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Abstract 

Sedimentary rocks can record signals produced by highly complex processes. These signals are generated 15 

by a progressive deposition of sediments which can be affected, mainly through the climate system, by regular 

astronomical cycles (i.e. Milankovitch cycles), and by irregular oscillations like the El Niño-Southern Oscillation. 

Also, usually through biological, chemical and/or physical post-depositional processes, the sedimentary records 

can be affected by pattern-creating heterogeneous processes. The noise in the signals further complicates the 

records, and the deposition rate (or sedimentation rate) can fluctuate, which greatly reduces the effectiveness of 20 

the classical stationary time-series analysis methods commonly used in cyclostratigraphy (i.e. the study of the 

cycles found in the sedimentary records). 

Faced with this multiplicity of processes, a common approach used in cyclostratigraphy is to reduce each 

signal to more manageable sub-signals, either over a given range of frequencies (e.g., by filtering), or by 

considering a continuum of constant frequencies (e.g., using transforms). This makes it possible to focus on the 25 

features of interest, commonly astronomical cycles. However, working with sub-signals is not trivial. Firstly, sub-

signals have a certain amount of cross-cancellation when they are summed back to reconstruct the initial signal. 

This means that in filters and in transforms, wiggles that are not present in the initial signal can appear in the sub-

signals. Secondly, the sub-signals considered often cannot be summed to reconstruct the initial signal: this means 

that there are processes affecting the signal which remain unstudied.  30 

It is possible to take cross-cancellation into account and to consider the entire content of a signal by 

dividing the signal into a decomposition: a set of sub-signals that can be added back together to reconstruct the 

original signal. We discuss here how to reframe commonly used time-series analysis techniques in the context of 

decomposition, how they are affected by cross-cancellation, and how adequate they are for comprehending the 

whole signals. We also show that decomposition can be carried out by non-stationary time-series methods, which 35 

can minimise cross-cancellation, and have now reached sufficient maturity to tackle sedimentary records signals. 
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We present novel tools to adapt non-stationary decomposition for cyclostratigraphic purposes, based on the 

concepts of Empirical Mode Decomposition (EMD) and Instantaneous Frequency (IF), mainly: (1) a fast Ensemble 

Empirical Mode Decomposition (EEMD) algorithm, (2) quality metrics for decomposition, and (3) plots to 

visualise instantaneous frequency, amplitude and frequency ratio. 40 

We illustrate the use of these tools by applying them on a greyscale signal from the site 926 of the Ocean 

Drilling Program, at Ceara Rise (western equatorial Atlantic), especially to identify and characterise the expression 

of astronomical cycles. The main goal is to show that by minimising cross-cancellation, we can apply in real 

signals what we call the wiggle-in-signal approach: making the sub-signals in the decomposition more 

representative of the expression, wiggle by wiggle, of all the processes affecting the signal (e.g., astronomical 45 

cycles). We finally argue that decomposition could be used as a practical standard output for time-series analysis 

interpretation of cyclostratigraphic signals.  

 

Keywords Cyclostratigraphy, Astrochronology, Signal Decomposition, Ensemble Empirical Mode 

Decomposition (EEMD) 50 
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1 Introduction 

Sedimentary cycles are repetitions of patterns in sedimentary geological records; they are the object of 

study of cyclostratigraphy (Weedon, 2003). These cycles bear critical information on the dynamics of the Earth’s 

system and can be viewed as the expression of either oscillators or heterogeneous processes (Authors’ note: the 55 

abbreviations and concepts in bold are recapped in Box 1). 

An oscillator is mathematically defined as a dynamical system, i.e. a system whose state evolves with 

time, where variables alternate between high and low values. In idealised conditions, the variables may fluctuate 

at given frequencies (i.e. periodically), or as a finite sum of periodic components (i.e. quasi-periodically).  

Oscillators can be conservative, i.e. non-dissipative. This means that energy and angular momentum in 60 

the system are constant as a function of time; in simpler words, there are no hindrance, dampening or irregularity 

in the fluctuation of variables. Accordingly, some conservative oscillators can display clockwork-like regularity.  

The orbital and rotational motions of planets are very well approximated as regular conservative 

oscillators, which allowed their use throughout human history to define the passage of time: the 24-hour day cycle 

follows the rotation of the Earth around its axis, the months were historically defined by the orbit of the Moon 65 

around the Earth, and the year follows the revolution of the Earth around the Sun. Because of the virtually 

conservative and regular character of celestial mechanics, astronomical cycles unfolding at the time scale of 

geological processes can be modelled computationally.  

The exact way that the Earth is oriented towards the Sun can be modelled with good accuracy up to ca. 

10 million of years ago (Lourens et al., 2001; Laskar et al. 2004), by calculating the climatic precession and 70 

obliquity parameters. This is, however, difficult to model further back in time in a reliable way, due to dissipative 

effects: typically the tides caused by the gravitational influences of the Earth, Moon and Sun on each other. 

Accordingly, when going further than 10 million of years ago, the expression of astronomical cycles recorded in 

geological records shows increasingly important discrepancy with astronomical models computed purely from 

measurements of the current state of the solar system (Zeeden et al. 2014). The computation of the parameters of 75 

the orbits of the planets in the solar system (i.e. simply obtaining the position of the planets, not their orientation, 

e.g., the eccentricity of their orbits), is less affected by dissipative effects such as tides, and can be done reliably 

up to ca. 50 million of years ago (Laskar et al. 2011; Zeebe and Lourens 2019). Beyond 50 million of years ago, 

the deterministic chaotic behaviour of the Solar system prevents the precise computing of the orbits (Laskar et 

al. 2004). 80 
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Box 1: Abbreviations and concepts (part 1) 

Climatic precession: change in the angle between the perihelion, i.e. the closest point to the Sun of the 

Earth’s orbit, and the vernal point, i.e. the position of Earth in its orbit around the Sun at the March equinox. 

Component: sub-signal that is part of a decomposition. 

Cyclically-connoted residual: monotonic function having at most one extremum, and assumed to be 

centred on either zero (symmetric cyclically connoted residual) or another value (asymmetric cyclically 

connoted residual) if the data set was of infinite length. If symmetric, the cyclically connoted residual can be 

studied using instantaneous frequency, and if asymmetric it can be compared to reference curves of the 

interpreted cycle. 

Decomposition: set of sub-signals that can be summed to reconstitute a given signal, or a procedure to 

obtain such a set (e.g., Fig 1). 

Demodulation: extraction of the variations of amplitude of a signal or sub-signal (e.g., Fig. 7). 

Deterministic Chaos: unpredictable behaviour of deterministic dynamic systems having high sensitivity to 

initial conditions. 

Diagenesis: ensemble of processes happening after the deposition of a sediment. 

DQ: direct quadrature (see section 3 for more details). 

Dyadic: property of doubling the mean period of successive filters, in a collection of filters used to perform 

decomposition (Franzke, 2009; Wu and Huang 2009). 

Dynamical system: system whose state evolves with time. 

Eccentricity: measure of the shape of an ellipse (ranging from 0, for a perfect circle, to 1, for a parabola). In 

cyclostratigraphy this refers to the shape of Earth’s orbit. 

EEMD: Ensemble Empirical Mode Decomposition; application of the empirical mode decomposition 

algorithm to an ensemble of white-noise added realisations, which are averaged to obtain a physically 

meaningful decomposition. 

EMD: Empirical Mode Decomposition; decomposition algorithm based on the iterative removal of a 

smoothed version of the signal, through iterated sifting. 

FFT: Fast Fourier Transform. 

Filtering: extraction of a part of a signal based on specific properties of that signal part, usually frequency. 

GZC: Generalised Zero-Crossing (see section 3 for more details). 

Heterogeneous process: process generating and reinforcing heterogeneities.  

HT: Hilbert transform (see section 3 for more details). 

Instantaneous: referring to an infinitesimally small point in time, height or depth. 

Instantaneous Frequency: extension of the definition of frequency, to make it a continuous value. 

Intra-wave frequency modulation: fluctuations of the instantaneous frequency at a scale lower than the 

period of the cycle. It is typically observed in oscillations deviating from a sinusoidal form. 

IMF (Intrinsic Mode Function): sub-signal (also called function) for which (I) zero-crossing and extrema 

follow each other in a minima / zero-crossing / maxima / zero-crossing pattern and (II) the upper and lower 

envelopes, respectively defined by the maxima on one side and the minima on the other, cancel each other at 

any point, meaning that they are symmetrical. 

ka: thousands of years ago. 

kyr: thousands of years. 

Linear trend: linear function, typically completing a decomposition made otherwise of several IMFs, and 

of a cyclically connoted residual. 

Local: referring to a given interval of time, height or depth. 

Meaningful: character of a sub-signal to be fully representative of the expression of one single process in 

the signal. 

Modally meaningful: the character of a sub-signal to be fully representative of all the cyclical processes in 

a signal that, due to their neighbouring frequency range, are interfering with the expression of one another 

when summed, generating amplitude and frequency modulation. 

Mode mixing: widely disparate scales for the oscillations in a component of a decomposition. 

NHT: Normalised Hilbert transform (see section 3 for more details). 

Nonlinear trend: monotonic function in which there can be at most one extremum, and on which no 

assumption is made for its mean. This can be understood as the sum of a monotonic residual that cannot be 

interpreted as cyclical, and the linear trend. 

Nonlinearity: property of a system to have an unproportioned response to a change of input. 

Non-stationarity: property of time series to be changing; in practice, having changing mean and variance. 

Normalisation: separation of an IMF into a frequency carrier of amplitude 1 and its amplitude modulated 

envelope obtained through spline fitting. 

Obliquity: the angle between the Earth’s equator and the ecliptic, i.e. the plane of the Earth’s orbit. 

Oscillator: dynamical system where variables fluctuate between high and low values. 
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Box 1: Abbreviations and concepts (part 2) 

 

Astronomical cycles have the potential to affect climate and other environmental factors at both regional 85 

and global scales, making them an important part of the Earth’s system. Indeed, they influence the seasonal and 

spatial distributions of incoming solar energy over the globe. At geological timescales, typically from thousands 

to millions of years, a few parameters are usually relevant in this respect. Firstly, climatic precession is defined as 

the change of the angle measured between the perihelion, i.e. the closest point to the Sun of the Earth’s elliptic 

orbit, and the vernal point, which is the position of Earth in its orbit around the Sun at the March equinox. Climatic 90 

precession affects the Earth-Sun distance at any particular moment in the year, and therefore controls the 

seasonality of the amount of energy received by the Earth from the Sun. The climatic precession is quasi-periodic, 

with a main period of ca. 20 kyr (thousands of years) in present times (see Berger 1978, Laskar et al. 2004 and 

Waltham 2015). The second parameter of interest is obliquity, which is the angle between the equator and the 

ecliptic (i.e. the plane of the Earth’s orbit). Obliquity is the main driving force of the Earth’s seasons. Obliquity 95 

varies periodically between ca. 22° and 24.5° with a period of about 40 kyr in contemporaneous times (see again 

Berger 1978, Laskar et al. 2004 and Waltham 2015). The effect of climatic precession on climate is modulated by 

the elliptic character of the Earth’s orbit, which is measured by eccentricity. Indeed, if the orbit of the Earth is 

less elliptic (closer to a perfect circle), the location of the Earth in its own orbit, under the effect of climatic 

precession, will have less impact on the climate. Eccentricity also influences the total amount of solar energy 100 

received by the Earth annually, but to a very small extend (Milankovitch 1941; Laskar et al. 2004). The main 

Parsimonious: character of a decomposition to display as little cross-cancellation as possible. 

Reconstruction: the action of reconstituting a signal by the addition of a set of sub-signals. 

Reversibility: providing the output of any kind of data processing in a data form that allows reconstructing 

the data in the form it had in the input. 

Riding wave: oscillations for which each neighbouring extrema are not separated by a zero-crossing. This is 

a characteristic that prevents a sub-signal to be a defined as an IMF (e.g., Fig. 6). 

Sedimentation rate: thickness of sediment being deposited as a function of time. 

Sifting: the process applied to extract each component in an EMD: a smoothed version of a signal is 

removed from the signal to obtain the extracted component. The smoothed component is obtained by 

averaging the upper and lower envelopes of the signal, respectively defined by the minima on one side and 

maxima on the other (see section 3 for further details). 

Sifting number: the number of times sifting is applied on each component in EMD. This iteration is 

performed to eliminate riding waves and to smooth uneven amplitudes. 

Stratigraphic quanta: smallest depth or height interval having stratigraphical relevance. 

Tuning: procedure of adjusting the time model of a sediment record, to match the cycles found in the record 

with time-constrained astronomical cycles; it can also be aided by other kind of stratigraphic constraints 

(e.g., radioisotopic dating, palaeontology, or magnetostratigraphy, etc.). 

Unity Frequency Modulation: frequency modulation (or similarly, height, depth or time modulation) of a 

frequency carrier to make it into a sinusoid of period 1. 

White noise: noise from random and uncorrelated fluctuations, e.g., sampled from a Gaussian distribution. 

In Fourier spectra it has similar power over the full frequency spectrum, like white light. 
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periods of variations of eccentricity are of ca. 100 kyr for the so-called short eccentricity cycle, and of 405 kyr for 

the long eccentricity cycle (e.g., Berger 1978; Laskar et al. 2004). Remarkably, the 405 kyr long eccentricity cycle 

(g2 – g5 cycle; see Laskar et al. 2004), along with a 173 kyr obliquity amplitude modulation cycle (s3 - s6 cycle; 

see Boulila et al. 2018 and Charbonnier et al. 2018) are part of a few peculiar cycles for which the period is 105 

considered stable beyond 50 million of years ago. Other modulators of climatic precession and obliquity are 

detailed in Hinnov (2000). 

In contrast to the virtually conservative astronomical cycles, the oscillators in the ocean and atmosphere 

systems are dominated by non-conservative processes such as friction and heat exchanges. In that case, oscillators 

are called dissipative. For such dissipative oscillators to be maintained through time, the energy lost to heat 110 

exchanges and friction needs to be compensated by an external source of energy. Typically, it is the energy from 

the Sun that sustains the dissipative oscillators found in the climate system, such as the El Niño-Southern 

Oscillation (ENSO) and the millennial oscillations of the ocean circulation (e.g., Dijkstra and Ghil 2005).  

Oscillations produced by dissipative oscillators can theoretically be periodic, or close to it (a good 

example being gas engines). However, Earth system processes, including dissipative climatic oscillators, influence 115 

and perturb one another. This effect is heightened by the fact that, contrary to conservative oscillators which 

preserve their initial regular oscillations, dissipative oscillators create oscillations continuously anew. Regular 

oscillations occur in dissipative climatic oscillators, but these can then be drowned by perturbations, only for new 

regular oscillation to be regenerated without preserving the continuity of the previous regular oscillations. In other 

words, dissipative oscillators can forget and skip their own oscillations; this is a phenomenon called finite-memory 120 

effect, which makes dissipative oscillators unreliable to keep track of time. 

