
HIGHLY CONNECTED 7-MANIFOLDS AND

NON-NEGATIVE SECTIONAL CURVATURE

S. GOETTE†, M. KERIN†∗, AND K. SHANKAR∗

It is our pleasure to dedicate this article to Karsten Grove, Wolfgang Meyer and
Wolfgang Ziller on their respective 70th, 80th and 65th birthdays.

Abstract. In this article, a six-parameter family of highly connected
7-manifolds which admit an SO(3)-invariant metric of non-negative sec-
tional curvature is constructed and the Eells-Kuiper invariant of each is
computed. In particular, it follows that all exotic spheres in dimension
7 admit an SO(3)-invariant metric of non-negative curvature.

A manifold M of dimension 2n + 1 or 2n is called highly connected if it
is (n − 1)-connected, that is, if the homotopy groups πi(M) are trivial for
all i 6 n − 1. As the topology of such manifolds is relatively simple, they
have received much attention: see, for example, [3, 9, 10, 12, 38, 50, 37, 54,
55, 58]. In fact, it was Milnor’s quest to understand such manifolds which
led to the discovery of 7-dimensional manifolds which are homeomorphic,
but not diffeomorphic, to the standard sphere S7 [43, 45]. Just as in the
case of S7, these exotic spheres occur as the total spaces of S3-bundles over
S4. By a combination of the work of Milnor [44] (cf. [37]), Smale [49] and
Eells and Kuiper [19], it was subsequently shown that there are 28 possible
oriented differentiable structures on the 7-dimensional (topological) sphere,
16 of which are Milnor spheres, that is, obtained as S3-bundles over S4. If
one forgets the orientation, there are 15 possible diffeomorphism types, 11
occurring as Milnor spheres.

Theorem A. All exotic 7-spheres admit an SO(3)-invariant Riemannian
metric of non-negative sectional curvature.

In [28], Gromoll and Meyer showed that one of the exotic Milnor spheres
can be written as a biquotient and, hence, admits a Riemannian metric with
non-negative sectional curvature. Furthermore, by exploiting the biquotient
structure, it was demonstrated in [21, 57] that the Gromoll-Meyer sphere can
be equipped with a metric of non-negative curvature such that all sectional

Date: February 4, 2020.
2010 Mathematics Subject Classification. primary: 53C20, secondary: 57R20, 57R55,

58J28.
Key words and phrases. highly connected 7-manifold, non-negative curvature, exotic

sphere, Eells-Kuiper invariant.
† Received partial support from DFG Priority Program Geometry at Infinity .
∗ Received support from SFB 878: Groups, Geometry & Actions at WWU Münster.

1



2 S. GOETTE, M. KERIN, AND K. SHANKAR

curvatures are positive on an open, dense set, while a further deformation of
this metric to globally positive curvature has been proposed in [46]. Unfortu-
nately, the Gromoll-Meyer sphere is the only exotic sphere in any dimension
which can be written as a biquotient [35, 52]. Nevertheless, the remain-
ing Milnor spheres were shown to admit non-negative curvature by Grove
and Ziller [31], as a consequence of their investigation of cohomogeneity-one
manifolds. On the other hand, the fact that all exotic 7-spheres admit a met-
ric of positive Ricci curvature was established by Wraith [59], while Searle
and Wilhelm [48] recently demonstrated that each admits a metric having,
simultaneously, positive Ricci curvature and almost-non-negative sectional
curvature.

Despite not being biquotients, Durán, Püttmann and Rigas [18] (see also
[56]) have shown that all exotic spheres in dimension 7 can be constructed
in a similar way to the Gromoll-Meyer sphere. They tried, without success,
to equip the four non-Milnor exotic spheres with a metric of non-negative
curvature. In the present work, we achieve this via a different construction.

Theorem B. For all triples a = (a1, a2, a3), b = (b1, b2, b3) ∈ Z3 of integers
congruent to 1 mod 4 and satisfying gcd(a1, a2 ± a3) = gcd(b1, b2 ± b3) =
1, there is a 2-connected, 7-dimensional manifold M7

a,b which admits an

SO(3)-invariant metric of non-negative sectional curvature and for which
H4(M7

a,b;Z) = Z|n|, whenever

n =
1

8
det

(
a2

1 b21
a2

2 − a2
3 b22 − b23

)
6= 0.

If n = 0, then H3(M7
a,b;Z) = H4(M7

a,b;Z) = Z.

The manifolds M7
a,b with a1 = b1 = 1 are diffeomorphic to those studied

by Grove and Ziller [31] and consist of all S3-bundles over S4. By choosing
the parameters appropriately, one obtains the Milnor spheres. Grove and
Ziller constructed metrics of non-negative curvature by first showing that
there is a four-parameter family of non-negatively curved, 10-dimensional,
cohomogeneity-one manifolds consisting of all principal (S3 × S3)-bundles
over S4, and then taking the associated S3-bundles over S4 with their in-
duced metrics.

By observing that, in the Grove-Ziller case, the associated-bundle con-
struction is equivalent to taking a quotient by a free S3 action, it is natural
to look for a more general collection of examples. As it turns out, there
is a larger six-parameter family of non-negatively curved, 10-dimensional
cohomogeneity-one manifolds P 10

a,b which, under the gcd conditions of Theo-

rem B, admit a free, isometric action by S3. The manifolds M7
a,b are precisely

the quotients of the P 10
a,b by this action, and are each equipped with the in-

duced metric. In general, the M7
a,b are not S3-bundles over S4 in any obvious

way. For appropriate choices of the parameters a, b ∈ Z3, it is clear that
one obtains 7-dimensional manifolds which are homotopy spheres.
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The major difficulty in this project is to determine the diffeomorphism
type of the manifolds M7

a,b. By the work of Crowley [9], it suffices to compute

the Eells-Kuiper invariant µ(M7
a,b) [19] and q-invariant [9] of these spaces. In

particular, for the homotopy spheres, the Eells-Kuiper invariant determines
the diffeomorphism type. In Theorem 3.22, the general formula for µ(M7

a,b)

below has been computed via a modification of the methods of [26], in which
the first named author determined the diffeomorphism type of a recently
discovered example with positive curvature, see [14, 29]. For q, p1, p2, p3 ∈ Z
with gcd(q, pi) = 1 for all i = 1, 2, 3, let

D(q; p1, p2, p3) =
1

26 · 7 · q2

|q|−1∑
l=1

∑
(i,j,k)=
�(1,2,3)

pi

(
14 cos(piπlq ) + cos(

pjπl
q ) cos(pkπlq )

sin2(piπlq ) sin(
pjπl
q ) sin(pkπlq )

)

denote the corresponding generalised Dedekind sum. In particular, if q = 1,
then D(q; p1, p2, p3) = 0. Moreover, D(q; p1, p2, p3) is invariant under per-
mutations of the pi and satisfies D(q; p1, p2,−p3) = −D(q; p1, p2, p3). Note
also that the generalised Dedekind sum of [26, Definition 3.6] corresponds
to D(p; 4, q, q), with p, q ∈ Z odd and relatively prime.

Theorem C. Let M7
a,b and n 6= 0 be as in Theorem B, and set

m =
1

8a2
1b

2
1

det

(
a2

1 b21
a2

2 + a2
3 + 8 b22 + b23 + 8

)
.

Then the Eells-Kuiper invariant of M7
a,b is given by

µ(M7
a,b) =

|n| − a2
1 b

2
1m

2

25 · 7 · n
−D(a) +D(b) mod 1 ∈ Q/Z,

where D(a) = D(a1; 4, a2 + a3, a2 − a3) and D(b) = D(b1; 4, b2 + b3, b2 − b3)
are generalised Dedekind sums as defined above.

For some simple subfamilies it is easy to compute the generalised Dedekind
sums D(a) and D(b) (see Example 3.20), leading to a closed form for µ(M7

a,b)

in these cases. Recall that, following [19], the non-Milnor exotic spheres have
28 · µ(M7

a,b) ∈ {2, 5, 9, 12, 16, 19, 23, 26}.

Corollary D. Suppose a = (−3, 12k−3, 12l+1), b = (1, 4r+1, 4s+1) ∈ Z3.
Then

µ(M7
a,b) =

|n| − a2
1 b

2
1m

2

25 · 7 · n
− 4l + 1

28
∈ Q/Z.

Moreover, the subfamily given by (k, l, r, s) = (0, 0, r, r) has H4(M7
a,b;Z) =

0, hence consists of homotopy spheres, and the oriented diffeomorphism
types of the non-Milnor exotic spheres are attained, for example, at r ∈
{−3,−1, 1, 2, 4, 8, 11, 15}.

The paper is organised as follows: In Section 1, there can be found re-
views of cohomogeneity-one manifolds, orbifolds and orbi-bundles, the Eells-
Kuiper invariant and adiabatic limits. Section 2 begins with a review of the
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construction of Grove and Ziller, followed by the definition of the new non-
negatively curved manifolds M7

a,b, before ending with the computation of

the cohomology ring of M7
a,b. In Section 3 a new metric is defined on M7

a,b

to facilitate the computation of the Eells-Kuiper invariant of M7
a,b. With

respect to this metric, various Chern-Weil characteristic forms and numbers
are computed, as well as the individual terms in the adiabatic limit of the
Eells-Kuiper invariant.
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1. Preliminaries

1.1. Cohomogeneity-one manifolds and principal bundles.

Because of their importance in the construction of the manifolds M7
a,b,

this subsection is devoted to a brief review of cohomogeneity-one manifolds.
A more elaborate discussion can be found in, for example, [31].

Let G be a compact Lie group acting smoothly on a closed, connected,
smooth manifold M via G ×M → M, (g, p) 7→ g · p. For each p ∈ M , the
isotropy group at p is the subgroup Gp = {g ∈ G | g · p = p} ⊆ G, and the
orbit through p is the submanifold G · p = {g · p ∈ M | g ∈ G} ⊆ M . Since
G acts transitively on G · p, there is a diffeomorphism G · p ∼= G/Gp, and
there is a foliation of M by G-orbits.

The action G ×M → M is said to be of cohomogeneity one if there is
an orbit of codimension one or, equivalently, if dim(M/G) = 1. In such
a case, the manifold M is called a cohomogeneity-one (G-)manifold. If, in
addition, π1(M) is assumed to be finite, then the orbit space M/G can
be identified with a closed interval. By fixing an appropriately normalised
G-invariant metric on M , it may be assumed that M/G = [−1, 1]. Let
π : M → M/G = [−1, 1] denote the quotient map. The orbits π−1(t),
t ∈ (−1, 1), are called principal orbits and the orbits π−1(±1) are called
singular orbits.

Choose a point p0 ∈ π−1(0) and consider a geodesic c : R→M orthogonal
to all the orbits, such that c(0) = p0 and π ◦ c|[−1,1] = id[−1,1]. Then, for
every t ∈ (−1, 1), one has Gc(t) = Gp0 ⊆ G, and this principal isotropy group



HIGHLY CONNECTED 7-MANIFOLDS AND NON-NEGATIVE CURVATURE 5

will be denoted by H ⊆ G. If p± = c(±1) ∈M , denote the singular isotropy
groups Gp± by K± respectively.

By the slice theorem, M can be decomposed as the union of two disk
bundles, over the singular orbits G/K− = π−1(−1) and G/K+ = π−1(+1)
respectively, which are glued along their common boundary G/H = π−1(0):

M = (G×K− Dl−) ∪G/H (G×K+ Dl+) .

In particular, since the principal orbit G/H is the boundary of both disk
bundles, it follows that K±/H = Sl±−1, where l± are the respective codi-
mensions of G/K± in M .

Conversely, given any chain H ⊆ K± ⊆ G, with K±/H = Sd± , one can
construct a cohomogeneity-one G-manifold M with codimension d±+ 1 sin-
gular orbits. For this reason, a cohomogeneity-one manifold is conveniently
represented by its group diagram:

G

K− K+

H

In [31], the authors determined a sufficient condition for a cohomogeneity-
one manifold to admit non-negative curvature.

Theorem 1.1 ([31]). Let G be a compact Lie group acting on a manifold
M with cohomogeneity one. If the singular orbits are of codimension 2, then
M admits a G-invariant metric of non-negative sectional curvature.

Given a cohomogeneity-one G-manifold M , let j± : K± → G and i± :
H → K± denote the respective inclusion maps. Suppose that L is a compact
Lie group and that there are homomorphisms ϕ± : K± → L such that ϕ− ◦
i− = ϕ+ ◦ i+. Then, by [31, Prop. 1.6], one can construct a cohomogeneity-
one (G× L)-manifold P with group diagram

G× L

K−

(j−,ϕ−)

K+

(j+,ϕ+)

H

i+i−

such that the subaction by {e} × L ⊆ G× L is free and induces a principal
L-bundle L → P → M . In particular, under this construction the co-
dimensions of the singular orbits in M and P are equal.
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1.2. The Eells-Kuiper invariant.

When Milnor discovered exotic spheres in [43], he used an invariant based
upon the Hirzebruch Signature Theorem (see [34]) to establish that the 7-
manifolds he had constructed could not be diffeomorphic to S7. Soon after-
wards, Eells and Kuiper [19] found an invariant, based upon the integrality

of the Â-genus for spin manifolds [8, Cor. 3.2], which completely determines
the diffeomorphism type of 7-dimensional homotopy spheres. For simplicity,
the following review of the Eells-Kuiper invariant will focus on dimensions
7 and 8.

Suppose X is a closed, smooth, 8-dimensional manifold which is, in addi-
tion, oriented and spin, that is, the first and second Stiefel-Whitney classes
w1(X) ∈ H1(X;Z2) and w2(X) ∈ H2(X;Z2) vanish. Let p1(X) ∈ H4(X;Q)
and p2(X) ∈ H8(X;Q) denote the rational Pontrjagin classes of (the tan-
gent bundle of) X, and let [X] ∈ H8(X;Z) denote the fundamental class of
X. Finally, let σ(X) denote the signature of the quadratic form α 7→ α2 on
H4(X;Q). From the Signature Theorem [34] and Corollary 3.2 of [8], it is
known that both the signature

σ(X) =
1

45
(−p1(X)2 + 7 p2(X))[X]

and the Â-genus

Â(X) =
1

27 · 45
(7 p1(X)2 − 4 p2(X))[X]

are integers. By taking an appropriate linear combination, one can easily
deduce that

(1.1) Â(X) =
1

27 · 7
(p1(X)2[X]− 4σ(X)) ∈ Z.

