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Abstract

We present an isogeometric boundary element method (IGABEM) capable of studying heat transfer problems
for multiscale structures in electronic packaging problems. This method offers a number of key improvements
compared with current analysis methods available for electronic packaging problems. The method benefits
from the accuracy, computational efficiency and CAD integration that have consistently been shown as
features of the IGABEM. In addition, the current method can efficiently evaluate the nearly singular integrals
caused by multiscale structures, owing to the use of a proposed hybrid integration scheme. By changing a
tolerance, the scheme enables engineers to achieve any desired balance between accuracy and computational
efficiency as may be appropriate to the situation. To study heat transfer problems with an arbitrary heat
source, the radial integral method is used to transform the domain integral to an equivalent boundary
integral. Numerical results are compared with available analytical solutions and finite element solutions and
demonstrate the effectiveness of the proposed approach.

Keywords: Boundary element method, Isogeometric analysis, Heat transfer problems, Radial integral
method, Multiscale problems

1. Introduction

The temperature control in electronic packaging plays a key role in numerous applications, to avoid
overheating and hardware failure. However, from thermal perspective, all power semiconductor devices act
as heat sources dissipating power through electronic packages into printed circuit boards (PCB) and heat
sinks. Due to high capability of heat transfer, good temperature uniformity, and no power consumption,
heat pipes or cooling fins are widely used for heat dissipation of electronic components [1, 2]. In recent years,
the size of semiconductor components has typically been reducing. As a result, the numerical modelling
of semiconductor structures becomes highly challenging, particularly where both small structures and large
structures interact. For these models with complex and multiscale structures, very refined meshes can be
needed to obtain the required accuracy, which results in a heavy burden on the computational resources [3].
In order to tackle this problem, many researchers have proposed techniques for the numerical simulation
of multiscale structures in electronic packaging [4, 5]. In this work, we will develop a scheme to consider
some problems, commonly found in electronic packaging, of odd shaped heat sources active on planar
structures like circuit boards subjected to heat sources of arbitrary shape as imposed by hot components
and connections.
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In 2005, to bridge the gap between CAD and computer aided engineering (CAE), Hughes et al. [6]
proposed the concept of isogeometric analysis (IGA) in which the Non-Uniform Rational B-Splines (NURBS)
basis functions are used to describe a geometric model. Since the same basis functions are used to represent
the geometry of models in CAD and IGA, this analysis formulation has been attracting attention as a
promising method for integrating CAD and CAE. In addition, the meshing process for FEM is greatly
simplified in the numerical analysis by using IGA. With these benefits, many advancements in IGA have
been achieved. Recently, by using the isogeometric concept for dealing with the higher continuity conditions
required for primal variational formulation of the flexoelectric coupled system of PDEs, López et al. [7]
proposed a phase-field based method for shape and topology optimization of flexoelectric micro-structures.
An isogeometric approach in three dimensions for nonlinear problems in solid mechanics and structural
dynamics was presented in [8]. In [9], two efficient quadrature rules, reduced Gauss quadrature and Gauss–
Greville quadrature, for isogeometric analysis are developed. Both the proposed quadrature rules involve
many fewer quadrature points than the full Gauss quadrature rule and avoid negative quadrature weights
for arbitrary knot vectors. In [10], the authors proposed a method of IGA-suitable planar parameterization
based on patch structure simplification of the closed-form polysquare. In [11], Videla et al. demonstrate
the applications of PHT-splines in the framework of Geometry Independent Field approximaTion (GIFT)
for problems of time-harmonic acoustics modeled by the Helmholtz equation. Then, the GIFT scheme is
extended to a plane-wave Partition of Unity enriched GIFT in [12]. In [13], an adaptive extended isogeometric
analysis (XIGA) is used to study the shakedown problems with holes. Based on the IGA and scaled boundary
element method Zang et al. [14] developed a numerical scheme to solve the static bending and free vibration
problems of functionally graded material plates. Actually, IGA has attracted a large research community and
been successfully applied in elasticity problems [15–17], electromagnetics [18–20], fluids problems [21, 22],
accoustic problems [23, 24], wave problems [25], contact problems [26], vibration analysis [27–29], cracks
[30–34], optimization problems [35–37], material uncertainty [38], thermal buckling [39], poroelastic material
[40], etc. Since the initial IGA was based on NURBS [6] which contains a tensor product form, the uniform
NURBS-based refinement scheme is difficult to capture local features of interest. In order to ameliorate this
difficulty, the method has been extended to T-splines [41, 42], THB-splines [43], hierarchical B-splines (HB)
[15], LR-splines [44], hierarchical box splines [45] and Powell-Sabin B-splines [46].

With the advantages of boundary-only descretisation, high solution accuracy and ability to model dis-
continuous functions, BEM is a very promising method for the analysis of complex and multiscale structures
in electronic packaging problems [47]. Due to the fact that the boundary element method (BEM) and CAD
rely on a surface definition, they match each other well. Therefore, based on the isogeometric analysis (IGA)
concept, the isogeometric boundary element method (IGABEM) was later presented [48]. The main idea of
isogeometric formulations is replacing the piecewise polynomial approximation of geometries and physical
quantities by an approximation formed in a space of Non-Uniform Rational B-Spline (NURBS) basis func-
tions. Therefore, the IGABEM integrates the advantages of IGA and the merits of BEM. The advantages
are (i) the use of an exact geometric representation; (ii) the reduction of the dimensionality of considered
problem by one; (iii) the improved convergence properties of the solution; (iv) high accuracy for many en-
gineering problems. It should be pointed out that both the BEM and CAD rely on a surface definition, so
the BEM can be seen as a more natural numerical method than the finite element method (FEM) for the
tight integration of the isogeometric analysis and CAD modelling. The IGABEM framework has been used
in various areas including elastostatics [49–51], acoustics [52], heat conduction [53], topology optimization
[54–57], liquid sloshing [58], fracture [59, 60], potential problems [61], and underground excavations [62].

As we will show in this article, the IGABEM is an attractive numerical method for the analysis of
multiscale structures for electronic packaging [63]. The geometric properties of multiscale structures or
quite convoluted heat sources (e.g. from components and wiring on a printed circuit board) commonly
found in electronic systems can be accurately represented with a small number of boundary elements, which
naturally reduces the number of degree of freedom (DOF) used in calculation. Quantities along the thickness
direction of thin structures can be calculated accurately.

The implementation of the IGABEM introduces some challenges when solving multiscale structures
in electronic packaging problems. One of the major problems is the accurate evaluation of the different
boundary integrals that arise. It is well known that BEM implementations involve singular integrals, but
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also that the nearly singular integrals (where the collocation point is close to, but not on, the element
being integrated) can often cause more difficulties than the singular cases. When applied to multiscale
structures, a large number of nearly singular integrals will be required, caused by the presence of elements
having very different dimensions. Thus, it will be important to develop methods capable of integrating
nearly singular kernels in a robust and computationally efficient manner. To date, many schemes have been
presented to evaluate nearly singular integrals in both the conventional BEM and IGABEM. A detailed
review of evaluation techniques of nearly singular integrals for conventional BEM can be found in [64]. In
recent years, with the development of IGABEM as a preferred approach, some integration schemes for nearly
singular integrals in IGABEM have emerged. Gong et al. [65] illustrate the necessity of evaluating the near
singular integral in IGABEM, and use the exponential transformation method to remove or weaken the near
singularities in potential problems. In [66], the nearly singular integrals are computed by sinh-transformation
method. In [67], a semianalytical method is presented to evaluate the nearly singular integrals in IGABEM.
Recently, a hybrid nearly singular integration method is given in [68, 69] in the study of coated structures,
that is capable of producing accurate and efficient solutions for thin sections. Inspired by the idea in [68, 69]
and the exponential transformation method in [65], we will develop an efficient scheme to study heat transfer
problems for multiscale structures with heat sources.

