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 42 
Deep oceanic overturning circulation in the Atlantic (Atlantic Meridional Overturning 43 

Circulation, AMOC) is projected to decrease in the future in response to anthropogenic 44 

warming. Caesar et al.1 argue that an AMOC slowdown started in the 19th century and 45 

intensified during the mid-20th century. Although the argument and selected evidence proposed 46 

have some merits, we find that their conclusions might be different if a more complete array of 47 

data available in the North Atlantic region had been considered. We argue that the strength of 48 

AMOC over recent centuries is still poorly constrained and the expected slowdown may not 49 

have started yet. 50 

Recently, Moffa-Sanchez et al.2 compiled a comprehensive set of paleoclimate proxy 51 

data from the North Atlantic and Arctic regions using objective criteria for identifying high-quality 52 

datasets of ocean conditions spanning the last two millennia (Figure 1). Although no direct 53 

(singular) proxy for AMOC exists, the paleoceanographic proxy data compiled by Moffa-54 

Sanchez et al.2 highlight the spatial and temporal complexities of ocean state in modern times 55 

and the recent past. When all the available proxy records potentially related to AMOC variability 56 

and 20th century observational datasets are considered, the time history of the AMOC system 57 

becomes less certain. In contrast, selecting only a subset of proxy records that share similar 58 

trends, as performed by Caesar et al.1, provides an incomplete perspective on AMOC changes 59 

through time. 60 

 Increased data availability in recent decades has enabled a shift in the fields of 61 

paleoceanography and paleoclimatology toward more objective and transparent data selection 62 

in studies aimed at quantitatively reconstructing past variability. Such screening methods tend to 63 

minimize the impact of spurious or less reliable records on analyses and work to enhance the 64 

common signal in proxy records. Additionally, analyzing networks of suitable and carefully 65 

selected data enables robust uncertainty estimates on the resulting reconstructions, which is 66 

essential in providing confidence in the results and the ability to compare information across 67 



disciplines. Key to such work is identifying robust criteria and weighting schemes that objectively 68 

identify and utilize the most reliable data. Caesar et al.1 use a variety of proxy records in their 69 

analysis, but do not identify the reasoning or criteria for selecting those records over many 70 

others that are likely related to aspects of AMOC dynamics (see the recent review2). 71 

Objective and inclusive data selection standards are especially important when addressing 72 

AMOC, which is a system composed of many different components that can behave differently 73 

at different latitudes, depths, and timescales3 and looking at any singular index of AMOC 74 

inherently oversimplifies the system. The complex signals in the available AMOC-related proxy 75 

variables over recent centuries support this notion2, though many of these studies were not 76 

considered by Caesar et al.1  77 

In addition to the need for objective standards, we argue that most of the records 78 

compiled in the Caesar et al. paper have substantial caveats that were not discussed. 79 

Reconstructing the strength of AMOC more than a few decades ago relies upon paleoclimate 80 

and paleoceanographic proxies because direct measurements are unavailable. Some proxies 81 

are more directly related to components of AMOC variability than others, and some sites are 82 

better situated to record specific oceanographic and atmospheric processes than others. The 83 

limited scope of data utilized combined with the inherent uncertainties in the proxies and 84 

conflicting evidence from other sources, leaves the question open whether the available 85 

evidence supports the conclusion that AMOC is currently undergoing an unprecedented 86 

shift/weakening.  87 

Key information and rationale about the records included are lacking in Caesar et al.1. 88 

For example, the Rahmstorf et al.4 AMOC reconstruction used by Caesar et al.1 is based on the 89 

subpolar North Atlantic temperature minus the Northern Hemisphere mean temperature, each 90 

constructed from tree ring and ice core records, and a scaling coefficient derived from one 91 

climate model. These data are land-based estimates influenced by atmospheric conditions, not 92 



necessarily robust indicators of marine temperatures, and the resulting index is strongly 93 

impacted by the global warming signal5. Furthermore, subpolar gyre sea surface temperatures 94 

