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Abstract 

Glioma segmentation is believed to be one of the most important stages of treatment management. 

Recent developments in magnetic resonance imaging (MRI) protocols have led to a renewed 

interest in using automatic glioma segmentation with different MRI image weights. U-Net is a 

major area of interest within the field of automatic glioma segmentation. This paper examines the 

impact of different input MRI image-weight on the U-Net output performance for glioma 

segmentation. One hundred forty-nine glioma patients were scanned with a 1.5T MRI scanner. 

The main MRI image-weights acquired are diffusion-weighted imaging (DWI) weighted images 

(b50, b500, b1000, Apparent diffusion coefficient (ADC) map, Exponential apparent diffusion 

coefficient (eADC) map), anatomical image-weights (T2, T1, T2-FLAIR), and post enhancement 

image-weights (T1Gd). The U-Net and data augmentation are used to segment the glioma tumors. 

Having the Dice coefficient and accuracy enabled us to compare our results with the previous 

study. The first set of analyses examined the impact of epoch number on the accuracy of U-Net, 

and n_epoch=20 was selected for U-Net training. The mean Dice coefficient for b50, b500, b1000, 

ADC map, eADC map, T2, T1, T2-FLAIR, and T1Gd image weights for glioma segmentation with 

U-Net were calculated 0.892, 0.872, 0.752, 0.931, 0.944, 0.762, 0.721, 0.896, 0.694 respectively. 

This study has found that, DWI image-weights have a higher diagnostic value for glioma 

segmentation with U-Net in comparison with anatomical image-weights and post enhancement 

image-weights. The results of this investigation show that ADC and eADC maps have higher 

performance for glioma segmentation with U-Net. 

 

 

Keywords: Glioma, Segmentation, Apparent diffusion coefficient, Exponential apparent diffusion 

coefficient, U-Net. 
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1. Introduction 

The glioma is a brain or spine tumor originating from the glial cells [1]. Gliomas are involved in 

80% of all malignant brain tumors [2]. Based on the tumor aggressiveness and growth potential, 

gliomas are classified into ‘low-grade’ and ‘high-grade’ [3]. Glioma segmentation and detection 

are essential processes for treatment decisions. With the development in medical imaging, there 

has been an increasing role of imaging technology in glioma diagnosis and detection [4]. Magnetic 

resonance imaging (MRI) is a powerful imaging technology within the field of glioma detection 

due to its soft tissue contrast, image resolution, non-invasive imaging, non-ionizing radiation 

imaging modality, and different imaging protocols and image-weights [5]. Glioma segmentation 

on the medical images plays an essential role in the treatment decision and provides important data 

such as tumor location, tumor size, the growth state, the change process of the tumor, and the 

follow-up of the brain tumor. So, the issue of accurate glioma segmentation has received 

considerable critical attention [6]. 

In the classical approach, glioma segmentation is based on radiologist’s observation and 

experience, leading to poor intra-observer difference, time-consuming process, and low diagnosis 

stability [7]. In recent years, there has been an increasing interest in computer-aided diagnosis and 

detection for glioma segmentation [7]–[11]. One of the most significant current automated 

manners in glioma classification is deep convolution neural network (DCNN) [9], [12], [13]. 

DCNN is a new method that has been shown to be effective in brain tumor classification and 

detection using large training data sets [14]. There is massive research on DCNN with different 

MRI image-weights for glioma segmentation [13], [15]–[20]. U-Net is one of the most widely 

DCNN architectures used for tumor segmentation and classification. In [21], the authors 

investigated U-Net usage for glioma segmentation with anatomical MRI image-weights (T1, T2, 

FLAIR) and post-contrast enhancement (T1Gd) protocols. It has been suggested [22] that the 

ADCmaps and automatic segmentation combination are valuable, and this seems to be an 

innovative approach for glioma segmentation. However, a major problem with this kind of 

application is, determining the proper MRI image-weight for the U-Net input image for tumor 

segmentation.  