In the analysis of multiscale structures using the IGABEM, the geometry of the numerical model can
be described accurately using a smaller number of elements than in classical BEM. Indeed many geometric
constructions are represented exactly using NURBS. Thus, the corresponding geometric area of a knot span
(which can be seen as the IGABEM interpretation of a boundary element in BEM) may be considerably
larger than that of traditional method. To obtain accurate results, a higher order of Gauss integration
should be used, and the computational cost will increase rapidly if a fixed order of Gauss integration is used.
Based on the upper bound of the relative error of the Gaussian quadrature formula for traditional BEM,
Gao and Davies [70] presented an adaptive integration method. In [71], an IGABEM using an adaptive
integration scheme is developed and applied to 3D potential problems. In this method, the isogeometric
element is subdivided into sub-elements to avoid using excessively high Gauss order according to Davies and
Bu’s criterion [72]. In the current work, the adaptive integral scheme will be adopted to study multiscale
structures.

The accurate determination of temperature distributions is an important problem in multiscale semi-
conductor structures subjected to heat sources [73]. The implementation of the BEM presents a further
challenge when solving heat transfer problems with distributed heat sources, because domain integrals arise
in the resulting integral equations alongside the normal boundary integrals. The evaluation of domain inte-
grals is typically more time consuming than for boundary integrals. Although the domain integrals can be
directly computed by discretizing the domain into internal cells, the method eliminates one key advantage of
the BEM in which, otherwise, only the boundary of the problem needs to be discretized into elements [74].
Therefore, many schemes have been presented to transform the domain integrals into equivalent boundary
integrals, e.g. the dual reciprocity method [75], the multiple reciprocity method [76] and the radial integra-
tion method (RIM) [77]. A detailed review of such transformation schemes can be found in [78]. The radial
integration method proposed by Gao [77] is based on a purely mathematical technique, and can be adopted
in the current IGABEM work.

In this work, we develop an IGABEM algorithm for multiscale structures with arbitrary heat sources.
A hybrid integration scheme, that combines the exponential transformation method and adaptive integral
method, is presented to deal with the nearly singular integrals caused by the different sizes of the structural
component parts. An important feature of the scheme is that the integration method is tuned to deliver
results of satisfactory accuracy in the optimal computation time. In the computation, when the source point
is very close to the element being integrated (the distance being considered relative to the element size) the
hybrid integration scheme will be used, and for source points at a larger distance, the adaptive integral
method will be used. Here, the RIM is used to evaluate the domain integrals caused by the heat source with
arbitrary geometries, including some complex geometries or thin sections.

We are interpreting multiscale modelling as the analysis of models containing geometric features at
different length scales. The cooling fins in the convection examples are a good illustration of this. These
geometries present major challenges to FEM practitioners, yet IGABEM gives us an attractive numerical
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alternative. The geometric properties of multilevel interconnected structures can be accurately represented
with a small number of boundary elements, which naturally reduces the DOF used in calculation, because
many of the FEM meshing problems arise due to the volumetric meshing that BEM avoids. However,
the implementation of the IGABEM introduces some challenges when solving such structures in electronic
packaging problems because of the nearly singular integrals that arise. In this work, we developed an
IGABEM to solve these problems by proposing an efficient and robust scheme to evaluate the nearly singular
integrals as well as the domain integrals caused by heat sources.

This paper is organized as follows. In section 2, an overview of the BEM and IGABEM formulation
is given. We present our integration scheme for multiscale geometry structures in Section 3. Section 4
introduces the implementation of the current isogeometric boundary element method. In Section 5, we
demonstrate the effectiveness of the new IGABEM scheme through several numerical examples. Finally, we
present the conclusions for our work.

2. Boundary element method and isogeometric boundary element method

2.1. Fundamental formulations
Consider a structure occupying a continuous physical domain, Ω ∈ R2, with closed boundary Γ. The

governing equation of steady-state heat transfer is given by

∇2u(x) + b(x) = 0 (1)

where x = (x1, x2) ∈ Ω, the non homogeneous term b(x) denotes internal heat sources, and u(x) denotes
temperature at point x. For heat transfer problems, the flux density qi in direction xi is defined as qi =
−k∂u/∂xi. The quantity of heat passing through a unit area can be described by normal flux density q,
defined as

q = qini = −ku,ini (2)
in which k is the thermal conductivity, ni (i = 1, 2 for 2D problems) are the components of the unit outward
normal vector n, u,i denotes the differentiation of temperature with respect to the ith component of the
coordinate, xi, i.e.

u,i =
∂u

∂xi
(3)

and the Einstein summation convention is adopted. Eq.(1) can be solved subject to a set of boundary
conditions taken from the following forms:

u = ū on Γū ⊂ Γ (4)

q = q̄ on Γq̄ ⊂ Γ (5)
where ū and q̄ are known temperature and flux density; Γū and Γq̄ represent the parts of Γ over which
temperature and flux density are prescribed. It should be noted that Γū ∩ Γq̄ = ⊘ and Γū ∪ Γq̄ = Γ.

For a heat transfer problem, the corresponding boundary-domain integral equation can be written as

c(y)u(y) +

∫
Γ

Q(y,x)u(x)dΓ(x) =

∫
Γ

U(y,x)q(x)dΓ(x) +

∫
Ω

b(x′)U(y,x′)dΩ(x′) (6)

where x′ ∈ Ω. y = (y1, y2) ∈ Γ and x = (x1, x2) ∈ Γ are the source point and field point, respectively. In
the collocation form of the BEM as used in this paper, a source point y also represents a collocation point.
U(y,x) denotes the temperature fundamental solutions and Q(y,x) is its normal derivative. For 2D heat
transfer problems, U and Q are known and can be expressed as

U(y,x) = − 1

2π
ln r, (7)

Q(y,x) =
∂U(y,x)

∂n(x)
=

∂U(y,x)

∂r

∂r

∂n(x)
(8)

in which r = r(y,x) = |x− y| represents the distance between source point y and field point x.
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2.2. Introduction to B-splines and NURBS basis
In this work, we focus on heat transfer problems with arbitrary heat sources in multiscale structures.

Different integrals including domain integrals and nearly singular boundary integrals will be evaluated by
some specially developed integration schemes. In order to facilitate presentation of these schemes, a brief
introduction of B-splines and NURBS basis functions is first given in this section.