(SSTs) are an unreliable indicator of AMOC variability5,6 because SST can have multiple drivers 95 

and the spatial AMOC/SST fingerprints used for such reconstructions are temporally non-96 

stationary2,5. Variables related to marine biological processes used as evidence by Caesar et 97 

al.1 are potentially problematic as they are not directly responding to the AMOC and their signal 98 

may be compromised by other non-physical factors. For instance, the Sherwood et al.7 study 99 

provides nitrogen isotopic evidence of a shift in nutrient dynamics since the 19th century in the 100 

northwestern Atlantic which they attribute to local changes in water masses, and others4 have 101 

linked to AMOC. The interpretation of this proxy is predicated on stable nitrogen utilization and 102 

nitrogen isotope signatures in the system despite massive anthropogenic perturbation of the 103 

global N cycle over the study period8. Additional evidence used to infer an AMOC slowdown by 104 

Caesar et al.1 come from sortable silt records off Cape Hatteras9, which are arguably one of the 105 

most direct proxies available for near-bottom water current speed10.  However, this proxy 106 

assumes that the position of the bottom current is stationary through time and that these deep 107 

flow changes are representative of AMOC strength. Similar methods have been used to 108 

examine the other parts of the deep AMOC limb, including the Nordic Overflows with results that 109 

are not consistent with conclusions reached by Caesar et al.1 (for example, see11, 12, 13), yet 110 

these records were not considered. 111 

Finally, the proxy data presented by Caesar et al.1 need to be reconciled with 112 

observations of AMOC and AMOC-related variables in the 20th and 21st centuries. Caesar et 113 

al.1 plot a trend derived from Smeed et al.14 to support their supposition that AMOC has 114 

significantly decreased in recent decades. However, the decreasing trend measured in RAPID 115 

data between 2004 and 2012 is really more of a stepwise shift14 and is likely a part of decadal-116 

scale variability with increases in AMOC from 1960 to the early 2000s15, 16. To date, the RAPID 117 

array observations are too short to resolve multidecadal and longer-scale variability. Some 118 



indirect or partial AMOC measures over the instrumental era permit investigation into decadal-119 

to-multidecadal variability and suggest a modest decline in transport17, others show no trend18, 120 

19, and one record20 shows a recent strengthening of the AMOC at subpolar latitudes. While 121 

diverse regional responses are plausible amidst a large-scale AMOC decline, work remains to 122 

understand the origin of such discrepancies. 123 

These apparently contradictory results may be reconciled with more information 124 

regarding the spatial and temporal scales of variability involved in each dataset as well as the 125 

sensitivity and fidelity of the proxies to record aspects of AMOC during a large global climate 126 

perturbation. Real and interesting subtleties and discrepancies in the data still exist, and any 127 

impression that the historical AMOC evolution is confidently known from a subset of the 128 

available data is misleading until the conflicts are resolved. Instead, highlighting apparent 129 

contradictions will help us with the work of reconciling the data and answering the important 130 

question of whether the AMOC and/or its components have indeed slowed down in recent 131 

centuries. The authors declare no competing interests.    132 

 133 



 134 
Figure 1. Available well-dated northern North Atlantic paleoceanographic records include 135 
proxies for temperature, salinity, sea ice, and ocean circulation. A full list is in Supplementary 136 
Information Table 1. Surface (circles) and deep ocean records (squares) screened by Moffa-137 
Sanchez et al.2 (white) are compared with the subset of data (red) used by Caesar et al.1 The 138 
red diamonds are only presented in Caesar et al.1 and include: biological productivity, nutrient 139 
records, and intermediate water temperatures. Multiple cores/archives in the same location are 140 
offset for visibility. Source locations, original studies, and figure-making software credits are in 141 
Supplementary Information Table 1.   142 
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Supplemental Table 1: These are the locations and citations to the available highly-time-
constrained paleoceanographic data in the northern North Atlantic in Figure 1. The figure was 

made with open-source projects matplotlib1 (https://matplotlib.org/), cartopy 
(https://scitools.org.uk/cartopy ) and xarray2 (http://xarray.pydata.org/en/stable/). The 
bathymetry contours are from GEBCO bathymetry (http://www.gebco.net/) . 

