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Abstract 

Sequential data assimilation (DA) was performed on three-dimensional flow fields of a 

circular jet measured by tomography particle image velocimetry (tomo-PIV). The work focused on 

the in-depth analysis of the flow enhancement and the pressure determination from volumetric flow 

measurement data. The jet was issued from a circular nozzle with an inner diameter of 𝐷 = 20 mm. 

A split-screen configuration including two high-speed cameras was used to capture the particle 

images from four different views for the tomography reconstruction of the voxels in the tomo-PIV 

measurement. Planar PIV was also performed to obtain the benchmark two-dimensional velocity 

fields for validation. The adjoint-based sequential DA scheme was used with the measurement 

uncertainty implanted using a threshold function to recover the flow fields with high fidelity and 

fewer measurement errors. Pressure was determined by either the direct mode, with implementation 

directly in the DA solver, or by the separate mode, which included solving the Poisson equation on 

the DA-recovered flow fields. Sequential DA recovered high signal-to-noise flow fields that had 

piecewise-smooth temporal variations due to the intermittent constraints of the observations, while 

only the temporal sequence of the fields at the observational instances was selected as the DA 

output. Errors were significantly reduced, and DA improved the divergence condition of the three-

dimensional flow fields. DA also enhanced the dynamical features of the vortical structures, and 

the pressure determined by both modes successfully captured the downstream convection 

signatures of the vortex rings.  

 

 

Keywords: Sequential data assimilation, tomo-PIV, flow enhancement, pressure determination, jet 

flow 
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1. Introduction 

With the rapid development of computer science and measurement technologies, the 

acquisition of turbulent flow data has been developed to encompass full three-dimensional schemes 

including magnetic resonance imaging1 and volumetric particle image velocimetry (V-PIV)2. 

Tomographic PIV (tomo-PIV)3 is one of the most widely used V-PIV techniques for three-

dimensional three-component (3D3C) flow field acquisition due to its relatively large measurement 

volume and high spatial resolution. Tomo-PIV uses multiple cameras to capture particle images 

from different angles of view, which are then used for the tomographic reconstruction of three-

dimensional voxels. The tomo-PIV measurement is known to be affected by calibration errors, 

cross-correlation errors and ghost particles induced by the tomographic reconstruction procedure. 

These effects consequently result in large uncertainty in the flow field acquisition and subsequently 

in the pressure field determination, suggesting the importance of error reduction for measurement 

data in experimental fluid research. “Flow enhancement” is defined in this work following data 

enhancement4, to denote the reduction of the measurement errors in flow field data and the 

inversion of the pressure field.  

Tomo-PIV has been established for use in the reconstruction of three-dimensional arrays of 

light intensity that are discretised over voxels using, usually, a multiplicative algebraic 

reconstruction technique (MART) algorithm. The 3D3C velocity vectors are then determined by 

cross-correlating two successive tomograms3, 5. While the reconstruction mainly relies on a 

precursor calibration, the mapping function of the coordinates from the physical space to the image 

space can be erroneous due to either inaccurate calibration plates or mathematical issues6. Another 

issue in the tomographic reconstruction is the existence of ghost particles formed at the intersection 

of the lines of sight where particles are simultaneously present7. This effect has been reported to be 

the dominant source of measurement error for high sending density8 in tomo-PIV measurements 

and is the main way this technique differs from two-dimensional PIV techniques. Regarding the 

above-mentioned measurement errors, numerous studies have sought to enhance the flow field to 

a specific performance, including self-calibration to reduce reconstruction error6 and using a 
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motion tracking enhancement algorithm to remove the ghost particles9. The most recent 

development on Lagrangian particle tracking (LPT), i.e., Shake-the-Box (STB), enables the 

tracking of individual tracer particles typically following a flow in a three-dimensional volume 10. 

Cross-correlation error and the effect of the ghost particles are substantially reduced. However, 

considerable uncertainties still exist in the flow fields as errors in reconstruction and vector 

determination cannot be completely eliminated in either tomo-PIV or LPT measurements. The most 

notable feature of these methods is the divergence-free error that occurs from the loss of physical 

constraints in the calculation of image processing in the measurements. This loss inevitably causes 

difficulties in the analysis of turbulence dynamics and pressure computations. Wang et al.11 

proposed a divergence-free smoothing method based on the combination of penalised least squares 

regression and the divergence corrective scheme. In this method, truncation exists for small-scale 

flow structures due to the low-pass filtering effect of the smoothing operation.  

Another motivation of the present flow enhancement is the determination of the pressure field, 

which is difficult to measure directly inside the fluid domain12, 13. As mentioned previously, the 

pressure field is generally calculated from a time sequence of PIV data by either gradient 

integration or solving the Poisson equation14, 15. Due to the three-dimensional nature of turbulent 

flows, 3D3C flow data are usually required12, 16 for flows in which the contribution of the third 

component is significant. Applications of the pressure determination from three-dimensional 

velocity data have been realised. These include the flow of a flapping wing determined from a 

scanning PIV measurement17, the turbulent boundary layer measured by single-snapshot tomo-

PIV18, and a vortex ring measured by LPT in which the Lagrangian acceleration was evaluated19. 

However, boundary condition effects and error accumulation in both the gradient integration and 

Poisson equation methods are important due to limitations of the PIV field of view and 

measurement noise20, 21. The pressure and pressure gradient are thus difficult to determined due to 

the turbulence which is of similar level with the large-scale organised patterns in the flow; large-

region PIV measurements in which the pressure, or its gradients, at the boundaries can be easily 

determined is also required.  
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Data assimilation (DA) is a technique that fuses experimental measurements with numerical 

simulations to gather observations (measurement data) at a given time and use flow dynamic 

equations to estimate future states (e.g., global flow data)22. This technique has been applied in 

turbulent flow23-25. While the statistic-based DA method uses complicated data computations26-28, 

adjoint-based DA has become popular for use with flow recovery. The adjoint equation system, 

including the corresponding boundary conditions, is derived and solved together with the primary 

equation system29-32. The time-averaged flow and pressured fields can thus be accurately 

determined within the constraints of relatively temporally-sparse local measurement data. This 

approach is methodologically similar to the least square method33, 34 which use the measured data 

as a constraint to force the calculated results approach the prior predictions. However, DA utilises 

the measured flow data to optimise the momentum predictor and thus determine firstly the flow 

filed which obeys the fluid governing equations before the pressure field can be readily obtained. 

It benefits from the predictive ability of numerical simulation models while the local measurement 

data such as the off-plane component are absent, and large uncertainties or measurement noise are 

contained. Using the adjoint formulation, a four-dimensional variational method (4DVar) has been 

developed for unsteady flow assimilation and instantaneous pressure determination35, 36. However, 

integration in 4DVar must be performed forward for the primary equations and backward for the 

adjoint equations. This necessitates saving the data at all time steps37, which results in huge storage 

space requirements and slow processing speeds. Our previous work developed an adjoint-based 

sequential DA scheme that did not need backward integration, which was successfully applied to 

the determination of unsteady pressure in a synthetic circular jet flow21 and a blunt plate38. 