To increase the glioma segmentation accuracy and performance, we can use different network 

architectures to extract more information from data or use input images as training data with more 

information (images with physiological data instead of anatomical data) [23]–[27]. Many studies 

have been published on improving U-Net architecture for glioma segmentation [23]–[26]. One of 

the significant drawbacks to using this method is the time-consuming, high cost for the PC 

hardware process. In the light of the recent improvement in MRI imaging protocols and introduce 

MRI image-weights in which image contrast is based on physiological data, there is now some 

solution for improving glioma segmentation performance with the conventional U-Net architecture 

and the use of MRI image-weights with physiological data as data sets for U-Net training. 

Most studies in the glioma segmentation with U-Net have only focused on using anatomical MRI 

image-weights as image data sets for U-Net training. Several attempts have been made to glioma 

segmentation by U-Net network with BraTs data set, which consist of T1, FLAIR, and T1 post 

enhancement (T1Gd) MRI image-weights [28]–[32]. Image contrast on T1, T2, and inversion-
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recovery sequences such as FLAIR, which are used in BraTs data sets, are based mainly on 

anatomical data [33]. One way to overcome these problems is to use different MRI image-weights 

with different information for glioma segmentation. Diffusion of water molecules is a fundamental 

property of diffusion-weighted imaging (DWI) image [34], and DWI image contrast is based on 

different tissue diffusion of water molecules [35]. There is a large volume of published studies 

describing the important role of DWI in neuroimaging and glioma studies [36]–[38]. 

This research examines the role of DWI image-weights as conventional U-Net architecture input 

images in glioma segmentation and compares the U-Net performance results with anatomical 

image weights. The primary objective of this study was to investigate which DWI weighted images 

(b50, b500, b1000, Apparent diffusion coefficient (ADC) map, Exponential apparent diffusion 

coefficient (eADC) map), anatomical image-weights (T2, T1, T2-FLAIR), and post enhancement 

image-weights (T1Gd), are appropriate and have high diagnostic value as training and test input 

MRI image-weights for glioma segmentation with conventional U-Net. In this context, we tried to 

introduce the best training and test input MRI image-weights used in this study for glioma 

segmentation by conventional U-Net architecture. There are several important areas where this 

study makes an original contribution to the importance of MRI physiological image-weights, such 

as DWI in conventional and original U-Net architecture training for glioma segmentation. Instead 

of U-Net architecture and anatomical images in this work, we focus on using DWI (b50, b500, 

b1000, ADC map, eADC map) as U-Net image inputs to improve the glioma segmentation 

performance. 

 

2. Material and methods 

The main stages of this research are shown in Figure 1. Before undertaking the investigation, 

ethical clearance was obtained from all of the patients. After collection, the patients were scanned 

with MRI, and required imaging sequences were obtained. Following this, image preprocessing 

(denoising, normalization, and resizing) was conducted to improve the input image quality for U-

Net training. After the image preprocessing, it was necessary to create the mask of each tumor 

image in all MRI image-weights. In the next stage, training and evaluation of the U-Net with model 

specification and parameters were carried out. In the end, results were collected and compared 

with each other.  
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Figure 1- Main stage of the current study. This study is made of 5 different stages. 1-different MRI image 

weights acquisition. 2- preprocessing 3-mask and mask creation. 4- U-Net training phase. 5- data 

evaluation. 

 

 

2.1. Patients 

Patients were included in the study with the following inclusion criteria: 

1- Histopathology confirmation of the glioma.  

2- No radiation therapy or chemotherapy was performed before the MRI exam.  

3- Sufficient image quality without patient motion and MRI artifacts.  

4- No claustrophobia to the MRI.  

5- Do not have an allergy to the gadolinium-based contrast agent.  

Totally 149 patients were included in the current study. Before the MRI exam, all patients provided 

informed consent, and the local research ethics committee of Isfahan University of medical 

sciences, Isfahan, Iran, approved the study (ID: IR.MUI.MED.REC.1399.252). 

