities was proposed. This technique for product delivery worked
very well in the very low level and congested airspace and it is also able
to cope up with the high density drone delivery. The authors presented a
case study of Paris metropolitan city to demonstrate their delivery technique
and its applicability in context of cities. In another article [35], the authors
proposed the delivery of goods using drone and ground autonomous deliv-
ery devices in the two major cities first is Paris suburbs, and second is the
Barcelona (Spain). The drones were launched from the rooftop of the truck
and were deployed in the dense areas where the reach ability of the trucks is
not possible. In [56], the drones were used for delivering the products in cities
during COVID 19 pandemic . The person-to-person transmission of this dis-
ease, leads to a less interactive way of deliveries the goods. The authors also
presents a study on customers perception, behaviour and attitude towards
the acceptance of delivery by drone. In [32], the authors focus on the provid-
ing real-time based route information to perform various operations in smart
cities. The route detection is based on the an agile optimization, which works
for both drones and other autonomous vehicles. In summary, the above
discussed proposals clearly indicate the role and contribution of
drones in the fulfilment of sustainable goals in smart cities and
societies. Starting from the timely provisioning of services, to re-
duction in carbon emissions, and further leading to cost-effective
way of providing services.

Moving ahead to other applications of drones, in the [15], drones were uti-
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lizes to click the pictures for calibration of outdoor microclimate simulations
models. In this, the thermal images captured by drones used in measur-
ing the surface temperatures. Afterwards, the calculated values are used in
calibrating numerical models. This clearly indicate that the collected infor-
mation (i.e., images) are important and are further analysed to measure the
surface temperature. Likewise, in [34], an the intelligent processing systems
was introduced for the cameras mounted on the drones. The primary task of
this system is the data acquisition and analysis, which helps to improve and
predicts the urban transportation systems and its sustainability. The results
shows that the detection ratio for both human and drones are similar and
can be utilized to manage public and fright transport in cities. Further, uti-
lizing the capabilities of the drones, in [42], a technique was designed to build
a urban landscape from LiDAR sensors and digital orthophotography from
the drone. The designed technique helps to estimating risks, maintaining
infrastructure systems and improve the planning for various plannings such
as solar energy. The results presented in the paper, witnessed a significant
improvement in the prediction of radiation by 36%. The above discussed
proposals clearly indicate the usefulness of drones in manifold
applications related to smart cities and society. However, one
key challenge common in all these proposals is data acquisition,
storage and processing.

2.2. Drone and Edge Integration

A wide range of researchers are utilizing drones in amalgamation with
the edge computing for processing data generated by IoT devices in the local
domain. This amalgamation is very popular in smart healthcare, Industry
4.0, intelligent transportation, smart grid and many other areas of research.
As discussed in the previous section, one of the key challenge for drone de-
ployment in smart cities is related to collection, storage and processing of
data. Edge computing can resolve this issue to a great extent looking into
the promising contributions in other similar domains. A few researchers has
foccussed in this direction and tried to integrated drones and edge comput-
ing for common benefits. For example, in [57], the authors considered the
use of drones in caching data for fog-based IoT systems for realizing sus-
tainable smart cities. It is found that the integration of the fog computing
can support the computational demand and reduce the delays and may en-
hance the energy efficiency. In another work [54], the authors employ drones
for autonomous crop scouting techniques for rice. The data gathered by
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employing the UAVs was used to simulate using deep neural networks and
generate further analysis. The authors believe that by using the edge com-
puting for autonomous scouting and lodged rice detection will result in good
yield. In [39], the authors introduce the new message transfer concept for the
drones those are participating in edge computing. A new term ”Edgedrone”
is also given to the participating nodes. From the results, it’s advent that
the QoS parameter results shows 30% improvement. Similarly, due to the
wide adaptability of the drones, in [10], the authors utilize them for surveil-
lance in underwater and termed as Internet of Underwater Things (IoUT).
The primary focus of the research was to minimize the battery or energy
consumption, drones consume energy to gather, hover, and in computation.
Based on the above discussions, it is clear that drone-edge integration has
witnessed some fascinating results and benefits. But, there are several chal-
lenges that arise due to the distributed deployment and resource constraints
of edge devices alongside the intermittent mobility of drones.