Suppose now that M is a 7-dimensional, closed, oriented, smooth, 2-
connected manifold with H4(M ;Z) finite. Notice that, in particular, M
is spin. Since the spin cobordism group in dimension 7 is trivial, one can
always find a compact, oriented, smooth, 8-dimensional, spin coboundary
W , that is, a manifold with boundary ∂W = M .

From the long exact sequence in cohomology for the pair (W,M), one
obtains an isomorphism

j : H4(W,M ;Q)
∼=−→ H4(W ;Q).

Therefore, the rational Pontrjagin class p1(W ) ∈ H4(W ;Q) can be pulled
back to define a Pontrjagin class j−1(p1(W )) ∈ H4(W,M ;Q) on (W,M).
Moreover, there is a well-defined fundamental class [W,M ] ∈ H8(W,M ;Q)
for the pair (W,M), and one can define the signature σ(W,M) to be the
signature of the quadratic form α 7→ α2 on H4(W,M ;Q). By analogy with

the expression for the Â-genus in (1.1) above, this motivates the following
definition.
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Definition 1.2 ([19]). Let M be a 7-dimensional, closed, oriented, smooth,
2-connected manifold with H4(M ;Z) finite, and W be a compact, oriented,
smooth, 8-dimensional, spin coboundary. Then the Eells-Kuiper invariant
of M is given by

(1.2) µ(M) =
1

27 · 7
(
(j−1p1(W ))2[W,M ]− 4σ(W,M)

)
mod 1 ∈ Q/Z.

In particular, the Eells-Kuiper invariant measures the defect of the right-
hand side from being the Â-genus of a closed, spin manifold, and has the
following properties:

(a) µ(M) is independent of the choice of coboundary W .

(b) µ(M) respects orientation, i.e. µ(−M) = −µ(M).

(c) µ(M) is additive, i.e. µ(M1#M2) = µ(M1) + µ(M2).

Although it is quite simple to define, the Eells-Kuiper invariant is difficult
to compute in practice. One approach is to appeal to the generalisation by
Atiyah, Patodi and Singer of the Atiyah-Singer Index Theorem to manifolds
with boundary [2].

In brief, equip M with a Riemannian metric gM , with Levi-Civita connec-
tion ∇TM , and extend gM to a Riemannian metric on W which is product
near the boundary. Let D and B be the spin-Dirac operator and odd signa-
ture operator on (M, gM ) respectively, that is, D is the usual Dirac operator
on the spinor bundle of (M, gM ) and B is the restriction of the operator
±(∗d − d∗) to differential forms on M of even degree, where ∗ denotes the
Hodge-∗ operator. Then, by applying the Atiyah-Patodi-Singer Index The-
orem to both D and B and following the scheme laid out in [39, Prop. 2.1]
(cf. [16]), one obtains

µ(M) =
h+ η

2
(D) +

1

25 · 7
η(B)

(1.3)

− 1

27 · 7

∫
M
p1(TM,∇TM ) ∧ p̂1(TM,∇TM ) ∈ Q/Z.

The terms in this formula require some explanation. The first term, h(D),
is simply dim Ker(D), the dimension of the space of harmonic spinors. The
terms under the integral are differential forms, namely,

p1(TM,∇TM ) =
1

8π2
tr((ΩTM )2)

is the Pontrjagin 4-form on M obtained from the curvature 2-form ΩTM via
Chern-Weil theory, while p̂1(TM,∇TM ) is a 3-form on M such that

d(p̂1(TM,∇TM )) = p1(TM,∇TM ).

Such a 3-form exists, since H4
dR(M) ∼= H4(M ;R) = 0 by assumption.

The terms η(D) and η(B) are the η-invariants of the operators D and
B. Recall that, if D is a Dirac operator (that is, a first-order, self-adjoint
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differential operator, such that D2 is a Laplacian), then its eigenvalues are
real numbers and the η-invariant of D is defined by

η(D) = ηD(0), where ηD(z) =
∑
λ 6=0

sign(λ)

|λ|z
, z ∈ C,

the sum being over the non-trivial eigenvalues of D (counting multiplicities).
Therefore, η(D) measures the asymmetry of the eigenvalues of D about 0.
The invariant η(D) can also be thought of as the defect in the corresponding
Atiyah-Singer Index Theorem due to W not being a closed manifold.

The primary benefit of the formula (1.3) for µ(M) is that the right-hand
side is written entirely in terms of the geometry of M , that is, the cobound-
ary W no longer plays a role. Thus, for an appropriate choice of metric gM ,
it is reasonable to expect that (1.3) can be used to compute µ(M).

1.3. Orbifolds, orbi-bundles and invariants.

As orbifolds will play a significant role in the rest of the article, it is useful
to recall some definitions and notation (cf. [26]).

Definition 1.3. Let G be a compact Lie group acting effectively on Rn. An
n-dimensional smooth G-orbifold is a second-countable, Hausdorff space B
such that:

(a) For each point b ∈ B there exists a neighbourhood U ⊆ B of b, an
open subset V ⊆ Rn invariant under the effective action ρ : Γ ↪→
G→ GL(n,R) of a finite group Γ, and a homeomorphism

ψ : ρ(Γ)\V → U with ψ(0) = b.

The homeomorphism ψ is called an orbifold chart, Γ the isotropy

group of b ∈ B and ρ the isotropy representation at b. Let ψ̃ : V → U
denote the composition of ψ with the projection V → ρ(Γ)\V .

(b) Let b ∈ U ⊆ B and ψ : ρ(Γ)\V → U be as above. For b′ ∈ U , let
ψ′ : ρ′(Γ′)\V ′ → U ′ denote the corresponding orbifold chart. Then

there exists a smooth, open embedding ϕ : (ψ̃′)−1(U ∩ U ′)→ V and
a group homomorphism ϑ : Γ′ → Γ such that, for all γ′ ∈ Γ′,

ϕ ◦ ρ′(γ′) = ρ(ϑ(γ′)) ◦ ϕ
and, for all v′ ∈ (ψ̃′)−1(U ∩ U ′) ⊆ V ′,

ψ̃(ϕ(v′)) = ψ̃′(v′).

The map ϕ is called a coordinate change and ϑ an intertwining ho-
momorphism.

If G ⊆ O(n), then the term n-orbifold will be used for brevity. If G ⊆ SO(n)
and all coordinate changes are orientation preserving, then the n-orbifold B
is called oriented.
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Notice that if ϕ is a coordinate change as above with intertwining homo-
morphism ϑ, then, for each γ ∈ Γ, the map ρ(γ) ◦ ϕ is another coordinate
change with intertwining homomorphism γ ·ϑ, where (γ ·ϑ)(γ′) = γϑ(γ′)γ−1.
Moreover, the assumption that isotropy representations are effective ensures
that intertwining homomorphisms are unique.

Definition 1.4. Let B be a smooth G-orbifold and F a smooth manifold.
An orbi-bundle with fibre F is a map π from a topological space M to B
such that:

(a) For each b ∈ B, there exists an orbifold chart ψ : ρ(Γ)\V → U ⊆ B
around b, a fibre-preserving, smooth action ρ̂ of Γ on V × F such
that the projection pr1 : V × F → V is Γ-equivariant, and a homeo-

morphism ψ̂ : ρ̂(Γ)\(V × F )→ π−1(U) such that the diagram

V × F //

pr1

��

ρ̂(Γ)\(V × F )
ψ̂ //

��

π−1(U)

π

��
V // ρ(Γ)\V

ψ //// U

commutes.
(b) Let ψ : ρ(Γ)\V → U and ψ′ : ρ′(Γ′)\V ′ → U ′ be orbifold charts

in B as in Definition 1.3, with associated coordinate change ϕ and
intertwining homomorphism ϑ. Let ρ̂, ρ̂′ be the corresponding actions

and ψ̂, ψ̂′ the corresponding homeomorphisms as above. Finally, let
q : V × F → ρ̂(Γ)\(V × F ) and q′ : V ′ × F → ρ̂′(Γ′)\(V ′ × F )
denote the quotient maps. Then there is a smooth, open embedding

ϕ̂ : (ψ̂′ ◦ q′)−1(U ∩U ′)→ V ×F (a coordinate change) such that, for
all γ′ ∈ Γ′,

ϕ̂ ◦ ρ̂′(γ′) = ρ̂(ϑ(γ′)) ◦ ϕ̂
and, for all (v′, f) ∈ (ψ̂′ ◦ q′)−1(U ∩ U ′) ⊆ V ′ × F ,

(ψ̂ ◦ q)(ϕ̂(v′, f)) = (ψ̂′ ◦ q′)(v′, f).

If all of the fibre-preserving actions ρ̂ are free, then the space M carries the
structure of a smooth manifold. In this case, the map π : M → B is called
a Seifert fibration.

If the fibre F is a vector space and if, in addition, all actions ρ̂ and all
coordinate changes ϕ̂ are linear, then π : M → B is called a vector orbi-
bundle.

If F is a Lie group G and all actions ρ̂ and all coordinate changes ϕ̂
commute with the right action of G on F , then G acts on M and π : M → B
is called a principal G-orbi-bundle.

Note that, given a principal G-orbi-bundle and a right action of G on a
manifold F , one can construct an associated orbi-bundle with fibre F and
structure group G with the properties above.
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As discussed in [26, Rem. 1.3], a Seifert fibration can, equivalently, be
described as a regular Riemannian foliation of M with compact leaves. The
leaf space B naturally has the structure of a smooth orbifold, while the
generic leaves (which form an open, dense set in M) are each diffeomorphic
to some fixed smooth manifold F . The exceptional leaves are each finitely
covered by F , and the projection map π : M → B has the properties listed
in Definition 1.4.

Remark 1.5. If a compact Lie group G acts almost freely on a manifold
M such that the sub-action of a closed subgroup H ⊆ G is free, then the
quotient M/G naturally inherits the structure of a smooth orbifold, the
quotient M/H is a smooth manifold, and the projection π : M/H → M/G
is a Seifert fibration with fibre G/H.

Using the local definitions above, an orbifold B possesses a natural tan-
gent orbi-bundle TB → B and can always be equipped with an (orbifold)
Riemannian metric.

Furthermore, as all leaves of a Seifert fibration π : M → B are manifolds
of a fixed dimension, it makes sense to talk about the vertical sub-bundle
V of the tangent bundle TM , that is, the vector bundle given by vectors
tangent to the leaves. If M is equipped with a Riemannian metric gM , the
horizontal sub-bundle H is defined as the bundle of all vectors orthogonal to
the leaves. Given a vector w ∈ TpM , the vertical and horizontal components
of w will be denoted by wV and wH respectively.

At each point p ∈M , the differential dπp|Hp : Hp → Tπ(p)B is an isomor-
phism. If dπp|Hp is, in addition, an isometry at each p ∈ M with respect
to the metrics gM and gB, then, by a slight abuse of terminology, one may
refer to π : (M, gM )→ (B, gB) as a Riemannian submersion.

For vector orbi-bundles, it is possible to use the language of Definition
1.4 to define Whitney sums, tensor products, dual bundles and exterior
products. Similarly, spin vector orbi-bundles can be defined in a natural
way analogous to that for vector bundles.

There is also a natural notion of Dirac orbi-bundle over a Riemannian
orbifold that is analogous to the notion of a Dirac bundle over a Riemann-
ian manifold (M, gM ), which consists of a complex vector bundle E → M
equipped with a Hermitian metric gE and compatible connection∇E , as well
as a Clifford action c : TM → End(E) that is skew-symmetric with respect
to gE and satisfies a Leibniz rule with respect to ∇E and the Levi-Civita
connection ∇TM of (M, gM ).

Just as for manifolds, Chern-Weil theory can be applied to vector orbi-
bundles. Suppose that E → B is a vector orbi-bundle with connection
1-form ωE and curvature 2-form ΩE = dωE + ωE ∧ ωE . Let ∇E and RE =
(∇E)2 denote the induced connection and curvature, respectively. Recall
from Chern-Weil that the first Pontrjagin form and Euler form of (E,∇E)
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are defined by

p1(E,∇E) =
1

8π2
tr((ΩE)2) =

1

8π2
tr((RE)2) ,

e(E,∇E) =
1

4π2
Pf(ΩE) =

1

4π2
Pf(RE) ,

(1.4)

respectively, where Pf denotes the Pfaffian, that is, Pf = det1/2.

Associated to the base of a Seifert fibration π : M → B there is a further
orbifold ΛB, which will be important in the computation of the Eells-Kuiper
invariant.

Definition 1.6. The inertia orbifold ΛB of an orbifold B is the orbifold
consisting of points (b, [γ]), where b ∈ B and [γ] denotes the Γ-conjugacy
class of an element γ of the isotropy group Γ of b.

In general, the inertia orbifold consists of several components. In partic-
ular, the component of ΛB corresponding to the identity element of each
isotropy group is simply a copy of B itself. Other components are often
called twisted sectors.

The orbifold charts for ΛB are obtained from those of B. Suppose ψ :
ρ(Γ)\V → U is an orbifold chart around b = ψ(0) ∈ B. For each γ ∈ Γ,
let V γ denote the fixed-point set of the action of γ on V and let ZΓ(γ) ⊆ Γ
denote the centraliser of γ. Then ZΓ(γ) acts on V γ via the restriction of
ρ, although this action need not be effective. The ineffective kernel of this
action is a finite subgroup of ZΓ(γ) of order

(1.5) m(γ) = #{σ ∈ ZΓ(γ) | ρ(σ)|V γ = idV γ}.
In this way, m(γ) defines a locally constant function on ΛB and is called
the multiplicity of (b, [γ]) ∈ ΛB. An orbifold chart for ΛB around the point
(b, [γ]) is given by the homeomorphism

ψ[γ] : ZΓ(γ)\V γ → ψ̃(V γ)× {[γ]} ⊆ ΛB.

Note that the orbit space ZΓ(γ)\V γ is the same as that obtained by consid-
ering the effective action on V γ of the quotient of ZΓ(γ) by its ineffective
kernel.