Accordingly, there is great potential for flow enhancement and pressure determination using 

sequential DA in turbulent flows measured by tomo-PIV.  

The present work applied the adjoint-based sequential DA on three-dimensional flow fields 

measured by tomo-PIV. While our previous efforts21 were mainly concentrated on the pressure 

determination based on the relatively accurate flow fields obtained by numerical simulation, the 

present implementation involved a threshold function to cope with the significant uncertainty in 
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large-domain tomo-PIV measurements. The circular jet was used as the benchmark, as it had been 

widely used for the assessment for volumetric flow measurements, and had significant variation of 

the flow in the depth direction. The Reynolds number based on the nozzle diameter 𝐷 and the 

bulk velocity at the jet nozzle exit 𝑈0 was 𝑅𝑒 = 3,000, at which the flow was featured by the 

convection of large-scale vortex rings due to the Kelvin–Helmholtz instability followed by the 

vortex breakdown. The tomo-PIV measurement was performed to acquire the 3D3C flow field in 

the jet initial region and was used as observations for the DA process. The present measurement 

domain was considerably large for tomo-PIV measurement. It is worth noting that this 

measurement size in the depth direction was much larger than that in our previous experiment21, 

which inevitably induced significant particle overlap in camera images and produced ghost 

particles, thus higher level of measurement errors. The present work is strongly motivated to utilise 

and assess the DA scheme on the flow field improvement for noisy tomo-PIV results. A planar-PIV 

measurement was also conducted for comparison. The measurement uncertainty of tomo-PIV was 

evaluated using the mean flow field of the planar-PIV data and input into the DA equations for the 

flow enhancement. Details of the flow and pressure evolutions were analysed to gain a better 

understanding of the DA performance.  

 

2. Mathematics Fundamentals  

2.1 Sequential DA scheme 

The present formulation is based on our previous derivation21 but with measurement 

uncertainty included to promote the flow field enhancement. For incompressible flows, a forcing 

term 𝑭  is added to the time-dependent Navier-Stokes (N-S) equations and is optimised to 

minimise the discrepancy between the observational data (tomo-PIV measurement) and predictions. 

This yields  

𝜕𝑼

𝜕𝑡
+ (𝑼 ∙ ∇)𝑼 = −∇𝑝 + 𝜈∇2𝑼 + 𝑭 (1) 
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∇ ∙ 𝑼 = 0 (2) 

where 𝜈 is the kinematic viscosity of the fluid and 𝑝 denotes the pressure divided by the fluid 

density. The DA technique can be achieved by minimising the cost function 𝒥  subject to the 

governing equations using an optimised distribution of 𝑭. This is expressed as  

minimise  𝒥 = 𝜉 ∫ ∫ ∑ [𝑀𝑓𝜀,𝑖 (
𝑈𝑖 − 𝑈tomo,𝑖

𝑈0
)

2

]

 

𝑖

dΩd𝑡,
 

Ω

𝑡0+∆𝑡

𝑡0

  

subject to ℛ(𝑼, 𝑝, 𝑭) = 0.  

(3) 

where 𝑡0  and ∆𝑡  are the initial time and the time step of the computation, respectively.  Ω 

represents the computational domain. A weighting function 𝑀 is defined to specify the region 

where the observational data are obtained. 𝜉 is a dimension converter of dimensions [L2 ∙ T−3] 

with a value of unity, to cope with the dimensional inconsistency. 𝑈0 denotes the free-stream or 

the inflow bulk velocity. ℛ(𝑼, 𝑝, 𝑭) includes the incompressible unsteady N-S equations and the 

continuity equation. Different from our previous implementation21, a threshold function associated 

with the measurement uncertainty 𝒇𝜀 is used in the cost function to consider the measurement error 

in the observations. The three components 𝑓𝜀,𝑥, 𝑓𝜀,𝑦 and 𝑓𝜀,𝑧 denote the x, y and z components, 

respectively. The threshold function is defined as  

𝑓𝜀,𝑖 = tanh [(
𝑈̅𝑖 − 𝑈̅tomo,𝑖

𝜀𝑖
)

20

] , (𝑖 = 𝑥, 𝑦, 𝑧) (4) 

where, ‘ ’̅ denotes the time average. The exponent 20 is used to force a rapid switching of the 

threshold function between 0 and 1; it is noted that this value has trivial effect on the final results 

once it is large enough. The 𝜀𝑖  parameter is the tomo-PIV measurement uncertainty, which is 

defined by the difference between the mean velocity fields of tomo-PIV and planar-PIV 

measurements, i.e.,  

𝜀𝑖 = |𝑈̅tomo,𝑖 − 𝑈̅planar,𝑖|, (𝑖 = 𝑥, 𝑦, 𝑧) (5) 

Due to the different dimensions and spatial resolution of the planar- and tomo-PIV results, the 

planar-PIV measurement results should be duplicated azimuthally and interpolated onto the three-

dimensional mesh before subtracting the tomo-PIV results. The threshold function specifies a 

criterion for how close the predicted flow should be to the observation. 𝑓𝜀,𝑖 approaches zero in 
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regions where the discrepancy between the predicted flow and the observation becomes smaller 

than the measurement uncertainty 𝜀𝑖 . Thus, a high level of measurement error is likely to be 

removed by introducing more confidence into the model prediction. The measurement uncertainty 

𝜀𝑖  plays an important role in the error removal and flow enhancement of the tomo-PIV 

measurements. However, the definition of this uncertainty is tricky due to the complexity of 

mapping the camera images to the three-dimensional vector fields. The present definition in terms 

of mean flows using the planar-PIV results, which are usually of much smaller uncertainty once 

the measurements are carefully performed, as the reference performs reasonably well, with only 

minor defects. It is important to note that more precise uncertainty assessment method should be 

developed for more complex flow configurations.  