As just shown, oscillators affecting the climate can either be dissipative, or almost conservative. The 

expression of these oscillators on the climate can be traced back in sedimentary records through the use of climatic 

proxies, i.e. climate-sensitive physical, chemical, mineralogical or paleontological markers. In other words, 

climatic oscillations can be found as patterns in the sedimentary records. But patterns in sediments can also be 125 

created by generation and reinforcement of heterogeneities, i.e. heterogeneous processes. Heterogeneous processes 

can occur during the transformation of soft sediments into rocks (i.e. diagenesis). Vertical spatial heterogeneity, 

especially, can originate from the combined effects of small depositional changes and pressure-related processes, 

which can lead to stratified lithological alternations. It has been shown that post-depositional heterogeneities, 

induced from a sediment that was virtually homogeneous to begin with, can create strictly diagenetic lithological 130 

alternations (see Westphal et al., 2015, especially their Fig. 2 for a visual demonstration in calcareous sediments). 
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Even the crystallisation of diagenetic minerals itself can be heterogeneous (e.g., in cherts; Maliva and Siever 1989), 

and thus lead to lithological alternations. Heterogeneous processes are space-time processes which can be 

modelled by a class of dissipative dynamical systems called "reaction-diffusion systems" (Nicolis and Wit 2007; 

Murray 2013). 135 

This all suggests that repetitive patterns in sediments can have different origins. More importantly, 

astronomical cycles, dissipative oscillators, and heterogeneous processes may end up entangled in the sedimentary 

records. Climatic cycles can match the pace of astronomical cycles, with the astronomical cycles acting as a 

memory for the climatic ones. But due to perturbations in the Earth’s system, astronomical and climatic cycles 

may not necessarily synchronise flawlessly. Furthermore, diagenetic processes have the potential to either 140 

undermine or reinforce the expression of climatic cycles. Still, as the astronomical cycles are fairly regular and 

predictable, it was suggested that they could be discriminated from other processes using time-series analysis 

techniques, such as Fourier-based spectral estimation. With these techniques, Hays et al. (1976) famously first 

identified patterns with periods corresponding to climatic precession and obliquity in deep-sea sediments cored 

from the southern Indian Ocean, and confirmed that the last four Quaternary ice ages each had a duration of 145 

approximately 100 kyr, which suggested a link to eccentricity (e.g., Raymo 1997). 

Since the work of Hays et al. in 1976, the field of cyclostratigraphy has been expanding considerably. 

Among others, cyclostratigraphy took advantage of the unique quasi-periodic properties of astronomical cycles 

for duration estimates. The regularity and predictability of astronomical cycles indeed allows them to be used for 

dating stratigraphic intervals, and determining the evolution of the sedimentation rate (i.e. the thickness of 150 

sediment being deposited as a function of time) within these intervals. Dating geological intervals based on the 

astronomical cycles is the object of study of astrochronology. A unique advantage of astrochronology is its 

potential to provide a continuous record of time. This contrasts with most other dating methods, which give time 

estimations that are discretely positioned (i.e. instantaneous) or restricted to a given interval (i.e. local, such as 

the interval defined by two points on both sides of a magnetic inversion) in the time scale (or in the depth/height 155 

scale for stratigraphic records where time is related to the spatial accumulation of sediments). 

In this article, we will focus on the ubiquitous decomposition aspect of the time-series analysis methods. 

Decomposition is defined as any method used to obtain a set of sub-signals called components, which can be 

summed to reconstitute the signal they are derived from. We also use the term decomposition to refer to the 

ensemble of components that results from this procedure. The main advantage of decomposition is its potential to 160 
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provide a comprehensive interpretation of a given signal, by attributing a given process (e.g., periodic or quasi-

periodic cycle, heterogeneous process, noise, etc.) to each component.  

We will here review how decomposition can be used to better understand sedimentary cycles. Firstly, we 

will use concepts related to decomposition to assess the time-series methods commonly used for the purpose of 

finding the cycles of astronomical origin. Then, we will review some of the available tools related to signal 165 

decomposition, which have not been used regularly for cyclostratigraphic analysis so far. To improve upon existing 

tools, and adapt them specifically to cyclostratigraphy, we present a new algorithm, "extricate", to perform 

decomposition, which runs in a matter of seconds. We demonstrate that through decomposition a new type of 

frequency analysis can be performed, using the concept of instantaneous frequency. Further computational tools 

are provided; among others, quantified metrics to assess the quality of decompositions. All of the computational 170 

tools are implemented in R, a free open-source software environment (R Core Team 2019), through the 

DecomposeR package (https://CRAN.R-project.org/package=DecomposeR). 

Our approach generally pertains to the goal of documenting the quality of cyclostratigraphic results. 

Indeed, there has been a recent effort of the cyclostratigraphic community to provide flexible guidelines for 

effective cyclostratigraphic studies (Sinnesael et al. 2019). These guidelines are flexible for the reason that each 175 

combination of proxy, archive, geological age and environmental setting requires a tailored approach, which limits 

the applicability of a strict set of rules (Sinnesael et al. 2019). With our method, we intent to show that 

cyclostratigraphic studies can be documented through decomposition, which can be performed by various 

methods. This would allow to further develop quality metrics specific to decompositions of cyclostratigraphic 

signals, and would provide a standard reference for scientific discussions.  180 

The discussion on how decomposition relates to other time-series analysis methods is provided in section 

2. In section 3 we discuss on the techniques available to perform a quantitative instantaneous frequency analysis 

on decompositions, and on how instantaneous frequency can be interpreted in terms of physical and geological 

processes. In section 4 we present practical aspects of our novel tools to perform decompositions, assess their 

quality, and apply instantaneous frequency analysis on them.  185 

We present and analyse, in section 5, a case study meant to illustrate the practical aspects of the application 

of decomposition and of related concepts to a real geological signal. This case study is made of a rock colour signal 

that covers an interval between 9 and 5 millions of years ago. The signal comes from site 926 of the Ocean Drilling 

Program, which is located at Ceara Rise (western equatorial Atlantic). As attempts to make a comprehensive 

analysis of a decomposition in the context of cyclostratigraphy are scarce and recent (see for instance Zeng et al. 190 

https://cran.r-project.org/package=DecomposeR
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2019 and Sun et al. 2021), some perspective remains to be gained on the subject. Therefore, we also give in the 

supplementary material (sections 9 and 10) further examples of comprehensive analysis of decomposition; on the 

magnetic susceptibility of site 926 in the same age interval, and on a decomposition from an artificial signal (the 

first case of the Cyclostratigraphic Intercomparison Project; Sinnesael et al. 2019). We refer to those additional 

analyses during our interpretation of the greyscale signal of site 926. We also provide an illustration of how a 195 

climatic noise model behaves in a decomposition (section 8 in the supplementary materials). Overall, the case 

studies in the supplementary materials provide insight on how to apply and interpret decompositions performed 

on various time-series. 

We finally discuss (section 6) and conclude (section 7) on the potential of decomposition. Ultimately, we 

want to show that decomposition can provide a fundamental understanding on all aspects of signal processing, and 200 

therefore makes for a perfect tool for tackling cyclostratigraphic signals. 
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2 Meaningfulness, parsimony, and invertibility 

Among the time-series analysis methods used to identify and characterise oscillations in a signal, 

decomposition is a simple way to overview the properties of a signal, which we illustrate in Figure 1.  205 

 

Figure 1: Decomposition of a depth-distorted artificial signal. The amplitude of the components is scaled 

to that of the initial signal. The linear trend is part of the decomposition. The signal is generated based on 

a model suggested by Herbert (1994): two components, A and B, having different sensibilities to a 

simplified astronomical forcing, are accumulating at variable rates and at variable proportions with one 210 

another. The simplified astronomical forcing is made of 3 sinusoids having periods of 23, 95, and 405 kyr. 

The model modulates this forcing onto a distorted stratigraphic depth. In our case, the maxima of 

accumulation of the element A expands the sedimentation rate, creating for the element A patterns called 

"accumulation cycles" (convex-upward when considering the axis of A), and by contrast, diluting the 

element B in a pattern of "dilution cycles" (concave-upward when considering the axis of B). The first 4 215 

components (group 1) take in small-scale high-frequency variations that are best explained as artefacts of 

the EEMD-based decomposition method, but also locally as the expression of abrupt features in the signal. 

Groups 2, 3 and 4 are respectively representative of the 23, 95, and 405 kyr forcing sinusoids. The residual 

and trend are basically flat, and do not carry information in this example. The decomposition is 

performed using the "extricate" EEMD method explained in section 4.1. The related R script (generating 220 

the signal, its decomposition, and this figure) is available in the SC1 supplementary material. [NOTE TO 

REVIEWERS: 2 column fitting image] 
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To be intuitively understandable, a decomposition should be meaningful (Wu and Huang 2009), by which 

we mean that the components must fully represent the expression of single physical or geological processes in the 

signal. We emphasize the "fully", meaning that the entire expression of a single process needs to be included into 225 

a meaningful component. Depending on the decomposition, components can be merged to be meaningful, e.g., the 

components in the groups of Figure 1. Whether a decomposition can be called meaningful is a subjective matter; 

but it can be justified by several quantified criteria, such as parsimony and invertibility that we will present below, 

or any metric that can establish a clear correspondence of particular components with given processes. 

We define here the parsimonious character of a decomposition as the property of having as little cross-230 

cancellation as possible. The level of cross-cancellation is linked to the level of excess absolute intensity that a 

decomposition has relative to its original signal (Fig. 2). Cross-cancellation occurs in intervals (in time, or in 

stratigraphic depth or height) where components of a decomposition are of opposite signs (Fig. 2A). As 

components are summed, they cancel each other out in those intervals (Fig. 2B). The excess of absolute intensity 

can be quantified: we use it to define a parsimony metric (see section 4.2.3).  235 

  
Figure 2: Cross-cancellation of two sinusoidal components of nearby frequencies (A), occurring when the 

two sinusoids are summed to reconstruct a given signal (B). Cross-cancellation occurs in the intervals 

where components are of opposite signs; they are in indicated by the light-grey rectangles. The cross-

cancellation occurs more prominently near the nodes, creating an amplitude modulation called "beat". 240 

The absolute intensity of the two sinusoids is mostly preserved and cumulated at the crests, but lost at the 

nodes, resulting in an overall loss of absolute intensity. [NOTE TO REVIEWERS: 1.5 column fitting image] 

 

A parsimonious decomposition remains faithful to the original signal. Contrastingly, a poorly 

parsimonious decomposition tends to create predicted wiggles, i.e. wiggles that are not present in the initial signal. 245 

The interpretation of predicted wiggles is a challenge; it can rely on a priori knowledge, or on underlying 

assumptions on their origin. Critically, such assumptions must commonly relate to the frequency and regularity of 

the predicted wiggles. Therefore, it is difficult to have reliable interpretations on predicted wiggles when the 
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signals are affected by erratic frequency modulations, or more typically in geological records, when they are 

affected by strong sedimentation rate changes. Furthermore, signal disturbances such as complex noise processes 250 

make the interpretation of the wiggles observably present in the raw signal already challenging; for predicted 

wiggles, finding a physical meaning is all the more uncertain. We suggest that by having a more parsimonious 

decomposition, one can minimise the amount of predicted wiggles; accordingly, the wiggles that remain in the 

parsimonious decomposition will be as close as possible as those found in the original signal. In turn, the need for 

assumptions and the risk of incorrect interpretations will be reduced. Considering the complex nature of 255 

cyclostratigraphic signals, we suggest that the concept of parsimony to minimise cross-cancellation can be useful 

to perform meaningful time-series analyses. Ideally, one can obtain decompositions in which the wiggles studied 

are all observably present in the signal. We call this the wiggle-in-signal approach. 

A decomposition is mathematically invertible: from the addition of all components, the initial signal can 

be reconstituted flawlessly (an action called reconstruction). This is necessary to characterise parsimony, and 260 

implies that from a decomposition the entirety of a signal could be interpreted in the form of meaningful 

components.  

The concept of meaningfulness (e.g., Wu and Huang 2009) is rarely addressed when using methods that 

do not generate decompositions as an output, and the concept of parsimony is introduced only in this paper. 

However, those two concepts can provide insight on how several time-series analysis methods are performed; 265 

especially because decomposition is often an integral part -albeit sometimes hidden- of the time-series analysis 

techniques used in cyclostratigraphy. Therefore, we will review in this section the methods commonly used to 

process cyclostratigraphic signals, through the lenses of meaningfulness and parsimony. To do this, we will 

reframe these methods in the context of decomposition, which implies that such methods can be invertible.  

A familiar mathematical application of decomposition is the Fourier decomposition, which decomposes 270 

a signal into a sum of sines and cosines. As sines and cosines are periodic functions, all components of the Fourier 

decomposition are periodic as well. However, for many signals, it makes poorly parsimonious decompositions; 

this can be illustrated by a signal consisting of an amplitude-modulated carrier. In simple amplitude-modulated 

carriers, the Fourier decomposition can be dominated by two components having nearby frequencies (Fig. 2A). 

When added together these components produce a pattern called a "beat": they interfere constructively near the 275 

crests, and destructively at the nodes (Fig. 2B). If the modulation changes over time, or if the frequency of the 

carrier evolves, then the number of components grows quickly, destructive interferences increase, which then 

worsen the parsimony of the Fourier decomposition. 
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In sedimentary records, Fourier decomposition often produces poorly parsimonious and poorly 

meaningful decompositions, especially when sedimentation rates vary strongly, distorting the signal (see also 280 

discussion in Hilgen et al. 2014). Indeed, sines and cosines are an appropriate conceptualisation of a periodic or 

quasi-periodic signal in the geological record only when sedimentation rates are close to being constant. This can 

sometimes be the case; when the signal does contain a strong periodic component (caused, for example, by a 

periodic forcing), and when the sedimentation rate is constant, a power spectrum (the energy or power that is 

attributed to each frequency) obtained by Fourier decomposition will be characterised by a narrow peak of energy 285 

or power at the frequency of the periodic component (similar to what is observed in Fig. 3A). Specific statistical 

tests have therefore been devised, based on power spectra, to detect astronomical cycles (e.g., Percival and Walden 

1993, Mann and Lees 1996, Ghil et al. 2002, Meyers 2012, Lenoir and Crucifix 2018). These tests allow to probe 

for the presence of periodic components against given null hypotheses, which are defined by the noise processes 

expected to occur. Suppose, however, that the climatic signal contains a strong periodic component, but that the 290 

sedimentation rate varies. As a result, the initially periodic signal will be frequency-modulated in the sedimentary 

record. Instead of the sharp spectral peaks of the astronomical forcing, which are expected to occur in the power 

spectra, the energy or power is spread in larger peaks for which the width depend on the intensity of the variations 

of the sedimentation rate, or in separate peaks (e.g., Fig. 3B; see also Schiffelbein and Dorman, 1986, and Herbert, 

1994). Variable sedimentation rates do not necessarily harm the entirety of a power spectra, notably when the 295 

sedimentation rate is changing at a frequency virtually similar to that of a forcing cycle (e.g., the 405 kyr cycle in 

Fig. 3). However, this is only one of the many possible scenarios occurring during sedimentation. Similarly to a 

decomposition not being parsimonious enough, the loss of spectral sharpness is a process that can make the Fourier 

decomposition less representative of the signal (see also Kemp 2016). 
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 300 

Figure 3: periodograms of (A) the sedimentation rate of the element B (i.e. the forcing used to 

make the signal in Figure 1), and (B) of the depth-distorted signal of the proportion of the same element B 

(i.e. the signal used in Fig. 1). MSR stands for Mean Sedimentation Rate. The depth distortion creates 

strong loss of spectral sharpness at high frequencies, making the 23 kyr cycle hardly decipherable by 

Fourier transform, and the 95 kyr forcing partially spread out in separate peaks. The 405 kyr peak is 305 

mostly unscathed, as the depth-distortion occurs virtually at the same 1/405 kyr-1 frequency. The signals 

for Figures 3A and 3B were extended 50 times compared to the one of Figure 1 in order to improve the 

frequency resolution. The R script generating the forcing and depth-distorted signals, their periodograms 

and this figure is available in the SC1 supplementary material. [NOTE TO REVIEWERS: 1.5 column fitting 

image] 310 

 

To account for changing sedimentation rate, spectral estimation can be adapted to provide a windowed 

estimation of frequency, based most commonly on wavelet analysis and evolutionary spectra (e.g., Meyers et al., 

2001; Hinnov 2013; Kodama and Hinnov 2014; and Martinez et al. 2015, for evolutive spectra, and Torrence and 

Compo, 1998, for wavelet analysis). Essentially, those two methods can be thought of as decompositions where 315 

components are representative of a given frequency and a given interval in time, depth or height (i.e. the window); 

this makes for a substantial number of components that are very local, and in theory reduces parsimony problems 

caused by sedimentation rate changes. Meaningful decompositions could be obtained with these techniques by 

combining, throughout the signal’s length, all of the local components that are relevant for distinct processes. 