3. System Model

In the proposed work, the system model consists an array of drones (D),
that are used to collect data (like video streams) and transmit the same to
the edge nodes (local servers) in a typical smart city. Another task of the
drones is to handle user application requests and then process them at the
edge and relay the response back to them. Here, we have considered a set of
users (U) are connected to the drones. In this setup, the drones are equipped
with omni-directional antenna for communication purposes as they are least
effected due to the drone’s drifts. This model considers multiple drones to
support the transmission of sensed data related to different end user applica-
tions from source to the edge nodes whereas the communication and drone
control is managed through base station. The entire transmission considers
issue of interference concerning different communication technologies and en-
ergy consumption for different links. The network model and preliminaries
including the problem formulation related to the proposed system model are
discussed in this section.

3.1. Network Model

As the drones fly at different altitudes, so for the considered network, the
observed interference for ith drone at jth location is represented in the form
of Signal to Noise Ratio (SINR) based on the transmission power (P), the
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Figure 2: Proposed System Model in a Smart City Scenario

antenna characteristics (K), height of drone (h), the path loss (α) and the
noise power spectral density (N). Thus, the SINR is defined as below [52].

SINRi =
PKh−α∑|D|

i=1,j1 6=j2 PKh−α +N
(1)

s.t.

1

|D|
∑
|D|

SINR ≥ SINRt
N (2)

where, SINRt
N represents SINR for the network wherein the drones are

flying at same altitude and configuration.
In the proposed model, the total number of connection in the network

are given as below.

LT =
|D|(|D| − 1)

2
+ 1 (3)

At time t, the above equation is transformed as below.

LT (t) =
|D∗|t(|D∗|t − 1)

2
+ 1 (4)

where, D∗ is the subset of drones satisfying Eq. 1
Now, in order to realize a sustainable network, the required number of
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connections should exhibit minimum duration of links. Thus, we need to
satisfy the following condition.

MIN lim
tz→∞

√√√√ 1

tz

tz∑
i=1

(( |D∗|i(|D∗|i − 1)

2
+ 1
)
−
(La + Lz

2

))2

(5)

where, tz represents the maximum time duration for which a network can
operate, La and Lz denote the minimum and maximum number of inactive
links in the network, respectively. We have used a and z for minimum and
maximum values throughout the paper. Here, the number of links < La as
it help to achieve stronger recovery in case of failure.

Now, for each request arising in the network, let us consider the mean
packet size as 1

µ
, then the transmission rate (TR) is defined as below.

TR =
λ

µ
(6)

where, λ denotes the arrival rate of each request.
Here, to sustain the network operation at a given rate, the best way is find

the probability of connectivity. Based on [52], we can find the probability of
average connectivity (PCN) of the network as below.

PCN = 1−
[ t∑
j=1

C∏
m=1

(
(LT )LA

(
PCR

)(
1− PCR

)LT−LA)]
(7)

where, the time slots are represented as t, number of channels for connected
entities is given by C, LA denotes the actual number of used connections,
and PCR represents the probability that TR is above a certain threshold for
a given connection.

Based on the above formulation, we can check the network failure rate
and define the rate of decline (R(LT )) for a given link as below.

R0
(LT )(t) = L0

T × e−P
0
CN (t0) (8)

R1
(LT )(t) = L1

T × e−P
1
CN (t1) (9)

Now, substituting the second equation with the first, we get

R1
(LT )(t) = R0

(LT )(t)× e−P
1
CN (t1) (10)
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This can be generalized as given below.

Rt
(LT )(t) = Rt

(LT )(t− 1)× e−Pt
CN (tt) (11)

The above defined conditions check the intermediate network states start-
ing from L0

T

3.2. Energy Model

Let us consider that energy consumed by each transmitted bit is Ebt and
the transmission speed for each link is V (bits/sec), then the energy consumed
by each link (El) is defined as below.

El =
|D∗|(|D∗| − 1)

2
× V × Ebt. (12)

It is worth noting that the energy consumption for drones is discrete even
though they depict continuous mobility pattern. Thus, for energy modelling,
it should be handled individually for each occurrence. Let us say that the
energy consumed by a drone to sustain its flight is given as Ef , then at time
t, the average energy consumption (Ec(t)) is defined as below.