2.2. MRI scanning 

All patients were scanned at a 1.5T MRI scanner (GE MRI signal explorer 1.5T). We performed 

the following sequences: a 3-plane localizer sequence, Axial DWI weighted images (b50, b500, 

b1000, ADC map, eADC map), Axial T2 weighted images, Axial T1 weighted images, Axial T1 

post-contrast enhancement (T1Gd) weighted images, and Axial T2-Fluid-attenuated inversion 

recovery (FLAIR) weighted images pulse sequences. The pulse sequence parameters are listed in 

table 1. ADC and eADC maps were reconstructed with GE MRI WorkStation for each patient 
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[𝐴𝐷𝐶 = log(𝑆1/𝑆2)/(𝑏2 − 𝑏1) ; 𝑆1 𝑎𝑛𝑑 𝑆2: signal intensity of DWI images with two different b-

Values (𝑏2 𝑎𝑛𝑑 𝑏1)]. After image acquisition and mask definition by experts, the patient images 

and masks were transferred to the personal computer (PC). 

Table 1- Magnetic resonance imaging scanning parameters. Abbreviations: TR; time of repetition. TE; 

time of echo. FOV; field of view. DWI; Diffusion-weighted imaging. ADC; apparent diffusion coefficient. 

eADC; Exponential apparent diffusion coefficient. FLAIR; fluid attenuation inversion recovery. 

Image 

weights 
TR (ms) TE (ms) FOV (mm) 

b-value 

(s/mm2) 

Matrix 

size 

Thickness 

(mm) 
Gap (mm) 

DWI 5268 113.2 240×240 50 512×512 5 5 

DWI 5268 113.2 240×240 500 512×512 5 5 

DWI 5268 113.2 240×240 1000 512×512 5 5 

ADC 5211 110 240×240 50-1000 512×512 5 5 

eADC 5211 110 240×240 50-1000 512×512 5 5 

T2 4134 109.4 240×240 - 512×512 5 5 

T2-FLAIR 8500 97.05 240×240 - 512×512 5 5 

T1 400 10 240×240 - 512×512 5 5 

T1Gd 6.1 2.2 240×240 - 512×512 5 5 

 

2.3. Preprocessing 

Image intensity values can change due to not only by different tissue types but also can change 

due to noise and scanner artifacts. It has been suggested [39] that intensity normalization has a 

significant role as a preprocessing stage. The purpose of intensity normalization is to uniformized 

the mean and variance values of image intensities. We used the normalization process to enable us 

to change the range of pixel intensity values in ranges 0 and 1. More details for normalization are 

given in [40]. We used simple noise reduction and image smoothing for all images to improve the 

U-Net input image quality. The denoising, normalization, and resizing processes were run using 

custom code written in the OpenCV-Python library. Also, all image sizes were changed to 

256×256 to reduce the U-Net training time according to our GPU computational capability and 

memory (NVIDIA GeForce GTX-1060 with 6 GB memory). 

 

2.4. Manual segmentation for mask creation 

All masks for the U-Net training phase were created by two neuro-radiologists with 15 years of 

experience in glioma diagnosis independently. The software program used for mask creation was 

ImageJ. Radiologists manually specified the tumor boundaries enhancement at each image slice in 

T1Gd images for each patient using corresponding T1, T2, and T2-FLAIR MRI image-weights. 

The necrotic regions, edema regions, hemorrhage, and artifacts, if the tumor included, were 

avoided if possible. After determining the border of the tumor, the tumor border was drawn and 

copied to all other MRI image weights (T1, T2, T2-FLAIR, b50, b500, b1000, ADC map, eADC 

map) for each image slice. Finally, the mask of all MRI image weights was created and used for 

U-Net training and testing. 
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2.5. Data augmentation 

For the effective training of various deep learning models, abundant and high-quality data is 

essential [41], [42]. A significant problem with collecting enough high-quality image data sets, 

especially for the medical domain, is time-consuming, expensive, and nearly impossible in 

practice. The data augmentation technique was done to overcome this limitation and lacks a 

satisfactory amount of data as an input image of deep learning models. As Goceri [42] mentioned, 

image augmentation has been widely used to overcome the data shortage problem in Deep-

Learning based methods in medicine. 