The B-spline basis functions of degree p = 0 can be defined recursively with piecewise constants

Na,0(ξ) =

{
1, if ξa ≤ ξ < ξa+1

0, otherwise, (9)

where ξa is a knot in the knot vector Θ which contains non-decreasing values

Θ = {ξ1, ξ2, ..., ξn+p+1}, ξa ∈ R (10)

in which a is the knot index; n represents the number of basis functions. Then, B-spline basis functions of
degree p ̸= 0 are defined by

Na,p(ξ) =
ξ − ξa

ξa+p − ξa
Na,p−1(ξ) +

ξa+p+1 − ξ

ξa+p+1 − ξa+1
Na+1,p−1(ξ), (11)

where p = 1, 2, . . . and ξ ∈ [ξa, ξa+1].
The basis functions describing a NURBS of degree p are weighted forms of the B-spline basis functions,

and are defined as
Ra,p(ξ) =

Na,p(ξ)wa∑p+1
i=1 Ni,p(ξ)wi

(12)

where wa is a weight associated with the control point Pa ∈ R2.
The derivatives of NURBS basis functions may be written as [49]

d

dξ
Ri,p(ξ) = ωi

W (ξ)N ′
i,p(ξ)−W ′(ξ)Ni,p(ξ)

(W (ξ))
2 (13)

where Ni,p(ξ) is the B-spline basis function given in equations (9) and (11), N ′
i,p(ξ) = d

dξNi,p(ξ), and

W ′(ξ) =
n∑

j=1

N ′
j,p(ξ)ωj .

The higher-order derivatives of the rational function can be expressed in terms of lower-order derivatives
as [49]

dk

dξk
Ri,p(ξ) =

A
(k)
i (ξ)−

∑k
b=1

(
k
b

)
W (b)(ξ) d(k−b)

dξ(k−b)Ri,p(ξ)

W (ξ)
(14)

where
(

k
b

)
= k!

b!(k−b)! , A
(k)
i (ξ) = ωi

dk

dξk
Ni,p(ξ) and W (b)(ξ) = db

dξb
W (ξ).

2.3. Description of boundary geometry
For the IGABEM, the geometry of the numerical model is described by NURBS basis functions. Given

a control set Pa, a = 1, 2, . . . , n, and a knot vector Θ (shown in Eq.(10)), a NURBS curve is defined using

C(x, y) =

n∑
i=1

Ri,p(ξ)Pi (15)

where Ri,p(ξ) is a NURBS basis function of degree p; n is the number of basis function. It should be noted
that when all the weights are same values, the NURBS curve will degenerate to a B-spline curve.

For a single ‘knot span’, which plays the role of ‘element’ in conventional BEM, there are p+1 non-zero
basis functions. Then the mapping from the parameter space to physical space can be expressed as

x(ξ) =

p+1∑
i=1

Ri,p(ξ)Pi (16)

5



2.4. Analysis of different integration methods for a single knot span
In this section we will compare the relative error and CPU time of several integral methods for the

computation of nearly singular integrals, including Gauss-Legendre [68, 79], adaptive integral method [68, 71]
and transformation method [65]. The main feature of the adaptive integral method is that the method can
deliver high accuracy (with upper bound of relative error ē) at optimal computational cost by choosing the
appropriate number of Gauss points [71]. For the adaptive integral method, to avoid using excessively high
Gauss orders m, the considered element is divided into sub-elements (with length L) to reduce the distance
ratio. It should be pointed out that, for this method, the nearly singular integrals can be accurately evaluated
by using normal Gauss orders due to the distance aspect ratio remaining stable and not too large. For the
adaptive integral method, the following relations hold:

m =

√
2

3
β +

2

5

[
− 1

10
ln

(
e

2

)][(
8L

3d

)3/4

+ 1

]
(17)

which can be rearranged to yield

L =
3

8
d

(
−10m√

2β/3 + 2/5 ln (e/2)
− 1

)4/3

(18)

where β is the order of singularity for the integral and d represents the minimum distance from the computed
point to the element. Therefore, by changing the values of upper bound of relative error ē for the adaptive
integral method, the computation accuracy of numerical integrals can be controlled. To avoid duplicate
studies for adaptive integral methods, only some conclusions about adaptive integral methods are given in
this work. For the interested reader, a study on the accuracy and number of optimal Gauss points about
adaptive integral method can be found in [71]. A detailed study on computational time has been given in
[68, 69].

O

y

x

θ

Nodes

Control points

Figure 1: The considered arc element

Here, a simple curve element is considered, as shown in Figure 1. The element is represented as a
quadratic NURBS curve with knot vector Θ = {0, 0, 0, 1, 1, 1}, control points P1 = (R cos(π−2θ

4 ), R sin(π−2θ
4 )),

P2 = ( R
cos(θ) cos(

π
4 ),

R
cos(θ) sin(

π
4 )), P3 = (R cos(π+2θ

4 ), R sin(π+2θ
4 )) and weights [1, cos( θ2 ), 1]. In the com-

putation, the radius R of the arc is fixed as 4.0 and θ = π/2. The location of the source point is chosen
as y = ((R − d) cos(π/4), (R − d) sin(π/4)), in which d is the distance from the source point to the curve
element. We introduce the dimensionless aspect ratio d∗ = d/L to describe the proximity of the source point
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to the element, where L denotes the length of the element. In this study the distance d varies from 1 to
0.0000001. Since the computed point is close to the boundary, the integrals with kernel in Eqs. (7) and (8)
will be nearly singular [65, 68, 69].
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(a) Relative errors analysis
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Figure 2: Analysis of different methods for the evaluation of nearly singular boundary integrals

Fig. 2(a) shows the relative error in evaluating the weak nearly singular integral by different methods
(including Gauss-Legendre, adaptive integral method and exponential transformation method) as the com-
puted point approaches the element. For evaluations using the adaptive scheme, an upper bound relative
error ē = 10−10 is taken. By changing ē, we can achieve a desired accuracy for the computation of an inte-
gral. The relationships between ē, accuracy and efficiency for the adaptive integral scheme can be found in
[68, 69]. When the source point is not very close to the boundary, i.e. d∗ > 0.1, all the considered methods
(even the conventional Gauss-Legendre with 12 Gauss points) can be seen to yield accurate results. How-
ever, with the decrease of the aspect ratio d∗, the performance of Gaussian quadrature is less satisfactory.
From Fig. 2(a), it can be seen that although the relative error obtained by conventional Gauss-Legendre
shows a trend of convergence when the number of Gauss points increases from 12 to 20, the conventional
Gauss-Legendre is unable to deliver a relative error below about 0.1 for the weak nearly singular integral.
From Fig. 2(a), it is evident that the accuracy of exponential transformation and adaptive integral method
remains quite satisfactory (less than 10−4) down to d∗ < 10−6. The error analysis suggests that we can
proceed focusing on the adaptive method and the exponential transformation method as the two preferred
schemes.

As in the error analysis, we retain the use of ē = 10−10 for the adaptive integral scheme. The CPU time
for the adaptive integral scheme and exponential transformation (Exp-Trans) method is plotted in Fig. 2(b).
The exponential transformation method CPU time is plotted for different Gauss points (8 and 16). And the
required CPU time increases with the increase of the number of Gauss points used in the computation. The
significant feature of the figure is that both the adaptive scheme and transformation method are efficient
for aspect ratios 0.2 < d∗ < 1. However, for smaller d∗ the transformation method will be the more efficient
scheme. Therefore, we can introduce a critical aspect ratio d∗crit to perform the hybrid integral scheme as
given in [68, 69]. Referring to Fig. 2, use of d∗crit = 10−3 looks to give accuracy with little cost. In the
manuscript, we take the d∗crit = 10−3, unless otherwise stated.