Ec(t) = Ef +
V∑
i=1

(Pbp × tt) + (Pfl × tfl) + (Pcl × tfl) , (13)

where, Pbp, Pfl, and Pcl represents the power consumed for processing each
bit, flying, and transmission of control messages, respectively, tt denotes the
period for which a drone transmit each bit, and tfl represents the time for
which a drone flies or hover in the sky between two way-points.

Now, to check the energy consumption of the connections with its neigh-
bouring drones, let us consider drones at two locations (i.e., li and lj) to
model the energy consumption. Thus the energy consumption (Ei,j) to sus-
tain the connection between i and j is defined below.

Ei,j =

[
Est +

(
Est × e−Pds(t)

)
+ Pds

(
f (li, lj)

v

)]
(14)

where, Est represents the energy consumption to sustain required link state,
Pds denote the power rate between two locations, and v is the velocity of the
drone.

Now, the below mentioned condition must be sustained to achieve energy-
efficient transmission.

Ei,j << Ec(t) (15)
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3.3. Problem Formulation

The key objectives of this work revolves around QoS and energy efficiency.
Thus, in order to sustain a link in drone-edge coalesce, the following two
condition exists. (

TR
)
L
≥
(
TR
)
minL

(16)(
Ei,j + Ec(t)

)
≤ EMAX(t) (17)

where, EMAX(t) represents the maximum available energy for drone per
charge. Based on these condition, we have defined the following objective
function for link connectivity to sustain a flight.

max
(
TR
)

(18)

Similarly, we have defined the following objective function for energy
consumption required to sustain a flight.

min
(
Ei,j + Ec(t)

)
(19)

Now, the above two objective functions are competing objective, So, com-
bining both the objective functions, we get.

maxXij
[
−
(
Ei,j + Ec(t)

)
,
(
TR
)]

(20)

s.t.

PCN > THR (21)

where, Xij is the decision variable and THR is the threshold.

4. Proposed Energy-aware Data Transmission Approach

In this paper, we have proposed an energy-aware data transmission ap-
proach that reduces the unwanted energy consumption to provide a conges-
tion and collision-free transmission control. This approach provides a bal-
anced or optimal solution for QoS and energy sustainability for drone-edge
coalesce. In this approach, we have been inspired by fire-fly optimization
algorithm [55, 52] to establish a reliable connection among two drones. The
proposed approach works in three phases, i) collision avoidance (criteria 1),
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ii) congestion control (criteria 2), and iii) energy awareness (criteria 3). Al-
gorithm 1 provides the flow of the proposed approach across these three
phases.

In the first phase, the accurate positioning beacons are used to define the
collision avoidance criteria. The average light intensity (Ii,j) gained by tho
drones flying at two different locations (let us say, loc i and loc j) is used
define the collision avoidance criteria. Moreover, the level of attraction (Ai)
between these two drones from one’s prospective is also important factor to
define Ii,j. Thus, Ii,j is represented below.

Ii,j = Ai(t) +Ai(t0)e−∆θ2 (Ci − Cj) + ρ, (22)

where, the rate of change of current heading of a drone is given by ∆, the θ
is used to represent the inverse probability of connectivity between drones,
and ρ represents the density of all the drones in the neighborhood.

Due to the variation in the number of inter-connected drones, the value
of ρ is unpredictable and keep on changing, so the Ii,j is computed for all the
drones. The higher value of Ii,j may result in a collision so we operate the
firefly optimization algorithm in a reverse pattern to avoid collision. Using
Ii,j, the proposed algorithm checks the possibilities of any collision based on
the following condition.

Ii,j ≤ ITHRi,j ∀ D. (23)

The above condition helps to achieve the following objective,

min (Ii,j) ∀ D. (24)

The criteria 1 is satisfied if the above condition is satisfied, otherwise it
will end up in collision (line 8-14). If the criteria 1 is satisfied, we continue
with same state (S0), i.e., the initial state and check criteria 2. For this pur-
pose, we define the congestion control criteria to coordinate the transmission.
Let us say that the traffic rate among two drones is defined as RTR

i,j . Now,
based on the incoming traffic, we use the intensity scheme to alter (increase
or decrease) the congestion window (CW) to control the network congestion.
The congestion control criteria operates on both the drones in a simultaneous
manner and can be described as below.