Suppose from now on that B is an oriented Riemannian orbifold (as will
be the case in the applications to follow). Let Nγ → V γ denote the normal
bundle to V γ in V . Since B is oriented, Nγ has even rank, say 2kγ . Since
the action of γ is effective on V , but trivial on V γ , it follows that γ must
act effectively on the fibres of Nγ via (abusing notation) an element γ ∈
SO(2kγ). Let γ̃ ∈ Spin(2kγ) denote a lift of γ under the natural projection
Spin(2kγ) → SO(2kγ). If the orbifold B is also spin, such a lift is part of
the orbifold spin structure. Otherwise, the lift γ̃ is determined uniquely up
to sign. Consequently, the inertia orbifold ΛB has a natural double cover

Λ̃B = {(b, [γ̃]) | γ̃ is a lift of γ} → ΛB,
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where orbifold charts for Λ̃B are constructed as for ΛB and given by

ψ[γ̃] : ZΓ(γ)\V γ → ψ̃(V γ)× {[γ̃]} ⊆ Λ̃B.

In generalisations of index theorems to the orbifold setting, one has to
take into account the local structure of the orbifold, that is, the action of the
isotropy groups. This is achieved by defining equivariant forms. Recall that,
for a Hermitian vector bundle E with connection ∇E and equipped with a
parallel, fibre-preserving automorphism g, the equivariant Chern character
is classically defined as

chg(E,∇E) = tr

(
g exp

(
−ΩE

2πi

))
.

By the discussion above, the normal bundle Nγ → V γ is spin, hence
has a principal Spin(2kγ)-bundle Spin(Nγ) → V γ associated to it. There
is a unique (complex) Spin(2kγ)-representation S of (complex) dimension

2kγ , the spinor module, which decomposes into irreducible, inequivalent
Spin(2kγ)-representations S± of dimension 2kγ−1 such that S = S+ ⊕ S−.
Thus, there is a complex (local) spinor bundle S(Nγ)→ V γ , where

S(Nγ) = Spin(Nγ)×Spin(2kγ) S

and, given a local orientation of Nγ , a natural splitting S(Nγ) = S+(Nγ)⊕
S−(Nγ) of the spinor bundle, where S±(Nγ) = Spin(Nγ)×Spin(2kγ) S

±.

The Levi-Civita connection on V induces a connection∇Nγ onNγ , hence a

connection∇S(Nγ) on the spinor bundle. For a choice of lift γ̃ and compatible
orientations on V γ and Nγ , it follows from [4, Sec. 6.4] that the equivariant

Chern character for (S(Nγ),∇S(Nγ)) is given by

chγ̃(S(Nγ),∇S(Nγ)) = chγ̃(S+(Nγ)− S−(Nγ),∇S(Nγ))(1.6)

= ±ikγ det

(
idNγ − γ exp

(
−(∇Nγ )2

2πi

))1
2

.

Notice that, since 1 is not an eigenvalue of the action of γ on Nγ , the identity

(1.6) yields that the form chγ̃(S+(Nγ)−S−(Nγ),∇S(Nγ)) on V γ is invertible.

The equivariant Â-form on V γ is now defined as

(1.7) Âγ̃(TV,∇TV ) = (−1)kγ
Â(TV γ ,∇TV γ )

chγ̃(S+(Nγ)− S−(Nγ),∇S(Nγ))
,

where the Â-form for (TV γ ,∇TV γ ) is given by

Â(TV γ ,∇TV γ ) = det

(
1

4πiΩ
TV γ

sinh
(

1
4πiΩ

TV γ
))1

2

.

Remark 1.7. The equivariant form Âγ̃(TV,∇TV ) has the following prop-
erties:

(a) Âγ̃(TV,∇TV ) depends only on the conjugacy class of γ̃.
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(b) Choosing the other lift −γ̃ instead of γ̃ leads to a change of sign in

Âγ̃(TV,∇TV ).
(c) If the orientation of TV |V γ is fixed, then changing the orientation

of V γ leads to a change in the orientation of Nγ and, hence, the
subbundles S+(Nγ) and S−(Nγ) being swapped. This in turn yields

a sign change in Âγ̃(TV,∇TV ). On the other hand, the integral of

Âγ̃(TV,∇TV ) over the corresponding stratum of ΛB depends only
on the orientation of V , not on that of V γ .

The oriented orbifold B admits an open cover by orbifold charts com-
patible with its orientation. The induced open cover of the inertia orbifold
ΛB by orbifold charts is compatible with the induced orientation on ΛB.
Hence, the local equivariant forms Âγ̃(TV,∇TV ) can be used to construct a

well-defined form ÂΛB(TB,∇TB) on ΛB such that

(1.8) (ψ[γ] ◦ q̄)∗ÂΛB(TB,∇TB) =
1

m(γ)
Âγ̃(TV,∇TV ),

where q̄ : V γ → ZΓ(γ)\V γ denotes the quotient map and m(γ) is the mul-
tiplicity of the point (ψ(0), [γ]) ∈ ΛB.

In a similar way, one can define a generalisation L̂ΛB(TB,∇TB) of the L̂-

class (i.e. the rescaled L-class) on the inertia orbifold ΛB, where the L̂-form
for (TV γ ,∇TV γ ) is given as usual by

L̂(TV γ ,∇TV γ ) = Â(TV γ ,∇TV γ ) ch(S(V γ),∇S(V γ))(1.9)

= 2(dimV γ−degγ)/2L(TV γ ,∇TV γ ),

where degγ : Ω∗(V γ)→ N ∪ {0} denotes the map taking a form ξ ∈ Ω∗(V γ)
to its degree deg(ξ) ∈ N ∪ {0}, often called the number operator.

In particular, on the component B ⊆ ΛB the forms ÂΛB(TB,∇TB)

and L̂ΛB(TB,∇TB) on ΛB coincide with the usual version of the forms

Â(TB,∇TB) and L̂(TB,∇TB) on B, defined via charts for B.

1.4. Adiabatic limits.

The computation of the Eells-Kuiper invariant µ(M) of a 7-manifold M
via (1.3) sometimes becomes more tractable if M is the total space of a fibre
bundle. As established in [26], the same is true in the more general setting
of Seifert fibrations.

Given the intended application of these methods to the manifolds M7
a,b,

assume from now on that the following condition is satisfied:

(A)

The 7-dimensional Riemannian manifold (M, gM ) is 2-connnected,
smooth, closed and oriented with H4(M ;Z) finite, and there is a Rie-
mannian submersion π : (M, gM ) → (B, gB) onto a 4-dimensional
Riemannian orbifold (B, gB) with (generic) fibre F = S3.
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By blowing up the base (B, gB) by a factor ε−2, ε > 0, one obtains a
family of metrics gM,ε on M with the same horizontal sub-bundle H and
given by

(1.10) gM,ε|V = gM |V and gM,ε|H = ε−2gM |H.
Of course, up to a global rescaling, this is equivalent to the often-used trick
of shrinking the fibres by a factor ε2. The limit of any geometric object on
(M, gM,ε) as ε → 0 is called the adiabatic limit. In particular, it is natural
to investigate the adiabatic limit of geometric invariants; for example, the
η-invariants of a family of Dirac operators DM,ε compatible with the metrics
gM,ε.

In order to understand the adiabatic limit of the formula (1.3) for the
Eells-Kuiper invariant, it is necessary to establish quite a bit of notation. A
more complete and more general treatment can be found in [26].

Let e1, . . . , e4 and f1, . . . , f3 denote local orthonormal frames for TB and
the vertical sub-bundle V respectively. Let ṽ ∈ H denote the horizonal lift
of a vector field v ∈ TB. A local orthonormal frame for the metric gM,ε

defined in (1.10) is, therefore, given by

(1.11) e1,ε = f1, . . . , e3,ε = f3, e4,ε = εẽ1, . . . , e7,ε = εẽ4.

According to Definition 1.6 of [26], an adiabatic family of Dirac bundles
for the Riemannian submersion π : (M, gM ) → (B, gB) in (A) consists of
a Hermitian vector bundle (E, gE) over (M, gM ), a Clifford multiplication
c : TM → End(E), and a family (∇E,ε)ε>0 of connections such that:

(a) For all ε > 0, the quadruple (E,∇E,ε, gE , cε) is a Dirac bundle on
(M, gM,ε), where the Clifford multiplication cε is given by cε(ei,ε) =
c(ei,1).

(b) The connection ∇E,ε is analytic in ε around ε = 0.
(c) The kernels of the fibrewise Dirac operators

DS3 =

3∑
i=1

c(fi)∇E,0fi

acting on E|π−1(b), b ∈ B, form a vector orbi-bundle KD → B.

The associated family (DM,ε)ε>0, with

DM,ε =

7∑
i=1

cε(ei,ε)∇E,εei,ε

is called an adiabatic family of Dirac operators for π.
By Condition (b) above, there exists an ε0 > 0 such that the dimension of

the kernel of DM,ε is constant for all ε ∈ (0, ε0). Furthermore, by Theorem
1.5 of [13] (cf. [26, Sec. 2.g]), there are finitely many very small eigenvalues
of DM,ε, that is, eigenvalues λν(ε), counted with multiplicity, such that
λν(ε) = O(ε2) and λν(ε) 6= 0, for all ε ∈ (0, ε0).
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Associated to the fibrewise Dirac operators DS3 there is an orbifold η-
form, denoted ηΛB(DS3) by an abuse of notation. Although ηΛB(DS3) can

be defined in a similar way to the forms ÂΛB and L̂ΛB and, consequently,
depends only on the conjugacy class and sign of the (lifted) isotropy ele-
ments, the usual analytic definition will not be used in the computations to
follow, hence will be omitted. Instead, assume that the fibres of the Rie-
mannian submersion π : (M, gM )→ (B, gB) in (A) are totally geodesic and
recall that the isotropy groups act freely on the S3 fibres of the Seifert fibra-
tion M → B. Moreover, let W → B denote the rank-4 vector orbi-bundle
associated to M → B.

The horizontal sub-bundle H on M determines a unique fibre-bundle con-
nection 1-form ωπ ∈ Hom(TM,V), which acts as the identity on the vertical
sub-bundle V and vanishes on H. Let ∇W be the connection induced on W
by ωπ, and let RW be its curvature.

As before, let ψ[γ] be an orbifold chart around (b, [γ]) ∈ ΛB and q̄ : V γ →
ZΓ(γ)\V γ be the quotient map. Finally, let RWγ denote the restriction of

the curvature RW of ωπ to the bundle given by the restriction of TM to
π−1((ψ[γ] ◦ q̄)(V γ)) ⊆M .

Then, by exploiting [24, Thm. 1.14, Thm. 3.9] and [26, Thm. 1.11], for
the case of the spin-Dirac operator D, define ηΛB(DS3) to be the form on
ΛB such that

(1.12) (ψ[γ] ◦ q̄)∗ηΛB(DS3) =

{
− 1

27·3·5(ψ̃)∗e(W,∇W ), γ = id,

1
2ηγ exp(−RWγ /2πi)(DS3), γ 6= id,

and, for the case of the odd signature operator B, define ηΛB(BS3) to be
the form on ΛB such that

(1.13) (ψ[γ] ◦ q̄)∗ηΛB(BS3) =

{
− 1

22·3·5(ψ̃)∗e(W,∇W ), γ = id,

1
2ηγ exp(−RWγ /2πi)(BS3), γ 6= id.

In particular, the form ηγ exp(−RWγ /2πi)(DS3) is the classical equivariant η-

form as defined by Donnelly [17] and, in the current special situation of
totally geodesic S3 fibres, formulae to compute this form for the operators
DS3 and BS3 can be found in [32] and [2, Proof of Prop. 2.12] respectively.

In the expression given in Theorem 0.1 of [26] for the limit of an adi-
abatic family of Dirac operators, there is a term involving the η-invariant
of a self-adjoint operator Deff

B , called the effective horizontal operator. By

definition, Deff
B is trivial whenever the fibrewise Dirac operators DS3 are in-

vertible. Moreover, if the fibrewise Dirac operators DS3 are invertible, then
DM,ε is invertible for sufficiently small ε > 0 and, hence, there are no very
small eigenvalues. In the case of the spin-Dirac operator D, the Weizenböck
formula for its fibrewise Dirac operator DS3 ensures invertibility whenever
the fibres have positive scalar curvature.

On the other hand, since the orbifold B is 4-dimensional, Corollary 1.10
of [26] ensures that for the odd signature operator B one has η(Beff

B ) = 0.
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Additionally, by the work of Dai [13] (cf. [42]), the very small eigenvalues of
BM,ε are related to the higher differentials of a natural differentiable Leray-
Serre spectral sequence (Er, dr) for M → B. Indeed, given that M is a
2-connected 7-manifold, it follows that

∑
ν sign(λν(ε)) = τε, where τε ∈ Z is

the signature of the quadratic form on E0,3
4 given by

(1.14) 〈α, β〉 = (α · d4β)[M ].

In light of these remarks, it is now possible to write down the adiabatic
limits of the families DM,ε and BM,ε. Let∇TB be the Levi-Civita connection
for the orbifold (B, gB).

Theorem 1.8 ([26, Thm 0.1, Cor. 1.10]). If (M, gM ) is a Riemannian 7-
manifold satisfying Condition (A), such that the fibres of the Riemannian
submersion π : (M, gM ) → (B, gB) are totally geodesic and have positive
scalar curvature, then

lim
ε→0

η(DM,ε) =

∫
ΛB

ÂΛB(TB,∇TB) 2 ηΛB(DS3).(1.15)

lim
ε→0

η(BM,ε) =

∫
ΛB

L̂ΛB(TB,∇TB) 2 ηΛB(BS3) + lim
ε→0

τε.(1.16)

In Section 2.a of [26], it has been shown that the adiabatic limit of the
family ∇TM,ε of Levi-Civita connections of the metrics gM,ε is given by

lim
ε→0
∇TM,ε = ∇V ⊕ π∗∇TB,

where ∇V denotes the connection on the vertical bundle V induced by ∇TM .
Using this, it can be shown that the adiabatic limit of the Pontrjagin forms
p1(TM,∇TM,ε) is given by

(1.17) lim
ε→0

p1(TM,∇TM,ε) = p1(V,∇V) + π∗p1(TB,∇TB),

where the Pontrjagin forms on the right-hand side of (1.17) are those ob-
tained from the respective curvature 2-forms of the bundles. As H4

dR(M) =

0, there are 3-forms p̂1(V,∇V) and p̂1(π∗TB,∇TB) on M such that

dp̂1(V,∇V) = p1(V,∇V),

dp̂1(π∗TB,∇TB) = p1(π∗TB,∇TB) = π∗p1(TB,∇TB).