In this section, we carry out an analysis on the errors and computational efficiency of Gauss-Legendre,
exponential transformation and adaptive integral method for evaluating nearly singular integrals in a knot
span. Through these results, we could draw a conclusion that using only one of the examined methods
does not yield a satisfactory balance between accuracy and efficiency. But we can find that by using fixed
number of Gauss point, the exponential transformation mehod performs well for small aspect ratio d∗ and
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the adaptive scheme performs well for larger d∗. Therefore, it will be a good idea to inform a hybrid
approach using the best features of exponential transformation mehod and adaptive integral scheme. The
hybrid approach will introduce in Section 3. For the boundary element analysis, the integration is a major
contributor to the overall run time of an analysis, and to alert the reader that a fuller presentation of CPU
time for the whole analysis is to be given later.

2.5. Evaluation of domain integrals
The inclusion of a heat source b(x) causes the integral equation in (6) to include a domain integral term,

which at first sight appears to cause the BEM to lose one of its key advantages of involving only boundary
integrals. In this section, the domain integral involved in Eq. (6) is transformed to a contour integral taken
along the boundary of the heat source region and a radial integral by using the radial integration method
[77].

Take the domain integral in Eq. (6) as an example. The domain integral is expressed as

I =
1

2π

∫
Ω

b(x) ln r(y,x)dΩ(x) (19)

in which r(y,x) is the distance between the source point y to the field point x ∈ Ω.
In this work, a heat source with arbitrary geometry inside a substrate is considered. The heat source is

active inside a region Ωh with boundary Γh, embedded in the substrate Ω. If the source region Ωh does not
intersect the boundary, then the source point y ∈ Γ and field point x ∈ Ωh so r(y,x) ̸= 0 and the domain
integrals are regular. By applying the radial integration method to integral (19), the domain integral can
be transformed to a contour integral as follows,

IΩ = 1
2π

∫
Ω
b(x) ln r(y,x)dΩ(x) = 1

2π

∫
Ωh

b(x) ln r(y,x)dΩh(x)

= 1
2π

∫
Γh

1
r(y,x)

∂r(y,x)
∂nh

F (y,x)dΓh(x)
(20)

where nh is the unit outward normal vector to the boundary Γh, and

F (y,x) =

∫ r(y,x)

0

rb(x) ln r(y,x)dr (21)

It is noted that the inclusion of term r in Eq. (21) cancels the logarithmic singularity and the integrals
can be evaluated numerically using Gauss-Legendre quadrature. To test the effectiveness of the radial
integration method for problems containing thin sections, the domain integral in Eq. (19) is evaluated over
two different domains (including a δ × L rectangular area and a ring area with R = 2 and thickness δ as
shown in Fig. 3). It should be noted that the domains are described by NURBS, therefore no geometric
errors will be incurred. Figs. 4(a) and 4(b) show the results of the domain integrals by the radial integration
method for cases in which the thickness δ of the structure varies from 0.5 down to 10−8. It is evident that
the absolute value of integral IΩ varies with δ in a way that demonstrates stability even for the smallest δ.
In Fig. 4(a), the reason for the fluctuation of the curves is that the sign of the error changes at these points.

Following the method above, the domain integrals appearing in the boundary-domain integral equation
(Eq. (6)) can be converted to contour integrals. Then, the following strictly boundary integral equation is
formed,

c(y)u(y) +

∫
Γ

Q(y,x)u(x)dΓ(x) =

∫
Γ

U(y,x)q(x)dΓ(x)− 1

2π

∫
Γh

1

r(y,x′)

∂r(y,x′)

∂nh
F (y,x′)dΓh(x

′) (22)

In the current implementation of the IGABEM, the boundary Γ of considered substrate will be divided
into ‘elements’, i.e. knot spans, Γe (e = 1, 2, . . . , Ne). In addition to evaluate the boundary integrals in the
last term of equation (22), the boundary Γh of the heat source region is also subdivided, into Nh

e subdivisions,
though it is noted that these subdivisions are for integration purposes only and do not contribute any degrees
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(a) Rectangular area

(b) Ring area

Figure 3: Geometries of the considered heat sources
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(b) |IΩ| on ring area

Figure 4: Values of integral |IΩ| on different domains (case 1: b(x) = 102; Case 2: 103(x2 + xy))

of freedom to the problem. Based on the NURBS expansion and geometry description in Section 2.3, the
temperature and flux density in a knot span [ξi, ξi+1] are expressed in a NURBS basis as

u(ξ) =

p+1∑
a=1

Ra(ξ)ũa, (23)

q(ξ) =

p+1∑
a=1

Ra(ξ)q̃a, (24)

where ũa and q̃a are the temperature and flux parameters, respectively, associated with the basis function
with index a. Using these expansions of the temperature and flux density, the boundary integral equation
in equation (22) can be written in a discretised form:

C(ζc)

p+1∑
a0=1

Re0a0(ζc)ũe0a0 +

Ne∑
e=1

p+1∑
a=1

Qea(ζc, ξ̂e)ũea =

Ne∑
e=1

p+1∑
a=1

Uea(ζc, ξ̂e)q̃ea+

Nh
e∑

e=1

p+1∑
a=1

Dea(ζc, ξ̂e) (25)

where c is the collocation point index; ζc represents the knot vector coordinate of the collocation point; e
denotes the element index; symbols having an index with a subscript ‘0’ ( i.e. a0, e0) indicate that the
element is that on which the collocation point is located. ξ̂e ∈ [−1, 1] is the local coordinate of the field
point in the eth knot span. a is the local index of a basis function (or control point) in the eth element.
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Boundary integrals Qea, Uea and Uea are expressed as

Qea(ζc, ξ̂e) =

∫ 1

−1

Q(ζc, ξ̂e)Rea(ξ̂e)Je(ξ̂e)dξ̂e (26)

Uea(ζc, ξ̂e) =

∫ 1

−1

U(ζc, ξ̂e)Rea(ξ̂e)Je(ξ̂e)dξ̂e (27)

Dea(ζc, ξ̂e) = − 1

2π

∫ 1

−1

1

r(ζc, ξ̂e)

∂r(ζc, ξ̂e)

∂nh
F (ζc, ξ̂e)Je(ξ̂e)dξ̂e (28)

in which Rea is the ath basis function in the eth knot span. The Jacobian Je(ξ̂e) may be computed using

Je(ξ̂e) =
dΓ

dξ̂e
=

dΓ

dξ

dξ

dξ̂e
(29)

3. Treatment of integrals in IGABEM for multi-scale structures

One of the appealing features of IGABEM is that the accurate geometric description can often mean that
larger elements can be permitted than in conventional polynomial BEM formulations. In order to exploit
this feature to enhance computational efficiency for multiscale problems, it is important to develop bespoke
integration schemes that provide accurate evaluations of the large number of integrals in IGABEM including
regular, weakly singular, strongly singular and nearly singular cases. Although a multiscale geometry can be
described by a small number of boundary elements, the areas of adjacent isogeometric boundary elements
may become very different, and this presents challenges in evaluating the nearly singular integrals over the
larger element when the collocation point lies within the smaller element. If a standard quadrature scheme
such as Gauss-Legendre is employed, a very high order Gauss scheme is needed; the kernel functions will be
evaluated many millions of times and the computational cost will quickly become prohibitive. In [71], the
adaptive integration method presented by Gao and Davies [70] is extended to IGABEM, which delivers high
accuracy at minimum computational cost for boundary integrals on an isogeometric element. The adaptive
integral scheme will be adopted to compute the regular integrals over an isogeometric element for multiscale
geometry structures.