However, this requires methodological developments on continuous wavelet transform using ridge extraction (e.g., 320 

Qin et al., 2016) or on discrete wavelet transforms (Percival and Walden 2000); these are outside the scope of this 

paper. 



15 

 

Having frequency estimated locally allows to study the local correlation and the frequency ratios of 

different scale cycles. Indeed, when the sedimentation rate locally increases by a factor k, the periods of each cycle, 

as recorded in the geological strata, increase proportionally to k. Therefore, the period (or frequency) ratios 325 

between regular astronomical cycles remain locally constant even with varying sedimentation rate. The values of 

the ratios can be used to identify the cycles, especially if multiple independent ratios can be found (Meyers et al., 

2012; Waltham 2015). The presence of stable frequency ratios respecting the general astronomical hierarchy and 

behaviour of cycles in relation with each other, should be reliable indicators of the unique regularity of 

astronomical cycles, and could serve as a criteria for a meaningful extraction of astronomical cycles. We include 330 

in these stable frequency ratios, the ratios related to the cycles driving amplitude modulation. Identification of 

these properties unique to astronomical cycles is the basis for several astronomical cyclicity identification 

techniques (Meyers 2015; 2019; Zeeden et al. 2015; 2019). In the context of decomposition, extracting components 

to test such ratios can be done using filtering. 

Once the parts of a signal attributable to an astronomical origin are identified, for instance with windowed 335 

estimation of frequency, they can be extracted by filtering. Filtering is the procedure that extracts a part of a signal 

based on certain properties, usually frequency. One then defines a filter bank as a set of filters that can be used to 

decompose a signal, typically by having each filter cover a complementary part of the entire frequency range of 

the signal. Fourier decomposition can provide the basis to make a filter: the latter is obtained by adding up all the 

Fourier components belonging to a specific range of frequencies. Doing so allows to extract the part of the signal 340 

making up that specific frequency range (see for instance the "Band pass filter" section of appendix 2 in Muller 

and MacDonald 2000). Filtering is highly customizable; it is therefore difficult to theorise how meaningfulness 

and parsimony behave with them. When used to extract climatic precession or obliquity, and study their amplitude 

modulation, a common rule is to use a wide frequency range around the target frequency, which reduces the 

generation of unwanted spurious amplitude variations (Zeeden et al. 2015; 2019, and references therein). In 345 

general, including all the frequency bands related to a single process in a single filter would bring it closer to 

meaningfulness, and merging as many frequency bands as possible would indeed improve the parsimony. 

Other methods exist that are somewhat similar to the filtering approach, whereby a signal is subdivided 

into a set of sub-signals and a residual: this is a kind of decomposition. Among such techniques, the most popular 

in cyclostratigraphy is the Singular Spectrum Analysis method, or SSA (Vautard and Ghil 1989). Essentially, SSA 350 

first finds eigenmodes from the signal, which in practice appear as sub-signals shorter than the signal’s entire 

length. Then, these eigenmodes are repeated to each reconstruct a component, with a weighting by coefficients 
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that vary throughout the length of the signal, which reconstitutes amplitude features. Moreover, the components 

can be merged by the user, generally by pairs, which allows SSA to produce sub-signals with a certain degree of 

frequency modulation. Still, SSA is limited by the fact that the eigenmodes themselves are not stretched or 355 

compressed in the reconstruction process, thereby limiting the frequency modulation (or depth distortion) that can 

be reconstituted. We illustrate this in Figure 4 with a depth-distorted signal, where a substantial part of the 

amplitude of the most distorted forcing (the 23 kyr one) remains in the residual part, thereby limiting the 

meaningfulness of this type of decomposition. 

Both SSA and filters accommodate only a limited amount of frequency modulation (in other words depth-360 

distortion); they can thus be inadequate when the sedimentation rate varies too much. This problem can be solved 

by determining the sedimentation rate through tuning. Tuning, as we refer to it in this study, is the manipulation 

by which the time model of a sediment record is adjusted so to match the cycles found in the record with time-

constrained astronomical cycles; it can also be aided by other kind of stratigraphic constraints (e.g., radioisotopic 

dating, palaeontology, magnetostratigraphy, etc.). 365 

Sedimentation rate estimates based on the identification of the regular astronomical cycles in climatic can 

be made for a complete record, considering a uniformly stable sedimentation rate, using methods such as the 

average spectral misfit (ASM) of Meyers and Sageman (2007) and TimeOpt of Meyers (2015; 2019). More 

importantly for our purpose, methods have also even been established to provide a local or instantaneous estimate 

of how the sedimentation rate evolves as the record unwinds (Malinverno et al. 2010; Meyers et al., 2012; Sinnesael 370 

et al. 2016; Li et al. 2018b; Sinnesael et al. 2018; Meyers 2019). 
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Figure 4 

 

Figure 4: Decomposition of a depth-distorted stratigraphic signal (identical to Figure 1), using Singular 

Spectrum Analysis (SSA). The amplitude of the components is scaled to that of the initial signal. The 
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linear trend is part of the decomposition. The first 3 components (group 1) take in low-frequency 405 

components corresponding roughly the 405 kyr forcing, but some of the 95 kyr forcing contaminates the 

2nd component. Group 2 and 3 roughly correspond to the 95 and 23 kyr forcing cycles respectively, with 

some spurious cycles not corresponding to any forcing cycle. The residual still contains significant 

amplitude related mainly to the 23 kyr forcing cycle. This parallels the leakage observed in the 

periodogram in Figure 3B, affecting mostly the 23 kyr cycle. The related R script (generating the signal, 410 

the decomposition and this figure) is available in the SC1 supplementary material. [NOTE TO 

REVIEWERS: 2 columns fitting image] 

 

What tuning does in practice to the signal is stretching or compressing it in given intervals; in other words 

a depth distortion (or a frequency modulation) is applied on the initial signal. The aim is that this depth distortion 415 

counteracts the effects of sedimentation rate changes, but this is not necessarily the case; for instance when the 

interpretation of the signal’s cycles, in terms of astronomical origin, is erroneous. Generally speaking, tuning refers 

to the intention of matching a signal to the astronomical cycles, without guaranteeing that it is done correctly. 

Therefore, we will in this paper speak of depth distortion of a signal for tuning purposes, or of a tuning 

interpretation, rather than merely "tuning". We introduce this distinction to underline that a tuning interpretation 420 

applied to a signal should be tested thoroughly, and even further, that it should be tested regularly as new data 

becomes available. 

However, testing whether a tuning interpretation is correct can be plagued by several interconnected 

issues, chiefly: overtuning, amplitude artefacts, and circular reasoning. Overtuning occurs when the sedimentation 

rates estimated via tuning are strongly and/or abruptly changing, to finely fit a signal to a target curve (typically 425 

an astronomical curve), potentially without physical or geological justification. Amplitude artefacts can then occur 

in the tuned signal due to overtuning. Indeed, because the signal was adapted to finely fit an astronomical target 

curve, some of the properties of the target curve get transferred onto the tuned signal. When the tuned signal is 

subsequently filtered in a narrow frequency range matching the tuning target to extract and test amplitude 

variations, those properties can be expressed as artificial amplitude modulations that mimic the ones found in the 430 

target astronomical curve (e.g., section 5.7 in Muller and MacDonald 2000; see also Hilgen et al. 2014 and Zeeden 

et al. 2015). This leads us to the issue of possible circular reasoning, which can occur when the steps used to 

perform tuning, by themselves, impose the detection of astronomical properties in the tests applied on the tuned 

signal. 

Solutions to tuning issues have usually focused on the overtuning part of the problem, by taking precautions on 435 

how the tuning is performed (see section 5.8 Muller and MacDonald 2000). Typically, avoiding overtuning 

consists in avoiding using too much data to parametrise the age model (by carrying out the tuning using only a 

small number of tie-points; by tuning on one target astronomical cycle such as precession, and testing on another 

like eccentricity; or by using other stratigraphic constraints that were not used to set the tuning interpretation for 
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testing, such as radioisotopic dating, palaeontology, or magnetostratigraphy, etc.). These precautions can prevent 440 

circular reasoning, typically by separating the data used for tuning from the data used for testing. Importantly, the 

correspondence of the tuned signal to the data used for testing needs to surpass any correspondence from random 

(or unrelated) signals that are tuned similarly than the signal being tested. This is commonly verified using Monte 

Carlo testing (e.g. section 3.13 in Muller and MacDonald, 2000). But avoiding overtuning means avoiding the 

exploration of all the possible age models. What if the sedimentation rate indeed follows abrupt variations, even 445 

if they may seem unlikely? What if a dataset tuned in high detail is as close as the correct one as can be? Rather 

than limiting the tuning possibilities, one would like to be able to use all the information to have the truest 

sedimentation rate estimation, and find a way to disqualify overtuned interpretations regardless of the artefacts 

they produce. This is especially relevant for geological records, for which age information is scarce, and should 

be exploited to its fullest extent. However, such practice has trade-offs. If the depth distortion to perform tuning is 450 

allowed to rely on the entirety of astronomical and stratigraphical data, any frequency (or time, depth, height) 

criteria to test the tuning will be subject to circular reasoning. Alternatively, if we could address the problem of 

amplitude artefacts, tuned signals could be tested based solely on the amplitude correspondence between a signal 

and astronomical curves, without the preoccupation of circular reasoning.  

Amplitude artefacts can be avoided using parsimonious decomposition methodologies. As the wiggles in 455 

a parsimonious decomposition must be observably present in the original signal, they cannot be artefactual wiggles 

(or, as we called them earlier, predicted wiggles). Alternatively, in the case where a decomposition is not perfectly 

parsimonious, artefactual wiggles can be tracked down and accounted for, using among others the parsimony 

metric (section 4.2.3). Therefore, if parsimony is taken into account, even methodologies that are prone to 

overtuning, such as optimised matching of the observed cycles (e.g., by wiggle matching, such as in Lisiecki and 460 

Lisiecki 2002), could be used for tuning. This is all the more important for methodological purposes, to apply tests 

based on amplitudes, because checking the correspondence in amplitude of a signal with a reference curve requires 

them to be optimally aligned. 

The need for a parsimonious decomposition, to avoid amplitude artefacts, can conflict with making the 

decomposition meaningful. This is best illustrated in cycles having neighbouring frequency ranges; for instance, 465 

the four major components of climatic precession (which at the present day have periods of ca. 23.7, 22.4, 18.9 

and 19.1 kyr; Berger 1978; Laskar et al. 2004; Waltham 2015). If one defines each of these four components as 

separate processes, in a meaningful decomposition they should be separated as four distinct components. However, 

as similar frequency range cycles, they tend to interfere with one another when combined, cross-cancelling 
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themselves into frequency and amplitude modulated components. Going the other way around, from the frequency 470 

and amplitude modulated wiggles found in signals, to well-isolated and regular sinusoids, can only be achieved 

through the use of predicted wiggles. In a cyclostratigraphic signal, predicted wiggles could be attributed to the 

23.7, 22.4, 18.9 and 19.1 kyr components of precession, but could equally well be artefacts. Because of complex 

noise processes, sedimentation rate changes, and other mechanisms such as heterogeneous processes, we even 

argue that interpreting the predicted wiggles found in the decomposition of a cyclostratigraphic signal is hazardous. 475 

This all means that meaningfully applying the wiggle-in-signal approach will require some compromises. 

To reconcile meaningfulness and parsimony, in the case of cycles having neighbouring frequency ranges, 

we introduce the concept of modally meaningful component extraction. We define modal meaningfulness in an 

extracted component as the characteristic to be fully representative of all the cyclical processes that, due to their 

neighbouring frequency range, are interfering with the expression of one another when summed, generating 480 

amplitude and frequency modulation, or interferences. For instance, the expression of the four major components 

of climatic precession would be bundled into a single modally meaningful component including the expression of 

other similar-frequency-scale processes (among which noise, but not only), that are interfering with the expression 

of climatic precession. Inversely, the expression of the different frequency scale sub-components of eccentricity 

(usually, short eccentricity –grouping the main 95 and 125 kyr period components into one modally meaningful 485 

component- and long eccentricity -405 kyr-) would be expressed as separate modally meaningful components. In 

essence, modally meaningful and parsimonious decompositions are a pragmatic implementation of the wiggle-in-

signal approach.  

To summarize; if the tuning process is performed correctly (which needs to be thoroughly and regularly 

tested), perturbations induced by sedimentation rate changes on the signal are reduced. On this corrected signal, 490 

filters or SSA can be applied to extract sub-signals representative of the astronomical cycles without the issues 

caused by sedimentation rate changes. This can be done in a parsimonious and modally meaningful way, by 

regrouping similar components in SSA, or by applying filters with wide bandwidths, thereby avoiding the issue of 

the interpretation of predicted wiggles. To make decompositions as meaningful as possible, the residuals should 

be minimised as much as possible. This all illustrates that parsimonious and modally meaningful decomposition 495 

can be implemented using tools widely used in the framework of cyclostratigraphy, in a way that can then 

intuitively be interpreted, as geological and/or physical processes.  
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3 Frequency analysis of decompositions 

A parsimonious and modally meaningful decomposition allows to have an overview of the processes at 

the origin of the signal. However, this is not enough: to study sedimentary cycles in the context of decomposition, 500 

an estimation of the behaviour of their frequency is crucial. 

Decomposition exists in the time domain, which means that the decomposition shows how the 

components of a signal change with time. Decomposition can also be applied on geological time-series expressed 

as a function of height in an outcrop or of depth in a core, i.e. the stratigraphic domain. Decomposition is here set 

in contrast with transforms (Fourier or wavelet) that describe a signal into the frequency domain. In the frequency 505 

domain, the signal is described as the amount of energy or power attributed to given frequencies. The duality 

between the time/stratigraphic domain on one hand and the frequency domain on the other seems to imply that 

frequency analysis of a decomposition is impossible without using a transform, which is not the case. The 

frequency of signals, when they are filtered or decomposed, may still be characterised quantitatively using the 

concept of instantaneous frequency, i.e. a frequency that continuously evolves in the time, depth or height scale.  510 

Traditionally, frequency is defined as the inverse of the period of a cycle, and the simplest way to 

determine it is by measuring the length between consecutive zero-crossings (or between consecutive corresponding 

points of the phase) in successive waves (Huang et al. 2009). By that definition, determining the frequency can 

only be performed locally, with a resolution of a complete wavelength. However, the concept of frequency can be 

stretched to become instantaneous. Based on the traditional definition of frequency, the temporal resolution of the 515 

frequency computation can actually be lowered to a quarter of the period using the generalised zero-crossing 

(GZC) method. This method is illustrated in Figure 5: for a given point, we compute frequency through a weighted 

average of the quarter of the cycle period, two half periods, and four full periods based on the extrema and zero-

crossings (e.g., Huang et al. 2009). GZC is local, but not yet instantaneous; still, it can serve as a useful reference 

to test methods providing estimates for the instantaneous frequency. 520 
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Figure 5: Illustration of the frequency computation by the generalised zero-crossing method. For each 

point P, the frequency can be computed by making a weighted average of the quarter of the cycle period 

(QP), two half periods (HP1 and HP2), and four full periods (P1 to P4) that are defined by the extrema 

and the zero-crossings. [NOTE TO REVIEWERS: 1 column fitting image] 525 

 

 

 
Figure 6 
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Figure 6: Illustration of instantaneous frequency. (A) Intrinsic mode function (IMF) (excerpt of comp. 2 of 530 

the CIP1 decomposition, see supplementary material), for which instantaneous frequency is computed. (B) 

Two instantaneous frequency computation methods are compared: the GZC (generalised zero-crossing) 

and the HT (Hilbert transform) methods (see Huang et al. 2009 for details). The straight line stand for the 

expected frequency of climatic precession (23 kyr divided by 75.81 kyr.m-1, see supplementary material). 