From the variation formula for Chern-Weil classes, it then follows that

lim
ε→0

∫
M
p1(TM,∇TM,ε)∧ p̂1(TM,∇TM,ε)

(1.18)

=

∫
M

(
p1(V,∇V) + π∗p1(TB,∇TB)

)
∧
(
p̂1(V,∇V) + p̂1(π∗TB,∇TB)

)
.

Finally, if the fibres of π : (M, gM )→ (B, gB) are totally geodesic and have
positive scalar curvature, recall that (M, gM,ε) has positive scalar curvature
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for ε sufficiently small. Hence, the Weizenböck formula applied to DM,ε

ensures that h(DM,ε) = dim Ker(DM,ε) = 0 for ε sufficiently small. This
fact, together with Theorem 1.8 and (1.18), yields another expression for
the Eells-Kuiper invariant.

Corollary 1.9. If (M, gM ) is a Riemannian 7-manifold satisfying Condition
(A), such that the fibres of the Riemannian submersion π : (M, gM ) →
(B, gB) are totally geodesic and have positive scalar curvature, then

µ(M) =
1

2

∫
ΛB

ÂΛB(TB,∇TB) 2 ηΛB(DS3)

+
1

25 ·7

∫
ΛB

L̂ΛB(TB,∇TB) 2 ηΛB(BS3)

+
1

25 ·7
lim
ε→0

τε

− 1

27 ·7

∫
M

(
p1(V,∇V) + π∗p1(TB,∇TB)

)
∧
(
p̂1(V,∇V) + p̂1(π∗TB,∇TB)

)
∈ Q/Z.

The formula in Corollary 1.9 will be used in Section 3 to compute the
Eells-Kuiper invariant given in Theorem C.

2. Construction, curvature and cohomology

2.1. The Grove-Ziller construction.

In order to construct the manifolds M7
a,b, recall first the method employed

by Grove and Ziller [31] in their construction of metrics with non-negative
sectional curvature on all S3-bundles over S4. There is an effective action of
SO(3) on S4 of cohomogeneity one, such that the double cover S3 of SO(3)
acts (Z2-)ineffectively on S4 with cohomogeneity one and group diagram:

S3

Pin(2) Pjn(2)

Q

where S3 is taken to be the group Sp(1) of unit quaternions and

Q = {±1,±i,±j,±k},

Pin(2) = {eiθ | θ ∈ R} ∪ {eiθj | θ ∈ R},

Pjn(2) = {ejθ | θ ∈ R} ∪ {i ejθ | θ ∈ R}.
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The notation Pjn(2) is intended to be suggestive since, clearly, the groups
Pin(2) and Pjn(2) are isomorphic, the only difference being that the roles
of i and j are switched. In particular, the singular orbits S3/Pin(2) and
S3/Pjn(2) are both diffeomorphic to RP2 = SO(3)/O(2) and are of codi-
mension 2 in S4.

Now, for a2, a3, b2, b3 ∈ Z with ai, bi ≡ 1 mod 4, i = 2, 3, consider the
homomorphisms

ϕ− : Pin(2)→ S3 × S3 and ϕ+ : Pjn(2)→ S3 × S3

with images

Im(ϕ−) = {(eia2θ, eia3θ) | θ ∈ R} ∪ {(eia2θj, eia3θj) | θ ∈ R},

Im(ϕ+) = {(ejb2θ, ejb3θ) | θ ∈ R} ∪ {(i ejb2θ, i ejb3θ) | θ ∈ R}

in S3 × S3 respectively. Let a = (1, a2, a3) and b = (1, b2, b3). Then, as
described in Subsection 1.1, the homomorphisms ϕ± give rise to a manifold
P 10
a,b admitting a (Z2-ineffective) cohomogeneity-one action by S3 × S3 × S3

with group diagram

(2.1) S3 × S3 × S3

Pin(2)a Pjn(2)b

∆Q

where the principal isotropy group ∆Q denotes the diagonal embedding of
Q into S3 × S3 × S3, and the singular isotropy groups are given by

Pin(2)a = {(eiθ, eia2θ, eia3θ) | θ ∈ R} ∪ {(eiθj, eia2θj, eia3θj) | θ ∈ R},

Pjn(2)b = {(ejθ, ejb2θ, ejb3θ) | θ ∈ R} ∪ {(i ejθ, i ejb2θ, i ejb3θ) | θ ∈ R}.
Note that the restriction ai, bi ≡ 1 mod 4 is to ensure only that ∆Q is a
subgroup of both Pin(2)a and Pjn(2)b. Furthermore, since the singular orbits

of the cohomogeneity-one action on P 10
a,b are of codimension 2, it follows from

Theorem 1.1 that each P 10
a,b admits an (S3 × S3 × S3)-invariant metric gGZ

of non-negative sectional curvature.
By construction, the action of the subgroup {1}×S3×S3 on P 10

a,b is free,

meaning that P 10
a,b is the total space of a principal (S3×S3)-bundle over S4.

Grove and Ziller [31] showed that all principal (S3×S3)-bundles over S4 are
attained in this way.

Since every S3-bundle over S4 arises as an associated bundle to a principal
(S3 × S3)-bundle, the above construction also yields a metric with non-
negative curvature on all S3-bundles over S4. Indeed, by the associated
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bundle construction, an S3-bundle over S4 can be written as

(2.2) P 10
a,b ×S3×S3 S3 = P 10

a,b ×S3×S3 ((S3 × S3)/∆S3) .

If P 10
a,b is equipped with the Grove-Ziller metric gGZ as above and S3 with the

round metric, then the product metric on P 10
a,b×S3 is non-negatively curved.

By the Gray-O’Neill formula for Riemannian submersions, the quotient map

P 10
a,b × S3 → P 10

a,b ×S3×S3 S3

induces a metric of non-negative curvature on P 10
a,b ×S3×S3 S3, as claimed.

In particular, Grove and Ziller [31] conclude that all Milnor spheres admit
a metric with non-negative sectional curvature.

The point of departure from the Grove-Ziller construction just discussed
comes from the following

Key Observation. The subgroup {1}×∆S3 ⊆ {1}×S3×S3 acts freely on
(the left of) P 10

a,b such that the quotient ({1} × ∆S3)\P 10
a,b is diffeomorphic

to the corresponding S3-bundle over S4, namely, P 10
a,b ×S3×S3 S3.

This observation, also noted in Section 5 of [31], follows from (2.2) and
the simple, often-used fact that, if G is a Lie group acting on itself by left
multiplication and on an arbitrary manifold P via a left action ϕ : G×P →
P ; (g, p) 7→ g · p, then there is a diffeomorphism P ×G G → P induced by
the smooth map P × G → P ; (p, g) 7→ ϕ(g−1, p) = g−1 · p, where G acts
diagonally on P ×G. Now, if H ⊆ G is any closed subgroup, the action of
H on G via right multiplication commutes with the diagonal action of G on
P ×G, hence induces a diffeomorphism

P ×G (G/H)→ (P ×G G)/H → H\P .

2.2. The manifolds M7
a,b.

In light of the final observation above and the suggestive notation for a
and b used in the description of P 10

a,b, it is natural to investigate the action

of the group {1} ×∆S3 ⊆ S3 × S3 × S3 in a more general setting, namely,
when the first entry of either or both of the triples a and b is different to 1.
For the sake of notation, from now on let G = S3 × S3 × S3.

For a = (a1, a2, a3), b = (b1, b2, b3) ∈ Z3, with ai, bi ≡ 1 mod 4 and
gcd(a1, a2, a3) = gcd(b1, b2, b3) = 1, define P 10

a,b to be the cohomogeneity-one

G-manifold with group diagram (2.1), where the singular isotropy groups
are now given by

Pin(2)a = {(eia1θ, eia2θ, eia3θ) | θ ∈ R} ∪ {(eia1θj, eia2θj, eia3θj) | θ ∈ R},

Pjn(2)b = {(ejb1θ, ejb2θ, ejb3θ) | θ ∈ R} ∪ {(i ejb1θ, i ejb2θ, i ejb3θ) | θ ∈ R}.
The gcd conditions on the triples a and b ensure simply that the homomor-
phisms Pin(2)→ Pin(2)a and Pjn(2)→ Pjn(2)b into G are injective.
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Lemma 2.1. The subgroup {1}×∆S3 ⊆ G acts freely on P 10
a,b if and only if

(2.3) gcd(a1, a2 ± a3) = 1 and gcd(b1, b2 ± b3) = 1.

Proof. First, suppose that the action is free and that one of the gcd con-
ditions does not hold, say gcd(a1, a2 − a3) = d 6= 1. This implies that

e2πia1/d = 1 and e2πi(a2−a3)/d = 1 and, furthermore, since gcd(a1, a2, a3) = 1,
that d divides neither a2 nor a3.

As the action of {1} ×∆S3 on an G-orbit in P 10
a,b is via

(1, q, q) · [q1, q2, q3] = [q1, q q2, q q3],

it follows that the non-trivial element q = (1, e2πia2/d, e2πia2/d) ∈ {1}×∆S3

fixes the point [1, 1, 1] ∈ G/Pin(2)a ⊆ P 10
a,b. This contradicts the freeness

assumption, hence d = 1. The arguments for the other gcd conditions in
(2.3) are similar.

On the other hand, suppose now that gcd(a1, a2±a3) = 1 and gcd(b1, b2±
b3) = 1. Since the action of {1}×∆S3 on a principal orbit G/∆Q is clearly
free, it is sufficient to establish freeness of the action on the singular orbits.

Suppose that (1, q, q) ∈ {1} ×∆S3 lies in the isotropy subgroup of some
[q1, q2, q3] ∈ G/Pin(2)a, that is, that

(1, q, q) · [q1, q2, q3] = [q1, q q2, q q3] = [q1, q2, q3].

Therefore, there is some α = (α1, α2, α3) ∈ Pin(2)a such that

(2.4) (q1, q q2, q q3) = (q1 α1, q2 α2, q3 α3).

The identity q1 = q1 α1 implies that α1 = 1, hence that α lies in the identity
component of Pin(2)a. In other words, there is some θ ∈ R such that

α = (eia1θ, eia2θ, eia3θ) = (1, eia2θ, eia3θ). To conclude that the action on the
orbit G/Pin(2)a is free, it suffices now to show that eiθ = 1, because it can
then be deduced from (2.4) that q = 1.

From (2.4) it is clear that q−1
2 q3 = α−1

2 q−1
2 q3 α3. As q−1

2 q3 ∈ S3, there

exist x, y ∈ C with |x|2 + |y|2 = 1 such that q−1
2 q3 = x+ yj. Hence,

x+ yj = α−1
2 (x+ y j)α3 = ei(a3−a2)θx+ ei(a2+a3)θyj.

Since x and y cannot vanish simultaneously, it follows that either ei(a2−a3)θ =
1 or ei(a2+a3)θ = 1. Together with eia1θ = 1 and gcd(a1, a2 ± a3) = 1, one
concludes that eiθ = 1, as claimed.

The argument for freeness along the other singular orbit is analogous. �

By Lemma 2.1, whenever gcd(a1, a2 ± a3) = 1 and gcd(b1, b2 ± b3) = 1,
there is a smooth, 7-dimensional manifold M7

a,b defined via

M7
a,b = ({1} ×∆S3)\P 10

a,b .

Lemma 2.2. The manifold M7
a,b admits an SO(3)-invariant Riemannian

metric of non-negative sectional curvature.
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Proof. By Theorem 1.1, the cohomogeneity-one manifolds P 10
a,b admit a G-

invariant metric gGZ of non-negative curvature. Since the free action by
{1} × ∆S3 ⊆ G is isometric, it follows from the Gray-O’Neill formula
for Riemannian submersions that gGZ induces a metric ǧ of non-negative
curvature on the quotient M7

a,b. Moreover, the action of the subgroup

S3 × {(1, 1)} ⊆ G on P 10
a,b is isometric and commutes with the action of

{1} ×∆S3, hence descends to an isometric S3 action on (M7
a,b, ǧ) with inef-

fective kernel {(±1, 1, 1)}. The effective action on (M7
a,b, ǧ) is, therefore, an

SO(3) action. �

For the topological computations to follow, it is important to remark
that, by construction and just as for a cohomogeneity-one manifold, there
is a codimension-one singular Riemannian foliation of M7

a,b by biquotients,

such that the leaf space is [−1, 1] and M7
a,b decomposes as a union of two-

dimensional disk bundles over the two singular leaves, glued along their
common boundary, a regular leaf. This follows easily from the Slice Theorem
applied to P 10

a,b. Indeed, the action of {1} × ∆S3 preserves the G-orbits of

P 10
a,b, and the image of an orbit G/U , U ∈ {∆Q,Pin(2)a,Pjn(2)b}, is a leaf

given by

(2.5) ({1} ×∆S3)\G/U ∼= (S3 × S3)//U ,

where this diffeomorphism is induced by

(q1 u1, q2 u2, q3 u3) 7→ (q1 u1, u
−1
2 q−1

2 q3 u3),

for (q1, q2, q3) ∈ G and (u1, u2, u3) ∈ U . Viewing M7
a,b in this way, the gcd

conditions (2.3) required in the definition are simply the conditions ensuring
that each of the biquotient actions on S3 × S3 is free.

In contrast to the Grove-Ziller situation, where a1 = b1 = 1 and the
manifold M7

a,b is naturally the total space of a fibre bundle, the quotient

({1} × S3 × S3)\P 10
a,b is not a manifold, in general.

Lemma 2.3. The action by the subgroup {1} × S3 × S3 ⊆ G has trivial
isotropy at points on principal orbits, while the isotropy group at a point
[q1, q2, q3] on a singular orbit, that is, on either G/Pin(2)a or G/Pjn(2)b, is
given by

Z|a1| ∼= {(1, q2 ξ
a2 q̄2, q3 ξ

a3 q̄3) | ξ ∈ S1
i ⊆ Pin(2), ξa1 = 1},

or Z|b1| ∼= {(1, q2 ξ
b2 q̄2, q3 ξ

b3 q̄3) | ξ ∈ S1
j ⊆ Pjn(2), ξb1 = 1}

respectively, where S1
i = {eiθ | θ ∈ R} and S1

j = {ejθ | θ ∈ R}.
Hence, for (a1, b1) 6= (1, 1) the quotient

B4
a,b = ({1} × S3 × S3)\P 10

a,b

is a 4-dimensional, smooth orbifold. In this case, the singular set consists
of at most two copies, RP2

±, of RP2 for which the normal bundles in B4
a,b
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have cone angles 2π/|a1| and 2π/|b1| respectively. Moreover, the projection
π : M7

a,b → B4
a,b is a Seifert fibration with fibre S3 ∼= (S3 × S3)/∆S3.