Data augmentation techniques can generally be divided into geometric transformation and artificial 

data generation. The geometric transformation technique is a major area of interest in data 

augmentation for deep learning because of the simplicity of the process. The data augmentation 

technique was performed using Keras ImageDataGenerator. ImageDataGenerator provides an 

easy, quick, and real-time way to augment our data with very different augmentation techniques. 

For data augmentation purpose and increasing the deep learning model’s generalization 

capabilities, we employ most useable data augmentation techniques such as rotation, skewness, 

flipping, and shear to increase the training data effectively (rotation_range=0.2, 

width_shift_range=0.05, height_shift_range=0.05, shear_range=0.05, zoom_range=0.05). 

 

 

2.6. U-Net training  

This study used U-Net for medical image segmentation with different MRI image-weights as the 

input image. For this purpose, we designed and used a U-Net, which the details and architecture 

are given in Figure 2. U-Net architecture in the current study consists of 19 convolution layers 

with kernel size 3×3 with ReLU activation function, and same padding and kernel_initializer= 

'he_normal', four max-pooling layers with kernel size 2×2, four up-convolution (up-sampling) 

layers with kernel size 2×2, four concatenate layers one convolution layers with kernel size 1×1 

with Sigmoid activation function in the last layer. The number of filters and image size in each 

layer of U-Net, which we used, can be found in figure 2. U-Net compiles operation was performed 

by ‘binary cross-entropy’ loss function, ‘Adam’ optimizer, and ‘accuracy’ as metrics. 
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Figure 2- U-Net architecture and parameters which were used in this study. Each box with the number of 

channels above corresponds to a multi-channel feature map. The feature map size is shown on the lower 

side of the box. The arrows with different colors represent different operations. 

 

The total number of parameters in our U-Net is 31,031,685, and all are trainable. The U-Net 

architecture was designed with TensorFlow (TensorFlow-GPU version 2.1.0) and Keras (version 

2.3.1) on the Python (version 3.6) platform. 

To find the correct epoch numbers for training the U-Net, we run U-Net with different epochs and 

calculated the accuracy of the network. We used the validation split=0.2 during the training phase 

to create the validation data sets from the training data set. 

 

2.7. Performance evaluation methods of U-Net 

Accuracy [14], [43], [44] (ACC, equation 1) is a metric that generally describes how the model 

performs. It is calculated as the ratio between the number of correct predictions to the total number 

of predictions. 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 
equation 1 

Where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. TP 

gives all tumor regions, TN represents all non-tumoral regions, FN shows tumor regions that U-

Net does not classify, and FN describes tumor region that is wrongly classified as tumor region. 

By using the ‘validation split’ function during the U-Net training phase, and ‘accuracy’ metrics, 

the ACC of U-net on validation data sets can be calculated. 



9 

 

The Dice coefficient (equation 2) [14], [44], [45] is used to measure the similarity between two 

sets of data.  

𝐷𝑖𝑐𝑒 =
2 × (𝑃 ∩ 𝑀)

(|𝑃| + |𝑀|)
 equation 2 

Where P represents the U-Net prediction and M represents the mask. After the trained U-Net made 

its prediction on test data sets, average Dice coefficients were calculated on different test data sets. 

 

  

3. Results 

To evaluate the effect of the number of epochs for the training process on accuracy and choice of 

the optimal number of epochs, figure 3 was used. As shown in figure 3, the results indicated that 

we had chosen epoch=20 for the U-Net training. Accuracy from epoch 1 to 20 rises quickly, 

reaches the optimal value at 20 epochs, and increases very slowly. The U-Net trained after 20 

epochs were used in this study for the testing process. 