Core name 
Latitude 
Decimal 
Degrees 

Longitude 
Decimal 
Degrees 

Proxy* References 

SUBPOLAR N ATLANTIC     

SURFACE     

MD99-2322 67.1363 -30.8278 diatom assemblage 3 

RAPiD-35-COM 57.5042 -48.7223 
SS, foraminifera assemblages and 

18O 
4,5 

RAPiD-35-25B 57.5078 -48.7233 
Mg/Ca temperatures, foraminiferal 

assemblages and  18O 
6,7 

RAPID-21-12B 57.4515 -27.9088 foraminiferal 18O  and Mg/Ca, SS 8,9 

RAPiD-21-12B and 3K 57.2715 -27.5488 
diatom assemblages, alkenones and 

SS 
5,10,11 

RAPiD-17-5P 61.4817 -19.5360 foraminiferal 18O  and Mg/Ca and SS 4,6 

LO09-14 and D37-2P 58.2605 -30.2075 diatom assemblages 12 

GS06-144-04 58.9122 -31.2542 foraminifera, alkenones, 18O 13 

ENAM9606/MD200309 55.6503 -13.9850 foraminiferal 18O  and Mg/Ca 14 

AI07-04BC/3G 48.7333 -53.4833 Alkenones 15 

AI07-11BC/12G 47.1333 -54.5500 Alkenones 15 

AI07-06G 47.8500 -53.5800 
benthic foraminifera and 

dynoflagellate assemablages 
16 

CR02-23&MD99-2220 48.6387 -68.6322 foraminiferal 18O 17 

GS06-144-03 57.2900 -48.3700 
18O foraminifera and Ice rafted 

debris 
18 

PO175GKC 66.2040 -31.9850 IRD and biomarkers 19 

MD04-2832 & PM06-
MC01C 

56.6698 -5.8687 foraminiferal 18O 20 

KNR140_2_59GGC 32.9770 -76.3160 foraminiferal Mg/Ca 21 

MD99-2209 and RD-98 38.8863 -76.3947 
18O and Mg/Ca ostracod and 

foraminiferal 
22 

MD03-2661 38.8868 -76.3982 
18O and Mg/Ca ostracod and 

foraminiferal 
22 

PTXT-2 38.3263 -76.3925 
18O and Mg/Ca ostracod and 

foraminiferal 
22 

MD99‐2203 34.9772 -75.2017 foraminiferal Mg/Ca and 18O 23 

MC13A 43.0833 -55.8000 %Nps 24 

MC25A 43.4500 -54.8167 %Nps 24 

https://matplotlib.org/
https://scitools.org.uk/cartopy
http://xarray.pydata.org/en/stable/
http://www.gebco.net/


KNR158-10MC/09GGC 44.8333 -54.9000 %Nps 25 

OCE-326-MC-29D 45.8850 -62.7950 
Mg/Ca and 18O  benthic 

foraminifera, %Nps, alkenone, 

planktonic foraminiferal 18O 

26 

HU89-038-BC-004A and 
HU89-038-BC-004D 

33.6933 -57.6117 
carbonate content, sediment 

magnetic variables, foraminifera, 
stable isotopes 

27 

Red Algae 56.0332 -5.6022 red algae Mg/Ca 28 

Long-lived bivalve 56.6292 -6.4000 bivalve growth increments 29 

Long-lived bivalve 54.0917 -4.8333 bivalve growth increments 30,31 

     

Long-lived bivalve 43.6870 -69.7990 18O, Arctica islandica 32 

BB 001 32.1667 -64.5000 coral Sr/Ca and d18O 33 

Ki1, Ki2 Moore et al., 
2017 

55.3983 -59.8467 Mg/Ca, growth coralline algae 34 

Gamboa et al., 
2010/Halfar et al., 2011 

47.3083 -52.7892 Mg/Ca coralline algae 35,36 

Gamboa et al., 
2010/Halfar et al., 2012 

51.5856 -55.4248 Mg/Ca coralline algae 35,36 

Gamboa et al., 
2010/Halfar et al., 2013 

50.0250 -55.8833 Mg/Ca coralline algae 35,36 

Halfar et al., 2013 55.4352 -59.8654 Mg/Ca, growth coralline algae 37,38 

 
Hu2006-40 

59.2640 -62.4478 SS 39 

     