Note that the largest discrepancies (deviating from the expected frequency by several orders of 535 

magnitude) between GZC and HT, and between the instantaneous frequency and the expected frequency, 

happen at the location of riding waves (RW) and where the component is strongly asymmetric, i.e. in the 

places where the component deviates from the definition of IMF, which means that the instantaneous 

frequency computation is locally invalid (see text). [NOTE TO REVIEWERS: 1 column fitting image]  

 540 

 

Indeed, there are mathematical tools, such as the Hilbert transform (HT; e.g., Hinnov et al. 2002; Huang 

et al. 2009), that can be used to provide instantaneous values that mimic the behaviour of frequency obtained by 

generalized zero-crossing (see Fig. 6, and Huang et al. 2009). Such approximations are considered adequate to be 

used as instantaneous frequency: they have been explored previously on filters and SSA (Ghil et al. 2002; Hinnov 545 

et al., 2002), and are reviewed by Huang et al. (2009). We discuss here the main requirements to perform sound 

instantaneous frequency analysis, especially in the case of decomposition, focusing on the meaning it can have for 

cyclostratigraphy. 

Instantaneous frequency only applies in the case of a monocomponent sub-signal (Boashash 1992; Huang 

et al. 2009), which can be understood as a single sinusoid, modulated in amplitude and frequency at each point in 550 

the time or stratigraphic domain. Coincidentally, we expect a modally meaningful component to be interpretable 

as a monocomponent signal, and thus have an instantaneous frequency. A more practical definition for sub-signals 

apt for instantaneous frequency determination is the one of intrinsic mode function (IMF). The IMF, as defined 

by Huang et al. (1998), is a component for which (I) zero-crossing and extrema follow each other in a minima / 

zero-crossing / maxima / zero-crossing pattern and (II) the upper and lower envelopes, respectively defined by the 555 

maxima on one side and the minima on the other, cancel each other at any point, meaning that they are symmetrical 

(e.g., Fig 7A or 8B). Deviations from this definition, especially riding waves (i.e. oscillations for which each 

neighbouring extremum is not separated by a zero-crossing, e.g., Fig. 6) make it so that instantaneous frequency 

is no longer interpretable. The way that instantaneous frequency behaves in asymmetric parts of the signal and in 

riding waves differs depending on how it is computed. 560 
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Figure 7: Steps to change an intrinsic mode function (IMF, see Box 1) into a sine function of period 1 and 

amplitude 1. (A) The signal, for which amplitude is computed as the envelope of the signal. (B) The 

frequency carrier is computed as the signal divided by the envelope, a procedure called normalisation. (C) 

A period 1 sine can be obtained by modulating the depth, height or time via unity frequency modulation 565 

(see text). (D) The instantaneous frequency of frequency carriers can be computed through the direct 

quadrature (DQ) method (see text). Note that a similar figure has been presented by other authors to 

discuss the performance and physical meaning of the Hilbert transform (Figure S3 in Hinnov et al., 2002) 

[NOTE TO REVIEWERS: 2 column fitting image.]  

 570 

 

Using IMFs offers the possibility to model nonlinear and non-stationary processes such as the ones that 

can lead to sedimentary cycles. Therefore, decomposing a signal into IMFs is expected to be better than using 

transforms to explore the full expression of processes in the signal. Furthermore, IMFs can be understood in a 

simple mathematical context. Estimates of instantaneous amplitude and frequency can be explained through the 575 

steps allowing to change a monocomponent signal into a sinusoid of amplitude 1 and period 1 (see Fig. 7). An 

IMF can first be changed into a frequency carrier of amplitude 1 by dividing it by its envelope (Fig. 7A and B, 

also see Huang et al. 2009). From this frequency carrier, the phase angle can be determined for each point as if it 

belonged to a sine, using the equation from Huang et al. (2009): 

𝜙(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝐹(𝑡)

√1 − 𝐹2(𝑡)
               (1) 580 
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where ϕ is the phase angle (in radians), and F the frequency carrier (that needs to be strictly between -1 and 1) 

which is a function of the time t, or alternatively, of the height or depth. In plain language, this equation converts 

the F(t) intensity (between -1 and 1, e.g., Fig 7B) into ϕ(t), which is the corresponding angle in a sine; for instance 

an intensity of 0.5 corresponds to an angle of π/6 radians, or 30°, as sin(π/6) = 0.5. By readjusting the intervals 

between points to the difference of phase angle between each successive point, divided by 2π to account for 585 

radians, the frequency carrier can be changed into a pure sinusoid of period 1 (Fig. 7C), in a procedure we define 

as unity frequency modulation. On the same principle, instantaneous frequency can be computed by 

differentiation of the phase angle between successive points (Fig 7D): this is the direct quadrature instantaneous 

frequency computation method (DQ; Huang et al. 2009).  

As instantaneous frequency can be determined reliably only on components complying with the IMF 590 

definition, any given signal that needs to be analysed in instantaneous frequency first has to be decomposed into 

IMFs. To this end, Huang et al. (1998) first suggested the empirical mode decomposition (EMD) algorithm. EMD 

smooths a record, and extracts components by subtracting the smoothed signal from the initial signal; the process 

is then iterated on the smoothed signal. In Huang’s (1998) algorithm, the smoothing was performed through a 

process called sifting (Fig. 8). In sifting, maxima and minima of the signal are inter- and extrapolated to define an 595 

upper and lower envelope, using a smooth interpolation method like spline fitting (Fig. 8A). Then the two 

envelopes are averaged, forming the smoothed sub-signal that is subsequently subtracted from the signal to obtain 

a first component. As that component is defined as the average of the envelopes of the signal, it is expected to have 

symmetrical envelopes (Fig. 8B). Having the algorithm based on local extrema allows the resulting decomposition 

to be molded after the wiggles as they are in the signal. This makes EMD, in its fundamental form, a wiggle-in-600 

signal approach. 

In practice, components extracted by sifting do not necessarily comply with the definition of an IMF: they 

can still present asymmetry and riding waves. To solve this problem, Huang (1998) introduced an inner loop, 

which iteratively repeats the sifting algorithm on each extracted component (Fig. 8C). The number of iterations is 

called the sifting number. The sifting iteration eliminates riding waves to bring each component closer to what 605 

an IMF should be, and smooths uneven amplitudes (Huang et al. 1998). After the inner loop, a component is 

extracted (Fig. 8D), and a remainder is defined as the signal minus that extracted component (Fig. 8E). Then the 

entire process is iterated on that remainder to extract the next components (i.e. the outer loop in Fig. 8F). All the 

components are extracted when the remaining smoothed sub-signal contains one extremum at most. 
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 610 
Figure 8: Schematisation of the sifting process in EMD. (A) From the signal [s], the extrema are used to 

define upper [emax] and lower [emin] envelopes, and the mean of these envelopes [m]. (B) The mean [m] is 

subtracted from the signal [s] to obtain a first prototype of component. (C) The process is iterated on the 

prototype component in the inner loop, in order to smooth the component and eliminate riding waves. (D) 

From the inner loop of sifting, a component is extracted. (E) A remainder is defined as the signal minus 615 

the extracted component. (F) The remainder is used to perform a new round of sifting and define the next 

components. [NOTE TO REVIEWERS: 1.5 column fitting image] 

 

The EMD algorithm defined by Huang et al. (1998) is not perfect. Among others, there can be (I) 

instabilities near the ends of the signal, (II) asymmetric wave forms, (III) and mode mixing (i.e. widely disparate 620 

scales for the oscillations of each extracted IMF). Because of these problems EMD has been adapted and improved 

into a wide variety of algorithms (e.g., Lin et al., 2009; Wu and Huang 2009; Kim and Oh 2016; see Bowman and 

Lees 2013, Sprovieri et al. 2013 and Cicone et al. 2016 for geological applications). A simple yet substantial 

improvement was provided by Wu and Huang in 2009 in the form of the ensemble empirical mode decomposition 

(EEMD). As the name suggests, EEMD makes an ensemble of versions (also called realisations) of the signal, 625 

each of them having a different white-noise realisation added to them, then EMD is performed on each version, 

and the versions are averaged, component by component, to obtain the final decomposition. EEMD reduces mode 

mixing, considers multiple possible solutions (that are then all averaged) and minimises subjective intervention 
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(see Wu and Huang 2009 for more details on how this is achieved). However, the original EEMD algorithm does 

not solve the instability occurring near the ends of the signal, and its results do not necessarily satisfy the IMF 630 

definition (i.e. asymmetry and riding waves may still appear). Furthermore, the added random white noise does 

not cancel entirely when averaging, and the implementation of an ensemble large enough (i.e. performing hundreds 

of EMDs) has a high computational cost (tens of minutes to hours on a standard workstation). Still, in practice, 

EEMD remains a powerful tool (e.g., Bowman and Lees 2013 use it for seismology), especially to minimise mode 

mixing. 635 

To illustrate how frequency behaves in estimations from decompositions obtained via EMD or EEMD, 

we compare EMD results to frequency estimations obtained by Fourier transform, in the case of white noise (i.e. 

random and uncorrelated fluctuations, typically sampled from a Gaussian distribution). For the Fourier transform, 

that reconstructs the random white noise using only rigid sines and cosines, amplitude has to be distributed evenly 

to the entire range of frequencies (Fig. 9). 640 

 
Figure 9: Amplitude against frequency of a direct Fourier transform of Gaussian white noise (standard 

deviation = 1, N [number of data points] = 300). The horizontal grey line marks the mean of amplitudes. 

There is no general tendency of amplitude towards any specific range of frequency. [NOTE TO 

REVIEWERS: 1 column fitting image] 645 

 

On the other hand, EMD commonly acts on white noise like a dyadic filter bank. A filter bank is called 

dyadic when the mean period approximately doubles for each consecutive filter (Franzke 2009). This is what is 

observed in Figure 10: the white noise gets distributed into frequency-modulated components, for which amplitude 

decreases towards lower frequency, with ratios of mean frequencies between successive components of 2 or less 650 

(Wu and Huang 2010 and references therein). The behaviour of EMD is actually similar to what is observed in 

wavelet analysis. If the wavelet transform is parametrised so that power is directly proportional to amplitude, the 

power of white noise (and thus its amplitude) decreases towards lower frequencies (see Maraun and Kurths 2004, 
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especially their Fig. 2). Furthermore a dyadic behaviour can be obtained in wavelet analysis by using a scale factor 

of 2 (Wu and Huang 2010). 655 

The different behaviours of Fourier and EMD with white noise is well reflected by the amount of cross-

cancellation. As Fourier decomposition needs to create sinusoids over the entire frequency range available, its 

sinusoids will cancel each other heavily in order to recreate the random behaviour of noise. Therefore the 

parsimony of a Fourier decomposition of white noise is very poor. The cross-cancellation in the decomposition 

obtained via EMD-based methodology is considerably lower (see section 4.2.3 for more details). 660 

 
Figure 10: Gaussian white noise (standard deviation = 1, N [number of data points] = 300, identical to the 

one used in Fig. 9), and its decomposition using the "extricate" algorithm. The intensity scale of the 

components is identical to that of the initial signal. Note the decrease of amplitude in lower frequency 

components. The decomposition has less than log2(N) components [log2(300) = 8.22]. [NOTE TO 665 

REVIEWERS: 1.5 column fitting image] 

 

EMD, however, does not always act as a dyadic filter bank. By dramatically increasing the sifting number 

in the EMD algorithm, white noise can be decomposed closer to how a Fourier decomposition would work. Getting 

EMD to act like that arises from the fact that iterating the sifting smooths the uneven amplitudes of components 670 

(Huang et al. 1998). Therefore, the preservation of amplitude features declines as the number of sifting iterations 

increases (see Fig. 7 of Wu and Huang 2010). With high sifting numbers, EMD can even separate two sinusoidal 

waves of slightly different frequencies (Huang et al. 1998; Wu and Huang 2010). In that extreme parametrisation 



29 

 

the value of the ratios of mean frequencies between successive components in white noise approaches 1 (Wu and 

Huang 2010), but such parametrisation defeats the purpose of obtaining a parsimonious and modally meaningful 675 

decomposition, with amplitude and frequency modulation intact. In fact, similar results would be more readily 

obtained via Fourier decomposition. 

To further illustrate the behaviour of EMD in mainstream applications (i.e. with low sifting numbers), let 

us consider harmonics. In Fourier and wavelet analysis, when periodic oscillations diverge from a pure sine wave 

(or wavelet) form, harmonic peaks appear at frequencies that are multiples of the frequency of the distorted 680 

oscillations. This is the way that the Fourier and wavelet transforms account for the non-sinusoidal or non-wavelet-

like form of the oscillations (Huang et al. 2009). However, when EMD is parametrised to generate decompositions 

made of modally meaningful IMFs, harmonics are theoretically irrelevant. In the IMFs of an EMD, the original 

shape of oscillations can preserved (to a certain degree), and is translated in instantaneous frequency as intra-

wave frequency modulation (i.e. fluctuations of the instantaneous frequency at a scale lower than the period of 685 

the cycle; Huang et al. 2009). The preservation of the shape of the oscillations in the data allows to provide a few 

modally meaningful components. Typically, the EMD algorithm produces no more than log2(N) components, N 

being the number of data points (Wu and Huang 2010), which is illustrated in Figure 10. Actually, with simpler 

processes, where the signals are made of sinusoids, and where perturbation is limited to white noise, the simplest 

Fourier based algorithm (i.e. the periodogram) is enough to meaningfully identify periodic components (Tukey 690 

1967). However, the complexity of geological processes makes real sedimentary records quite more challenging. 

In most real cyclostratigraphic cases, the intra-wave frequency modulation of astronomical origin would be 

expressed together with sedimentation rates changes adding their own frequency modulation. This further justifies 

extracting modally meaningful components and focus on their amplitude features to identify astronomical 

processes. 695 

The concept of instantaneous frequency further opens the question on how to characterise low frequency 

cycles, which span the length of the entire record with only a few oscillations. In Fourier transform, such cycles 

are generally left aside, but as instantaneous frequency provides a detailed overview of how the frequency evolves 

within the cycles themselves, they could be taken into account and studied in a decomposition. This is exemplified 

by Wu et al. (2007), which uses EMD to extract and interpret trends and low-frequency components of short-scale 700 

data. This highlights that even trends can be recognised and interpreted in a decomposition. But as a trend is the 

consequence of the limited length of time series, it should be kept in mind that "one [person]’s 'trend' can be 
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another’s 'cycle'" (Stock and Watson 1988). To address the problem in the case of cyclostratigraphy, we introduce 

a few definitions:  

- Cyclically-connoted residual: a monotonic function having at most one extremum, and assumed to be 705 

centred on either zero (symmetric cyclically-connoted residual) or on a non-zero value (asymmetric 

cyclically-connoted residual) if the data set was of infinite length. If symmetric, the cyclically connoted 

residual can be studied using instantaneous frequency, and if asymmetric it can still be compared to 

reference curves of the interpreted cycle. 