We obtain a constraint optimisation problem that can be solved by introducing a Lagrange 

function ℒ such that 

ℒ = 𝒥 + ∫ ∫ (𝑽, 𝑞)𝓡dΩd𝑡,
 

Ω

𝑡0+∆𝑡

𝑡0

 (6) 

where 𝑽  and 𝑞  denote the adjoint velocity and adjoint pressure introduced as the Lagrange 

multipliers. 𝓡 includes the N-S and continuous equations. The inner product between (𝑽, 𝑞) and 

𝓡  produces a scalar denoting the constraint of the governing equations. After obtaining the 

sensitivities of the Lagrange function ℒ with respect to 𝑭 by setting the variations of ℒ with 

respect to other state variables to zero, the optimal 𝑭 distribution can be determined. Accordingly, 

the adjoint equations associated with the adjoint state variables 𝑽 and 𝑞 are 

𝑽

∆𝑡
+ ∇𝑼 ⋅ 𝑽 − (𝑼 ∙ ∇)𝑽 − 𝜈∇2𝑽 + ∇𝑞 + 2𝜉𝑀 (𝒇𝜀 ∘

𝑼 − 𝑼tomo

𝑈0
2 ) = 0 (7) 

∇ ∙ 𝑽 = 0 (8) 

with ∇𝑼 ⋅ 𝑽 = 𝑉𝑗
𝜕𝑈𝑗

𝜕𝑥𝑖
 . The operator ‘∘’ denotes the Hadamard product. For the inflow, wall and 

far-field boundaries where the primary state variable 𝑼 is specified, the boundary conditions are  

𝑉𝜏 = 0, 𝑉𝑛 = 0 (9) 

𝒏 ∙ ∇𝑞 = 0 (10) 

For the outflow boundaries where the zero-gradient condition is used for the primary state variables 
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𝑼, the conditions are 

  𝑈𝑛 ∙ 𝑉𝜏 + 𝜈(𝒏 ∙ ∇)𝑈𝜏 = 0 (11) 

  𝑈𝑛 ∙ 𝑉𝑛 + 𝜈(𝒏 ∙ ∇)𝑈𝑛 − 𝑞 = 0 (12) 

where the subscripts 𝑛  and 𝜏  denote the normal and tangential components of the variables, 

respectively. 𝒏  is the unit normal vector at the boundaries. Detailed derivation of the adjoint 

equations and boundary conditions was according to39. 

Once the adjoint state variables are obtained, the sensitivities of the Lagrange function ℒ 

with respect to the forcing 𝑭 can be computed according to 

𝜕ℒ

𝜕𝑭
= −𝑽 (13) 

As the sensitivity with respect to the state variables is forced to disappear, the forcing function 𝑭 

can be adjusted gradually according to Eq. (14) using the steepest descent algorithm 40 to minimise 

the cost function.  

𝑭 = 𝑭 − 𝜆
𝜕ℒ

𝜕𝑭
 (15) 

where 𝜆 is the step length estimated according to 𝜆 = (0.01~0.1) (𝜕ℒ 𝜕𝑭⁄ )max⁄ . Note that the 

small value of 𝜆  is beneficial to the numerical stability but slows down the convergence. An 

appropriate 𝜆 value can be easily obtained in the computation of the first few time steps.  

    Fig. 1 shows the iterative procedure to achieve the sequential DA. The biggest difference from 

the conventional 4DVar algorithm is that the present DA scheme integrates all the way forward in 

time. The judgement of whether the observations are present is made at each time step to realise 

the conventional numerical simulation when observations are absent. At a time step when 

observations are present, the adjoint equations are solved with the updated 𝑭 and the iteration 

condition, such that the maximum number of iterative loops or the residual is assessed. The 

computation moves on to the next time step when the iteration condition is met. Note also that as 

the time interval between the observations is usually larger than the time step of the computation, 

the flow has an abrupt switching to the time step when observations are present from the previous 

time steps (will be shown in Fig. 10), exhibiting behaviour typical of sequential DA with a 
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piecewise-smooth flow variation in time. Therefore, only the flow data at time steps when 

observations are present are selected as the DA results.  

 

Fig. 1 Iterative procedure of the primary-adjoint system.  

 

2.2 Pressure determination scheme 

In the framework of conventional unsteady flow simulation, the pressure implicit splitting of 

operators (PISO) algorithm is used to solve the N-S and the continuity equations. The semi-

discretised form of the N-S equations41 is 

𝑎𝑃𝑼𝑃 = 𝑯(𝑼) − ∇𝑝.  (16) 

where 𝑎𝑃 is the matrix coefficients for the implicit velocities. The 𝑯(𝑼) term consists of the 

matrix coefficients for all neighbours multiplied by the corresponding velocities, the source part of 

the transient term and all other source terms except the pressure gradient. The pressure is computed 

after solving the N-S equations using a Poisson equation derived from the flow mass conservation,  

∇ ∙ (
1

𝑎𝑃
∇𝑝) = ∑ 𝑆 ∙ [

𝑯(𝑼)

𝑎𝑃
]

𝑓𝑓

  (17) 

where the subscript “𝑓” denotes the mesh surface, and 𝑆 is the surface area. At each iterative loop, 

the N-S equations and Poisson equation are solved, and the flow velocity and pressure are updated. 

In the present primary-adjoint system, however, the pressure finally converges to a distribution 

subject to the forcing, as 𝑭  is contained in the 𝑯(𝑼)  term. To obtain a pressure with the 

Primary equations

Eqs. (1 & 2)
t = 0

Adjoint equations

Eqs. (7 & 8)

No
t = t + Δt 

Yes

No
Update F 

Eq. (14)

t = t + Δt 

Yes

Iterative loop

Are observations 

present?

Meet the iteration 

conditions?
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converged velocity field as if the flow develops naturally, the contribution of 𝑭 in Eq. (16) needs 

to be excluded. This gives 

∇ ∙ (
1

𝑎𝑃
∇𝑝) = ∑ 𝑆 ∙ [

𝑯(𝑼) + 𝑭

𝑎𝑃
]

𝑓𝑓

  (18) 

after the final iterative loop to compute the pressure distribution. Eq. (17) can be solved via 

coupling into the primary-adjoint system. The 𝑯(𝑼)  term contains the difference between the 

flow fields at the observational instance and those at the previous time step. The abrupt switching 

of the flow induces specific errors in the pressure determination. Here, two pressure fields are saved: 

the forced pressure with the contribution of 𝑭  computed by Eq. (16) to realise the velocity-

pressure coupling loop and the natural pressure excluding the 𝑭 contribution computed by Eq. 

(17). We call the determination method of the natural pressure the ‘direct mode’. Both pressures 

also have piecewise-smooth variations in time while the natural pressure data at the instances of 

observation are selected as the DA results.  