Orbifold charts can be chosen on B4
a,b such that the action of the corre-

sponding isotropy group at a point of RP2
± is trivial tangent to RP2

±, equiv-

alent to the action generated by multiplication by e8πi/a1 normal to RP2
−,

and generated by multiplication by e8πi/b1 normal to RP2
+.

The actions of the isotropy groups on the fibre S3 are equivalent to

(ξ, q) 7→ ξa2q ξ−a3 and (ξ, q) 7→ ξb2q ξ−b3 ,

where q ∈ S3 and ξ ∈ Z|a1|, ξ ∈ Z|b1| respectively.

Proof. As in the proof of Lemma 2.1, it suffices to restrict attention to the
{1} × S3 × S3 action on the G-orbits in P 10

a,b. It is a simple exercise to show

that the action on the principal orbits is free.
Consider the action of (1, x2, x3) ∈ {1} × S3 × S3 on the singular orbit

G/Pin(2)a. If

(1, x2, x3) · [q1, q2, q3] = [q1, x2 q2, x3 q3] = [q1, q2, q3],

then there is some α = (α1, α2, α3) ∈ Pin(2)a such that

(q1, x2 q2, x3 q3) = (q1 α1, q2 α2, q3 α3).

Therefore, α1 = 1, x2 = q2 α2 q̄2 and x3 = q3 α3 q̄3. The condition α1 = 1
ensures that α is in the identity component of Pin(2)a, hence 1 = α1 = eia1θ.

In other words, eiθ ∈ S1
i is an ath

1 root of unity. The description of the
isotropy group at [q1, q2, q3] now follows from the definition of Pin(2)a and
the fact that all entries in a are 1 mod 4.

An entirely analogous argument yields the isotropy group at points on
G/Pjn(2)b.

When (a1, b1) 6= (1, 1), the non-trivial isotropy groups of the {1}×S3×S3

action are finite, hence the action is almost free. The quotient of a smooth
manifold by an almost-free action is always a smooth orbifold.

The singular set of the orbifold B4
a,b consists of the image of those points of

P 10
a,b at which there is non-trivial isotropy, namely, the image of the singular

orbits G/Pin(2)a and G/Pjn(2)b.

Since the {1}×S3×S3 action on G commutes with the action of Pin(2)a,
it follows that

({1} × S3 × S3)\(G/Pin(2)a) ∼= (({1} × S3 × S3)\G)/Pin(2)a
∼= S3/Pin(2)a1 ,

where Pin(2)a1 = {eia1θ | θ ∈ R}∪{eia1θj | θ ∈ R}. The action of Pin(2)a1 on
S3 is free up to the ineffective kernel Γ ⊆ {ξ ∈ S1

i ⊆ Pin(2) | ξa1 = 1} ∼= Z|a1|.
Since S1

i /Γ
∼= S1, the group Pin(2)a1/Γ

∼= Pin(2) acts freely on S3 with
quotient RP2

−.
Notice that the ({1} × S3 × S3)-orbit of a point [q1, q2, q3] ∈ G/Pin(2)a

contains the point [q1, 1, 1]. For ε > 0 sufficiently small, the intersection
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of the set {[x, 1, 1] ∈ G/Pin(2)a | x ∈ S3} ⊆ G/Pin(2)a with the ε-ball

Bε([q1, 1, 1]) ⊆ P 10
a,b projects diffeomorphically onto a chart of RP2

−. As the

isotropy group Z|a1| at [q1, 1, 1] fixes all nearby points of the form [q, 1, 1] ∈
G/Pin(2)a, the isotropy representation can be non-trivial only on the normal
2-disk to G/Pin(2)a ⊆ P 10

a,b at [q1, 1, 1]. However, the action of {1}×S3×S3

on P 10
a,b is free away from the singular orbits, hence the Z|a1| action on the

normal ε-circle at [q1, 1, 1] must be free. Therefore, the normal space at any
point in RP2

− ⊆ B4
a,b must have cone angle 2π/|a1|, as it is the quotient of

the normal 2-disk to G/Pin(2)a by the Z|a1| isotropy action.
On the other hand, since the restriction to the unit circle of the Pin(2)a

slice action on the normal 2-disk at [q1, 1, 1] ∈ G/Pin(2)a has isotropy ∆Q,
it must be equivalent to the action

Pin(2)×D2 → D2 ; (α, z) 7→

{
e4iθz, α = eiθ

e4iθz̄, α = eiθj

of Pin(2) on the standard 2-disk D2 ⊆ C. Therefore, the free Z|a1|-isotropy
action on the normal disk at [q1, 1, 1] ∈ G/Pin(2)a is generated by multipli-

cation by e8πi/a1 , as claimed.
The action of Z|a1| on the fibre S3 follows from the description (2.5) of

the leaves of M7
a,b as biquotients.

Similar arguments deliver the corresponding conclusions for the normal
bundle to the image RP2

+ ⊆ B4
a,b of G/Pjn(2)b.

The fact that π : M7
a,b → B4

a,b is a Seifert fibration with fibre S3 follows

immediately from Remark 1.5. �

Note, in particular, that the orbifold B4
a,b inherits an (ineffective) action

of S3 of cohomogeneity one with principal isotropy subgroup Q and singular
isotropy groups Pin(2)a1 and Pjn(2)b1 .

Corollary 2.4 ([26, Prop. 4.1]). The inertia orbifold ΛB associated to B4
a,b

is described by a disjoint union

ΛB = B4
a,b t

(
S2
− ×

{
1, . . . ,

|a1| − 1

2

})
t
(

S2
+ ×

{
1, . . . ,

|b1| − 1

2

})
,

where S2
± denotes the orientable double cover of RP2

± respectively. If b ∈
RP2

± ⊆ B4
a,b and γ± denotes the generator of the isotropy group at b, then

the pre-images of b in the twisted sector S2
±×{s} are given by the two points

(b, [γ`±]) ∈ ΛB, where ` ∈
{

1, . . . , |c|−1
2

}
with ` ≡ ±s mod c, for c = a1 or

c = b1 respectively.
Moreover, the twisted sectors S2

±×{s} have multiplicity m(γs−) = |a1| and
m(γs+) = |b1| respectively.

Proof. The four-dimensional component of ΛB consists, by definition, of all
points fixed by the the identity in {1} × S3 × S3.
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For the remaining components, it suffices to find a curve in S2
± × {s}

joining (b, [γs±]) with (b, [(γs±)−1]), that is, a loop in RP2
± along which the

generator of the isotropy group at b changes from γ± to γ−1
± . Indeed, this is

the only non-trivial change that can occur. Consequently, there can be only
|c|−1

2 additional components for each of c = a1 and c = b1. Without loss of
generality, assume c = a1.

Consider the curve g : [0, π2 ] → S3 given by g(t) = ejt, with endpoints

g(0) = 1, g(π2 ) = j ∈ Pin(2). Let b̃ : [0, π2 ] → G/Pin(2)a be the loop in

G/Pin(2)a defined by b̃(t) = [q1g(t), g(t), g(t)], where b(π2 ) = [q1j, j, j] =

[q1, 1, 1] = b̃(0). Since g(t) 6∈ Pin(2) for t ∈ (0, π2 ), the projection of b̃ to

RP2
− is also a non-trivial loop. By Lemma 2.3, passing around this loop

yields a path γ−(t) = g(t)γ−g(t) of generators of the isotropy groups at b̃(t),
with endpoints γ−(0) = γ− and γ−(π2 ) = γ−1

− .
Finally, the multiplicity statements follow directly from the definition

(1.5), together with the facts that the isotropy groups are abelian and, via
Lemma 2.3, act trivially on local charts of RP2

±. �

2.3. The cohomology of M7
a,b.

Unfortunately, Lemma 2.3 implies that the manifold M7
a,b is, in general,

not the total space of an S3-bundle over S4 in any obvious way, if at all. In
[31, Prop. 3.3], being associated to a principal bundle over S4, with total
space of cohomogeneity one, was an important part of the authors’ cohomol-
ogy computations. On the other hand, in [30, Sec. 13] the cohomology rings
for a particular family of 7-dimensional cohomogeneity-one manifolds was
computed. Although these manifolds are foliated by homogeneous spaces
instead of biquotients, they strongly resemble the manifolds M7

a,b. In order

to compute the cohomology ring of the manifolds M7
a,b, ideas from both [30]

and [31] will be used, although it is necessary to work quite a bit harder.
It will be useful in the sequel to consider the following manifold: Given

P 10
a,b, let P̂ 13

a,b be the cohomogeneity-one (G × S3)-manifold given (as in

Subsection 1.1) by the homomorphisms ϕ− : Pin(2) → S3 ; α 7→ α, and
ϕ+ : Pjn(2)→ S3 ; β 7→ β. In other words, and in analogy with the descrip-

tion of P 10
a,b, the singular isotropy groups (∼= Pin(2)) for P̂ 13

a,b are described

by the 4-tuples (a1, a2, a3, 1) and (b1, b2, b3, 1) respectively.
It is clear that, by construction, the action of the subgroup {(1, 1, 1)} ×

S3 ⊆ G× S3 is free, inducing a principal S3-bundle

S3 → P̂ 13
a,b → P 10

a,b .(2.6)
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Notice, however, that the action of G × {1} ⊆ G × S3 on P̂ 13
a,b is also free,

and that the quotient is S4. Therefore, P̂ 13
a,b is, in addition, the total space

of a principal bundle

G→ P̂ 13
a,b → S4.(2.7)

Lemma 2.5. The manifolds P 10
a,b and M7

a,b are 2-connected.

Proof. From the long exact homotopy sequence for the bundle (2.6), P 10
a,b is

2-connected if and only if P̂ 13
a,b is. However, P̂ 13

a,b is 2-connected because of

(2.7), since both G and S4 are 2-connected.
As P 10

a,b is a principal S3-bundle over M7
a,b, it follows from the correspond-

ing long exact homotopy sequence that M7
a,b is 2-connected. �

In the argument to compute the cohomology of M7
a,b, it will be im-

portant to understand the cohomology of the singular (biquotient) leaves
(S3 × S3)//Pin(2)a and (S3 × S3)//Pjn(2)b.

Lemma 2.6. If X = (S3 × S3)//K, K ∈ {Pin(2)a,Pjn(2)b} is a singular

leaf of M7
a,b, then X has the same cohomology groups as S3 ×RP2, that is,

Hj(X;Z) =


Z, j = 0, 3,

0, j = 1, 4,

Z2, j = 2, 5.

Moreover, if X̃ = (S3 × S3)//Ko, where Ko ∼= S1 is the identity component

of K, let ρ : X̃ → X be the projection given by taking the quotient by the free
action of K/Ko ∼= Z2. Then the two-fold covering ρ induces an isomorphism

ρ∗ : H3(X;Z)→ H3(X̃;Z).

Proof. Consider again the cohomogeneity-one (G × S3)-manifold P̂ 13
a,b. By

construction, a singular orbit Y of P̂ 13
a,b is a principal (S3 × S3)-bundle over

a singular leaf X = (S3×S3)//K of M7
a,b, where the principal S3×S3 action

is that of the subgroup {1} × ∆S3 × S3 ⊆ G × S3. On the other hand, Y
is also a principal G-bundle over a copy of RP2 ⊆ S4. Therefore, since the
classifying space BG = (HP∞)3 for principal G-bundles is 3-connected, Y is
trivial as a principal G-bundle, that is, Y is G-equivariantly diffeomorphic
to G×RP2.

Associated to the principal bundle S3 × S3 → Y
σ−→ X, there is a homo-

topy fibration

(2.8) Y
σ−→ X → BS3×S3 = HP∞ ×HP∞ .

The identities H0(X;Z) = Z, H1(X;Z) = 0 and H2(X;Z) = Z2 follow
immediately from the corresponding Serre spectral sequence (Er, dr). From
the differential

d4 : E0,3
4 = H3(Y ;Z) = Z3 → E4,0

4 = H4(BS3×S3 ;Z) = Z2
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on the E4 page, one obtains

H3(X;Z) ∼= Ker(d4 : E0,3
4 → E4,0

4 ) ,

H4(X;Z) ∼= H4(BS3×S3 ;Z))/ Im(d4 : E0,3
4 → E4,0

4 ) .

As d4 : E0,3
4 → E4,0

4 cannot be injective, it follows that H3(X;Z) = Zb3(X),
for b3(X) ∈ {1, 2, 3}.

On the other hand, consider the two-fold covering

ρ : X̃ = (S3 × S3)//Ko → X = (S3 × S3)//K .

Since Ko ∼= S1, the Gysin sequence for the fibration

Ko → S3 × S3 → X̃

yields H3(X̃;Z) = Z. In fact, although it is not important here, X̃ is always
diffeomorphic to S3 × S2 (see [15, 22]). Therefore, from Smith Theory one
obtains

H3(X;Q) ∼= H3(X̃;Q)Z2 ∼= QZ2 .

This clearly implies that b3(X) 6 1, hence, that H3(X;Z) = Z.

Moreover, since Ker(d4 : E0,3
4 → E4,0

4 ) ∼= Z, it is apparent that there are
generators x1, x2, x3 ∈ H3(Y ;Z) = Z3 and α1, α2 ∈ H4(BS3×S3 ;Z) = Z2

such that

d4(x1) = r1 α1 + s1 α2 ,

d4(x2) = r2 α1 + s2 α2 ,(2.9)

d4(x3) = 0,

for some r1, r2, s1, s2 ∈ Z with C = det ( r1 r2s1 s2 ) 6= 0. In particular, since

H5(X;Z) = Ker(d4 : E0,5
4 → E4,2

4 ), it is easy to deduce from (2.9) that
H5(X;Z) = Z2.