Several integration methods originally developed for conventional BEM are being adapted to deal with
the singular integrals in IGABEM. For example, Simpson et al. [49] used the subtraction of singularity
method and Telles transformation to evaluate strongly and weakly singular integrals, respectively. In [79]
the power series expansion method is used to evaluate the strongly and weakly singular integrals in 3D
IGABEM. The nearly singular integrals in IGABEM can be computed by a semianalytical analysis method
[67], adaptive integration method[80], or transformation method[65]. Recently, Gong et al. [68, 69] developed
a hybrid integration scheme for the nearly singular integrals in the 2D/3D IGABEM. The method is capable
of producing accurate and efficient solutions for challenging geometries. In this work, the hybrid integration
scheme is used to evaluate the nearly singular integrals arising in the IGABEM for multiscale geometry
problems.

3.1. Hybrid integration scheme for multiscale geometry structures
In this work, we focus our attention on the analysis of heat transfer problems in multiscale geometry

problems. Thus, only some conclusions about the hybrid integration method are given; more details about
the scheme can be found in [68, 69].

Each integral considers a pairing of source point and an isogeometric element Γe with knot span [ξi, ξi+1].
The challenging nearly singular integrals arise when the source point is very close to, but does not lie on,
the element. To describe the proximity of the source point to an isogeometric boundary element, we define
an aspect ratio d∗ = d/L, where L is the length of the element and d denotes the minimum distance from
the source point to the element. For cases in which the aspect ratio d∗ is larger than a given critical value
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Figure 5: Minimum distance d to the element for cases when xp1 ∈ Γe1 and xp2 /∈ Γe2 . Dashed red line is the analytical
extension of Γe2 .

d∗crit, the integral is considered sufficiently regular that the adaptive integration scheme can be efficiently
applied. However, if the aspect ratio d∗ < d∗crit, this corresponds to a very nearly singular integral and an
exponential transformation method is used.

For an isogeometric element Γe1 shown in Fig. 5, when the projection point xp1 ∈ Γe1 the minimum
distance d from the source point y1 to the integration element is defined as perpendicular to the tangential
line, through the projection point xp1(ξp1

) and source point y1(ξ). It should be pointed out that for some
cases the projection point might be outside the element, i.e. xp2 /∈ Γe2 , as shown in Fig. 5. Since the NURBS
basis functions are a set of continuous functions of knot ξ, we can apply them to values of parameter ξ outside
the knot span of the element [68, 69]. And the dashed red line in Fig. 5 shows the analytical extension of
Γe2 . For this case, the minimum distance d can still be computed by d = |y2(ξ)− xp2 |.

We start by writing a Taylor expansion of the field point location x in the neighborhood of the projection
point xp,

xk − yk = dnk(ξp) +D1
k,ξ(ξ − ξp) +D2

k,ξ(ξ − ξp)
2 + ...+Dn

k,ξ(ξ − ξp)
n + HOT (30)

where k = 1, 2, x = (x1, x2), y = (y1, y2), n represents the order of the Taylor expansion, HOT abbreviates
Higher Order Terms and the coefficients D are defined as

Dn
k,ξ =

1

n!

dnxk

dξn

∣∣∣∣
ξ=ξp

(31)

Since the normal n(n1, n2) and tangential direction (dx1

dξ , dx2

dξ ) are two mutually perpendicular lines, the
term nkD

1
k,ξ = 0. Then, the square of the distance from the source point to the field point, i.e. r2, can be

expressed as
r2(ξ) = d2 + (ξ − ξp)

2gn(ξ) + Etrun (32)

where ξ ∈ [ξi, ξi+1], gn contains the sums of products of terms in the Taylor expansion and Etrun is the
truncation error caused by neglecting the HOT in equation (30).

Then, an exponential transformation method which has been used to deal with the nearly singular
integrals in conventional BEM [81–83] will be adopted in this work. A nonlinear coordinate transformation
mapping from µ ∈ [−1, 1] to the parametric coordinate ξ ∈ [ξi, ξi+1] is defined as

ξ = d(ek(1+µ)) + ξp (33)

where
k = 0.5 ln

(
1 +

A

d

)
. (34)

Here, the symbol A, related to knots ξi, ξi+1 (i = 1, 2, . . .) and parameter ξp, can be expressed as

A =

{
ξp − ξi, if ξp > ξi,
ξi+1 − ξp, if ξp < ξi+1.

(35)
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The Jacobian of this transformation can be described by

J =
dξ

dµ
= k · d · ek(1+µ). (36)

Substituting equation (33) into (32), we obtain

r2(ξ) = d2[1 + (ek(1+µ))2gn(ξ)] + Etrun (37)

Substituting the above distance function into the boundary integrals with fundamental solutions, we can
obatain the following equations

I1 =

∫ ξi+1

ξi

f(ξ) ln r2dξ =

∫ ξi+1

ξi

f(ξ) ln
(
d2
[
1+(ek(1+µ))

2
gn(ξ)

]
+ Etrun

)
k · d · ek(1+µ)dξ (38)

I2 =

∫ ξi+1

ξi

f(ξ)

r2
dξ =

∫ ξi+1

ξi

f(ξ)k · d · ek(1+µ)

d2
[
1+(ek(1+µ))

2
gn(ξ)

]
+ Etrun

dξ (39)

Since the term d2 in the above equation is constant, and neglecting the error term Etrun, the term d2

can be moved out of the boundary integrals. Then, the near singularity of the boundary integrals will be
fully regularized and the integrals can be evaluated using standard Gaussian quadrature.

In the computation of these integrals, some errors caused by neglecting the truncation term Etrun are
introduced. In [68, 69], the relationships between the accuracy and truncation error of the Taylor expansion
for an isogeometric boundary element are discussed. The conclusion drawn from that work is that the
truncation errors grow with the increasing of the distance between the field point and the projection point.
Here, only some conclusions are used; more details can be found in [68, 69].

Since the range of sizes of isogeometric boundary elements can be very large in modelling multiscale
structures, a hybrid integral scheme which combines the exponential transformation method and adaptive
integral method is developed. In the evaluation of an integral over an isogeometric boundary element with
knot span [ξi, ξi+1], we will first compute the element ratio d∗(= d/L). If the value of d∗ > d∗crit, the
integral will be a regular integral and computed by adaptive integral method (note that the critical aspect
ratio d∗crit has not yet been specified; it will be determined through numerical testing). These boundary
element integrations (including some weakly near-singular integrals) can be computed easily and effectively
at optimal computational cost by choosing an optimal order of Gauss integration order. However, with
the increase of the near-singularity (d∗ < d∗crit), the CPU time by using the adaptive integral method will
increase sharply (as shown in Fig. 2(b)). Therefore, the proposed hybrid integral scheme in this work will
be applied.