 

Figure 3- Training accuracy of the U-Net with T1 images for glioma segmentation 

 

Figure 4 presents examples of different MRI image weights and corresponding masks. Figure 5 

illustrates some data augmentation results with the eADC map image. 
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Figure 4- different MRI image weights and masks as U-Net input images. A-T1 weighted image. B-T1 

mask. C-T1Gd weighted image. D-T1Gd mask. E-T2 weighted image. F-T2 mask. G- T2-FLAIR weighted 

image. H-T2-FLAIR mask I-DWI(b50) weighted image. J- DWI(b50) mask. K- DWI(b500) weighted 

image. L- DWI(b500) mask. M- DWI(b1000) weighted image. N- DWI(b1000) mask. O- ADC map image. 

P- ADC map mask. Q- eADC map image. R- eADC map mask. 

 

Figure 5- Data Augmentation technique examples of eADC maps 

 

The segmented images obtained from U-Net with different MRI image-weighted as the input 

image are shown in figure 6.  
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Figure 6- U-Net segmented output with different MRI image weights. A-T1 B-T1Gd C-T2 D-T2-FLAIR E-

b50 F-b500 G-b1000 H-ADC map I-eADC map 

Table 2 provides an overview of average accuracy, average Dice coefficient, and running time of 

one epoch of U-Net for each MRI image-weights. 

Table 2- Dice coefficient, accuracy, and running time of the U-Net with different MRI image-weights for 

glioma segmentation 

MRI image-

weights 

 
Average of Dice 

coefficient 

 

Accuracy % 

 One epoch running 

time (s) ± standard 

deviation 

T1  0.721  97.8  825.41±1.54 

T1Gd  0.694  97.6  841.43±1.98 

T2  0.762  97.8  825.42±2.06 

T2FLAIR  0.896  96.9  839.42±1.23 

DWI-b50  0.892  96.9  844.23±2.67 

DWI-b500  0.872  96.8  843.43±2.04 

DWI-b1000  0.752  96.8  828.42±1.95 

ADC map  0.931  98.1  834.51±0.91 

eADC map  0.944  98.9  825.42±1.02 
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4. Discussion 

Glioma is the primary malignancy in brain tumors. Glioma tumor segmentation is a very important 

process for treatment decision programs. Traditionally, tumor segmentation has always been done 

by a radiologist. However, glioma segmentation has become a time-consuming process for 

radiologists. In recent years there has been growing interest in automatic brain segmentation. Much 

work on the potential of deep learning and machine learning has been carried out as an automatic 

segmentation for brain tumor segmentation [26], [28], [29]. The present study was designed to 

determine the effect of different MRI image-weights as the input image of U-Net on the accuracy 

of segmentation. 

The normalization step applied in this work is efficient in terms of computational cost compared 

to the other normalization approaches such as [39], [46]. In this study, data Augmentation 

techniques were used to increase the number of U-Net image inputs and the accuracy of the U-

Net. Loss functions have a critical role in deep networks. To obtain high performance from CNN-

based architectures, hybrid loss functions have been proposed in several works [47]–[49]. We used 

the default loss function (i.e., cross-entropy) because of its low computational cost and efficiency 

with our images. The optimizer and activation function should be chosen carefully in deep network 

architectures. Although different optimizations (e.g., Lagrangian optimization [50]) and activation 

functions [51]–[53] have been applied in different works, we applied the sigmoid and ReLU 

activations and Adam optimizer on account of their efficiency in the proposed architecture with 

our datasets. 

The most remarkable result from the data is that the accuracy and Dice coefficient of U-Net of 

different MRI image-weights are different. A possible explanation for these results may be related 

to U-Net input images. 