The fact that H4(X;Z) = 0 will follow from the surjectivity of the differ-

ential d4 : E0,3
4 → E4,0

4 , which is equivalent to the identity C = ±1. As X is
a five-dimensional manifold, it is clear that H8(X;Z) = 0. In particular, no

terms on the diagonal Ek,l4 , k + l = 8, of the spectral sequence for (2.8) can

survive to the E∞ page. Therefore, as all other differentials with range E8,0
4

are trivial, the differential d4 : E4,3
4 → E8,0

4 is necessarily surjective. This is
the case if and only if the gcd of the determinants of all (3× 3)-minors of a

matrix representation of d4 : E4,3
4 → E8,0

4 is 1. This latter equivalence can
be proven by reducing such a matrix to Smith normal form via integral row
operations. With respect to the bases {xiαj | 1 6 i 6 3, 1 6 j 6 2} and

{α2
1, α1α2, α

2
2} for E4,3

4 and E8,0
4 respectively, the matrix representation of

d4 : E4,3
4 → E8,0

4 is r1 0 r2 0 0 0
s1 r1 s2 r2 0 0
0 s1 0 s2 0 0

 .
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Then the gcd of the determinants of all (3×3)-minors is divisible by C, from
which it follows that C = ±1, as desired.

It remains to show that ρ∗ : H3(X;Z) → H3(X̃;Z) is an isomorphism.
To this end, recall that, by definition, there is an injective homomorphism

K → G × S3, such that Y = (G × S3)/K. Define, therefore, ρ̂ : Ỹ → Y to
be the two-fold covering of Y induced by the free action of Z2

∼= K/Ko on

Ỹ = (G× S3)/Ko. By the same arguments as for Y , it follows that Ỹ is G-
equivariantly diffeomorphic to G×S2. Moreover, since the actions of G and
K/Ko commute, there is a commutative diagram of homotopy fibrations

Ỹ //

ρ̂

��

S2 //

��

BG

Bid

��
Y // RP2 // BG

Let (Ẽr, δ̃r) and (Er, δr) denote the Serre spectral sequences for the upper
and lower homotopy fibrations respectively. It is clear from these spectral
sequences that the differentials

δ4 : E0,3
4 = H3(Y ;Z)→ E4,0

4 = H4(BG;Z),

δ̃4 : Ẽ0,3
4 = H3(Ỹ ;Z)→ Ẽ4,0

4 = H4(BG;Z)

are isomorphisms. By naturality, one has

δ̃4 ◦ ρ̂∗ = (Bid)∗ ◦ δ4 : E0,3
4 → Ẽ4,0

4 ,

where (Bid)∗ : H∗(BG Z) → H∗(BG;Z) is the isomorphism induced by the
identity id : G→ G. Hence,

(2.10) ρ̂∗ = δ̃−1
4 ◦ (Bid)∗ ◦ δ4 : H3(Y ;Z) = E0,3

4 → Ẽ0,3
4 = H3(Ỹ ;Z)

is an isomorphism.

Furthermore, note that there is a principal (S3 × S3)-bundle σ̃ : Ỹ → X̃,

hence a homotopy fibration Ỹ
σ̃−→ X̃ → BS3×S3 , such that the following

diagram commutes:

(2.11) Ỹ
σ̃ //

ρ̂

��

X̃ //

ρ

��

BS3×S3

Bid

��
Y

σ // X // BS3×S3

Now, from the argument to determine H3(X;Z), it is clear that the edge
homomorphism σ∗ : H3(X;Z) = Z → H3(Y ;Z) = Z3 from the spectral
sequence (Er, dr) for the lower homotopy fibration is injective and maps the
generator x of H3(X;Z) to a generator of H3(Y ;Z).
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On the other hand, an identical argument for the Serre spectral sequence
of the upper homotopy fibration in (2.11) shows that the edge homomor-

phism σ̃∗ : H3(X̃;Z) = Z → H3(Ỹ ;Z) = Z3 is injective and maps the

generator x̃ of H3(X̃;Z) to a generator of H3(Ỹ ;Z).

Finally, suppose that ρ∗ : H3(X;Z)→ H3(X̃;Z) is given by ρ∗(x) = λ x̃,
for some λ ∈ Z. By the commutativity of (2.11),

λ σ̃∗(x̃) = σ̃∗(ρ∗(x)) = ρ̂∗(σ∗(x)).

Together with (2.10), this implies that λ σ̃∗(x̃) is a generator of H3(Ỹ ;Z).
However, σ̃∗(x̃) is itself a generator and σ̃∗ is injective, hence λ = ±1.
Therefore, ρ∗ is an isomorphism, as asserted. �

It is also possible to understand the topology of the regular (biquotient)
leaves (S3 × S3)//∆Q.

Lemma 2.7. The regular leaf (S3 × S3)//∆Q of M7
a,b is diffeomorphic to

(S3/Q)× S3 and has cohomology groups

Hj((S3 × S3)//∆Q;Z) =


Z, j = 0, 6,

0, j = 1, 4,

Z2 ⊕ Z2, j = 2, 5,

Z⊕ Z, j = 3.

Moreover, the homomorphism τ∗ : H3((S3 × S3)//∆Q;Z)→ H3(S3 × S3;Z)
induced by the eight-fold covering τ : S3 × S3 → (S3 × S3)//∆Q is injective
with image a lattice of index 8 in H3(S3 × S3;Z). Indeed, there is a basis
{x1, x2} of H3(S3 × S3;Z), such that Im(τ∗) is generated by 8x1 and x2.

Proof. Recall that the regular leaves of M7
a,b are quotients of principal orbits

of P 10
a,b, that is,

({1} ×∆S3)\G/∆Q ∼= (S3 × S3)//∆Q .

The subaction by {1} × S3 × S3 ⊆ G on a principal orbit G/∆Q of P 10
a,b is

free with quotient S3/Q, hence yields a principal bundle

S3 × S3 → G/∆Q→ S3/Q .

As the classifying space BS3×S3 is 3-connected, it follows that G/∆Q is
trivial as a principal (S3 × S3)-bundle. In other words, the orbit G/∆Q is
({1}×S3×S3)-equivariantly diffeomorphic to (S3/Q)×(S3×S3). Therefore,
the free subaction of {1} ×∆S3 ⊆ {1} × S3 × S3 yields a diffeomorphism

(S3 × S3)//∆Q ∼= (S3/Q)× (∆S3\(S3 × S3)) ∼= (S3/Q)× S3.

The classifying space BQ for Q has π1(BQ) = Q. As the (free) action
of Q on S3 is orientation preserving, it follows that the induced action on



HIGHLY CONNECTED 7-MANIFOLDS AND NON-NEGATIVE CURVATURE 29

H∗(S3;Z) is trivial. Therefore, there is a Gysin sequence for the homotopy
fibration S3 → S3/Q→ BQ. Now, from [1, p. 59], it is known that

Hj(BQ;Z) =


Z, j = 0,

Z2 ⊕ Z2, j ≡ 2 mod 4,

Z8, j > 0, j ≡ 0 mod 4,

0, otherwise,

where the periodicity is generated by taking cup products with the generator
in degree 4. From the Gysin sequence for S3 → S3/Q→ BQ, the cohomology
groups of S3/Q are computed to be

Hj(S3/Q;Z) =


Z, j = 0, 3,

0, j = 1,

Z2 ⊕ Z2, j = 2.

The cohomology groups of (S3 × S3)//∆Q can now be computed from the
Künneth formula applied to the product (S3/Q)× S3.

Finally, consider the Serre spectral sequence (Er, dr) for the homotopy

fibration S3×S3 τ→ (S3×S3)//∆Q→ BQ. Since H4((S3×S3)//∆Q;Z) = 0,
the differential

d4 : E0,3
4 = H3(S3 × S3;Z) = Z⊕ Z→ E4,0

4 = H4(BQ;Z) = Z8

must be surjective. Hence, there is a basis {x1, x2} of H3(S3 × S3;Z) such
that d4(x1) is a generator of H4((S3×S3)//∆Q;Z) and d4(x2) = 0. Clearly,
this implies that the kernel of d4 is generated by 8x1 and x2. Consequently,
the edge homomorphism τ∗ : H3((S3 × S3)//∆Q;Z) → H3(S3 × S3;Z) is
injective with image generated by 8x1 and x2. �

Theorem 2.8. For a = (a1, a2, a3), b = (b1, b2, b3) ∈ Z3, with ai, bi ≡ 1 mod
4 and satisfying (2.3), define

n = n(a, b) =
1

8
det

(
a2

1 b21
a2

2 − a2
3 b22 − b23

)
.

If n 6= 0, then H4(M7
a,b;Z) is cyclic of order |n|. In contrast, if n = 0, then

H3(M7
a,b;Z) ∼= H4(M7

a,b;Z) ∼= Z.

Proof. Since, by Lemma 2.5, M7
a,b is 2-connected, the Hurewicz and Univer-

sal Coefficients Theorems, together with Poincaré Duality, imply that the
only interesting cohomology groups are H3(M7

a,b;Z) and H4(M7
a,b;Z), with

H3(M7
a,b;Z) being isomorphic to the free part of H4(M7

a,b;Z). In order to

compute these, a Mayer-Vietoris argument will be used.
Recall, from the discussion following Lemma 2.2, that M7

a,b decomposes as

the union of two 2-disk bundles M− and M+, over the singular (biquotient)
leaves (S3×S3)//Pin(2)a and (S3×S3)//Pjn(2)b respectively, which are glued
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along their common (biquotient) boundary (S3 × S3)//∆Q. In particular,
there are circle bundles

S1 = Pin(2)a/∆Q −→ (S3 × S3)//∆Q
π−−→ (S3 × S3)//Pin(2)a ,

S1 = Pjn(2)b/∆Q −→ (S3 × S3)//∆Q
π+−→ (S3 × S3)//Pjn(2)b ,

obtained via the identifications

∂M− = (S3 × S3)×Pin(2)a (Pin(2)a/∆Q) ∼= (S3 × S3)//∆Q ,

∂M+ = (S3 × S3)×Pjn(2)b (Pjn(2)b/∆Q) ∼= (S3 × S3)//∆Q .
(2.12)

Since the circle-bundle projection maps π± respect deformation retrac-
tions of M−, M+ and M−∩M+ onto the respective leaves, the relevant part
of the Mayer-Vietoris sequence (with integer coefficients) becomes

0 −→ H3(M7
a,b) −→ H3((S3 × S3)//Pin(2)a)⊕H3((S3 × S3)//Pjn(2)b)

π∗−−π∗+−−−−−→ H3((S3 × S3)//∆Q) −→ H4(M7
a,b) −→ 0 ,(2.13)

where Lemmas 2.6 and 2.7 have been applied. In particular, H4(M7
a,b;Z) is

given by the cokernel of the homomorphism π∗− − π∗+ : Z⊕ Z→ Z⊕ Z.
Following the proofs of [31, Prop. 3.3] and [30, Thm. 13.1], let X = (S3×

S3)//K be a singular leaf (as in Lemma 2.6), ρ : X̃ = (S3×S3)//Ko → X its
two-fold cover and π ∈ {π−, π+} the corresponding circle-bundle projection
map π : (S3 × S3)//∆Q→ X. Then there is a commutative diagram

S3 × S3 ψ //

τ
��

X̃

ρ

��
(S3 × S3)//∆Q

π // X

given by the respective projection maps. The induced diagram in integral
cohomology is

(2.14) H3(S3 × S3;Z) H3(X̃;Z)
ψ∗oo

H3((S3 × S3)//∆Q;Z)

τ∗

OO

H3(X;Z)
π∗oo

ρ∗

OO

Using the procedure laid out in [20], one can compute the homomorphism
ψ∗ explicitly. Let c = {c1, c2, c3) ∈ {a, b} be the triple describing the iso-

morphism S1 → Ko ⊆ G. As X̃ is a biquotient and Ko ∼= S1, there is a
smooth map

f : S1 → (S3 × S3)2 ; z 7→ ((1, zc2), (zc1 , zc3))

defining the free action ofKo on S3×S3, that is, z·(q1, q2) = (q1z̄
c1 , zc2q2z̄

c3).
If T = S1 × S1 is the standard maximal torus of S3 × S3, then T 2 is

a maximal torus of (S3 × S3)2 and Im(f) ⊆ T 2. Let H∗(BS1 ;Z) = Z[u]



HIGHLY CONNECTED 7-MANIFOLDS AND NON-NEGATIVE CURVATURE 31

and H∗(BT ;Z) = Z[t1, t2]. Then H∗(BS3×S3 ;Z) = H∗(BT ;Z)W = Z[ȳ1, ȳ2],
where W is the Weyl group of S3 ×S3 and ȳi = t2i , i = 1, 2. From the Serre
spectral sequence (Er, dr) for the universal principal bundle S3 × S3 →
ES3×S3 → BS3×S3 , generators y1, y2 ∈ H3(S3 × S3;Z) can be chosen such
that d4(yi) = ȳi, i = 1, 2. Moreover, from the Künneth formula, it follows
that H∗(B(S3×S3)2 ;Z) = Z[ȳ1 ⊗ 1, ȳ2 ⊗ 1, 1⊗ ȳ1, 1⊗ ȳ2].

Consider the following commutative diagram of (homotopy) fibrations:

S1 //

f

��

S3 × S3 ψ //

=

��

X̃ = (S3 × S3)//Ko β1 //

��

BS1

Bf

��
(S3 × S3)2 // S3 × S3 // B∆(S3×S3)

β2 // B(S3×S3)2

In the Serre spectral sequence (Ēr, d̄r) for the homotopy fibration β2, the

differential d̄4 : Ē0,3
4 = H3(S3 × S3;Z) → Ē4,0

4 = H4(B(S3×S3)2 ;Z) is given

by d̄4(yi) = ȳi⊗1−1⊗ ȳi, i = 1, 2. By naturality, the differential δ4 : E0,3
4 =

H3(S3 × S3;Z)→ E4,0
4 = H4(BS1 ;Z) in the Serre spectral sequence (Er, δr)

for the homotopy fibration β1 is given by δ4(yi) = (Bf )∗(ȳi ⊗ 1− 1⊗ ȳi) for
i = 1, 2.

On the other hand, from the methods in [20] and the definition of f : S1 →
(S3 × S3)2, the homomorphism (Bf )∗ : H4(B(S3×S3)2 ;Z)→ H4(BS1 ;Z) can
be shown to be given by

(Bf )∗(ȳ1 ⊗ 1) = 0, (Bf )∗(ȳ2 ⊗ 1) = c2
2 u

2,

(Bf )∗(1⊗ ȳ1) = c2
1 u

2, (Bf )∗(1⊗ ȳ2) = c2
3 u

2.