For an integral evaluated by the hybrid integral scheme, the truncation error Etrun in Eqs. (37), (38)
and (39) will be neglected. The truncation error Etrun can be computed using

Relative error (RETaylor) =
∣∣∣∣∣r2exact −

(
d2[1 + (ek(1+µ))2gn(ξ)]

)
r2exact

∣∣∣∣∣ (40)

where r2exact is the exact square distance between the source point (y1, y2) and Gauss point (x1, x2). It
should be noted that both the coordinates of source point and field point at the location of the Gauss point
are known in the computation. The truncation error (RETaylor) will grow with increasing distance between
the field point and the projection point, as discussed in [68]. In the computation of the nearly singular
integral, if values of RETaylor exceed a specified tolerance eps at the location of Gauss point ξ = ξ′1 and
ξ = ξ′2, the integral will be subdivided into three parts over parametric domains [ξ1, ξ

′
1], [ξ′1, ξ′2] and [ξ′2, ξ2].

For example, the integral in (39) can be expressed as∫ ξ2

ξ1

f(ξ)

r2
dξ =

∫ ξ
′
1

ξ1

f(ξ)

r2
dξ +

∫ ξ
′
2

ξ
′
1

f(ξ)

r2
dξ +

∫ ξ2

ξ
′
2

f(ξ)

r2
dξ (41)
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In the hybrid integral scheme, if RETaylor > eps in domains [ξ1, ξ
′
1] and [ξ′2, ξ2], the adaptive integration

scheme will be used in the two sub-regions. The exponential transformation method will be applied in the
central region [ξ′1, ξ

′
2] to improve the computational efficiency by using a fixed quadrature order. Some care

is needed in order for the scheme to be robust in dealing with various different relationships between ξ1, ξ′1,
ξ2 and ξ′2. Since RETaylor < eps in domain [ξ′1, ξ

′
2] for cases 1-4 in Table 1, the exponential transformation

method will be used in the integrals over these domains. The choice of integral method for the four cases is
given in Fig. 6.

Cases Relationship of parameters Resulted sub-regions Integral Ie
Case 1 ξ1 ≤ ξ′1 ≤ ξ′2 ≤ ξ2 [ξ1, ξ

′
1], [ξ

′
1, ξ

′
2], [ξ

′
2, ξ2] =

∫ ξ′1
ξ1

fdξ +
∫ ξ′2
ξ′1

fdξ +
∫ ξ2
ξ′2

fdξ

Case 2 ξ′1 ≤ ξ1 ≤ ξ′2 ≤ ξ2 [ξ1, ξ
′
2], [ξ

′
2, ξ2] =

∫ ξ′2
ξ1

fdξ +
∫ ξ2
ξ′2

fdξ

Case 3 ξ1 ≤ ξ′1 ≤ ξ2 ≤ ξ′2 [ξ1, ξ
′
1], [ξ

′
1, ξ2] =

∫ ξ′1
ξ1

fdξ +
∫ ξ2
ξ′1

fdξ

Case 4 ξ′1 ≤ ξ1 ≤ ξ2 ≤ ξ′2 [ξ1, ξ2] =
∫ ξ2
ξ1

fdξ

Table 1: Expressions of resulted integrals by hybrid integration scheme (f represents the entire integrand; assume projection
point ξp ∈ [ξ1, ξ2])

ξ1 ξ2

ξ1 ξ2ξ′1 ξ′2

Adap AdapExp

ξ1 ξ2ξ′1 ξ′2

AdapExp

ξ1 ξ2ξ′1 ξ′2

Adap Exp

ξ1 ξ2ξ′1 ξ′2

Exp

Case 1 Case 2 Case 3 Case 4

Projection point

Knot span [ξ1, ξ2]

Relationship

Sub-regions

integral choice

Cases

Figure 6: Integral method in hybrid integration scheme. ”Exp” and ”Adap” represent exponential transformation method and
adaptive integration scheme, respectively.

The overall integration strategy for the current IGABEM is summarized in Fig. 7.

4. Implementation of current isogeometric boundary element method

By using the special integration schemes in Fig. 7, the integrals in equation (26)-(28) can be evaluated.
By considering equation (25) at all the n collocation points (equal to the number of control points, or
NURBS basis functions) located at the Greville abscissae, a linear system of equations can be obtained:

Hũ = Gt̃+ y (42)

where matrix H contains jump terms and integrals in (26). Since temperature u is a continuous scalar, there
is only one unknown temperature coefficient for each degree of freedom and H becomes a square matrix.
However, the normal flux density q is discontinuous at corners and, in the same fashion as conventional
BEM formulations, G becomes a rectangular matrix containing boundary integrals in (27). Vectors ũ and
t̃ contain the corresponding temperature and flux coefficients that multiply the NURBS basis functions,
respectively. The vector y is produced by the domain integral in equation (6).

Applying boundary conditions and rearranging equation (42) in the standard BEM fashion, the following
linear system can be assembled:

Aλ = b (43)

where matrix A contains the appropriate columns of matrices G and H that multiply the unknown degrees
of freedom. Vector λ contains the unknown temperature and flux coefficients corresponding to the NURBS
basis functions. The (known) right hand side vector b contains not only the vector y but also the products
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Figure 7: Choice of integral method

of the terms in ũ and t̃ that are prescribed boundary conditions and the corresponding columns of H and
G. By solving the linear system in (43), all the unknown coefficients of temperature and heat flux can be
obtained. The temperature and flux density distributions around the boundary can then be recovered from
(23) and (24).

As a postprocessing step, the temperature at any interior point P can be simply computed by the BIE
for interior point in equation (44).

u(P ) = −
∫
Γ

U(P,x)q(x)dΓ(x) +

∫
Γ

Q(P,x)t(x)dΓ(x)− 1

2π

∫
Γh

1

r(P,x′)

∂r(P,x′)

∂nh
F (P,x′)dΓh(x

′) (44)

5. Numerical results and discussion

In this section, several numerical examples are presented to demonstrate the performance of the IGA-
BEM. Unless otherwise stated, we take the critical aspect ratio d∗crit = 10−3 and tolerance eps = 10−6.
In this section, we choose some simple solution fields in order to be able to compute errors precisely and
demonstrate the convergence of the method. A propeller model (with complex boundary geometry) is used
to demonstrate the benefits of the proposed IGABEM scheme. Then, a single heat source model (the flower-
shaped source) is added. The flower-shaped source can make use of the exact geometric definition of the
source. Later, a model with circular arc features on the exterior boundary is considered. Finally, some
models with multiscale features are analyzed by the current scheme. We also introduce a model of a real
physical problem and replace the Dirichlet boundaries around the cooling fins with convective boundaries.

For the boundary element method, the numerical accuracy of unknown boundary quantities is one of
the key metrics. To a large extent, the numerical accuracy of boundary quantities determines the numerical
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accuracy of interior quantities. This is because, once the boundary flux q(x) and temperature u(x) are
known, the temperature can be computed at any point P in the domain Ω by evaluating the integrals in
the boundary integral equation (Eq. (44)). All terms inside the integrals are known, so u(P ) can be easily
found. For this reason, BEM researchers usually show the L2 relative error norm of the boundary quantities.