The pressure can also be computed separately using the DA flow fields at each observational 

instance. This method is named ‘separate mode’ in this study. The time interval is much larger than 

the computational time step and thus also induces error in the calculation of the velocity time 

derivative. This approach is similar to the pressure determination from PIV measurements by 

solving the Poisson equation. Currently, the flow fields are obtained by DA with less measurement 

and divergence errors and in larger domains. This results in the pressure computation being less 

sensitive to the boundary conditions and flow errors. 
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3. Experimental and Numerical Setups   

3.1 Experimental setup 

The experiment was conducted in an octagonal tank (sidewall width, 250 mm; height, 900 

mm) that was previously used in42 and is shown in Fig. 2a. An overflow chamber was designed to 

control the free surface location and feed the jet flow with the assistance of a frequency-converter 

pump. A nozzle with a contraction ratio of 2:1 and an exit diameter of 𝐷 = 20 mm was installed 

at the bottom of the octagonal tank. The exit was 200 mm above the bottom surface to minimise 

the wall effect on the flow field. The jet fluid first entered a flow stabiliser located below the bottom 

surface of the octagonal tank. This stabiliser incorporated a cylindrical filter to change the flow 

direction uniformly from upward to radial and a honeycomb filter with a diameter of 2𝐷  to 

dampen the large-scale structure and crosswise velocity upstream of the nozzle. The Reynolds 

number was fixed at 𝑅𝑒 = 3,000 which was defined based on the bulk velocity 𝑈0 (0.135m/s) 

in the nozzle and the nozzle exit equivalent diameter 𝐷.  

The three-dimensional flow-field downstream of the nozzle exit was measured via tomo-PIV. 

The global seeding of the complete tank was realised with 50-μm polyamide particles (Dantec, 

Denmark). A 25 W continuous-wave laser at 532 nm (Millennia EV25S, USA) was used for the 

illumination. The laser included a compacted combination of cylindrical lenses to produce a 50-

mm-diameter light column through the jet centreline and also had a surface chamber to eliminate 

the free surface effects on the illumination. Particle images were captured using two 12-bit 

complementary metal-oxide semiconductor (CMOS) cameras (PCO, Germany) with a spatial 

resolution of 2,000 × 2,000 pixels and lenses (Laowa 100mm/F2.8, China) with an aperture value 

of F11. The images were taken using a double-exposure mode controlled by the synchroniser, i.e., 

with a sampling rate of 100 image pairs per second and a time interval of 2 ms between the frames 

in each image pair. These parameters yielded a particle shift of approximately 6 pixels in the main 

region. The particle size was around 4 × 4 pixels with a density of approximately 0.02 Nppp 

(number of particles per pixel). The exposure time for each image was fixed at 1 ms. Using an 
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appropriate combination of prismatic and planar mirrors43, each camera was split into two views, 

as shown by the yellow dashed line in Fig. 2a. This resulted in four different views along the radial 

direction with an approximately 30 azimuthal angle increment and a field of view of 1,000 × 2,000 

pixels. This configuration reduced the number of cameras required but maintained an equivalent 

removal of ghost particles with the four-camera system. Due to the resolution decrease of each 

image caused by the screen splitting, an appropriate layout needs to be designed to keep necessary 

pixels in the jet region, and care must be taken to avoid cross-talk among the particle images from 

two sides of the split screen. For comparison, the planar-PIV measurement was also conducted on 

the longitudinal plane by modulating the laser column to a sheet of 1 mm in thickness. Only one 

camera was used, without the split-screen configuration. Other configurations of the laser and 

camera remained identical to those used for the tomo-PIV measurements.  

 

The camera calibration, together with volume self-calibration6, was performed using a dotted-

array plane with a dot diameter of 1.5 mm and a distance of 10 mm. Three-dimensional calibration 

was achieved by a 30-mm normal shift of the calibration plate controlled by a traverse mechanism. 

The velocity vectors were calculated from the raw particle volumes using a TOMOpro code 

developed in-house44, 45. In the tomo-PIV measurement, the size of the reconstructed volume was 

100 mm (5𝐷 in 𝑥 direction) × 50 mm (2.5𝐷 in 𝑦 direction) × 50 mm (2.5𝐷 in 𝑧 direction) 

centred at the nozzle axis, as shown in Fig. 2b. Image preprocessing was applied to remove noise 

and improve the volume reconstructions. A global view of the particle image and a close-up view 

are shown in Fig. 3. The original particles in the image are irregularly shaped, with a very dense 

sparsity ratio, resulting in an excessive computational cost of each MART iteration. Before 

background subtraction and local normalisation, the images were first bandpass filtered in the 

image processing. This iteration gave rise to well-shaped particles and a high sparsity ratio with 

clear space between particles. The MART technique was used to reconstruct the three-dimensional 

distribution of the particle grayscale with a resolution of 11 voxels/mm, resulting in a particle 

sparsity of approximately 1.5% for the whole reconstructed domain. The sub-voxel accuracy PIV 

algorithm was based on the iterative multigrid volumetric cross-correlation approach with a final 
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pass (minimum) interrogation volume size of 32 × 32 × 32 voxels (physical size of 2.86 mm3) and 

50% overlap. This yielded a resolution of 14 vectors per nozzle diameter 𝐷. A total of 600 flow-

field snapshots were captured, spanning approximately 18 passing loops of the large-scale vortex 

rings according to the Strouhal number 𝑆𝑡 =  0.4. The planar-PIV measurement used an 

interrogation window size of 32 × 32 pixels (physical size of 2 mm3), and a 50% overlap yielded a 

vector resolution of 20 vectors across the nozzle diameter 𝐷. A total of 3,000 two-dimensional 

flow-field snapshots were obtained for analysis.  

 

 

Fig. 2 Schematic diagram of the tomo-PIV setup: (a) instruments layout; (b) the reconstruction 

domain.  
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Fig. 3 Particle image captured by the split-screen camera: (a) the global view; (b) 

the close-up review of the original and the processed particle images.  

 

 

3.2 Computational setup 

DA was performed in a three-dimensional domain, as shown in Fig. 4a. The domain had a 

length of 32𝐷  and diameter 30𝐷  (where 𝐷  is the nozzle diameter) to eliminate the boundary 

effects on the main stream. Previous work46 showed that the jet spread only about 10𝐷 in the radial 

direction at the domain exit, indicating that the domain size of 30𝐷 was sufficient for the present 

computations. It is important to note that such large computational domain is not required for 

internal flows, as physical domain size and boundary conditions can be directly applied. The inlet 

boundary extended 1𝐷 upstream of the nozzle exit to reduce the inflow boundary effects on the 

flow. A structured O-type mesh was used as the base mesh as shown in Fig. 4b. The azimuthal 

direction was discretised uniformly using 64 mesh elements. The mesh size was gradually 

increased in the radial direction to reduce the computational cost but keep a fine resolution where 

necessary. One level of mesh refinement technique was performed to increase the resolution in the 

Image       processing

(a) Global view (b) Close-up view
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jet region, resulting in approximately 1.2 million nodes.  