- Linear trend: a linear function, completing a decomposition made otherwise of several IMFs, and of a 710 

cyclically connoted residual.  

- Nonlinear trend: a monotonic function in which there can be at most one extremum, and on which no 

assumption is made about its mean. This can be obtained as the sum of an EMD’s residual that cannot be 

interpreted as cyclical, and a linear trend removed before the EMD, or more simply as the residual of an 

EMD on a signal that was not detrended. 715 

The choice of having a nonlinear trend to put away the awkwardly-interpretable remainders of an EMD, or 

decomposing it into cyclically-connoted residual and linear trend, is a matter interpretation.  

A final problem for EMD is that even if its concept allows getting closer to parsimonious and modally 

meaningful decompositions, it can fail to fit certain realities of geology. Hiatuses (i.e. losses of sedimentation that 

result in a part of the signal simply being erased), typically, cannot be conceptualised without sudden phase 720 

changes. The issue is that such phase changes could be translated in a decomposition as riding waves, and that the 

EMD process is specifically designed to remove the riding waves as best as possible, thereby removing the 

indications of hiatuses. However, this is a problem of the EMD algorithm, and not of the entire idea of 

parsimonious and modally meaningful decomposition, in which gaps can be included.  
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4 Methods 725 

We present in this section the practical details of the tools we developed. The software used in this study 

to generate and handle decompositions is implemented in the newly developed R package DecomposeR 

(https://CRAN.R-project.org/package=DecomposeR). The code available in the supplementary material for the 

processing of data is based on DecomposeR version 1.0.4, working with R 4.0 or above. 

4.1 The "extricate" algorithm 730 

To use the EMD concept in cyclostratigraphy, ideally the algorithm would need to produce parsimonious 

and modally meaningful components, while having to specify as few parameters as possible. This can be done 

using EEMD (Wu and Huang 2009), but it is a slow algorithm. To overcome this problem, we present "extricate", 

a version of EEMD optimised for short to intermediary length time-series (typically less than 10 000 data points). 

EEMD is an ensemble: it iterates EMDs on different white-noise-added realisations of a signal. These 735 

iterations usually mean that there are a lot of nested loops in the algorithm: the sifting inner loop is repeated in the 

sifting outer loop (Fig. 6), which is itself repeated for each realisation in the EEMD. As a consequence, the typical 

EEMD algorithm is computationally inefficient, and runs slowly. If somehow the ensemble of noise-added signals 

were to be treated in one single EMD, the process could be made to be more efficient. This can be achieved by 

joining the realisations of white-noise-added signals, uniting them into one large signal. Then, there would only 740 

be the matter of optimizing the algorithm for a large data set. However, the joining step is problematic in itself: it 

creates spurious oscillations at the location of the junction of repeated signals, oscillations which will affect the 

resulting decomposition. This can be circumvented using an accepted method for joining repeated signals, which 

was initially designed to answer the problem of instability near the ends of the signal: even-odd extension (Zeng 

and He 2004). Even extension (also called mirror extension) is extending data with the mirror of the data (i.e. using 745 

axial symmetry; Fig. 11). Odd extension (or anti-mirror extension) is identical, but extends the data with a negative 

intensity version of the mirror of the data (i.e. using central symmetry; Fig. 11). The principle of even-odd 

extension is to perform EMD on the signals with even and odd extension separately, and to average the resulting 

decomposition in order to reduce instability at the end of the signal. This principle can be used to join any ensemble 

in two sets: even and odd (Fig. 11). Based on these concepts, we can now explain the "extricate" algorithm: the 750 

linear trend in the signal is first removed prior to joining the signals, in order to avoid extreme behaviours at the 

junction between anti-mirrored signals. Then, EMD is performed on the two sets, joined using even and odd 

extension respectively. Next, each individual signal in the resulting decompositions of the two sets is rotated back 

as it was originally, and the two sets are averaged into one set. Finally, the joined signals in the resulting set (which 

https://cran.r-project.org/package=DecomposeR
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is an average of the even-odd sets) are disjoined and averaged. To have all the signals undergo similar procedures, 755 

the first and last signals of the sets are not considered.  

 
Figure 11: Illustration of the even and odd pasting used in "extricate". The signal is detrended, and then 

joined using even and odd extension to respectively make an even set and an odd set. EMD is performed 

on the two sets. The resulting decompositions of each repeated signals are put back in the original 760 

orientation of the data (cancelling the even odd extension) and the two sets are averaged into one. Then all 

the different realisations in the averaged set are themselves averaged to make unique decompositions. 

[NOTE TO REVIEWERS: 1.5 column fitting image] 

 

In essence, even- odd extension is a way of predicting the behaviour of data outside of its studied range. 765 

The method uses the data itself for the prediction in order to resolve instability at the signal end. However, there 

is no way to accurately predict inexistent data, so by nature the even-odd extension is not failproof. This was 

underlined by Wu and Huang (2009), who have proposed a method reducing instability at the ends without relying 

on prediction, which would be analytically better than the even-odd extension used in "extricate". On the other 

hand, the even-odd extension is what makes extricate efficient. For all intents, the "extricate" algorithm should be 770 

thought of as a trick allowing easy experimentation on the EEMD concept, not as a panacea. To make "extricate" 

efficient, all the computational elements used to perform the sifting process have been optimised for large data 

sets. Another feature of "extricate" is that the white noise that is added to the even set can be itself mirrored and 

used in the odd set in such a way that when the two sets are averaged, the noise cancels exactly, except for rounding 

errors inherent to the representation of real numbers on a computer. 775 
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The "extricate" algorithm can be set to average the ensemble by groups of signals, producing different 

replicates of a decomposition. The only difference between these replicates is the white-noise realisations used in 

their respective ensemble, but as they are all sampled from the same process, the white noise is expected to have 

the same variance in every replicate. Because the decomposition parameters are similar for all replicates, we can 

expect them to have similar properties; Wu and Huang (2009) highlighted this, showing that signals being different 780 

only in the first 10% of data make similar decompositions for the 90% of data that is similar, in the case where 

parameters were identical (especially the number of sifting iterations for each component). To have a 

comprehensive exploration of the different decompositions that can be obtained via "extricate", the sensitivity of 

the decomposition results to the parametrisation needs to be evaluated. The parameters that affect how the 

decomposition is performed, and influence the results, are: 785 

- The number of realisations combined to be averaged into one replicate. 

- The sifting number applied for each component. 

- The intensity of the white noise added to the signals. 

A comprehensive study of the influence of these parameters is beyond the scope of this paper. There are 

common recommendations in the literature to adjust these parameters (Wu and Huang 2009; Stallone et al., 2020), 790 

but these recommendations can stem from the need of each author to give certain characteristics to a given 

decomposition. For instance, Wu and Huang (2009; 2010) recommend fixing the sifting number to a low number 

in the EMD (typically 10) to optimise the dyadic behaviour for noise while keeping the upper and lower envelopes 

of IMFs almost symmetric around zero. However, even a sifting number as low as 10 can smooth the amplitude 

variations compared to the ones observed in EMD performed with a sifting number of 1 (i.e. avoiding the repetition 795 

of the inner loop in the EMD). Amplitude variations are a major characteristic of the astronomical signal, especially 

in the form of modally meaningful components, therefore such smoothing can be problematic. We therefore 

recommend a trial-and-error approach for exploring the potential of EMD in cyclostratigraphy. To this end, we 

suggest that quality criterions for decompositions should first be defined and tested for the specific case of 

cyclostratigraphy, before setting any guideline. 800 

4.2 Quality assessment of a decomposition 

Decomposition offers the opportunity to interpret any wiggle present in a signal in a format that can be 

checked a posteriori. Decomposition allows the user to visualise the impact of noise and other non-astronomical 

processes, in contrast with what is interpreted to be of astronomical origin. On the other hand, the components 

linked to astronomical processes can be validated by comparison to the astronomical models or to 805 
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contemporaneous geological sections, or by putting them back in their geological context (e.g., other 

sedimentological observations or proxies in the same section). A decomposition in itself should be checked for 

quality, and we offer the concepts explained in the following sections to this end. An automated testing using these 

concepts is provided in the DecomposeR package, through the check.emd() function.  

4.2.1 Reversibility 810 

To preserve a way of comparing a decomposition to the signal it originates from, we encourage 

reversibility, which we define here as providing the output of the signal processing in a data form that allows to 

reconstruct the data in the form it had in the input. This concept is a generalisation of the mathematical invertibility, 

which applies to mathematical functions like the decomposition, where for instance the reconstruction process 

allows to mathematically reconstitute the initial signal from the components of its decomposition. Reversibility 815 

extends invertibility to the practical implementation of the mathematical functions: for decomposition, reversibility 

typically means preserving the original data points in the signal processing, even after linear interpolation and 

depth distortion applied for tuning purposes.  

Linear interpolation (along the time-depth-height axis) is used to have regular sampling, which is 

necessary when computing the Fourier transform via the fast Fourier transform algorithm (FFT, used among others 820 

in filtering procedures or in the Hilbert transform to compute instantaneous frequency). Indeed, sampling 

geological sections and cores in a perfectly regular manner is highly difficult; linear interpolation is therefore often 

a necessity in cyclostratigraphic data analysis. 

To make a regular linear interpolation and still include all the original data points, the interval for 

resampling can be set as the lowest interval for depth or height that was considered in practice (i.e. the interval 825 

marking the spatial precision level for sampling and logging, typically 1 centimetre for high-resolution field 

logging). We will refer to this minimal interval on the height/depth measurement as stratigraphic quanta. Even 

when performing depth distortion for tuning purposes, which can change the size of the relative intervals between 

samples, every sample position can be rounded to the scale of a temporal quanta interval, which would be chosen 

to minimise information loss when used as a sampling interval for linear interpolation. In practice, the stratigraphic 830 

quanta can be computed as the greatest common rational divisor of the dataset depth or height values, allowing to 

perform regular linear interpolation without the user having to manually set the sampling interval (see Fig 12A). 

This is the purpose of the "respace" function in DecomposeR: it linearly interpolates by the greatest common 

rational divisor or a divisor thereof (which can be defined by the user), and identifies the original data points 

against the interpolated ones. The greatest common rational divisor as interval for interpolation is only used here 835 
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to preserve the original data points for decomposition, filtering and instantaneous frequency computation. For 

other time-series methods where interpolation is subject to other problems, other procedures may be considered 

(see for instance section 2.2 in Laepple and Huybers 2013, and appendix A of Martinez et al. 2016). Noteworthily, 

obtaining the greatest common rational divisor remains, to date, a computational challenge (Wouters et al. 2021). 

4.2.2 Integrity 840 

For a set of time-series (e.g., filtered signals) to qualify as a decomposition, the sum of all these time-

series should flawlessly reconstruct the signal. To quantify this property, we define integrity (Fig. 12B), which is 

the mean of the absolute difference between (I) the signal, and (II) the summed components of the decomposition: 

integrity =  
1

𝑁
∑ |S(𝑑𝑡) −  ∑ Ck(𝑑𝑡)

K

k=1
|

N

n=1
               (2) 

where S(dt) is the initial signal, Ck(dt) represents each Kth component, and N is the number of data points. This 845 

should be as close to zero as floating-decimal arithmetic permits (typically 15 orders of scale lower than the highest 

order of scale of intensity). In classical EMD and with "extricate", which are both designed to allow virtually 

perfect integrity, this is easily achievable. However, when considering other algorithms and methods, which can 

fail to have integrity by design (such as classical EEMD), or when checking for mistakes, this is a useful metric. 

4.2.3 Parsimony 850 

To quantify the cross-cancellation phenomenon in decompositions, we introduce a second quantified 

quality metric: parsimony (Fig. 12C). Parsimony is defined as the ratio between (I) the cumulated absolute 

intensities of each component (except the linear trend), and (II) the cumulated absolute intensities of the signal 

(minus the linear trend):  

parsimony =  
∑  ∑ |Ck(𝑑𝑡)|N

n=1
K
k=1

∑ |S(𝑑𝑡) − T(𝑑𝑡)|N
n=1

               (3) 855 

where S(dt) is the initial signal, T(dt) is its linear trend, Ck(dt) represents each Kth component except the linear 

trend, and N is the number of data points. The linear trend should be subtracted in the calculation, because an 

added trend decreases the parsimony estimation of a similar decomposition. Our choice of the linear trend is 

arbitrary, to allow for uniformity, but a nonlinear trend or the mean could be used as well. 

 860 
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Figure 12 
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Figure 12: Illustration of metrics and concepts for assessing the quality of a decomposition. (A) Due to 

uneven sampling rate, a linear interpolation with a sampling rate of 5 depth units will exclude some of the 

original data points. To have a reversible resampling including all the original samples, the sampling rate 865 

has to be set as a divisor of the greatest common rational divisor, in this case 1 depth unit. (B) Illustration 

of integrity: all components are summed, and subtracted by the initial signal, which should ideally cancel 

out. The difference is in absolute values. (C) Illustration of parsimony: the same decomposition than (B) is 

used. The components except the trend are put in absolute values and summed, and divided by the 

absolute values of the initial signal minus its trend. (D) Illustration of the symmetry metric, which is the 870 

maximum amplitude proportion of the sides of a component. (E) Illustration of GZC departure, which is 

based on the absolute difference between the logarithm of the real instantaneous frequency (obtained via 

Hilbert transform for instance) and the logarithm of the generalised zero-crossing instantaneous 

frequency, which is used as reference. The computation of GZC is done by simplifying any component 

into a suite of extrema and zero-crossings, where each set of successive extrema not separated by a zero-875 

crossing are grouped into one extremum. (B, C and D) Integrity, parsimony and GZC departure are 

computed by default for the entire record or for a complete component, but can be made to be 

instantaneous. [NOTE TO REVIEWERS: 2 column fitting image] 

 

If each sinusoid obtained via Fourier transform is treated like a component of a decomposition, high 880 

parsimony values are observed, because (I) the presence of noise or interferences, which necessitate a lot of cross-

cancellation to model via sinusoids, and (II) the size of time-series, which is equal to the number of sinusoids used 

to model it; numerous sinusoids increase the opportunities for cross-cancellation to take place. For the 300-

samples-long white-noise example of Fig. 9 and 10, the parsimony of decomposition via Fourier transform is of 

12.26 (i.e. there is an excess of 1126 % of absolute intensity in the decomposition, compared to the original signal), 885 

whereas the parsimony of the decomposition via "extricate" is of 1.74 (74% excess of absolute intensity). This is 

an important aspect of decomposition, as high values of excess absolute intensity indicate a proportionally high 

likelihood of having added wiggles not present in the signal to the decomposition. 

Our parsimony metric increases with the number of components that are needed to describe the entire 

signal. Parsimony will also vary depending on how wiggles of different frequency ranges populate the signal. This 890 

makes parsimony in its current form irrelevant to compare decompositions of different signals. Additionally, 

parsimony can widely change depending on the trend chosen for the decomposition. Therefore, the parsimony 

metric is only suited to compare different decompositions of a same signal, with an identical trend. 