Therefore, δ4(y1) = −c2
1 u

2 and δ4(y2) = (c2
2 − c2

3)u2. By the freeness
conditions (2.3), the coefficients of u2 are relatively prime. Hence, Ker δ4 ⊆
H3(S3 × S3;Z) is generated by (c2

2 − c2
3) y1 + c2

1 y2. Since ψ∗ : H3(X̃;Z) →
H3(S3 × S3;Z) is an edge homomorphism for (Er, δr), it follows that there

is a generator x̃ of H3(X̃;Z) = Z such that

(2.15) ψ∗(x̃) = (c2
2 − c2

3) y1 + c2
1 y2 .

Recall that, by Lemma 2.6, ρ∗ : H3(X;Z)→ H4(X̃;Z) is an isomorphism.
Thus, there is a generator x of H3(X;Z) = Z such that ρ∗(x) = x̃. Now,
since the diagram (2.14) is commutative, ψ∗(x̃) lies in the image of τ∗ :
H3((S3 × S3)/∆Q;Z) → H3(S3 × S3;Z). However, τ∗ is independent of
the choice of triple c ∈ Z3. Hence, by considering the triples c = (1, 1, 1)
and c = (1,−3, 1), respectively, it is clear that y2 and 8y1 + y2 lie in the
image of τ∗ (compare the proof of [30, Thm. 13.1]). From this, together with
Lemma 2.7, it can be concluded that 8y1 and y2 are generators of Im(τ∗) ⊆
H3(S3 × S3;Z), and that there is a basis {v1, v2} of H3((S3 × S3)/∆Q;Z)
such that τ∗(v1) = 8y1 and τ∗(v2) = y2.
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It is now possible to compute the homomorphism π∗ : H3(X;Z) →
H3((S3 × S3)/∆Q;Z). By (2.14) and (2.15),

τ∗(π∗(x)) = ψ∗(ρ∗(x))

= ψ∗(x̃)

= (c2
2 − c2

3) y1 + c2
1 y2

=
c2

2 − c2
3

8
8y1 + c2

1 y2

= τ∗
(

1

8
(c2

2 − c2
3) v1 + c2

1 v2

)
.

Since τ∗ is injective, by Lemma 2.7, it follows that

(2.16) π∗(x) =
1

8
(c2

2 − c2
3) v1 + c2

1 v2 .

Note that, since τ∗ and the basis {y1, y2} of H3(S3 × S3;Z) are inde-
pendent of the choice of singular leaf X, the basis {v1, v2} of H3((S3 ×
S3)/∆Q;Z) is independent of the choice of X. Therefore, there are gen-
erators xa and xb of H3((S3 × S3)//Pin(2)a) and H3((S3 × S3)//Pjn(2)b)
respectively, such that (2.16) can be applied to each of the singular leaves
and the homomorphism

H3((S3×S3)//Pin(2)a)⊕H3((S3×S3)//Pjn(2)b)
π∗−−π∗+−−−−−→ H3((S3×S3)//∆Q)

is given by

(π∗− − π∗+)(xa) = π∗−(xa) =
1

8
(a2

2 − a2
3) v1 + a2

1 v2 ,

(π∗− − π∗+)(xb) = −π∗+(xb) =
1

8
(b23 − b22) v1 − b21 v2 .

In order to compute the cokernel of π∗−−π∗+, note that the freeness conditions
(2.3) ensure that (π∗− − π∗+)(xa) is a generator of H3((S3 × S3)/∆Q;Z) and
that there exist r, s ∈ Z such that r a2

1 +s (a2
2−a2

3) = 1. Then a new basis for
H3((S3×S3)/∆Q;Z) is given by w1 = (π∗−−π∗+)(xa) and w2 = r v1− 8s v2.
With respect to the basis {w1, w2}, (π∗− − π∗+)(xb) has the form

(π∗− − π∗+)(xb) = (s (b23 − b22)− r b21)w1 − nw2 ,

where n = n(a, b) is as defined in the statement of the theorem. Therefore,
if n 6= 0,

H4(M7
a,b;Z) ∼= H3((S3 × S3)/∆Q;Z)/ Im(π∗− − π∗+)

∼= (〈w1〉 ⊕ 〈w2〉)/〈w1, (s (b23 − b22)− r b21)w1 − nw2〉
∼= 〈w2〉/〈nw2〉
∼= Z|n| ,

as desired. Finally, it is clear that H3(M7
a,b;Z) ∼= H4(M7

a,b;Z) ∼= Z whenever
n = 0. �
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Proof of Theorem B. Clearly, the statement follows immediately from The-
orem 2.8, together with Lemma 2.2. �

Corollary 2.9. If n = ±1, then M7
a,b is homeomorphic to S7. In particular,

this is the case whenever a = (k,−3, 1) and b = (1, l, l), with k, l ≡ 1 mod 4.

Proof. Since n = ±1, M7
a,b has the cohomology ring of a sphere, hence is a

homology sphere. As any closed, orientable manifold admits a degree 1 map
onto Sn (by collapsing the complement of a disk to a point), there is a map
inducing an isomorphism on homology. It follows now from the homology
version of the Whitehead Theorem that M7

a,b is a homotopy sphere. By [49],

M7
a,b is then homeomorphic to S7. �

3. The Eells-Kuiper invariant of M7
a,b

3.1. A smooth metric on M7
a,b.

In order to compute the Eells-Kuiper invariant of M7
a,b by applying Corol-

lary 1.9, it is necessary to define a suitable metric on M7
a,b. This metric can

be written down explicitly and is not the same as the metric of non-negative
sectional curvature obtained in Lemma 2.2.

Recall that the manifold M7
a,b decomposes as the union of two-dimensional

disk bundles M− and M+ over the biquotients (S3×S3)//Pin(2)a and (S3×
S3)//Pjn(2)b respectively, which are glued along their common boundary,

the biquotient (S3×S3)//∆Q. In particular, there is an action of Pin(2)a ∼=
Pin(2) on the disk D2

ε := {z ∈ C | |z| < 1 + ε}, ε > 0, such that the disk
bundle over (S3 × S3)//Pin(2)a is given by

D2
ε →M− = (S3 × S3)×Pin(2)a D2

ε → (S3 × S3)//Pin(2)a .

As seen in Lemma 2.3, by making use of the identifications given in (2.5)
(as in (2.12)), it turns out that the action on D2

ε is nothing more than the
slice representation for the isotropy group Pin(2)a of the cohomogeneity-
one manifold P 10

a,b . As such, this action is determined by the (ineffective)

transitive action of Pin(2)a on the boundary circle S1 ∼= Pin(2)a/∆Q of the
normal disk to the singular orbit G/Pin(2)a ⊆ P 10

a,b, and is equivalent to the
action

(3.1) Pin(2)× S1 → S1 ; (α, z) 7→

{
e4iθz, α = eiθ

e4iθz̄, α = eiθj

of Pin(2) on the unit circle in C with isotropy subgroup Q at 1 ∈ C. Clearly,
there is an analogous action of Pjn(2)b on D2

ε which yields an analogous
description of M+.

Furthermore, the (equivariant) diffeomorphism

D2
ε\{0} → S1 × (0, 1 + ε) ; z 7→ (z/|z|, |z|)
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and the transitive action (3.1) induce a diffeomorphism

Φ− : (S3 × S3)×Pin(2)a (D2
ε\{0})→ (S3 × S3)×Pin(2)a (S1 × (0, 1 + ε))

→ (S3 × S3)//∆Q× (−1, ε) ,

(3.2)

given by mapping a point [q1, q2, |z|] ∈ (S3 × S3) ×Pin(2)a (D2
ε\{0}) to the

point ([q1, q2], |z| − 1) ∈ (S3 × S3)//∆Q× (−1, ε).
Similarly, there is a diffeomorphism

Φ+ : (S3 × S3)×Pjn(2)b (D2
ε\{0})→ (S3 × S3)//∆Q× (−ε, 1)

[q1, q2, |z|] 7→ ([q1, q2], 1− |z|) .
(3.3)

Assume now that ε ∈ (0, 1
4) and let τ : M7

a,b → [−1, 1] be the projection

onto the leaf space of the codimension-one foliation by biquotients, such that

τ |M−([q1, q2, r]) = r − 1 ,

τ |M+([q1, q2, r]) = 1− r .
(3.4)

Then τ−1([−1, ε)) = M−, τ−1((−ε, 1]) = M+ and τ−1(−ε, ε) = M− ∩M+,
where M− and M+ are glued along neighbourhoods of their boundaries via
the diffeomorphism

Φ−1
+ ◦ Φ− : τ−1(−ε, ε)→ τ−1(−ε, ε)

[q1, q2, r] 7→ [q1, q2, 2− r] .
(3.5)

In particular, there is a diffeomorphism

(3.6) Φ : M7
a,b\τ−1({−1, 1})→ (S3 × S3)//∆Q× (−1, 1)

such that Φ|M−\τ−1(−1) = Φ− and Φ|M+\τ−1(1) = Φ+. Given (3.6), points in

M7
a,b will often be conveniently represented as equivalence classes [q1, q2, t],

with (q1, q2) ∈ S3 × S3 and t ∈ [−1, 1].
The manifold M7

a,b can now be equipped with a smooth metric by pulling

back via Φ a smooth metric gt + dt2 on (S3 × S3)//∆Q × (−1, 1) defined
such that gt is a one-parameter family of smooth metrics on the biquotient
(S3×S3)//∆Q which deforms to smooth metrics on the singular biquotients
(S3 ×S3)//Pin(2)a and (S3 ×S3)//Pjn(2)b smoothly as t tends to −1 and 1,
respectively.

By an abuse of notation in what follows, although the intended meaning
should be clear, the symbols α, β and γ will be used to denote both the
indices 1, 2, 3 and the imaginary unit quaternions i, j, k, where 1 is identified
with i, 2 with j and 3 with k. With this convention, define δαβ to be the
Kronecker delta,

(3.7) εαβ :=

{
1, α = β ,

−1, α 6= β ,
and εαβγ :=


1, if (α, β, γ) =�(1, 2, 3),

−1, if (α, β, γ) =�(2, 1, 3),

0, otherwise.
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Consider now the left-invariant vector fields Eα and Fα on S3×S3 defined
via

Eα(q1, q2) :=
d

ds
(q1 exp(sα), q2)|s=0 = (q1α, 0) ,

Fα(q1, q2) :=
d

ds
(q1, q2 exp(sα))|s=0 = (0, q2α) ,

(3.8)

and let Xα denote the right-invariant vector field given by

(3.9) Xα(q1, q2) :=
d

ds
(q1, exp(sα)q2)|s=0 = (0, αq2) .

Equip S3×S3 with the standard, bi-invariant product metric 〈 , 〉0 so that
the six vector fields Eα and Fβ describe a global orthonormal basis. As the
right-invariant vector fields Xα can be written in terms of the basis Fβ, there
are smooth coefficient functions

(3.10) ϕαβ : S3 × S3 → R ; (q1, q2) 7→ 〈Xα, Fβ〉0 = 〈Adq̄2 α, β〉0 ,
such that the (3 × 3)-matrix (ϕαβ(q1, q2))α,β is an element of SO(3). The
derivatives of the functions ϕαβ are given by Eγ(ϕαβ) = 0 and

(Fγ(ϕαβ))(q1, q2) = −〈[γ,Adq̄2 α], β〉0
= 〈Adq̄2 α, [γ, β]〉0

= 2
3∑
δ=1

εγβδ ϕαδ(q1, q2) .

(3.11)

Recall from (2.5) that the free (right) action of ∆Q on S3 × S3 is given
by the anti-homomorphism

ρ : Q→ Diff(S3 × S3) ,

where
ρ(±1)(q1.q2) = (±q1, q2) and ρ(±α) = (±q1α, ᾱq2α) .

Although the vector fields Eα, Fα and Xα are not Q invariant, it is easy
to describe their behaviour under the Q action.

Lemma 3.1. The vectors fields Eα, Fα and Xα satisfy the identities

ρ(±1)∗Eα = Eα, ρ(±1)∗Fα = Fα, ρ(±1)∗Xα = Xα,

and

ρ(±β)∗Eα = εαβ Eα, ρ(±β)∗Fα = εαβ Fα, ρ(±β)∗Xα = εαβ Xα.

Furthermore, the functions ϕαβ satisfy

ϕαβ ◦ ρ(±1) = ϕαβ and ϕαβ ◦ ρ(±γ) = εαγεβγ ϕαβ.
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Proof. Since β2 = −1 and ρ is an anti-homomorphism, all non-trivial cases
follow from the case ρ(β)∗. For Eα one has

(ρ(β)∗Eα)(ρ(β)(q1, q2)) =
d

ds
ρ(β)(q1 exp(sα), q2)|s=0

=
d

ds
(q1 exp(sα)β, β̄q2β)|s=0

=
d

ds
(q1β(β̄ exp(sα)β), β̄q2β)|s=0

=
d

ds
(q1β exp(sAdβ̄ α), β̄q2β)|s=0

=
d

ds
(q1β exp(s εαβ α), β̄q2β)|s=0

= εαβ Eα(q1β, β̄q2β).

The computations in the cases of Fα and Xα are analogous. The identities
for the functions ϕαβ follow from those for the vector fields since 〈 , 〉0 is bi-
invariant and, for example,

ϕαβ ◦ ρ(γ) = 〈Xα ◦ ρ(γ), Fβ ◦ ρ(γ)〉0 = εαγ εβγ〈ρ(γ)∗Xα, ρ(γ)∗Fβ〉0 .
�

Consider finally a local basis eα, fα of vector fields on a neighbourhood of
a point [q1, q2] ∈ (S3×S3)//∆Q given by the projections under the quotient
map of the restrictions of the vector fields Eα and Fα to a neighbourhood
of a fixed representative (q1, q2) ∈ S3 × S3. In particular,

eα([q1, q2]) =
d

ds
[q1 exp(sα), q2]|s=0 ,

fα([q1, q2]) =
d

ds
[q1, q2 exp(sα)]|s=0 ,

(3.12)

Similarly, let xα denote the vector field given near [q1, q2] ∈ (S3 × S3)//∆Q
by projection of Xα restricted to a neighbourhood of (q1, q2), so that

(3.13) xα([q1, q2]) =
d

ds
[q1, exp(sα)q2]|s=0 .