Ci,j = RTR
i,j (t) +RTR

0 e−vδ
2

∆L+ CCC (25)

where, RTR
0 is the initial traffic rate, δ denotes the path loss factor, ∆C

represents that a connection exists between two drones and its value range
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lies between 0,1, and CCC depicts the number of channels in the connected
components (CC) in a network.

Based on the above discussion, a congestion free route depends on the
following condition.

Ci,j ≤ CTHRi,j (26)

The above defined condition is used to set up CW and thus the criteria 2
is satisfied (line 15-25). If the criteria 2 is satisfied, we check the final criteria
3. This is the most important criteria for the proposed scheme as it conserves
the energy consumption. We define the following energy conservation based
on the light intensity mechanism.

Ei,j = EMAX(t) + E0(t)e−PCN δ
2

(li − lj) + CCC (27)

where, E0(t) depicts the energy consumption at S0 at time t.
Now, to achieve an energy-aware or energy-efficient data transmission,

the Eq. 16 must be satisfied. If the criteria 3 is satisfied, then CC are added
to the route matrix (R[]), otherwise the CC are removed from R[] (line 27-
35). After this, the data packet is transmitted over the selected congestion
and collision-free and energy-efficient route (line 40).

5. Decision tree based Edge Selection, Allocation and Recovery
Scheme

The data collected and transmitted by the drone is scheduled for pro-
cessing and analysis at the edge nodes. Now, edge nodes are also resource
constrained devices and thus their resources must be allocated using an op-
timal strategy. For this reason, we need to select an optimal edge node
that can handle the data processing tasks in an efficient manner and provide
desired QoS guarantee. There are many factors (like, edge state, current
workload, available resources, QoS requirements, etc) that influence this de-
cision making. To achieve an efficient edge node selection and scheduling, we
have defined the following states for edge that exist during its lifetime.

The edge states depict the working condition of an edge node and these
are described as below.

• Normal State (STN): In this state, an edge node is running normally
but it do not have enough resources to be allocated to another task or
workload. This state can also be called as a perfect state.
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Algorithm 1 Energy-aware Transmission Algorithm
Input: Initialize the drone network attributes
Output: Optimal transmission route

0: Initialize the networks to initial state == S0

0: while (Transmission==continue) do
0: Share beacons and find location
0: i=1
0: while (i ≤ |D|) < parallel > do

0: Calculate l(r)i,j

0: Input metrics from neighboring drones
0: Check criteria 1
0: if (Ii,j > I

(TH)
i,j ) then

0: Possibility of collision == TRUE
0: Update incidence and adjacency matrices
0: else
0: Continue with S0

0: if Criteria 1 == satisfied then
0: Check criteria 2
0: Calculate Ci,j
0: Input metrics from Dnb

0: if (Ci,j > CTHR
i,j ) then

0: CW = CW - 1
0: else
0: CW = CW + 1
0: end if
0: end if
0: if criteria 2 == satisfied then
0: Initialize traffic and set timing diagram
0: Check timing diagram and available slots
0: Check criteria 3
0: Set energy metrics
0: Calculate Ei,j
0: Calculate Ec(t)
0: Input metrics from all the channels

0: if (

(
Ei,j + Ec(t)

)
< EMAX(t)(TH) then

0: Add CC → R[]
0: else
0: Remove CC ← R[]
0: end if
0: end if
0: end if
0: i=i+1
0: Ready for transmission (R[])
0: end while
0: end while=0

• Active State (STA): In this state, an edge node is running and is
neither overloaded nor in a failed state. Such an edge node is assumed
to be is a condition to meet the QoS requirements concerning the data
relayed from the drones for processing.
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• Backup State (STB): Some of the edge nodes are kept in this state
to handle the failure or an overloaded condition of the active state edge
nodes. If edge node is overloaded or in a failed state, the data being
processed by that node is migrated to the nodes in the backup state.

• Failure State (STF ): In this state, an edge node fails and is not
capable to performs its routine tasks. Such a node should be recovered
using an suitable strategy. An edge node can fail due to overload or a
fault or some attack.

• Overloaded State (STO): This state is concerned with the edge nodes
that are overloaded with the ongoing tasks and are not in a state to
handle any additional workload. Also there may be a need to migrate
some of the load from this node to move it into normal state. This
state can fail if the workload is not migrated on time.