4.2.4 Symmetry 

This metric quantifies roughly whether the positive and negative parts of a components are symmetrical 895 

around zero: it is defined as the highest proportion of integrated intensity (i.e. the area between the component’s 

curve and the zero line) on either of the two sides (see Fig. 12D). It varies between 0.5 (perfectly symmetric) and 

1 (either purely negative or purely positive). This can be used as a rough estimate whether instantaneous frequency 

can be determined reliably, especially on low-frequency components such as cyclically-connoted residuals.  
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4.2.5 Generalized Zero-Crossing (GZC) departure 900 

To compute the instantaneous frequency of a decomposition, the components should be IMFs. However, 

current algorithms optimised to generate meaningful decompositions sometimes generate components that locally 

deviate from the IMF definition. To still be able to work with such algorithms, despite their shortcomings, we 

suggest having a way to quantify the reliability of the instantaneous frequency computation of each component. 

Such a metric allows to identify potential problems and their location. To that effect we introduce a third quantified 905 

quality metric: GZC departure (Fig. 12E). We define GZC departure as the exponential of the mean of the absolute 

differences of the logarithms of frequencies obtained using (I) a robust generalised zero-crossing method and (II) 

a truly instantaneous method such as the Hilbert Transform (or any other method used to compute instantaneous 

frequency): 

GZC departure = exp (
1

N
∑ |log(IFGZC(𝑑𝑡)) − log(IFinst(𝑑𝑡))|

N

n=1
)               (4) 910 

where IFGZC is the frequency obtained by GZC, IFinst the one obtained by an instantaneous method such as HT, 

and N is the number of data points. To ensure that the GZC computation is as robust as possible, the GZC method 

should be coupled with an algorithm which simplifies any component into a suite of extrema and zero-crossings; 

any ensemble of successive extrema not separated by a zero-crossing should be simplified into one single 

extremum. In practice GZC departure is a factor of the mean error of frequency. For a component having a mean 915 

period of 23 kyr, a GZC departure of 1.13 defines an average error interval of 13% above and below 23 kyr, i.e. 

between 20.4 and 26 kyr. 

4.3 &Instantaneous spectral analysis for cyclostratigraphy 

We present novel visualisation tools, which are meant to provide a general overview of the behaviour of 

instantaneous frequency and amplitude. They are based on the distribution of instantaneous frequency, amplitude, 920 

and/or frequency ratio of the original data points for each component. The distributions are presented in the form 

of density plots, or of histograms, and can integrate several realisations of identically parametrised decompositions, 

which correspond to the replicates computed by "extricate". 

Instantaneous frequency is independent of amplitude. Therefore, instantaneous frequency can be 

visualised alone in a histogram to show the distribution of frequency or of period (e.g., Fig. 13A, based on the 925 

signal of Fig. 1). This allows to estimate the variability of frequency in a given component, but can also help to 

identify potentially spurious frequencies coming from predicted wiggles. Indeed, even if the decomposition 

methods are optimised to reduce cross-cancellation, predicted wiggles are still a possibility. Typical predicted 
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wiggles coming from EEMD methodologies are wiggles of very low amplitude (e.g., in group 1 of Fig. 1 and 13). 

A first check for predicted wiggles can be done in the period distribution histogram: if the period distribution of 930 

two separate components overlap, it may turn out that the two components can be merged into a single meaningful 

or modally meaningful component. Amplitude should also be inspected to detect typical EEMD predicted wiggles, 

by their low amplitude. This can be done in the spectral population plot (e.g., Fig 13B), which we present here as 

a bivariate distribution plot of instantaneous amplitude against instantaneous frequency. 

 935 
Figure 13: (A) Period distribution and (B) spectral population of the grouped components of the depth-

distorted artificial stratigraphic signal used in Figure 1. The inverse correlation between the amplitude 

and the logarithm of the period comes from the decreasing sedimentation rate where the element B 

making up the signal is highest (see Fig. 1). The residual and the trend are considered as nonlinear trends, 

i.e. not usable in spectral analysis [NOTE TO REVIEWERS: colour online only; 1.5 column fitting image] 940 

 

Observing the behaviour of frequency in relation to other parameters, for instance amplitude (Fig. 13B, 

see also caption of Fig. 13), is useful to gather information on how the sedimentation rate changes (see also the 

discussion related to Fig. SF7 in the supplementary materials). But to further interpret plots based on frequency in 

terms of astronomical cycles, one needs to provide assumptions about the sedimentation rate; this, we have shown, 945 

is not necessarily a valid strategy. Assumptions on sedimentation rate changes can be bypassed, through the 

identification and characterisation of specific frequency ratios potentially linked to astronomical cycles, either 

from IMFs or from their demodulation. Modally meaningful decompositions made of IMFs seem to be an ideal 

framework to study frequency ratios, because instantaneous frequency ratio can be determined for each pair of 

IMF of a decomposition, which would be representative of the entire behaviour of the frequency ratios in a given 950 
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signal. Instantaneous frequency ratio (Fig. 14) enables this: the ratios are obtained by taking the instantaneous 

frequency of each combination of pairs of components, data point by data point. This generates, for a 

decomposition having an M number of components,  ∑ (𝑘)𝑀−1
𝑘=1  pairs of components (or, in another formulation, 

𝑚(𝑚 − 1)/2 pairs of components).  

In contrast to period distribution and spectral population plots where components are naturally distributed 955 

from high-frequency to low-frequency, the distribution of frequency ratio by pairs of components is less intuitive. 

This, in turn, makes it difficult to discern the patterns of ratios of frequencies in a mere histogram. Therefore, we 

rather visualise frequency ratio as a bivariate density plot of the square root of ratio power (in other words the 

square root of the instantaneous amplitudes of the two components multiplied together) against the instantaneous 

frequency ratio; we define this plot as a ratio population plot (e.g., Fig 14A). The square root of ratio power is a 960 

way to discriminate the relevant ratios based on amplitude. Selected component pairs can further be isolated in 

separate ratio population plots for better visualisation (e.g., Fig 14 B, C and D).  

If frequency ratios of untuned data were associated with an appropriate testing of the noise continuum, 

they could help determine whether a stable frequency ratio is present in the signal. A stable frequency ratio can 

serve as proof for the existence of astronomical cycles of frequencies not known a priori (e.g. in geological times 965 

too ancient to have an accurate estimation of all the astronomical frequencies). If the value of the stable frequency 

ratio uniquely corresponds to a known pair of astronomical cycles, it can serve to connect the cycles in the signal 

to their astronomical counterparts (see also propositions 1 and 2 of Meyers, 2019).  
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Figure 14 970 
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Figure 14: (A) Ratio population for all pairs of components of the grouped components of the depth-

distorted artificial stratigraphic signal used in Figure 1, and (B, C and D) for selected grouped 

components pairs, with the expected ratios of frequencies indicated by vertical lines. [NOTE TO 

REVIEWERS: colour online only; 1.5 column fitting image] 

 975 

Although period distribution, spectral population and ratio population are all distribution plots, their 

statistical interpretation has a few peculiarities. The first of these peculiarities is that amplitude modulation will be 

expressed in the spectral and ratio population plots by spreading the distribution of the data points along amplitude 

or square root of ratio power (e.g., Fig. 13B), which comes from the fact that every component has the same 

number of data points. For the ratio analysis, the decomposition method used should be tested whether it has any 980 

bias towards generating specific frequency ratios between components. As mentioned earlier, the EMD and EEMD 

algorithms tend to work as dyadic bank filters: each pair of successive components will approach a frequency ratio 

of 2. White noise is characterised by the ratios in pairs of successive components (pairs of components 1-2, 2-3, 

3-4, 4-5 and 5-6 of the white noise used in Figures 9 and 10) are roughly centred around 2 (Fig. 15B). The 

behaviour of the whole ratio spectrum of white noise (Fig. 15A) is to have the square root of ratio power peaking 985 

around a ratio of two and steadily decreasing towards higher ratios. Even when various environmental and 

sedimentary processes enter the signal, the dyadic behaviour of modally meaningful decomposition methods such 

as EMD and EEMD tends to persist. We further exemplify this in section 8 of the supplementary materials, where 

the modally meaningful decomposition of low-frequency dominated noise processes, which are more typical of 

climatic noise, behaves with the same centring on a frequency ratio of two. This causes a risks of overinterpretation, 990 

and could be unfortunate considering that the frequency ratio of precession (ca. 20 kyr period) and obliquity (ca. 

40 kyr) is close to two. Such frequency ratio should only be considered relevant when there are palpable cycles to 

begin with, with amplitudes strong enough to be distinguished from the continuum. This is the rationale behind 

using the square root of ratio power: it is a good indicator that the cycles with a specific ratio are evident in the 

signal.  995 

We finally note that in the spectral population and ratio population plots, the units of amplitude and square 

root of ratio power are identical to the units of intensity of the time series (i.e. the physical units of the proxies 

used). This should ease the intuitive understanding of the plots. 

 

 1000 



43 

 

 

Figure 15: (A) Ratio population for all pairs of components of white noise and (B) for only the successive 

components. The white noise is the same that the one used for Fig. 9 and 10 (ensemble of 10 

decompositions with identical parameters but with different white noise realisations). The grey rectangle 

delimits frequency ratios between 1 and 4, and is centred on a ratio of 2. [NOTE TO REVIEWERS: colour 1005 

online only; 1.5 column fitting image] 

 

4.4 Instantaneous frequency computation 

The normalisation scheme of Huang et al. (2009) has been implemented in the DecomposeR package to 

perform instantaneous frequency computation. With the normalisation procedure, the amplitude is determined via 1010 

spline-fitting of the maxima of the absolute values of the signal (Huang et al. 2009). The amplitude is then used to 

compute a frequency carrier; this is the basis of instantaneous frequency computation by normalised Hilbert 

transform (NHT) and direct quadrature (DQ) (see Fig. 7 and Huang et al., 2009). However we discovered that the 

spline-fitting algorithm provided by Huang et al. (2009) for normalisation can be unstable; in highly amplitude-

modulated components, the spline fitting can give negative amplitude values or dramatic undershoots, making the 1015 

algorithm fail or give unrealistic values. Therefore, we prefer to use the Hilbert transform (HT; see section 3 and 

Huang et al., 2009) for routine and automated instantaneous frequency determination, as the algorithm is currently 

sturdier.  
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5 Case study 

5.1 Presentation 1020 

The ODP 926 cores were obtained from the Ceara Rise (Shipboard Scientific Party 1995a), a bathymetric 

high situated in the western equatorial Atlantic, ca. 900 kilometres North-East of the Amazon river mouth (see 

Fig. 1 in Zeeden et al., 2013). The cores are mainly composed of calcium carbonate that has a marine pelagic 

origin, and of terrigenous material, attributed to the Amazon river outflow (Shipboard Scientific Party 1995b). We 

will focus here on proxy data for terrigenous material against calcium carbonate (colour reflectance and magnetic 1025 

susceptibility), obtained from the interval estimated to span between 9000 and 5000 ka (thousands of years ago) 

(Fig. 16). 

Three sites, 926 A, B and C, were drilled during the Ocean Drilling Program (ODP) Leg 154 (Shipboard 

Scientific Party 1995a). Magnetic susceptibility and colour reflectance were measured on board, and used to splice 

the cores of all three sites onto an identical composite depth scale (Shipboard Scientific Party 1995b). This first 1030 

depth scale preserves the original length of all cores, and only depth offsets to each core are used to overlap the 

magnetic susceptibility and colour reflectance features; there is no stretching or compression of the depth scales 

of each separate core (Shipboard Scientific Party 1995b).  

A first cyclostratigraphic study was performed by Shackleton and Crowhurst in 1997; they provided a  

tuning interpretation, and on the tuned signal, they applied complex demodulation on the magnetic susceptibility 1035 

signal to extract the amplitude modulation of climatic precession. New, higher-resolution measurements of 

greyscale and magnetic susceptibility allowed Zeeden et al. (2013) to revisit the work of Shackleton and Crowhurst 

(1997). Zeeden et al. (2013) provided a revised composite depth scale (which did not change too much in the 

interval that concerns this study), an updated tuning interpretation, and an amplitude demodulation of the colour 

reflectance (greyscale) data. This amplitude demodulation was performed on the signal tuned to the new tuning 1040 

interpretation to extract the amplitude of climatic precession. 

By applying our "extricate" EEMD algorithm on the greyscale data of ODP 926 between 9000 and 5000 

ka, we intent to show that a modally meaningful and parsimonious decomposition can be obtained via our 

methodology. We will further attempt to give an interpretation for all the components in the decomposition. To 

give some further perspective, the analysis of the magnetic susceptibility of site 926, in the same 9000 and 5000 1045 

ka interval, is provided in the supplementary material. Colour reflectance and magnetic susceptibility are in general 

inversely correlated to each other (Fig. 16; see also Shipboard Scientific Party 1995b). For the magnetic 

susceptibility signal, the tuning interpretation of Wilkens et al. (2017) will be used. We mention that the depth 
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scales for the greyscale signal (presented by Zeeden et al. 2013) and the depth scales for the magnetic susceptibility 

(presented by Wilkens et al. 2017), are offset by 0.385 meters in average: this value was obtained using correlation 1050 

coefficients of incrementally lagged records.  

 

Figure 16: Greyscale (overlaying photographical core scans) and magnetic susceptibility signals between 

9000 and 5000 ka in ODP 926. The greyscale axis is inverted, showing the inverse correlation with 

magnetic susceptibility. The data comes from Zeeden et al. (2013) and Wilkens et al. (2017), the time scale 1055 

shown here is based on the tuning of magnetic susceptibility performed by Wilkens et al. (2017). [NOTE 

TO REVIEWERS: colour online only, 2 columns fitting image] 
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Figure 17: Estimation of the expected frequencies in the astronomical signal used to make the CIP1 1060 

artificial signal. (A) Periodogram of the 21 July insolation after Laskar et al. (2004) at 55°N between 8000 

and 6000 ka used as basis for making the CIP1 artificial signal. The periodogram shows climatic 

precession-related peaks (main periods of 19 and 23 kyr) and a fainter influence of obliquity (period of 40 

kyr) (Laskar et al. 2004). (B) Periodogram of the demodulation via direct normalisation (Huang et al., 

2009) of the climatic precession solution (Laskar et al., 2004), showing the main climatic precession 1065 

amplitude modulators, that are expected to be observed in the CIP1 signal: short eccentricity (main 

periods of 95 and 125 kyr), long eccentricity (period of 405 kyr), and 2 faint peaks of ca. 1000 kyr and 

2400 kyr periods which are respectively attributed to the g1 - g5 and g4 -g3 component (Olsen and Kent 

1999; Hinnov 2000; Laskar et al. 2004; 2011). The climatic precession solution was extended between 20 

000 and 0 ka to better resolve the low frequency cycles. [NOTE TO REVIEWERS: 1 column fitting image] 1070 

 

We also analyse, still in the supplementary material, an artificial signal (the first case of the 

Cyclostratigraphic Intercomparison Project, CIP1; for more details see supplementary material, and Sinnesael et 

al. 2019). This signal is based on an insolation curve computed between 8000 and 6000 ka; an interval 

encompassed in the ODP 926 signals that we study here. With this artificial signal, we should be able to link, more 1075 

easily than in a real signal, the processes used to generate the signal to their expression in the decomposition. 

Typically, the frequencies expected to occur are known from the astronomical solutions used to generate the signal 

(Fig. 17). These frequencies are also the ones expected for the signals at ODP 926, only with different relative 

power values. The data used is available in the DecomposerR package.  