 

In the DA process, the tomo-PIV measurements were used as the observational data located 

in the region with ranges of 0.1 ≤ 𝑥 𝐷 ≤⁄ 5  and −1.25 ≤ 𝑟 𝐷 ≤⁄ 1.25  ( 𝑟 = √𝑦2 + 𝑧2 ) as 

shown in Fig. 4a. The time sequence of the tomo-PIV data was interpolated onto the computational 

mesh in the observational region with a time interval of ∆𝑇 = 0.01 s, as shown in Fig. 4b. A mean 

distribution of the streamwise velocity according to the planar-PIV measurement and the 

fluctuating part extracted from the fully developed turbulent channel flow were superimposed onto 

the inflow boundary for the boundary conditions of the primary variables. The zero-gradient and 

free-slip conditions for the primary velocity were imposed on the outflow and far-field boundaries, 

respectively. The velocity on the co-flow boundary was 0.01𝑈0, which was small enough to void 

the effects on the main flow while also being beneficial for the numerical stability. The pressure on 

the outflow boundary was specified to be zero, while a zero-gradient condition was imposed on 

other boundaries. All of the boundary conditions for the adjoint variables were specified according 

to Section 2.1. Both the primary and adjoint equations were discretised using the second-order 

scheme, which includes staggering characteristics and the introduction of small amounts of upwind 

to remove unphysical fluctuations. In the DA computation, the primary velocity was initialised 

from a precursor simulation result using the laminar model and the superimposed primary inflow 

condition. The time step used in the DA computation was ∆𝑡 = 0.002 s and the observational data 

were implanted every 5 time steps. 𝜆 = 104 was used in Eq. (14), and the number of the iterative 

loop was fixed at 20 (Fig. 6), which yielded good stability and a reasonable convergence for both 

the velocity assimilation and pressure determination. The computation was performed using the 

open-source code OpenFOAM. Only the primary equations were solved with 𝑭 = 0  once the 

observations were absent.  
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Fig. 4 Schematic diagram of the DA setup: (a) the computational domain; (b) the mesh 

implanted with the tomo-PIV data. 

 

In the DA computation, a weighting function 𝑀  was defined to represent the relative 

importance of the observations in different regions, i.e., lower degree of confidence on the 

observational data was imposed in the region with smaller 𝑀. As shown in Fig. 5a, 𝑀 was defined 

as the normalised streamwise velocity fields of the planar-PIV measurement. These fields were 

interpolated azimuthally to a three-dimensional computational domain, with a linear attenuation to 

zero in the region of 0 < 𝑥 𝐷 <⁄  1 to reconcile the effect of the disparity in the inflow boundary 

conditions between the DA and the tomo-PIV data. This weighting function was beneficial for the 

smooth transition of the flow from the nozzle to the jet region where the flow was constrained by 

the observations, and for the noise elimination in the side regions where the flow velocity was 

significantly smaller than that in the main stream. However, the weighting function does not make 

much sense for the assimilated results once the residual, i.e., the difference between the predictions 

and the observations, becomes significantly small within the iteration. This weighting function is 

thus coupled with the threshold function to loosen the observational constraint where large 

uncertainty exists in the tomo-PIV data. To define the tomo-PIV uncertainty, the planar-PIV 

measurement results were first interpolated onto the three-dimensional computational mesh before 

subtracting the tomo-PIV results. The tomo-PIV uncertainty is defined in Eq. (5) and was 

normalised using the jet inflow velocity 𝑈0 in Fig. 5(b-d), where the three components are shown. 
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Large uncertainty existed in the initial shear layer of the jet except for the z-component of the 

velocity. Specifically, large uncertainty occurred for 𝜀𝑥 in the negative region of the y coordinate 

in Fig. 5b (large distance from the camera in the depth direction). It was more significant for 𝜀𝑦 

in the whole measurement region due to ghost particles in the tomographic reconstruction, which 

thus created large measurement uncertainty for the velocity component in the depth direction. The 

velocity component parallel to the camera layout in tomo-PIV measurement agreed well with the 

planar-PIV results, which yielded quite small uncertainty, as shown in Fig. 5d.  

 

Fig. 5 Distributions of the weighting function and measurement error: (a) the weighting 

function 𝑀; (b-d) and different components of the error.  
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The tomo-PIV measurement uncertainty shown in Fig. 5(b-d) is only a rough definition in 

terms of the mean flow distribution. Indeed, the uncertainty for each flow snapshot was much more 

complicated than the present definition. For a well-configured two-dimensional PIV system, the 

uncertainty comes mainly from the image matching for vector determination 47, 48, which is 

associated with the displacement gradient of a particle, the off-plane motion, the seeding density 

and background noise. However, the tomo-PIV measurement has an additional source of 

uncertainty in the particle tomographic reconstruction, including the calibration error and effects 

of the ghost particles. This uncertainty source has been observed to be dominant compared to that 

of image matching, but it is difficult to evaluate. The present uncertainty distribution was 

inappropriate in the region where 𝜀𝑖 approached zero, but the instantaneous field of the tomo-PIV 

measurement contained considerable error, which usually causes computational difficulties in 

reducing the residual further to a certain level. Fig. 6a demonstrates the variation in the domain-

averaged threshold function 〈𝒇𝜀〉 with respect to the iterative loop number in a selected time step 

and using a step length 𝜆 = 104. This value directly reflects the DA residual that represented the 

discrepancy between the observations and the predictions. 〈𝒇𝜀〉 decreased rapidly in the beginning 

for each component but remained at a certain level for the iterative loop 𝑛𝑖 > 20 with a slowly 

decreasing rate. The 〈𝑓𝜀,𝑧〉  was much larger than the other two components due to the low 

measurement uncertainty, as shown in Fig. 5d, and the relatively large computational residual (Fig. 

6d). According to Fig. 6a, the number of iterative loops was fixed at 𝑛𝑖 = 20 for the primary-

adjoint system with 𝜆 = 104. The other 𝜆 values were tested for convergence, and the optimal 𝑛𝑖 

was also changed. However, they had little effect on the final results but did affect the variation in 

the computational efforts. Fig. 6(b-d) shows the threshold function distribution at 𝑛𝑖 = 20 on the 

jet centre plane, illustrating that the assimilated flow in the observational region had not approached 

the tomo-PIV measurement within the defined uncertainty level. Nevertheless, the residual was 

helpful for reducing noise in tomo-PIV measurement.  
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Fig. 6 Convergence of the iteration: (a) residual decay with respect to the iteration loops; (b-d) 

distributions of the threshold functions at 𝑛𝑖 = 20. 
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4. Results and discussion   

4.1 Overview of the DA results 

The flow snapshots in Fig. 7 present an overview of the PIV measurements and the DA results 

at a large time when the flow is well developed. As the superimposed inflow condition was used 

in the DA, the flow inside the nozzle section exhibited typical features of a developed pipe flow 

with a smooth transition to the main jet flow outside the nozzle. Note that the dashed white box 

indicates the observational region and the observational tomo-PIV results are shown in the solid 

red box. An important feature of the tomo-PIV measurement and the DA result is the similarity of 

the flow distributions in the large-scale pattern. There was more error contained in the tomo-PIV 

measurement, as shown by the discontinuity of the flow contours. This difference demonstrates 

that the DA procedure can remove errors using the N-S equations as a filter. As the flow in the 

observational region is assimilated, a consistent development of the flow in the downstream region 

was observed. The observations facilitated flow recovery inside the observational region and 

downstream flow due to the spatial correlation. The planar-PIV measurement result is also shown 

in Fig. 7 for comparison. Although the planar-PIV measurement was not performed simultaneously 

with tomo-PIV, the general large-scale pattern of the fluid puffs (induced by the vortex rings) was 

confirmed except for the notable measurement noise in the instantaneous field. These planar-PIV 

data were used further for quantitative validation of DA.    
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Fig. 7 Instantaneous streamwise velocity fields obtained by tomo-PIV, planar-PIV and DA. 