• Transition State (STT ): Here, a failed edge node migrates the data
to another edge node selected from the backup edge nodes.

The proposed scheme is divided into two phases depicted using Algorithm
2 and Figure 3). The first phase is responsible for the entire workflow in-
cluding edge selection, allocation and recovery scheme. The second phase is
responsible for selection of optimal edge from the active edge nodes (STA)
using a decision tree.

5.1. The Proposed Scheme [Phase 1]

The phase one includes three procedures, a) an edge state checking pro-
cedure, and b) an edge resource allocation procedure, and c) an edge recov-
ery and allocation procedure. In the procedure 1, the algorithm checks the
various states (STk, where k edge nodes are considered) defined in the pre-
vious sub-section based on a pre-defined threshold value (THR). Once the
edge nodes are classified in to different states, then incoming workload (from
drones) is allocated to the selected active state edge nodes. For this purpose,
the procedure 2 is initiated. In this procedure, the resources required (Rrq)
for handling drone tasks are checked alongside checking the resources avail-
able (Ravl) at edge nodes with STA. The appropriate edge node for allocation
from all the active nodes is selected using Algorithm 2. The Algorithm 2 is
based on decision tree and provides the edge nodes with positive or negative
labels. The positive nodes are best match for the drone workload among all
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the active state edge nodes. So, Rrq are allocated from edge nodes having
STA accordingly. In case, a suitable edge nodes having STA state is not
available, then edge nodes having STB state is activated and resources are
allocated from it.

Additionally, this scheme also keep a track of overloaded or failed states
and migrate their workload to ensure the data generated by the edge nodes
is processed on time and within the desired QoS limitations. For this pur-
pose, the last procedure is adopted to recover from a situation when edge
nodes are in STF or STO states. To overcome failure and overloading, the
procedure 3 is used to edge nodes having STA state. In case, a suitable edge
nodes having STA state is not available, then edge nodes having STB state is
activated and resources are allocated from it. The working of the proposed
scheme is shown in the Algorithm 2.

5.2. The Proposed Scheme [Phase 2]

The second phase is based on the decision tree approach. This approach
constructs a tree-like structure during the classification of the edge nodes
(objects) into various states. The internal nodes in the tree-like structure
perform test on the objects, the leaf nodes on the tree serve the class labels
and the different branches on the tree represents the features. To construct
the tree, an algorithmic approach is used to divide the edge nodes into various
categories by adding labels [16] and assigning the incoming data to them for
further processing. In decision tree-based classification technique, the input
from the edge nodes (like, edge state, current workload, available resources,
etc) is provided to the decision tree as shown in Fig. 3. The Iterative
Dichotomiser 3 (ID3) algorithm is used to build the decision tree. After
this, a top to down greedy approach is used for decision node selection [31].
Initially, the all data is considered as root node. The incoming data is in the
form of records (x,Y) i.e. (x,Y = x1,x2,x3, ....,xk,Y), where x is the
input vector to define the features of the data and Y is the expected value q
after classification. To get the expected value, Entropy and Information Gain
are used to partition the data set into similar feature subsets and selection
of weightage features at various decision nodes respectively [41].