5.2 Results 1080 

The greyscale signal of ODP 926 (Fig. 16) is decomposed into 10 components using "extricate" (Figs. 18 

and 19): GSC (for Grey Scale Component) 1 through 9, plus a linear trend. Running "extricate" on the signal took 

10 seconds on a standard workstation. We make the assumption here that GSC9 is a cyclically-connoted residual. 

The decomposition results from averaging 500 realisations, all having different uniform white noise realisations 

added to them, contained within ± 75 greyscale arbitrary units. For comparison, the signal values are ranging 1085 
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between ca. 170 and 610 greyscale arbitrary units. The amplitude of white noise was chosen to be of roughly 

equivalent amplitude compared to the variations in the signal, in order to induce a change in extrema in each 

realisation (see Wu and Huang, 2009). The adequate level of white noise is chosen based on the mode mixing that 

is visually observed in the signal decomposition. The sifting is not iterated (i.e. sifting number = 1) to reduce the 

smoothing of the amplitude of the components. This setting is meant to preserve the amplitude features. We only 1090 

make one replicate of the decomposition. The decomposition is performed on the signal in the stratigraphic domain 

(i.e. the depth axis). We compute the instantaneous frequency in the time and in the stratigraphic domain (Fig. 20), 

and the instantaneous frequency ratio in the stratigraphic domain only (Fig. 21). The amplitude of GSC3 (Figs. 18 

and 19) is determined using the normalisation scheme of Huang et al. (2009), and is used to further study the 

cyclicity in the amplitude modulation. 1095 

The parameters for the extricate algorithm were adjusted to reach two main objectives: optimising 

parsimony, and centring one component (GSC3) on an astronomical  target curve that was found by Zeeden et al. 

(2013) to be well expressed in the signal; the expression of climatic precession with its interferences by obliquity. 

In practice, we took the normalised climatic precession minus half of the normalised tilt/obliquity (obtained from 

Laskar et al., 2004), referred to as p-0.5t (Zeeden et al. 2013). The use of the p-0.5t target as a reference to 1100 

parametrise the decomposition opens the question of circular reasoning. Are predicted wiggles with artificial 

astronomical properties introduced in the decomposition because of our parametrisation, which was chosen to 

obtain a component that resembles the tuning target? Also, could we have inadvertently selected the wiggles in 

the signal that, by coincidence, happen to fit what we expect?  

A few precautions should prevent such circular reasoning: firstly, the use of an EEMD-based algorithm, 1105 

which is fully data-adaptive, and setting it with a sifting number of 1, which prevents smoothing of the amplitude 

variations. Furthermore, the parametrisation of the algorithm to optimise parsimony, within the set of parameters 

that allow to have a component fitting well with the target, provides a safety net against the creation of predicted 

wiggles. A further safeguard against circular reasoning is that the decomposition parameters are identical for the 

entirety of the signal; in this context, there is no possibility for a fine evolutive control of the decomposition. Such 1110 

a control might have been provided by tuning the record before decomposition, but the decomposition is applied 

on the untuned record. Indeed, being parsimonious, the decomposition should not require strong assumptions on 

sedimentation rate, even to extract the amplitude modulation. The tuning interpretation of Zeeden et al. (2013) is 

applied on the decomposition after it is obtained, for comparison to the tuned amplitude demodulation of Zeeden 

et al. (2013) and to the astronomical solutions provided by Laskar et al. (2004). To the extent of the methodological 1115 
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development we have currently reached, manual parametrisation and visual checks are the most practical way of 

working; more advanced automated optimisation is out of the scope of this article, although it might prove a 

promising opportunity to obtain standardised and reproducible decompositions in the future. 

We show, in Figure 22, the components GSC 5 to 8, that have frequencies close to the 100 kyr short-

eccentricity, 405 kyr long-eccentricity, 1000 kyr g1 - g5 and the 2400 kyr g4 – g3 cycles respectively (see Olsen and 1120 

Kent 1999 and Hinnov 2000 for details on the g1 - g5 and the g4 – g3 cycles); they are compared to their equivalent 

in the demodulation of GSC3, in the demodulation of climatic precession solution obtained from Laskar et al. 

(2004), and in the demodulation performed by Zeeden et al. (2013). The amplitude demodulation of GSC3 is 

decomposed using "extricate", with 2 siftings applied to 500 white noise-added realisations (limited to ± 100 

greyscale arbitrary units). The demodulation performed by Zeeden et al. (2013) is also decomposed using 1125 

"extricate" to make the Fig. 22 (see R script in supplementary material SC2). The demodulation obtained by 

Zeeden et al. (2013) was provided by C. Zeeden, and is now available in the DecomposeR package. The frequency 

ratios of the decomposition of the amplitude demodulation of GSC3 are computed in the stratigraphic domain only 

(Fig. 23). The R script for all time-series analysis performed on the ODP 926 greyscale signal is available as 

supplementary material SC2. 1130 
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Figure 18: EEMD decomposition of the greyscale signal of ODP 926 (upper part, between 7000 and 5000 

ka). The intensity scale for each component (GSC for Grey Scale Component) is identical to the one of the 

signal. The linear trend (grey line through the signal) is part of the decomposition. The decomposition was 

performed in the stratigraphic domain, and its output is here plotted in the time domain using the tuning 1135 

interpretation of Zeeden et al. (2013). The tuning target, based on the climatic precession (p) and tilt (t) 

modelled by Laskar et al. (2004), is shown to the left of GSC3. The amplitude demodulation of GSC3 is 

shown in grey against GSC3. The amplitude features of GSC3 can be seen to parallel that of the tuning 

target (p-0.5t). The other components are discussed in the text. [NOTE TO REVIEWERS: 2 column fitting 

image] 1140 
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Figure 19: EEMD decomposition of the greyscale signal of ODP 926 (lower part, between 9000 and 7000 

ka). The expression of the 405 kyr long eccentricity cycle is quite noticeable in GSC6. The turbidite, 

signalled by Zeeden et al. (2013), and shown in Fig. 16, introduces a lot of moderate to high amplitude 1145 

oscillations in the 5 first components. We also signal a strong step-like value shift, Step1, whose effect on 

the decomposition is discussed in the text. See caption of Figure 18 for further information. [NOTE TO 

REVIEWERS: 2 column fitting image] 
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 1150 

Figure 20: comparison of the behaviour of instantaneous frequency in the stratigraphic domain (untuned) 

and in the time domain (tuned following the interpretation of Zeeden et al., 2013). (A) Period distribution, 

(B) spectral population of the untuned decomposition of the greyscale signal of ODP 926 (period 

estimations are based on the mean sedimentation rate estimated by Zeeden et al., 2013). (C and D) 

Equivalent plots are provided for the same decomposition recontextualised in the time domain. The 1155 

tuning was performed after the decomposition. [NOTE TO REVIEWERS: colour online only; 2 column 

fitting image] 
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Figure 21: Ratio population for all pairs of components of the decomposition of the greyscale signal of 1160 

ODP 926. The dotted lines stand for the expected frequency ratios. The black, green, purple and grey 

contours delineate the ratios of GSC3 with, respectively, GSC 5 to 8. [NOTE TO REVIEWERS: colour 

online only; 1.5 column fitting image] 

 

 1165 

The decomposition of the raw signal (Fig. 18 and 19) extracts 6 components that can potentially be 

attributed to astronomical cycles: GSC 3 to 8 have periods at the 20, 40, 100, 400, 1000 and 2400 kyr scale, 

respectively (we rounded them for simplicity), which can be visualised in Fig. 20. However, when looking more 

in details, the expression of the astronomical cycles is more subtle. GSC3 is centred on the 20 kyr period expected 

from climatic precession (Fig. 20). It further follows the p-0.5t tuning target quite closely (Fig. 18 and 19), 1170 

therefore it should be expected that some expression of obliquity might be present. GSC4 is close to the expected 

40 kyr cyclicity characterising obliquity. In the stratigraphic domain, GSC4 makes a distinct peak in the spectral 

population plot (Fig. 20B), but it displays period values higher than expected for obliquity (considering the mean 

sedimentation rate) (Fig. 20A). Contrastingly, in the time domain, the period distribution (Fig. 20C) is closer to 40 

kyr, but the spectral population is merged with the expression of climatic precession (Fig. 20D). This might be due 1175 

to the close interaction of climatic precession and obliquity, which might complicate the extraction of obliquity. 

In the frame of this article, we only characterise climatic precession and its amplitude modulators, therefore we 

will limit ourselves to mentioning the strongly suggested presence of obliquity in GSC4.  

Out of the four components potentially related to eccentricity (GSC 5, 6, 7, and 8, respectively displaying 

periods close to the 100, 400, 1000 and 2400 kyr cycles), only GSC6 is consistently centred on a 400 kyr period, 1180 

in both the stratigraphic and time domains (Fig. 20). When compared with the demodulation of climatic precession 

from Laskar et al.’s solution (Fig. 22), GSC6 is the only one of the four (GSC 5 to 8) to be of similar frequency 

and in similar phasing with its related 400 kyr cycle, but only between 9000 and 7000 ka.  
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The presence of the 400 kyr eccentricity cycle, not only as an amplitude modulator, but directly in the 

geological record, can be explained by several mechanisms. First of all, eccentricity controls the globally averaged 1185 

annual insolation of the Earth, but this effect on insolation is generally considered negligible compared to the effect 

of precession and/or obliquity (Laskar et al. 2004). The amplitude modulation of precession and obliquity may 

however undergo partial rectification due to non-linear processes. Rectification makes the amplitude modulation 

asymmetrical and allows it to be expressed as direct cyclicity in the signal (see section 5.3.1 in Weedon 2003). 

Such asymmetry can further be amplified by smoothing processes like bioturbation (e.g., section 5.3.2 in Weedon 1190 

2003). 

The GSC 5, 7 and 8 do not follow the expected cycles obtained from Laskar et al.’s solution (Fig. 22). 

The frequency ratios of GSC 5, 6, 7 and 8 with GSC 3 are at the expected values for all four components (Fig. 21), 

however the square root of ratio power are (slightly) above the continuum only for the ratios of GSC3 with GSC6 

and of GSC3 with GSC7. The fact that the frequency ratios are at the expected ratios comes from the fact that GSC 1195 

5, 6, 7 and 8 are of the same scale than the expected eccentricity cycles, but are not necessarily representative of 

them. The fact that the square root of ratio power of GSC6 (with GSC3) can exceed the continuum, on the opposite, 

might indicate that it has significant amplitude, and is representative of the 400 kyr cycle. The high square root of 

ratio power of GSC7 (with GSC3), however, does not seem to mean that it is representative of the 1000 kyr cycle. 

Indeed, we rather interpret the high amplitude of GSC7 to come from a step-like increase of greyscale values 1200 

beginning around 7950 ka (Step1 in Figs. 16 and 19). This increase is coinciding with the inception of a large 

amplitude wave starting at 7950 ka in both GSC6 and GSC7 (Fig. 19 and 22). We substantiate this by comparing 

the greyscale signal to the magnetic susceptibility one (see point 10.2 in the supplementary material); in the latter, 

the step is absent (Fig. 16), no particularly large oscillation occurs at 7950 ka (Fig. SF12 and SF14 in the 

supplementary material), and some expression of the 1000 kyr astronomical cycle seems to be recoverable (Fig. 1205 

SF14). 
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Figure 22 
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Figure 22: Comparison of demodulations of the ODP 926 greyscale signal. The raw demodulations from 

this study and from Zeeden et al. (2013) are decomposed, the raw demodulation of the climatic precession 1210 

(Laskar et al., 2004) is filtered. They are and compared in groups, respectively representing of the ca. 100, 

405, 1000 and 2400 kyr-scale cycles. The corresponding GSC are provided for comparison. The intensity 

scales are similar to the raw demodulations (in arbitrary units for the decomposition and demodulations 

of the ODP 926 greyscale signal, and in climatic precession values for the Laskar et al.’s solution). [NOTE 

TO REVIEWERS: 2 column fitting image] 1215 

 

The GSC 1, 2 and 9 remain to be explained. GSC 1 and 2, with their high frequency, can be attributed to 

white noise, either instrumental or natural. GSC9 was treated like a cyclically-connoted residual to observe its 

instantaneous frequency and amplitude. Its amplitude is very small (Fig. 20), which could actually mean that GSC9 

is actually a residual, and our assumption of treating it as a cyclically-connoted residual was erroneous. In this 1220 

case, we could merge it with the linear trend to make a nonlinear trend.  

 

Figure 23: Ratio population for all pairs of components of the amplitude demodulation of one realisation 

of GSC3 of the greyscale signal of ODP 926 (see Figs. 18 and 19). The dotted lines stand for the expected 

frequency ratios. The black, green, purple and grey contours delineate the ratios of GSC3 with, 1225 

respectively, the demodulation components corresponding to the 100, 400, 1000 and 2400 kyr (see fig. 22). 

[NOTE TO REVIEWERS: colour online only; 1.5 column fitting image] 

 

From the demodulation of GSC3, we performed a decomposition to extract the relevant eccentricity 

cycles that came to modulate climatic precession; we compare this to the demodulation performed by Zeeden et 1230 

al. (2013). The 400 kyr long-eccentricity is found with near perfect phasing with both methods (Fig. 22). The 1000 

kyr cycle is found with decent phasing in both methods, but our method seem to uncover the cycles more clearly 

(Fig. 22). The 2400 kyr cycle is dubious for both methods. The 100 kyr component is found by Zeeden et al.’s 

method; some cycles may be lost, but it generally gets a good fit with Laskar et al.’s solution (Fig. 22). Even the 
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amplitude modulation is well identified. Our method recovers some of the correct 100 kyr cycles in GSC5, but 1235 

skips most of the peaks; moreover the amplitude modulation is not as clear (Fig. 22). The frequency ratios are well 

identified in the demodulation of GSC3 (Fig. 23). The component used for demodulation (GSC3) is taken in 

consideration for the ratios, and as it has higher amplitude than the demodulated components. Consequently, when 

GSC3 is part of a pair of components, it amplifies the square root of ratio power (similarly to what we observe in 

the CIP1 analysis, see point 10.1 in the supplementary material). The frequency ratios are better centred when 1240 

obtained from the demodulation (Fig. 23) than from the raw signal (Fig. 21): as the expression of eccentricity 

cycles is in our case better in the demodulation that the decomposition of the raw signal, this better centring could 

be a criteria of a higher quality of astronomical cycles’ extraction. Therefore, a good centring, along with relatively 

high square root of ratio power values, might be an important aspect in understanding the ratio population plot. 

The integrity of the greyscale signal raw decomposition is under 10-13 arbitrary units, which falls into 1245 

acceptable limits for our intensity values. Its parsimony is of 2.06, i.e. 106% more absolute intensity in the 

decomposition than in the signal. We highlight that this is higher than the 1.65 parsimony value obtained for the 

CIP1 decomposition (see point 10.1 in the supplementary material). This difference could be due to the fact that 

the ODP 926 signal is more complicated than the CIP1 signal, but also due to the greater number of components 

in the ODP 926 signal (9 plus the linear trend for the greyscale signal of ODP 926, against 7 plus the linear trend 1250 

for the CIP1 signal). We highlight, however, that parsimony is better suited to compare different decompositions 

of a same signal, rather than decompositions of different signals.  