To carry out the accuracy and convergence analysis, several types of errors are considered: a relative
error defined in Eq. (40) and the L2 relative error norm with respect to a reference solution fexact defined
by

E2(fnum; Γ) =
∥fnum − fexact∥L2(Γ)

∥fexact∥L2(Γ)

(45)

where Γ is the boundary of the propeller, fnum is the boundary quantities (temperature or heat flux) as
predicted by the present numerical scheme, and the L2 norm is

∥f∥L2(Γ) =

√∫
Γ

F 2dΓ

To show the proposed scheme’s accuracy on overall domain, a relative error norm taken by integration
over a domain is defined, i.e. a single number produced by the calculation:

E2(Tnum; Ω) =
∥Tnum − Texact∥L2(Ω)

∥Texact∥L2(Ω)

(46)

where Ω is a domain inside the propeller, Tnum is the temperature obtained by the present numerical scheme,
and the L2 norm over a domain is

∥f∥L2(Ω) =

√∫
Ω

f2dΩ

Unless otherwise stated, we take the degree of the NURBS basis functions p = 2 for all examples. For
the conventional BEM, both the geometries and physical quantities are described by quadratic polynomial
shape functions.
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5.1. Propeller model

r =
5

Arc with r = 11

Arc with r = 7.07

Arc with r = 1

Arc with r = 5

ΩL2

Figure 8: Geometry description for propeller model

To verify the ability of the proposed method to handle complex engineering geometries, a propeller is
analyzed with the temperature boundary condition T (x, y) = 10x + 8y. As shown in Fig. 8, the inner and
outer radius of the blade are taken as r1 = 11 and r2 = 7.0711, respectively. the radius of inner circle is
r3 = 5. Some small arc curves with r4 = r5 = 1 are used to replace sharp corners in the model.

For this problem, the analytical solution of boundary heat flux is Qexact = 10n1 + 8n2, ni (i = 1, 2) is
the ith component of the unit outward normal vector.

In Fig. 9, we present the L2 relative error norm E2(Qnum; Γ) when different schemes are used. It is evident
that both the BEM based on NURBS and conventional polynomial basis can obtain accurate results. But
the E2(Qnum; Γ) obtained by BEM based on NURBS (i.e. IGABEM) is smaller than that obtained by
BEM based on the polynomial shape functions when ndof is the same. IGABEM gives improved results
because of the exact geometric definition, yes, but also because the basis functions are smoother and non-
negative. As is shown in Fig. 9 that, even when ndof is large (and the elements become so small that the
geometric error is small) IGABEM is still better because of the second reason. Finally, using ndof = 160,
the temperature distribution inside the model is given in Fig. 10. For the computation, the L2 relative error
norm E2(Qnum; Γ) is 6.884× 10−4.
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Figure 10: Results distribution obtained with ndof = 160

5.2. Rectangular area with heat sources
Here, a 10×10 rectangular silicon die with different heat sources is investigated. The thermal conductivity

of the silicon die is taken as Kh = 148W/(m·K)[84]. The temperatures on the left and right sides are 20◦C
and 80◦C, respectively. The upper and lower boundaries are insulated, i.e. ∆T ·n = 0. The initial parametric
definition of the silicon die is given by a knot vector Θ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4}. The boundary
geometry of the silicon die is described by NURBS basis functions with order p = 2. In this example, three
different inner heat sources are selected, Case 1: b(x) = 100 W/m2; Case 2: b(x) = 2500 sin(ex+y) W/m2;
Case 3: b(x) = 1000(x2 + xy) W/m2. Firstly, a circular heat source with radius R = 2.5 inside the silicon
die is considered. To illustrate the accuracy of the current scheme, a set of internal points (shown in Fig. 11)
is distributed along and inside curve C1 (part of the boundary of the heat source) with definition

C1 = {(x, y) : x = R cos θ, y = R sin θ, θ ∈ [0, π], R = 2.5} (47)
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Figure 11: Locations of computed points inside the domain
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(b) b(x) = 2500 sin(ex+y)
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Figure 12: Temperature differences (errors defined in Eq.(40)) of results obtained by current scheme and finite element method.

Figs.12(a), 12(b) and 12(c) show us the differences (or errors) of results obtained by current method
(with ndof = 80) and finite element method. To offer reference solutions, the finite element models are
constructed with the FEM software Abaqus. Triangle elements are employed, where the edge length of the
elements in the model is 0.1. A refined mesh consisting of 20626 elements and 10514 nodes is used in the
FEM model. In these figures, temperatures at same points (given in Fig.11) are evaluated by using the two
methods, respectively. Then the relative errors defined by Eq.(48) are computed and given in Fig. 12.

RE =
|fnum − fref|

|fref|
(48)

where fnum denotes the values (temperature, in this case) computed by the current numerical method and
fref denotes the values obtained from the reference solution. From these figures, we can find that the
differences of solutions obtained by current scheme and Abaqus are very small. When the heat source b(x)
changes from 100 to 2500 sin(ex+y) or 1000(x2 + xy), the differences will increase one order of magnitude.
But the current scheme remains capable of delivering high accuracy of results with errors < 10−4 even for
complex heat source.

Figs. 13(a), 13(b) and 13(c) show the temperature distributions obtained by the present scheme corre-
sponding to the three cases. From these figures, we can find that the temperature results in Figs. 13(b) and
13(c) are quite oscillatory which is a real effect caused by the particular source term.
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Figure 13: Temperature distribution inside the silicon die for the circular heat source
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Next we consider a heat source with complex geometries as shown in Fig. 14. Here, the temperatures of
the rectangular silicon die on the left and right sides remain 20◦C and 80◦C. The flower-shaped heat source
(which can demonstrate the benefits of IGABEM) will be used to replace the circular source. To show the
numerical error of the current scheme inside the domain, a set of 1651 internal points (shown in Fig. 15) is
distributed inside the heat source.

We will begin our heat transfer analysis and the inner heat source will be selected as b(x) = 1000(x2+xy)
W/m2. In this heat source model shown in Fig. 14 and for which the temperature distribution obtained by
the current method is shown in Fig. 16. Fig. 17 shows us the differences (errors) of results at 1651 internal
points (shown in Fig. 15) obtained by current method (with ndof = 24) and finite element method. Since
we can not obtain the analytical solutions, finite element models with refined meshes are still constructed by
using the commercial software. From Fig. 17 we can find that the current scheme can obtain very accurate
results even when the ndof = 24.

Fig. 18 shows the relative errors, RE, in temperature along the curve C2 (shown in Figs. 14 and 15) as
the number of degrees of freedom (ndof) increases from 8 to 24. The relative errors are taken with respect to
a reference solution derived from very refined Abaqus FEM model, containing 12,191 elements and 11,696
nodes.From Fig. 18, we can see the proposed scheme is able to deliver accurate results for this model even
for a very small model with number of degrees of freedom, ndof = 8. A significant improvement in accuracy
can be seen when the model is refined to ndof = 16, 24. It should be remembered that there are no degrees
of freedom associated with the boundary of the source; only boundary degrees of freedom are required.
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Figure 16: Temperature distribution inside the matrix for the complex heat source
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5.3. Rectangular area with arbitrary heat sources—heat lines
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Figure 19: Heat pipe model

Similar to the above example, a highly convoluted heat pipe (shown in Fig. 19) is embedded in a
10 × 10 rectangular substrate. Here, the temperatures on the left and right sides of the substrate are
prescribed as boundary conditions, being 20 ◦C and 80 ◦C, respectively. The heat source is expressed as
b(x) = 2500 sin(ex+y) W/m2. The control points and other geometric parameters are also shown in that
figure. Fig. 20 presents the relative error of temperature along the line C3 (displayed in red in Fig. 19), for
different model sizes. The line C3 is defined as

C3 = {(x, y) : x = 2.0, y ∈ [−3.7, 3.7]} (49)

The reference solutions are obtained from a very refined FEM model consisting of 86,090 elements and
43,446 nodes.