Different MRI imaging protocols provided image weights with different information and contrast 

[33]–[35]. In summary, in this paper, we have used three different MRI imaging protocols as input 

images of U-Net: anatomical image-weights (T1, T2, T2FLAIR), diffusion-weighted imaging DWI 

(b50, b500, b1000, ADC map, eADC map), and post-contrast enhancement images (T1Gd). 

Conventional anatomic image weights will provide information about the anatomy of structure 

[33]. The contrast of T1, T2, and T2FLAIR image-weights mainly depends on the tissues' relaxation 

time [54]. DWI image contrast is based on the differences in Brownian motion of water molecules 

inside the tissue [35]. In DWI image-weights, the b-value is a factor that reflects the strength of 

the gradients used to generate DWI images [55], [56]. The higher the b-value, the stronger the 

diffusion effects on the image [55]. ADC map represents the diffusion coefficient of each pixel of 

the image. ADC reflects not only true diffusion but depends on microscopic perfusion, bulk tissue 

motion, and spatial orientation. An alternative to ADC maps, the exponential ADC (eADC) 

removes the T2 shine-through artifact from the ADC map [57]. In recent years there has been 

growing interest in using different MRI image-weights for brain tumor detection and classification 

[58]–[61]. Many attempts have been made [37], [38], [62] with the purpose of DWI image-weights 

usage for brain tumor detection. 
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The most interesting finding was that U-Net with DWI image-weighted as the input image has 

higher glioma segmentation performance. A possible explanation for these results might be related 

to DWI image contrast and Brownian motion of water molecules. These results match those 

observed in earlier studies [36], [63]. Another critical finding after evaluating each DWI image-

weights performance was that the ADC map and eADC map achieve higher results for glioma 

segmentation by U-Net. It seems possible that these results are due to the nature of eADC maps. 

ADC and eADC show us physiological information and diffusion coefficient data. The ADC map's 

signal intensity is related to tissue diffusion and T2 properties. Some tissue and abnormalities have 

prolonged T2 relaxation time values that spill over into the ADC map, a phenomenon known as 

the T2 shine-through artifact. T2 shine-through artifact was removed in the eADC map. This factor 

may explain the higher U-Net performance on the eADC map rather than the ADC map for glioma 

segmentation. It is important to note that, as far as we know, this is the first study to use the eADC 

map for glioma segmentation by U-Net. 

The results of this study show that T1Gd image-weights have low performance for glioma 

segmentation by U-Net. A reasonable explanation for this result may be attributed to the glioma 

grade. Glioma border enhancement in T1 post-contrast images was seen in high-grade glioma, and 

low-grade gliomas are rarely enhanced [64]. This discrepancy could be attributed to not enhancing 

and detecting glioma by U-Net in T1Gd image-weights in the case of low-grade glioma. Our results 

have some similarities with Pouratian et al. l. [64] findings. 

In this study, U-Net's T2FLAIR performance for glioma segmentation was found higher than T1, 

T2, and T1Gd image weights. These results may seem to be due to the FLAIR sequence being 

similar to a T2-weighted image, except that the TE and TR times are very long. By doing so, 

abnormalities remain bright, but normal CSF fluid is attenuated and made dark. This sequence is 

very sensitive to pathology and makes the differentiation between CSF and an abnormality much 

easier. 

It is encouraging to compare the result of the current study with that found in other studies. 

Importantly, most previous studies used the BraTs data set as the input image of U-Net. Using the 

BraTs data set, we could access the T1, T1Gd, and FLAIR image weights of glioma tumors. 