5.2.1. Entropy

In top-down approach, it is a required to partition the data into subsets
with similar properties. Entropy is used to identify the similar properties
instances in the data. If all the data is of similar nature, entropy is zero,
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Algorithm 2 Proposed Algorithm
0: procedure Check−State(Procedure 1)
0: for k==1, k<n, k++ do
0: if (MODE == RUNNING) then
0: if (STk ≤ THR) then
0: STATE == ACTIVE (STA)
0: else
0: STATE == OVERLOADED (STO)
0: end if
0: else
0: STATE == BACKUP (STB)
0: end if
0: end for
0: ———————————————————————————————————————-
0: procedure Allocate−Resources(Procedure 2)
0: for i==1, i<n, i++ do
0: CHECK == (Rrq)
0: CHECK == (Ravl) → STA
0: if Rrq < Ravl then
0: SELECT (RRQ) ← STA using Algorithm 2
0: for Decision Tree NODE == POSITIVE → STA do
0: ALLOCATE (RRQ) → STA
0: end for
0: else
0: ACTIVATE (STB)
0: ALLOCATE (RRQ) → STB
0: end if
0: end for
0: ———————————————————————————————————————-
0: procedure Fault−Recovery(Procedure 3)
0: for k==1, k<n, k++ do
0: CHECK STATE using Procedure 1
0: if STATE ∈ (STA, STB , STN ) then
0: FOLLOW NORMAL PROCEDURE
0: else if STATE ∈ (STO, STF ) then
0: Send HELLO beacon
0: if NO RESPONSE then
0: STATE == FAILURE (STF )
0: CHECK == (Rall) → SCHEDULER
0: CHECK == (Ravl) → STA
0: if Rall < Ravl then
0: SELECT (Rall) ← STA using Algorithm 2
0: CHANGE STATE == (STT )
0: for Decision Tree NODE == POSITIVE → STA do
0: ALLOCATE (Rall) → STA
0: end for
0: else
0: ACTIVATE (STB)
0: ALLOCATE (Rall) → STB
0: end if
0: end if
0: end if
0: end for
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Figure 3: Decision tree classification

otherwise, data is divided into subsets and the calculated value of entropy is
one. To calculate the entropy on single parameter and two parameter of the
selected data, frequency table is required.

• Entropy on single parameter:

E(S) =
c∑
i=0

−Pilog2Pi (28)

• Entropy on two parameters:

E(X1,X2) =
∑
c∈X2

P(c)E(c) (29)

where, S is the current state of the data, Pi is the probability of the ith

item in state S, X1 is the current state of the data and X2 is the selected
parameters.

5.2.2. Information Gain

It analyse how effectively the selected parameter differentiate the incom-
ing data. The parameter with the maximum information gain is selected
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as a decision node in the tree. Initially, the entropy of the target node is
calculated using Eq. 28. In next phase, we divide the data according to the
features or parameters. Then, we calculate the entropy of the next coming
node and so on. After this, we add all the calculated entropy and subtract
the calculated entropy value from the initially calculated entropy value as
shown in Eq. 30

Gain(X1,X2) = E(X1)− E(X1,X2) (30)

The parameter with the maximum information gain is opted as a decision
node. The nodes with zero entropy are the leaf nodes and entropy more than
zero require further splitting. The same approach is processed from top-down
tree till all the data is categorized.

5.3. Training and Testing

The proposed approach works according to the following steps for training
and testing of the classification model [44]:

• Initially, consider the input data as root node (R).

• Traverse each parameter of the dataset for Decision node selection.

• Calculate the Entropy of the selected parameter using Eq.29.

• Calculate the Information Gain of the selected parameter using Eq.
30.

• After traversing all parameters of the selected subset, selected the pa-
rameter with minimum entropy value and maximum information gain
value.

• The above mentioned steps are iterated on each subset of the data, till
the data is not classified.

• When, the tree is classified with proper decision nodes, test the data
to check the accuracy of the trained model.

25



6. Results and Discussion

This section covers the evaluation of the proposed work in a simulated
environment. The results obtained and discussions are provided to prove the
effectiveness of the proposed work. For network modelling, we have selected
the standard metrics irrespective of their application domain. As there are
limited options for drone simulations, so we have performed our simulations
using Network Simulator (NS-2). The simulation configurations and settings
are provided in Table 1.

Table 1: Parameter Configurations

Parameter Value Description

Area 3000x3000 sq. m. Area under evaluations
Maximum speed 60 Kmph Maximum speed of drones
h 100 - 300 feet Height
EMAX 3000 J Energy per charge
P 30 dBm Transmission power
|D| 5-25 Number of drones
|U| 100-300 Number of users
N -174 dBm/Hz Noise power spectral density factor
ρ 2-25 Density of drone in its neighbour
TR 256 kbps Transmission rate
K -11dB Antenna characteristics
δ 4 Path loss factor
tt 1000s Time for which a drone transmits
v 10-40 mps Velocity
CCC 1-3 Number of connected channels
Est 1-2 J Required link state energy
∆ 0.1 Rate of change of current heading
Simulation Time 1000s Operational time
Agent TCP New Reno TCP agent between nodes
Pause time for |D| 0 Halts for drones
Pause time for |U| 2-5s Halts for users
Routing Agent Link state Routing strategy
RTS, CTS, ACK 170, 120, 120 bits Packet lengths