From Fig. 20, it can be seen that when ndof = 8, the obtained results are unsatisfactory, demonstrating
that the temperature field cannot be resolved successfully with such a coarse discretisation when the heat
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source has such a complex geometry. As the number of degrees of freedom (ndof) increases from 8 to 48, the
convergence can be seen clearly, with highly accurate solutions (10−6 < RE < 10−4) achieved for ndof = 48.
Fig. 21 shows the temperature contours through the model for the quadratic heat source.
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Figure 20: Relative error of temperature along curve C3 for different ndofs.
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Figure 21: Temperature distribution inside the matrix for heat lines
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5.4. Heat transfer for multiscale models with heat sources
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Figure 22: A multiscale structure

To further illustrate the ability of proposed method to study multiscale models, a heat transfer problem
is studied as shown in Fig. 22. The conductivity of the model is taken as Kh = 148W/(m·K) and the
distances a, b and c are fixed as 9, 7 and 3. Three cooling fins of thickness δ are located on the upper
surface of the otherwise square domain, and we consider δ taking values from 1 to 10−7. The dimension
h = (a− 6δ − 1)/2. The temperature on the boundary is prescribed as T = 0.5(x2 − y2 + x+ y), the origin
of the coordinate system being located at point O in Fig. 22.
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Figure 23: Convergence of L2 relative error norm E2(Qnum; Γ) with ndof
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Fig. 23 shows the convergence of the L2 relative error norm E2(Qnum; Γ) as the number of degrees
of freedom (ndof) increases from 58 to 580 with different coating thickness δ. The convergence can be
clearly seen. The reason for the fluctuation in relative error norm for δ = 10−3 is that in the hybrid
scheme the exponential transformation method is now activated. Fig. 24 presents the L2 relative error norm
E2(Tnum; ΩL2

) of temperature. As shown in Fig. 22, the considered domain ΩL2 is a circular region with
boundary C5, which is defined as

C5 = {(x, y) : x = 4.5 + r0 cos(θ), y = 3.5 + r0 sin(θ), θ ∈ (0, 2π), r0 = 1.5} . (50)

The convergence can be clearly seen even when the values of δ reach 10−6. It is evident that both the two
methods can produce similar results when δ > 10−2. However, when δ < 10−2 the results obtained by
conventional IGABEM become less satisfactory. The reason for this is that nearly singular integrals appear
when δ decreases to 10−6. The proposed scheme can evaluate the nearly singular integrals accurately. Thus,
the accuracy of results remains stable.
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Figure 25: CPU time and E2(Tnum; ΩL2
) with different d∗crit

In Fig. 25, we study the effect of critical aspect ratio d∗crit on the CPU time, the L2 relative error norm of
boundary heat flux E2(Tnum; Γ) and the domain L2 relative error norm of inside temperature E2(Tnum; ΩL2

).
Here, δ is fixed as 10−3 and ndof = 174. Fig. 25 shows the CPU time will increase with the reduction of
d∗crit. The reason for this is that the adaptive integral scheme is used in the hybrid integral method and more
sub-knot spans are needed to reach the error tolerance. As in the error analysis, the method consistently
delivers very high accuracy for a small d∗crit. In contrast, with the increase of the value of d∗crit, the CPU
time will reduce when the values of d∗crit tend to 0.1. The reason for this is the that more nearly singular
integrals are computed by the transformation method (fixed number of Gauss points is used).

The numerical temperature distribution inside the substrate when δ = 5 × 10−4 are given in Figs. 26
and 27. For the two figures, the temperature on the boundary is given as T = 0.5(x2 − y2 + x + y) + 100.
And the heat source b(x) for the two figures are taken as 0 W/m2 and 100 W/m2, respectively. Thus, we
can find the influence of the heat source on the temperature distribution.
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Figure 27: Temperature distribution inside the matrix with
b(x) = 100 W/m2
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Figure 28: Convection heat transfer through the multiscale structure

We now introduce a model of a real physical problem and replace the Dirichlet boundaries around the
cooling fins with convective boundaries over which a heat transfer coefficient forms part of a convective
condition. As shown in Fig. 28, a circular source of radius R = 2.5 and having a source strength of
b(x) = 100 W/m2 emits heat that will be transmitted to a cooling fluid through the convective boundaries.
The bottom, left and right surface temperatures on the bottom, left and right edges of the substrate are
prescribed constant at 50◦C. The cooling fins on the top side of the substrate is exposed to cooling fluid
at a temperature Tf = 0 ◦C, and a heat transfer coefficient of 10 W/m2·K applies. For this problem, an
analytical solution is not available, and the convergence of the problem is established by taking a very refined
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IGABEM model (with ndof = 960) as the reference solution. Here we will take a detailed look at what is
going on in the sharp corner at the base of the cooling fins.
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Figure 29: Temperature distribution at the interface between the cooling fin and cooling fluid for different methods

To demonstrate the benefits of the current method, in Fig. 29 we compare the current results (temper-
atures along C6 shown in Fig. 28) against a conventional polynomial basis BEM simulation on this model
with δ = 1. In Fig. 29, both the current solutions and polynomial basis BEM solutions are obtained by using
ndof = 320. A finite element model (with 28043 elements) is constructed with the FEM software ABAQUS
to offer a reference solution in this figure. As shown in Fig. 29, the temperature obtained by the current
scheme is more accurate than that obtained by BEM based on the conventional shape functions when ndof
is the same.
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Figure 31: Temperature distribution along the cooling fins

It is impossible to obtain an analytical solution for this problem. Therefore, we show the temperature
distribution at the interface between the cooling fin and cooling fluid. On one hand we can see the correctness
of the results through the trend of temperature variation. On the other hand the temperature at the interface
between the cooling fin and cooling fluid is an important indicator of concern to engineers. Fig. 30 shows the
temperature convergence at point A (shown in Fig. 28) with coordinates ((7 − 5δ)/2, 7) when the NURBS
is refined. We consider the fins of thickness δ = 10−2. Fig. 31 shows the temperature distribution along
the cooling fins, from which we can see that the temperatures drop to 0 ◦C (the temperature of the cooling
fluid) from 37 ◦C along the cooling fin.
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6. Conclusions

In this paper, an IGABEM algorithm has been presented for the thermal analysis of multiscale and
complex structures containing arbitrary heat sources. To accurately evaluate the nearly singular integrals
caused by the different sizes of isogeometric boundary elements, a hybrid of the adaptive integral and
exponential transformation approaches is presented. The exponential transformation method is used in
the region very close to the source point, and the adaptive scheme used in the more distant parts of the
element. In this way, the nearly singular integrals in the IGABEM for multiscale structures can be evaluated
efficiently. The regular integrals for those isogeometric boundary elements with large physical domain are
computed by the adaptive integral method, which delivers high accuracy at optimal computational cost by
choosing the appropriate number of Gauss points automatically. The radial integration method is used to
treat the domain integral due to the arbitrary heat source.

A range of numerical examples collectively demonstrate that the proposed IGABEM formulation will be
an efficient method for the study of multiscale structures for electronic packaging problems.
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