The tomo-PIV and planar-PIV results are only for qualitative comparison as they were 

measured separately.   

Fig. 8 shows a quantitative comparison of the streamwise velocity distributions and their 

velocity fluctuations at the downstream location 𝑥 𝐷⁄ = 2 and 4 . This comparison is a statistical 

validation of the DA scheme on the reproduction of the flow field. To obtain converged and 

smoothed data, the velocity was time- and azimuthal-averaged (azimuthal locations for every 2 

degrees for the three-dimensional data but only for every 180 degrees for the planar-PIV 

measurements). The planar-PIV measurements served as the reference When compared to the 

tomo-PIV results, the planar-PIV measurements showed a slight discrepancy due to measurement 

uncertainty. The tomo-PIV over-estimated the mean velocity in the jet column at 𝑥 𝐷⁄ = 4 by 4% 
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and in the initial jet shear layer at 𝑥 𝐷⁄ = 2 by much larger percentage. It also determined the 

velocity fluctuation intensity, which was 17% higher than that of the planar-PIV measurement in 

the jet column at 𝑥 𝐷⁄ = 4.  

Fig. 5 covers the measurement uncertainty of the tomo-PIV, and we now focus on the DA 

results. DA accurately predicted the mean velocity at both 𝑥 𝐷⁄ = 2 and 4, but the under-estimation 

of the velocity fluctuation was observed at 𝑥 𝐷⁄ = 2 by 25%. This discrepancy resulted from the 

inflow boundary condition on which the imposed flow fluctuation was lower than that in the 

experiment. Note that the measured flow was not strictly representative of the fully developed pipe 

jet. DA recovered the flow fluctuation by the constraints of the observations. This constraint 

effectiveness was improved with the jet development toward the downstream direction, which 

resulted in agreement of the velocity fluctuation and planar-PIV data at 𝑥 𝐷⁄ = 4.  

 
Fig. 8 Mean and fluctuating streamwise velocity distributions obtained by tomo-

PIV, planar-PIV and DA.  

Once the flow had accurately recovered, the accompanying pressure field was obtained. This 

was computed by solving the Poisson equation (Eq. (17)) in the DA solver. However, instead of 
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solving the Poisson equation directly from the PIV results, the DA-based pressure determination 

method solves the Poisson equation based on the assimilated flow fields. These flow fields 

approach the tomo-PIV data within the tolerance of the measurement uncertainty but are subject to 

less effects of measurement errors and boundary conditions. Fig. 9 (Multimedia view) shows the 

instantaneous pressure (natural pressure) isosurface determined by DA using the direct mode. The 

accuracy of this pressure determination method has been already validated using the large-eddy 

simulation (LES) data21, and the present pressure field was also believable. As expected, vortex-

ring-like structures were captured by DA in the pressure field, with the dark rings denoting negative 

pressure and the light rings representing positive pressure. This pressure pattern was confirmed by 

the streamwise velocity fields on the centre planes, i.e., the negative pressure isosurfaces were 

located surrounding the fluid puffs where the vortex rings exist while the positive pressure 

isosurfaces were located between two successive fluid puffs away from the vortex rings.  
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Fig. 9 Instantaneous pressure isosurfaces (2𝑝 𝑈0

2⁄ = ±0.05 & ± 0.1) recovered by 

DA. Flow snapshots on the streamwise centre planes and the nozzle exit plane are 

also shown. (Multimedia view) 

 

4.2 Details of the flow and pressure assimilation  

Following the overview of the DA results, more details of the flow and pressure fields are 

discussed. As noted in Fig. 1, a typical feature of the sequential DA is the piecewise smooth of the 

temporal variations. The DA time step and the time interval between the observations were ∆𝑡 =

 0.002 and ∆𝑇 = 0.01, respectively, which yielded the implantation of the observations into the 

DA computation every 5 time steps. The temporal variation in velocity and pressure at the location 
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𝑦/𝐷 = 0.5 and 𝑥/𝐷 = 2 is shown in Fig. 10. Each quantity predicted by DA experienced an abrupt 

switching every 5 time steps when the observations were present (see the full time DA data). This 

switching is indeed unnatural while the smooth temporal variation is expected in a naturally 

developed flow. The small-time variation in each quantity within the observational time interval 

did not strictly follow the trend of the observations, specifically for the y-component velocity (in 

depth direction shown in Fig. 10b). The trend consistency of the small-time variation depended on 

the relative contribution of the observation constraint, i.e., when the pure simulation is prone to 

producing a flow approaching the observations, the forcing 𝑭 should be significantly small. Thus, 

the switching at the observational instance will be quite small and will yield a smooth variation in 

time. For the present flow configuration, the flow development was strongly dependent on the 

inflow condition and the computational mesh resolution. The observation constraint played a major 

role in forcing how the flow varied along with the observations. The abrupt switching of the flow 

quantities from the unforced instance to the observation-constraint instance is a common feature in 

sequential DA schemes23, 49. However, only the flow quantities at the observational instances were 

considered as giving rise to the smooth variation in the velocities and pressure over time (see the 

red DA data). Fig. 10 also shows the temporal variations in the tomo-PIV data. The DA results have 

a similar trend but much lower random fluctuations. This result suggests that the flow enhancement 

function of the DA scheme played a major part in smoothing the flow temporal variation which 

was most likely subject to random errors in tomo-PIV measurements.  
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Fig. 10 Temporal variations in the velocity components (a-c) and pressure (d) at 𝑦/𝐷 = 0.5 

and 𝑥/𝐷 = 2. DA (full time): DA data at very time step; DA: DA data at only the 

observational instances; Tomo-PIV: Original tomo-PIV data.  