According to table 3, our results in anatomical image-weights (T1, T2, T2FLAIR) and post 

enhancement image-weights (T1Gd) have many similarities with previous studies. The mean Dice 

coefficient values of U-Net trained with T1, T1Gd, T2, and T2FLAIR image-weights are typical of 

previous findings, which used BraTs data set and U-net (Table 3). These results offer crucial 

evidence for our U-Net results validation that our U-net, trained with conventional anatomical 

MRI image-weights, works appropriately according to the previous studies. This finding confirms 

our U-Net result validation. Also, two experts in neuroradiology visually check the U-Net 

segmentation results accuracy of our data set for result validation purposes and rate the 

protentional clinical values of U-Net prediction results. U-Net performance validation with the 

radiologist is widely available and has been used in previous studies such as [65]. All U-Net 

segmentation results are considered satisfactory in terms of clinical applicability.  
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Table 3- Quantitative results of brain tumor segmentation algorithms published recently 

Authors, Years 
The image data set 

or image weights 
Network 

Mean Dice 

coefficient 

Cabezas et al. l.,2018 [66] BraTs 2018 3D U-Net 0.74 

Sun et all. ,2019 [67] BraTs 2018 U-Net 0.71 

Mehta and tal ,2019 [68] BraTs 2018 3D U-Net 0.78 

Yang et al. l.,2019 [69]  BraTs 2017 U-Net combined with ResNet 0.748 

Baid et al.,2020 [44] BraTs 2018+ patient U-Net 0.75, 0.81 

Yang et al. l.,2020 [70] BraTs 2018 
Novel U-Net dilated convolution  

DCU-Net 
0.83 

Naser and Deen, 2020 [20] T1-T1Gd-FLAIR U-Net and Vgg16 transfer learning 0.84 

Yogananda et all., 2020 [31] BraTs 2018 U-Net 0.80 

Yang et al. l. ,2020 [21]   BraTs 2015 
Improved U-Net 

Deeper ResU-Net 
0.88 

 

Although the average Dice coefficient and accuracy of U-Net prediction with T1, T1Gd, T2, and 

T2-FLAIR are in line with previous studies (Table 3), we cannot be exactly compared our results 

to other studies since we used our specific data sets. Nevertheless, it is crucial to bear in mind that 

the BraTs data sets, which were used in previous studies for glioma segmentation with U-Net 

architecture, consist of T1, T1Gd, T2, and T2-FLAIR MRI images of glioma tumors and in the 

current study, we also used T1, T1Gd, T2, and T2-FLAIR and U-Net architecture. Therefore, our 

results, especially U-Net performance with anatomical images, can be compared to the previous 

study (Table 3) to validate the U-Net performance in the study. Using ADC maps and eADC maps 

for glioma segmentation by U-Net shows a clear advantage over other MRI imaging protocols 

studied in the current study. Also, the utility of advanced MRI imaging protocols, such as ADC 

maps, and eADC maps, over U-Net architecture to improve glioma segmentation is thus 

demonstrated. Also, we believe that this is the first time that eADC maps were used for glioma 

segmentation by U-Net.  

5. Conclusion 

The results of this study support the idea that we can use advanced MRI image weights for glioma 

segmentation by U-Net with higher performance. The best of our knowledge, no other authors 

have found that the eADC map as the input image of U-Net has high performance rather than other 

DWI imaging protocols (b50, b500, b1000, ADC map), conventional anatomical imaging 

protocols (T1, T2, T2FLAIR), and T1 post enhancement (T1Gd) image-weights. This paper has 

highlighted the importance of input image information for U-Net training on the U-net 

performance on glioma segmentation. Our work has some limitations. Further data collection 

would be needed to create the big data set for U-Net training and achieve high accuracy for the 

training phase. Despite this, we believe our work could be a framework for using advanced MRI 
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imaging protocols with U-Net for glioma segmentation and classification. This approach has the 

potential to use other advanced MRI imaging protocols such as susceptibility-weighted imaging 

(SWI), dynamic contrast enhancement (DCE) imaging, arterial spin labeling (ASL), susceptibility 

contrast enhancement (SCE), diffusion tractography imaging (DTI), etc. for glioma segmentation 

and classification by U-Net. Also, as an extension of this work, the performance of  the proposed 

approach can be compared with the performance of a capsule network since capsule networks can 

preserve spatial relationships of learned features and have been proposed recently for medical 

image classifications [71]–[73]. 
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