DEEP     

CH77-02 52.7000 -36.0830 magnetism 40,41 

MD08-3182Cq 52.6990 -35.9360 magnetism 40 

RAPiD-35-COM 57.5042 -48.7223 
SS, foraminifera assemblages and 

18O 
4,5 

RAPiD-21-12B and 3K 57.4515 -27.9080 
Diatom assemblages, alkenones and 

SS 
5,10,11 

RAPiD-17-5P 61.4817 -19.5360 foraminiferal 18O  and Mg/Ca and SS 4,6 

GS06-144-09MC-
D&GS06-144 08GC 

60.3167 -23.9667 SS 42,43 

MD99-2251 57.4478 -27.9078 magnetism and SS 40,44,45 

KNR-178-48JPC 35.7667 -74.4500 mean sortable silt 25 

KNR-178-56JPC 35.4667 -74.7167 mean sortable silt 25 

KNR158-10MC/09GGC 44.8333 -54.9000 benthic foraminiferal Mg/Ca and 18O 46 

     

NORDIC SEAS     



JM97-948 2A&MD95-
2011 

66.9697 7.6393 

diatom and foraminiferal 

assemblages, 18O and Mg/Ca 
foraminifera, current speed, 

alkenones 

47–52 

P1_003MC, P1_003SC 63.7622 5.2553 foraminiferal 18O 53 

MD99-2275 66.5517 -17.6998 
alkenones, diatom assemblages, IP25, 

radiocarbon 
11,54–62 

Long-lived bivalve 66.5265 -18.1957 bivalve 18O and radiocarbon 63,64 

MD99-2269 66.6314 -20.8544 
diatom assemblage, IRD, coccolith 

counts, IP25 
65–69 

HM107-03 66.5025 -19.0722 
foraminifera, stable isotopes, diatoms 

and ice rafted debris 
70 

MSM5/5-712-1 78.9157 6.7672 
foraminiferal assemblages, Mg/Ca, 

SS, 18O benthic and planktic 
71,72 

MD99-2273 66.7630 -18.7503 foraminifera 18O, 14C 57,60 

JM-06-WP-04-MCB 78.9155 6.7668 Dinocyst assemblage 73 

PS2641 BC/GC 73.1550 -19.4817 
Org Geochem (IP25), foraminifera 

assemblages, IRD 
74,75 

JM96-1206/2GC 68.1002 -29.4433 
planktic and benthic foraminifera 

assemblages 
76 

     

W GREENLAND     

M343300 68.4719 -54.0017 

diatom, benthic foraminifera, 
dynoflagellate assemblages, alkenone 

UK37 

77–80 

M343310 68.6477 -53.8248 

diatom, benthic foraminifera, 
dynoflagellate assemblages, IP25, 

alkenones 

78,79,81–85 

DA00-03P 69.0000 -53.1333 
diatom and dinoflagellate 

assemblages 

66,86 

DA00-02P 68.8647 -53.3287 
diatom and dinoflagellate 

assemblages 

86,87 

DA06-139G 70.0913 -52.8930 
benthic foraminifera, dinoflagellates, 

diatom assemblage 

88,89 

GA306-BC/GC3 66.6247 -54.2097 

diatom benthic foraminiferal 

assemblages, foraminiferal 18O 

90–92 

GA306-BC/GC4 66.7447 -53.9403 

diatom benthic foraminiferal 

assemblages, foraminiferal 18O  

90–92 

PO243-451 60.6993 -46.0333 
benthic foraminifera and diatom 

assemblages 

93,94 

     

 MARINE RECORDS 
USED IN95    

 

MC13A 43.0833 -55.8000 %Nps 
24 

COR05-37 48.3333 -61.5000 18O  
96 



 
*%Nps represents percent Neogloboquadrina pachyderma sinistral coiling, and SS represents percent 
sortable silt 
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