A global view of the flow variation is shown in Fig. 11 (Multimedia view). The tomo-PIV 

measurement (left column) and the corresponding DA prediction (right column) were extracted at 

the same time. The temporal variation at three successive observational instances with an interval 

∆𝑇 = 0.01 is shown from top to down. Tomo-PIV could not acquire the flow data from inside the 

nozzle and even missed some of the flow close to the nozzle exit. The downstream convection of 

the large-scale flow structures is shown in Fig. 11(a, c, e), but the small structures were exhibited 

in a random way and contaminated the flow field. The DA scheme was implemented with tolerance 

0.2

0.4

0.6

0.8

-0.2

0.0

0.2

-0.2

0.0

0.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.2

0.0

0.2

 DA (full time)       DA        Tomo-PIV

U
x 

/U
0
 

(a)

(d)

(c)

(b)

U
y /U

0
 

U
z /U

0
 

2
p

/U
0

2

 

tU
0
 /D



 

28 
 

of measurement uncertainty and thus treated the random small scales as measurement noise, as 

shown in Fig. 11(b, d, f). The flow fluctuation in the upstream region 𝑥 𝐷⁄ < 2 in DA was not as 

well excited as that in tomo-PIV measurement, probably because of the differences in the inflow 

condition as previously mentioned. In fact, this inflow condition is quite difficult to consider 

precisely in conventional numerical simulations even using the inflow boundary condition 

generator50, 51. While the DA scheme also provides a boundary condition approach52, this study did 

not focus on the inflow condition itself, but rather on an alternative way to recover the flow from 

a synthetic unreal inflow. Flow recovery was augmented in further downstream regions as that at 

𝑥 𝐷⁄ > 4.   

 

Fig. 11 Spatial distribution of the streamwise velocity with time interval ∆𝑇 = 0.01 s: (a, c, e) 

tomo-PIV; (b, d, f) DA. (Multimedia view) 
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Fig. 12 Isosurface of 𝑄𝐷 𝑈0⁄ = 10 coloured by the streamwise vorticity with time interval 

10∆𝑇 = 0.1 s: (a, c, e) tomo-PIV; (b, d, f) DA. (Multimedia view) 

 

 

Fig. 13 Spatiotemporal plot of the vortical structures (isosurface of 𝑄𝐷 𝑈0⁄ = 10 coloured by 

the streamwise velocity) at 𝑥 𝐷⁄ = 2: (a) tomo-PIV; (b) DA. The velocity sequences at 𝑥 𝐷⁄ =

 2 and 𝑦 𝐷⁄ = 0.5 are also compared in (c).  
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Vortex rings were observed due to the nature of this low-Reynolds-number jet flow. In Fig. 12 

(Multimedia view), the DA data were extracted from the observational region (Fig. 12 right column) 

and compared to the tomo-PIV measurements (Fig. 12 left column). The time interval was set to 

10∆𝑇  to visualise the downstream convection of the vortex rings more clearly. The vortical 

structures in the tomo-PIV data were less organised due to measurement error, especially at 𝑥 𝐷⁄ <

  2. Additionally, more vortical fragments were observed in the shear layer, especially after the 

vortex breakdown. In contrast, the DA results contained rather clear vortex ring structures 

convecting downstream by filtering a large portion of the vortical fragments. In fact, on closer 

inspection of the temporal sequence, the majority of the vortical fragments in the tomo-PIV results 

were not time correlated (Fig. 13a). The red circles in Fig. 13 mark the temporal variation at small 

scales, which have a narrow extension in the time direction indicating random noise. DA smoothed 

the large-scale vortical ring by eliminating the measurement noise and induced temporal correlation 

for small scales as illustrated by the elongated vortices (marked in red circles) in Fig. 13b. The 

quantitative comparison is shown in Fig. 13c, and reasonable agreement between the DA results 

and the measurement data can be seen. A clear discrepancy in the velocity sequence is the reduction 

of the DA velocity value in instances where the tomo-PIV data experienced abrupt peaks, which is 

indicative of the error elimination mechanism of DA and also a slight under-estimation of the 

velocity fluctuation (Fig. 8). 

Fig. 14 presents the probability density functions (PDFs) of the streamwise fluctuating 

velocities obtained by different schemes for deeper analysis. The planar-PIV data was used as the 

reference for validation. The tomo-PIV measurement had a significantly higher probability of 

negative fluctuating velocity, i.e., -1.5 < 𝑢𝑥
′ 𝑢𝑥,RMS⁄ <  -0.5, but a slightly lower probability of 

positive fluctuating velocity 0  < 𝑢𝑥
′ 𝑢𝑥,RMS⁄ <  1 at both downstream locations. The over-

estimation of the probability around 𝑢𝑥
′ 𝑢𝑥,RMS⁄ =  2 by tomo-PIV was also observed. This 

dynamic feature is well visualised in Fig. 13c. The abrupt peaks of the tomo-PIV velocity at 

approximately 𝑡𝑈0 𝐷⁄ = 4.6, 6.6, 10 and 12 contributed to the over-estimation of the PDF around 

𝑢𝑥
′ 𝑢𝑥,RMS⁄ =  2. The frequent small-scale fluctuations at 𝑡𝑈0 𝐷⁄ =  2, 4, 6, 8.4, etc. played an 
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important role in increasing the PDF for -1.5 < 𝑢𝑥
′ 𝑢𝑥,RMS⁄ <  -0.5. With the attenuation of the 

abrupt peaks in the DA results, a decrease in the PDF at 𝑢𝑥
′ 𝑢𝑥,RMS⁄ = 2 was achieved, being closer 

to the planar-PIV data in the figure. The PDFs predicted by DA agreed with the planar-PIV 

measurement, demonstrating that DA improved the flow’s dynamic features statistically.  

 

Fig. 14 Comparison of the PDFs of the streamwise fluctuating velocities at 𝑦 𝐷⁄ = 0.5: (a) 

𝑥 𝐷⁄ = 2; (b) 𝑥 𝐷⁄ = 4.  

 

Divergence error, one of the main errors in tomo-PIV measurements, has serious effects on 

pressure determination. Because PIV algorithm is based on the image processing using cross-

correlation of the gray-scale distribution to compute velocity vectors, it lacks the strict constraint 

of flow mass conservation in a controlled volume. The divergence error is expressed as 𝜀div = ∇ ∙

𝑼; when substituting this expression into Eq. (15), the following form of the pressure equation is 

obtained,   
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Eq. (18) suggests that the Laplacian of the pressure is linearly dependent on the divergence error, 

and thus the absolute pressure distribution is much more sensitive. Here, we calculate the joint 

PDFs between 𝑑𝑑𝑥 and 𝑑𝑑𝑦𝑧, which are defined as  

𝑑𝑑𝑥 =
𝐷

𝑈0
(

𝜕𝑈𝑥

𝜕𝑥
)  (20) 

𝑑𝑑𝑦𝑧 = −
𝐷

𝑈0
(

𝜕𝑈𝑦

𝜕𝑦
+

𝜕𝑈𝑧

𝜕𝑧
) (21) 

The inclined dashed lines in Fig. 15 represent the divergence free properties of the joint PDFs. The 

tomo-PIV results significantly deviated from the divergence free line at both downstream locations, 

as shown in Fig. 15(a, c). The DA results were improved, as presented in Fig. 15(b, d). Indeed, the 

divergence free constraint was naturally implemented in the DA procedure by solving the primary 

equations. Thus, the assimilated flow did not approach the observations with a well-converged 

computational residual.  