We perform simulated experiments according to the above mentioned set-
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tings and gather results in rems of energy conservation, packet delivery ratio
(PDR), average network throughput, and average end-to-end delay. First,
we discuss the energy conservation achieved due to the proposed scheme with
respect to the probability of connectivity. Figs. 4 shows the energy conserva-
tion with an increase in the probability of connectivity. It is visible that with
an increase in the probability of connectivity (maximum transmission rate),
in ideal conditions up to 1, the energy conservation decrease but the proposed
scheme sustains this decrease to a slight level. This means that the energy
conservation achieved is higher disregarding all sort of drone operations.

Figure 4: Variation of energy with respect to the probability of connectivity.

The results obtained depict that the proposed work helps to manage a
higher PDR even with an increase in the number of users pertaining to the
drones. Fig. 5 shows the variations with respect to an increase in the number
of drones (5 to 25) and number of users (100-300). Is is evident that for each
case of drones, the PDR decreases with an increase in the number of users
but this variations remains between 3.8% to 84%. The PDR ranged between
85% to 99.5%. This shows a significant performance with respect to the
proposed drone-edge coalesce.

Now, the next important QoS metric is related to the maximum utiliza-
tion of resources with an increase in the transmission rate (average). The
network throughput increases when the transmission rate is closer to the
maximum permissible rate. But, thee is another factor that impacts the
throughput, i.e., the number of users. An increase in the number of users
can end up in a significant drop in the throughput. Fig. 6 shows the average
network throughput achieved with the proposed work considering an increase
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Figure 5: PDR

in the number of drone as well as the number of users. It is visible that the
proposed work helps to sustain the throughput (maximum at a value of 31.5
Mbps) at a high value even with a variation of users from 100 to 300.

Figure 6: Average network throughput

Finally, we look into the most important metric in the drone-edge co-
alesce, i.e., end-to-end delay. Fig. 7 shows the average end-to-end delay
witnessed in the experiments with respect to an increase in the number of
drones as well as users. It is visible that the average end-to-end delay ranged
between 12.00 ms (highest) to 2.50 ms (lowest). The delay is seen to be lower
with an increase in the number of drones serving the users in contrast to a
lower number of drones.
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Figure 7: Average end to end delay

Table 2: Simulation results for observed delay.

|D| |U| Message ex-
changed

Observed Aver-
age Delay (s)

Netweork sus-
taining time (s)

100 148 0.0112 995.54
5 200 201 0.0119 995.90

300 251 0.0126 996.26
100 187 0.0105 996.28

15 200 219 0.0110 996.31
300 265 0.0115 996.34
100 393 0.0050 996.89

25 200 407 0.0055 997.29
300 451 0.0060 997.69

Apart from the above results, we have provided some information on
the average number of messages exchanged drones and the ground nodes.
Here, we try to understand the average delay that was observed during the
exchange of these messages. Table 2 depicts that the obtained results show a
minimal fluctuations even with a considerable effect of the number of drones.

7. Conclusion

In this work, we have envisioned a drone-edge coalesce wherein the drones
are deployed to provide services to the end users and the edge act as data
processors for all the requests. There are several challenges related to this
coalesce regarding the drone networks and edge selection. In context of the
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drone communications, the key challenges handled in this work are related to
the congestion control and collision avoidance. Over the top of this, we have
tried to provide a energy-aware data transmission in the proposed setup.
Secondly, we have utilized a decision tree mechanism to select an optimal
edge node for data processing. The proposed work was validated using a
simulated environment. The results obtained depict the effectiveness of the
work with respect to several performance metrics, like, energy conservation,
packet delivery rate, average network throughput, average end-to-end delay.
The results obtained look promising and prove the effectiveness of the work.
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pandemic strong enough to change the online order delivery methods?
changes in the relationship between attitude and behavior towards or-
der delivery by drone. Technological Forecasting and Social Change,
169:120829, 2021.

[57] Hadi Zahmatkesh and Fadi Al-Turjman. Fog computing for sustainable
smart cities in the iot era: Caching techniques and enabling technologies-
an overview. Sustainable Cities and Society, 59:102139, 2020.

36