We show in Table 1 that the GZC departure is low for well-expressed cycles, typically GSC3 and GSC6 

who stand for the 20 kyr climatic precession and the 400 kyr eccentricity cycles. The lowest value however comes 

from GSC7, which is not representative of the 1000 kyr astronomical cycle (although of similar periodicity), but 1255 

still is expressed as clear cycles (Fig. 22). This highlights that GZC departure is a metric of how well a component 

can be expressed in instantaneous frequency, but that it does not necessarily mean that a component can be 

interpreted as a periodic or quasi-periodic cycle. We computed the GZC departure for both the tuned and untuned 

versions, and the values are roughly comparable: this means that tuning does not seem to affect the relevance of 

the calculation of instantaneous frequency. The highest GZC departure values are found for the two highest 1260 

frequency components, which could be explained by the abrupt nature of oscillations of periods close to the 

sampling interval, but also by the difficulty of avoiding riding waves in components representative of the high 

frequency part of white noise. For GSC 8 and 9, who do not have enough cycles for computing the GZC, we 

mention a symmetry of 0.53 and 0.94 respectively. Therefore GSC8 is highly symmetric, and its instantaneous 
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frequency computation is considered to be correct. On the other hand, the dissymmetry of GSC9 confirms that it 1265 

might be better interpreted as a nonlinear trend (when combined with the linear trend). 

   20 kyr ca. 40 kyr ca. 100 kyr 400 kyr  

        

 GSC1 GSC2 GSC3 GSC4 GSC5 GSC6 GSC7 

Untuned 1.55 1.42 1.18 1.28 1.23 1.15 1.09 

Tuned 1.45 1.38 1.18 1.30 1.28 1.20 1.15 

 

Table 1: GZC departure for the Grey Scale Components (GSC; see Figs. 18 and 19). The astronomical 

interpretation is provided (first line) when available. We compare it for both untuned (stratigraphic 

domain) and tuned (time domain, following the tuning interpretation of Zeeden et al., 2013) frequency 1270 

computation. 

 

We estimate in Fig. 20 the effect, on the frequency distribution, of applying the tuning interpretation of 

Zeeden et al. (2013) on the decomposition. GSC3 and GSC6 are equally well centred on their expected periods of 

respectively 20 kyr and 400 kyr. This may come from the fact that the sedimentation rate changes are not excessive. 1275 

The most striking change, however, is that low-frequency components (GSC 7 to 9) are more spread out in the 

tuned version. This is explained by the EEMD process, which produces components that are smooth, especially 

when they are of low amplitude and low frequency. This smoothness means that intra-wave frequency modulation 

is minimal. As there are only a few of these smooth oscillations present in the low-frequency components, and that 

each of them are made out of a large number of points, the instantaneous frequency distribution is limited to a 1280 

narrow range of values. The tuning process reduces the smoothness of these components, thus spreading their 

frequency range. 

We finally mention that the greyscale signal is affected by a turbidite (an instantaneous deposit produced 

by a sediment gravity flow) which disturbs the otherwise continuous recording climatic signal (Fig. 16). A single 

turbidite was indeed mentioned by Zeeden et al. (2013), and we study here its effect on the signal decomposition 1285 

(Fig. 19). The turbidite adds thickness to the wiggles including it. Specifically, the turbidite locally increases the 

period of GSC6 which represents the 400 kyr cycle. For the cycles that have similar or lower frequency, it adds 

wiggles that have moderate to high amplitude, relative to the other cycles. This is mainly because this specific 

turbidite acts as an outlier, i.e. a relatively high amplitude oscillation. In the magnetic susceptibility signal, the 

turbidite has less high-frequency wiggles, and it is therefore expressed differently in the decomposition (see section 1290 

10.2 in supplementary material). This warns us that individual features in a signal can impact its decomposition in 

different ways. However, the decompositions are only affected locally by this event deposit/outlier. 
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6 Discussion 

6.1 Concepts synthesis 

We have shown that cyclostratigraphic signals display the expressions of several processes, entangled 1295 

with one another. Synthetically, we could refer to these expressions as "information", which concretely refers to 

the behaviour of the wiggles found in the signal. Also, we have shown that wiggles not present in the signal can 

appear in a decomposition. Such wiggles can give predictions on the processes having affected the signal, which 

is why we refer to them as predicted wiggles. Similarly, the behaviour of predicted wiggles can be referred to as 

"predicted information". On this basis, we reviewed and devised key concepts and tools, with three goals in mind: 1300 

- Disentangling the information pertaining to distinct processes, using time-series analysis. 

- Characterising and/or reducing the predicted information that is added to the signal in the time-series 

analysis process. 

- Checking that no information from the original signal is discarded in the time-series analysis process.  

The classical cyclostratigraphic tools for disentangling the information contained in a signal are transforms, filters, 1305 

and decompositions. The extent to which the disentanglement is performed depends on the methodology; in 

idealised conditions, one would want perfect meaningfulness, i.e. the full separation of all processes involved in 

creating the signal. But such an objective is challenging in signals as complex as cyclostratigraphic ones, and we 

especially stressed that changes in the sedimentation rate are perhaps the most challenging circumstance for 

meaningful signal analysis. The main risk, in wanting to push meaningfulness, especially in the context of 1310 

changing sedimentation rate, is producing wiggles not present in the signal.  

Therefore, the characterisation and/or reduction of predicted information is a necessity when applying 

time-series analysis to disentangle cyclostratigraphic signals. Indeed, the multiplicity and complexity of processes 

affecting sedimentary records, among which sedimentation rate changes, make the interpretation of predicted 

information hazardous. However, we highlight that in other contexts, by using reasonable assumptions, predicted 1315 

information can judiciously be attributed to given processes. Specifically, a signal that is modulated in amplitude 

may as well be decomposed into a sum of non-modulated signals that exhibit heavy cross-cancellation. Still, 

although it is mathematically equivalent, we argue that in order to best characterise how a cyclostratigraphic signal 

is expressing itself, sticking as closely as possible to the observable wiggles carries less risks of mistakes. And to 

the extent that this cannot be accomplished, one should at least characterise the information that is added in the 1320 

decomposition. 
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Additionally, at the end of the time-series analysis process, no information should be lost. This is here 

addressed by two concepts: integrity, which quantifies whether the components of a decomposition can be summed 

to reconstruct the signal flawlessly, and more generally, reversibility, which conceptualises the ability to retrieve 

the input, as it was initially, from the output of any data processing method. 1325 

To address those three aspects of signal analysis, we should strive to obtain modally meaningful, 

parsimonious, and reversible decompositions. We provided the concept of parsimony to guide decompositions 

methods into minimising the cross-cancellation of wiggles, thereby reducing the occurrence of predicted 

information. We refer to this as the wiggle-in-signal approach. Modal meaningfulness was introduced as a practical 

way to approach meaningfulness as closely as possible without compromising parsimony; effectively, this means 1330 

that sub-signals are representative of all the same frequency scale processes interfering and modulating the 

expression of one another. This is the furthest that information disentanglement can be brought while minimising 

predicted wiggles. Moreover, a reversible decomposition, including all the original data points, makes the flawless 

reconstruction of the initial signal possible, which in turn serves as guarantee against any loss of information. 

We showed that EMD-based methodologies provide a practical way of obtaining modally meaningful, 1335 

parsimonious, and reversible decompositions. They are data-adaptive, which effectively reduces the introduction 

of predicted information (when the decomposition algorithms are adequately parametrised). Such parsimonious 

decompositions open the possibility to systematically test tuning interpretations, even when they are overtuned, 

by preventing the creation of amplitude artefacts. EMD-based methodologies can also be optimised to reduce mode 

mixing, making the decompositions practically dyadic, which is similar to modal meaningfulness. Coincidentally, 1340 

modally meaningful (or dyadic) components can be treated like IMFs (Intrinsic Mode Functions), from which 

instantaneous frequency, amplitude, and ratio of frequency can be obtained. Therefore, pushing the 

disentanglement of cyclostratigraphic signals "only" to modal meaningfulness is enough to have a quantified 

spectral analysis of cyclostratigraphic signals. Noteworthily, the computation of instantaneous frequency ratio 

opens new opportunities to detect astronomical cycles in deep geological time. Finally, all the data processing 1345 

methodologies can be made to be reversible in every practical way. Specifically, the methodologies needing 

regularly sampled time-series can use the greatest rational common divisor for a linearly interpolated resampling 

that preserves the original data points. 

6.2 Case study 

We tested the concept of modally meaningful, parsimonious, and reversible decomposition with a real 1350 

case study: the greyscale signal of ODP 926 (and its magnetic susceptibility equivalent, in the supplementary 
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material). The main challenge that we needed to overcome was the extraction of modally meaningful components 

that could be interpreted in terms of astronomical cycles. The identification of climatic precession, with its 

eccentricity modulation (and interferences from obliquity), along with a partial 400 kyr eccentricity cycle directly 

in the signal, confirms that our method can indeed obtain such modally meaningful components. This is further 1355 

confirmed by the good correspondence between the demodulation obtained by our method (using our EEMD 

algorithm and the normalisation procedure of Huang et al., 2009) and demodulations performed by Zeeden et al. 

(2013), despite the wide difference between the techniques (among others, the absence of tuning on our part).  

We attempted to provide an interpretation for all components of the decomposition of ODP 926. However, 

we did not explicitly account for the impact of continuum climatic variability, i.e. climatic noise. Typically, 1360 

climatic noise is described in power spectra by power-law scaling with a dominance of low-frequencies (see 

Huybers and Curry, 2006 and Ditlevsen et al., 2020 for more details). This variability is well understood in power 

spectra, but the extraction and characterisation of noise in the context of decomposition (especially in climatic 

signals that are a mix of noise, oscillatory processes, etc.; see, e.g., Mann and Lees 1996 for more details) is out 

of the scope of this paper. We, however, mention the works of Flandrin et al. (2004) and Rilling et al. (2005) on 1365 

characterising the behaviour of different noise processes in decomposition, and of Franzke (2009) on the extraction 

of low-frequency noise. 

Nonetheless, our method allows for a discussion on the processes recording the cycles. This was more 

easily done in the CIP1 artificial signal, because the way the signal was generated is well known (see 

supplementary material). For the ODP 926 signals, we observed that the 400 kyr long-eccentricity cycle was 1370 

clearly recorded directly in the signal between 9000 and 7000 ka, which can be explained by non-linear processes 

such as rectification and smoothing. Similarly, other processes which were not investigated more in details in this 

study can be investigated in our decomposition; we mentioned for instance the suspected expression of obliquity 

in the ODP 926 signals. This confirms our point that in a meaningful decomposition, the entirety of the processes 

affecting the signal can be perceived, outlining the processes that remain to be studied more thoroughly. 1375 

6.3 Perspective for the future 

In a general sense, the problem of signal extraction is deciding how to deal with all the wiggles found in 

a signal; how they can best be singled out and grouped into well-defined components. In that regard, the EMD-

based techniques is only one of the possible answers to that problem.  

We suggest that decompositions could be improved upon by locally exchanging intensity between 1380 

different components of a first prototype of decomposition, to further refine it. Such a process of iterative 
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improvement of decompositions could be computer-driven or user-driven (or a mix of both), set to preserve 

integrity, and optimised to search for specific properties of processes such as astronomical cycles (e.g., stable 

frequency ratios, similarity to an astronomical solution or another decomposition) while preserving reasonably 

good parsimony.  1385 

The exchange of intensity between components could also be especially useful to study the shape of 

wiggles: we showed for instance that the sharply angular shaped oscillations found in our Figure 1 example (mainly 

due to the 23 kyr forcing) were distributed into several components of distinct scale. These different scale wiggles 

can be regrouped, based on their relative position with one another. Indeed, there can be a phase relationship 

between different frequency range oscillations in a decomposition. Typically, we can observe in the Figure 1 1390 

decomposition that high-frequency wiggles occur exactly at the angular features of the 23 kyr forcing peaks. This 

is a phenomena similar to harmonics, and merging all wiggles having a phase relationship with one another would 

better reconstruct the actual form of the wiggles as they are in the signals. Similarly, we have observed in section 

8 (see supplementary materials) that problems at the ends of the signals can be expressed by intensity being 

exchanged between components. Therefore, setting a procedure to exchange intensity back into the appropriate 1395 

components might provide a solution for such problems. 

The study of the shape of oscillations is only one of the opportunities that the interpretable nature of 

decomposition opens. In the example of the dilution/accumulation cycle of Fig. 1, the link between the relative 

sedimentation rate and the intensity of the cycles was shown in a spectral population plot (Fig. 13). This was also 

observed in the CIP1 signal (see supplementary material fig. SF7). This implies that decomposition can be coupled 1400 

with quantitative estimation of the sedimentary input, which would allow to test records against geological models 

for the sensitivity of sediment deposition to astronomical cycles (e.g., Herbert 1994). 

7 Conclusions 

Decomposition provides a comprehensive understanding of a signal, and can be used to study the 

interactions of conservative (astronomical) cycles, dissipative oscillators, heterogeneous processes or noise in 1405 

cyclostratigraphic signals. Furthermore, decomposition highlights possible problems of interpretation or 

processing, typically coming from the loss of information, or the adding of predicted information. We argue that 

this makes decomposition particularly suitable to study cyclostratigraphic signals, as there is no way of 

unscrambling with absolute certainty and precision the blended influences of all the processes having left an impact 

on the sedimentary records. 1410 
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To perform modally meaningful decompositions we implemented an Ensemble Empirical Mode 

Decomposition (EEMD) method to be used in R: the "extricate" algorithm. The components of decompositions so 

obtained can directly be compared to the astronomical solutions or to decompositions of other geological signals. 

This can be applied similarly on the amplitude demodulation of filters or components, or directly on the 

components of a decomposition. We also provide tools to perform instantaneous spectral analysis, which allows 1415 

identifying frequencies and frequency ratios expected from astronomical cycles directly from the decompositions. 

To further provide a quantified basis to discuss the representativeness of a decomposition and of its instantaneous 

spectral analysis to a given signal, we present the integrity, parsimony, GZC (generalized zero-crossing) departure 

and symmetry quality metrics. 

All these concepts, applied to ODP 926’s signals, show not only the expected expression of climatic 1420 

precession, with its amplitude modulation by eccentricity, but also the expression of eccentricity as direct cycles 

in the signal, implying the action of non-linear processes in the geological system, which effectively rectify and 

smooth the initial insolation signal. The expression of obliquity and of climatic noise is hinted, but these were not 

studied in detail in this paper. However, we suggest that they can still be studied in the decomposition we 

performed.  1425 

Indeed, decomposition as a format for cyclostratigraphic interpretation provides the means for further re-

examination of the signal. Facilitating such a re-examination of data is especially important for astrochronology, 

because its unmatched ability to provide a continuous estimation of the passage of time means that validating or 

updating cyclostratigraphic output can most effectively be performed using cyclostratigraphic analysis of new 

sections, with other stratigraphic methods providing tie-points between sections. The distortion of astronomical 1430 

cycles, prevalence of noise and diagenetic processes, as well as the lack of astronomical solutions in the older 

records further means that comparing records to "fill in the gaps" is the most robust and universal way of finding 

a global signature of the expression of astronomical cycles.  

Overall, decomposition allows to have a fundamental understanding of time-series analysis methods and 

results, regardless of their complexity. Indeed, the principle of decomposition should prove to remain firmly 1435 

intuitive, whichever way decomposition will be performed in the future.  

Code and data availability 

The R script used to make and analyse the accumulation-dilution cycles signal (Figs. 1, 3, 4, 13 and 14) 

is given as supplementary material SC1. The R scripts used to process the ODP 926 greyscale and magnetic 
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susceptibility signals are provided as supplementary material SC2 and SC3 respectively. The R script to process 1440 

the CIP1 is provided as supplementary material SC4. 
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