 

Fig. 15 Joint PDFs between ddx and ddyz at: (a, b) 𝑥 𝐷⁄ = 2; (c, d) 𝑥 𝐷⁄ = 4. The left column 

shows the tomo-PIV data, and the right shows presents the DA data.  
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As shown in Fig. 10, the sequential DA reproduced piecewise-smooth flow quantities, while 

only the data at the observational instances (∆𝑇 = 0.01 s) were selected as the DA outputs. Fig. 16 

presents the power spectral densities (PSDs) of the streamwise velocity at the radial location 

𝑟 𝐷⁄ = 0.5 at two downstream stations. The PSD of the planar-PIV data was computed using 3,000 

snapshots and data velocity data at 𝑦 𝐷⁄ = ±0.5. The tomo-PIV and DA results used 500 snapshots 

at 180 uniformly distributed azimuthal locations to determine the well converged curves. At 

𝑥 𝐷⁄ = 2, the main Strouhal number (𝑆𝑡) peaked at 𝑆𝑡 = 0.23, 0.45 and 0.67. These values were 

well captured by both the planar-PIV and tomo-PIV measurements, and also by the DA prediction. 

At 𝑥 𝐷⁄ = 4, the main peaks moved to 𝑆𝑡 = 0.28, 0.42 and 0.60 and were affected by the nonlinear 

convection process. They were also roughly captured by all of the schemes. The differences in the 

peak order captured by the different methods may be a result of the data size used in the PSD 

computations. High spectra plateaus were observed in the tomo-PIV data due to either the 

measurement noise in the flow temporal sequence or the low mesh resolution. It is noted that the 

interpolation of the tomo-PIV results to the fine DA mesh induces error. This noise level was much 

lower in the planar-PIV data, as indicated by the PSD curves decaying on a -5/3 slope. The PSDs 

of the DA data agreed well with those of the tomo-PIV measurements at 𝑆𝑡 < 1, but significant 

deviations were observed at higher 𝑆𝑡  numbers. Such deviations suggest that the large-scale 

motion of the flow in the tomo-PIV data was completely reproduced by DA, while the error 

elimination worked in the range of small-scale structures. The DA spectra had a decaying slope 

that was slightly steeper than the -5/3 law, indicating the absence of small-scale turbulence in the 

assimilated flows. Nevertheless, this steeper slope at a high 𝑆𝑡 number is common in conventional 

numerical simulations and in this study was most likely induced by the combined effects of the 

artificial viscosity of the coarse mesh and the damping of small fluctuations due to the forcing.  
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Fig. 16 PSDs of the streamwise velocity at 𝑟 𝐷⁄ = 0.5 and: (a) 𝑥 𝐷⁄ = 2; (b) 𝑥 𝐷⁄ = 4.  

Based on the well-recovered flow field, the pressure was determined by either the direct mode 

(natural pressure) implemented together with the DA solver with the time step ∆𝑡 = 0.002 s, or by 

the separate mode of solving the Poisson equation after the DA computation with the time interval 

∆𝑇 = 0.01 s. Fig. 17 shows the temporal sequences of the pressure fields determined by these two 

methods. Both methods obtained the pressure distributions reasonably well by capturing the 

signatures of the vortex rings and their downstream convection. Even with the abrupt switching in 

the flow fields as shown in Fig. 10, the pressures calculated using the direct mode in Fig. 17(a, c, 

d) did not show any peculiar distributions due to the relatively low contribution of the time 

derivative term on the pressure determination. In contrast, the pressure fields calculated using the 

separate mode, as shown in Fig. 17(b, d, f), were contaminated by high levels of numerical noise 

due to the absence of 𝑭 term and thus the lack the repeated momentum-pressure corrections. A 

more detailed comparison of these two approaches for pressure determination is shown in Fig. 18. 

The spatiotemporal plots of the pressure fields in Fig. 18(a-b) show the accuracy of both modes at 

capturing the spatiotemporal evolution of the pressure, with the inclined stripes indicating the 

downstream convection of the vortex rings. While Fig. 18(c-d) shows agreement among the 

temporal evolution of the pressure signals, the direct mode of the pressure determination is 

recommended due to the convenience in the calculation procedure and the signal-to-noise ratio in 

space and time.  
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Fig. 17 Instantaneous pressure fields determined by DA using the direct mode (left) and 

separate mode (right). The time interval for both pressure sequences is ∆𝑇 = 0.01 s. 

 

 

Fig. 18 Spatiotemporal plot of the pressure at 𝑦 𝐷⁄ = 0.5 and 0 < 𝑥 𝐷⁄ < 5 determined DA 

using: (a) the direct mode; (b) the separate mode. The time sequences of the pressure at  

𝑦 𝐷⁄ = 0.5, (c) 𝑥 𝐷⁄ = 2, (d) 𝑥 𝐷⁄ = 4 are also shown.  
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5. Conclusions 

The present study concentrated on the enhancement of the flow fields by reducing 

measurement error and by determining the spatiotemporal distribution of pressure data. The tomo-

PIV system, with two high-speed cameras and a screen-split configuration, was used to acquire 

three-dimensional velocity fields, which were subsequently used as the observations in the DA. 

The adjoint-based sequential DA scheme was used to recover the flow fields with high-fidelity and 

less measurement error. Pressure was determined by either directly implementing the DA solver or 

by solving the Poisson equation on the DA-recovered flow fields. 

The adjoint-based sequential DA was improved under the frame work of our previous study 

by implementing a threshold function to cope with the measurement uncertainty explicitly. 

Although the tomo-PIV measurement was performed on a thick domain with considerable large 

error, the results demonstrated that the sequential DA recovered the jet’s mean flow and that the 

fluctuation which agreed reasonably well with the benchmark planar-PIV measurements. Due to 

the sequential nature of the observation implantation, the flow fields experienced a piecewise-

smooth temporal variation and thus only the temporal sequence of the fields at the observational 

instances was selected as the DA output. The flow errors were significantly reduced and the 

divergence condition of the flow fields was substantially improved by the DA. It also improved the 

statistics of the flow dynamical features by improving the PSD and PDF.  

The three-dimensional pressure fields were reasonably recovered by capturing the spatial 

patterns and downstream convection of the vortex rings. Both the direct and separate modes 

determined the pressure fields well. However, higher signal-to-noise ratio was achieved by the 

direct mode; the absence of 𝑭 term and thus the lack the repeated momentum-pressure corrections 

was responsible for the relatively low signal-to-noise ratio in the separate-mode computation. 

Applications are recommended for three dimensional flow dynamic researches and acoustic source 

detection in aeronautical engineering using the present DA scheme.  
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