Observe that near a different representative ρ(`)(q1, q2) ∈ S3 × S3, ` ∈ Q,
the pre-images of eα, fα, and xα are given by the vector fields (ρ(`)∗Eα),
(ρ(`)∗Fα) and (ρ(`)∗Xα) respectively. That is, repeating the above construc-
tion of eα, fα using instead the representative ρ(`)(q1, q2) would produce a
local basis e′α, f ′α near [q1, q2] ∈ (S3×S3)//∆Q which differs from the previ-
ous one at most by a sign.

It is perhaps important to emphasise at this point that, when compared
with the notation used in [26], the roles of eα and fα have been switched.
In the present article, the notation fα is intended to suggest that the vector
field is tangent to the fibre of the Seifert fibration.
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With the chosen representative (q1, q2) of [q1, q2] in mind, it is convenient
to abuse the notation in (3.10) and define

(3.14) ϕαβ : (S3 × S3)//∆Q→ R ; [q1, q2] 7→ ϕαβ(q1, q2) .

Then xα =
∑3

β=1 ϕαβ fβ and, moreover, the derivatives of the functions ϕαβ
on (S3 × S3)//∆Q are given by eγ(ϕαβ) = 0 and

(3.15) fγ(ϕαβ) = 2
3∑
δ=1

εγβδ ϕαδ .

Proposition 3.2. For ε ∈ (0, 1
4), let σ : R → R denote a smooth func-

tion such that σ|(−∞,ε−1) ≡ 1, σ|(−ε,∞) ≡ 0 and σ′(x) 6 0 for all x ∈ R.
Furthermore, let

λ− : [−1, 1]→ R ; t 7→ (1 + t)σ(t) +
|a1|
4

(1− σ(t)) ,

λ+ : [−1, 1]→ R ; t 7→ (1− t)σ(−t) +
|b1|
4

(1− σ(−t)) ,

and let h±, u±, v± : (S3 × S3)//∆Q× (−1, 1)→ R be defined by

h− :=
4

|a1|
λ− ◦ τ ◦ Φ−1 , h+ :=

4

|b1|
λ+ ◦ τ ◦ Φ−1 ,

u− :=
a2

a1
λ′− ◦ τ ◦ Φ−1 , u+ := −b2

b1
λ′+ ◦ τ ◦ Φ−1 ,

v− :=
a3

a1
λ′− ◦ τ ◦ Φ−1 , v+ := −b3

b1
λ′+ ◦ τ ◦ Φ−1 ,

Then the metric gt + dt2 on (S3 × S3)//∆Q× (−1, 1) given by

gt(eα, eβ) = δαβ

(
1 + δ1α(h2

− + u2
− − 2u−v− ϕ11 + v2

− − 1)

+ δ2α(h2
+ + u2

+ − 2u+v+ ϕ22 + v2
+ − 1)

)
,

gt(fα, fβ) = δαβ ,

gt(eα, fβ) = δ1α(u− ϕ1β − v− δ1β) + δ2α(u+ ϕ2β − v+ δ2β),

with respect to the local basis eα, fα of vector fields on a neighbourhood of a
point [q1, q2] ∈ (S3×S3)//∆Q constructed above, is well defined and smooth.
Moreover, Φ∗(gt + dt2) extends to a smooth metric gM on M7

a,b.

Some remarks on the metric gM are in order. By an abuse of notation,
define vector fields e0 := Φ−1

∗ ( ∂∂t), eα := Φ−1
∗ (eα), fα := Φ−1

∗ (fα) and xα :=

Φ−1
∗ (xα) on M7

a,b . By a further abuse of notation, let h±, u± and v± denote

the smooth functions on M7
a,b given by h±◦Φ, u±◦Φ and v±◦Φ respectively.

For r ∈ (0, ε), the vector fields tangent to the fibres of the radius-r circle
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bundles over the zero sections of M− and M+ are given by

∂

∂θ−
=

1

4
(a1e1 − a2x1 + a3f1),

∂

∂θ+
=

1

4
(b1e2 − b2x2 + b3f2),

respectively, with lengths gM ( ∂∂θ±,
∂
∂θ±) = (1 ± t)2 = r2. The vanishing of

these vector fields for r going to 0 corresponds to the roles of Pin(2)a and
Pjn(2)b at the singular biquotients.

A (local) orthonormal frame of vector fields on (M7
a,b, gM ) is described by

ē0 := e0, ē1 :=
1

h−
(e1 − u− x1 + v− f1),

ē2 :=
1

h+
(e2 − u+ x2 + v+ f2), ē3 := e3,

f̄α := fα

(3.16)

away from the singular leaves τ−1{±1}. Notice that

(3.17) ē1|τ−1(−1,ε−1) =
|a1|

a1(1 + t)

∂

∂θ−
, ē2|τ−1(1−ε,1) =

|b1|
b1(1− t)

∂

∂θ+
,

so the singularity in ē1 and ē2 along τ−1{−1} and τ−1{1}, respectively,
comes only from the normalisation by 1

h±
. Moreover, note that ē1|M+ = e1

and ē2|M− = e2. For convenience, define also x̄α := xα.
In addition, since h±|M∓ ≡ 1, u±|M∓ ≡ 0 and v±|M∓ ≡ 0, the metric on

M− ∩M+ = τ−1(−ε, ε) is quite simple: it is the product of a normal biquo-
tient and an interval, where the vector fields e0, eα, and fα are orthonormal.

Finally, the minus sign in the definition of u+ and v+ is to ensure that
the isometry Ψ in Remark 3.3 below is compatible with Lie brackets.

Proof of Proposition 3.2. The strategy of the proof is to define a smooth
∆Q-invariant metric ĝ = ĝt + dt2 on S3 × S3 × (−1, 1) and equip (S3 ×
S3)//∆Q× (−1, 1) with the induced smooth submersion metric g = gt +dt2.
The smoothness as t → ±1 will be obtained by defining a smooth quotient
metric on M± which coincides with Φ∗±(g|M±) near the zero section.

Consider S3×S3× (−1, 1) equipped with the metric ĝ := ĝt + dt2, where

ĝt(Eα, Eβ) = 〈Eα, Eβ〉0
+
(
h2
− + u2

− − 2u−v− ϕ11 + v2
− − 1

)
〈E1, Eα〉0 〈E1, Eβ〉0

+
(
h2

+ + u2
+ − 2u+v+ ϕ22 + v2

+ − 1
)
〈E2, Eα〉0 〈E2, Eβ〉0 ,

ĝt(Fα, Fβ) = 〈Fα, Fβ〉0 ,

ĝt(Eα, Fβ) = ĝr(Fβ, Eα) = 〈E1, Eα〉0 〈u−X1 − v−F1, Fβ〉0
+ 〈E2, Eα〉0 〈u+X2 − v+F2, Fβ〉0 .
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It is clear that ĝ is a smooth metric on S3 × S3 × (−1, 1), since it is a
positive-definite, symmetric, bi-linear form and all terms used to define ĝt
are smooth functions on S3 × S3 × (−1, 1).

Observe now that ∆Q acts on (S3 × S3 × (−1, 1), ĝ) by isometries. This
follows from Lemma 3.1 and the bi-invariance of 〈 , 〉0. For example, from

〈E1, ρ(γ)∗Eα〉0 ◦ ρ(γ) = ε1γ〈ρ(γ)∗E1, ρ(γ)∗Eα〉0 ◦ ρ(γ)

= ε1γ〈E1, Eα〉0 ,
together with

〈uX1 − vF1, ρ(γ)∗Fβ〉0◦ρ(γ) = ε1γ〈ρ(γ)∗(uX1 − vF1), ρ(γ)∗Fβ〉0◦ρ(γ)

= ε1γ〈uX1 − vF1, Fβ〉0 ,
follows ĝt(ρ(γ)∗Eα, ρ(γ)∗Fβ) ◦ ρ(γ) = ĝt(Eα, Fβ). Consequently, the metric
ĝ induces a smooth metric g := gt + dt2 on (S3 × S3)//∆Q × (−1, 1) such
that the quotient map is a Riemannian submersion.

It remains, therefore, to show that the metric Φ∗g extends to a smooth
metric at t = ±1. It is sufficient to concentrate on t = −1, since the
arguments for t = 1 are completely analogous and involve only replacing
the triple a with b , and the functions h−, u− and v− with h+, u+ and v+

respectively.
Let Eα, Fα and Xα be the vector fields on the S3×S3 factor of S3×S3×D2

ε

defined as in (3.8) and (3.9), and let ∂
∂r and ∂

∂θ denote the polar-coordinate

radial and angular vector fields on the D2
ε factor respectively, that is,

∂

∂r
(q1, q2, re

iθ) :=
d

ds
(q1, q2, (r + s)eiθ)|s=0 = (0, 0, eiθ) ,

∂

∂θ
(q1, q2, re

iθ) :=
d

ds
(q1, q2, re

i(θ+s))|s=0 = (0, 0, rieiθ) .

Choose the same representative (q1, q2) ∈ S3 × S3 of [q1, q2] ∈ (S3 ×
S3)//∆Q as in (3.12) and (3.13). Notice that Eα, Fα and Xα are tangent
to the set Z of points in S3 × S3 ×D2

ε with θ = 0. Define vector fields in
a neighbourhood of [q1, q2, r] ∈ M− as the projections of the restrictions of
Eα, Fα and Xα to the intersection of Z with a neighbourhood of (q1, q2, r) ∈
S3×S3×D2

ε. By an abuse of notation, denote these projections again by eα,
fα and xα respectively, since they are Φ−-related to the previously defined
vector fields eα, fα and xα on (S3 × S3)//∆Q× (−1, ε).
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If gD := dr2 + r2dθ2 denotes the standard metric on D2
ε in polar coordi-

nates, let g̃r + dr2 be the bi-linear form on S3 × S3 ×D2
ε defined by

g̃r(Eα, Eβ) = 〈Eα, Eβ〉0

+
1

a2
1

(
16r2 + a2

2 − 2a2a3 ϕ11 + a2
3 − a2

1 + 1
)
〈E1, Eα〉0〈E1, Eβ〉0,

g̃r(Fα, Fβ) = 〈Fα, Fβ〉0 ,

g̃r(Eα, Fβ) = g̃r(Fβ, Eα) = 〈E1, Eα〉0 〈
a2

a1
X1 −

a3

a1
F1, Fβ〉0 ,

g̃r(Eα,
∂

∂θ
) = g̃r(

∂

∂θ
,Eα) =

4

a1
〈E1, Eα〉0 gD(

∂

∂θ
,
∂

∂θ
) ,

g̃r(Fα,
∂

∂θ
) = g̃r(

∂

∂θ
, Fα) = 0 ,

g̃r(
∂

∂θ
,
∂

∂θ
) = gD(

∂

∂θ
,
∂

∂θ
) .

The bi-linear form g̃r+dr
2 is symmetric and positive definite. By reverting

to Cartesian coordinates on D2
ε, it is easily verified that g̃r + dr2 describes

a smooth metric on S3 × S3 ×D2
ε for all r ∈ [0, 1 + ε).

Let V be the vector field on S3 × S3 × D2
ε tangent to the free Pin(2)a

action and given by

(3.18) V = −a1E1 + a2X1 − a3F1 + 4
∂

∂θ
.

Notice that g̃r(V, V ) ≡ 1 and that, near (q1, q2, r) ∈ S3 × S3 × D2
ε, the

vector fields E2, E3, Fα, ∂
∂r and ∂

∂θ are all orthogonal to V with respect

to g̃r + dr2, hence horizontal. Observe, however, that the horizontal vector
field which projects to e1 is given by

E1 +
1

a1
V =

a2

a1
X1 −

a3

a1
F1 +

4

a1

∂

∂θ

and is of length 1
a21

(16r2 +a2
2−2a2a3 ϕ11 +a2

3). Therefore, as λ−|(−1,ε−1) = r,

if the action of Pin(2)a on (S3 × S3 × D2
ε, g̃r + dr2) is by isometries, the

induced smooth submersion metric on M− will coincide with the metric
Φ∗−(g)|M− for r ∈ (0, ε), as desired. (For the t = 1 case, note in addition

that (Φ−1
+ )∗(

∂
∂t) = − ∂

∂r .)

From (2.5) and (3.1), the Pin(2)a action on S3 × S3 ×D2
ε is given by

ρ̃ : Pin(2)→ Diff(S3 × S3 ×D2
ε) ,

which is completely determined by

ρ̃(eit)(q1, q2, z) = (q1e
a1it, e−a2itq2e

a3it, e4itz) ,

ρ̃(j)(q1, q2, z) = (q1j,−jq2j, z̄) .
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The invariance under ρ̃(j) of the first three expressions in the definition
of g̃r follows via Lemma 3.1 precisely as for the corresponding terms in the
case of ĝt. As j acts by conjugation on D2

ε, it follows that ρ̃(j)∗
∂
∂r = ∂

∂r and

ρ̃(j)∗
∂
∂θ = − ∂

∂θ , which, together with the identities in Lemma 3.1, yield that
the remaining terms in the definition of g̃r are invariant under ρ̃(j).

On the other hand, the transformation rules under ρ̃(eit) are given by

ρ̃(eit)∗Eα =


E1 , α = 1,

cos(2a1t)E2 − sin(2a1t)E3 , α = 2,

sin(2a1t)E2 + cos(2a1t)E3 , α = 3,

ρ̃(eit)∗Fα =


F1 , α = 1,

cos(2a3t)F2 − sin(2a3t)F3 , α = 2,

sin(2a3t)F2 + cos(2a3t)F3 , α = 3,

as well as ρ̃(eit)∗
∂
∂θ = ∂

∂θ , ρ̃(eit)∗
∂
∂r = ∂

∂r and, in particular, ρ̃(eit)∗X1 = X1.

It then follows that ϕ11 ◦ ρ̃(eit) = ϕ11 and, moreover, that

〈X1, ρ̃(eit)∗Fβ〉0 ◦ ρ̃(eit) = 〈ρ̃(eit)∗X1, ρ̃(eit)∗Fβ〉0 ◦ ρ̃(eit)

= 〈X1, Fβ〉0,

Similarly, 〈F1, ρ̃(eit)∗Fβ〉0 ◦ ρ̃(eit) = 〈F1, Fβ〉0. The Pin(2)a invariance of
g̃r + dr2 is now a simple consequence of these identities. �

Remark 3.3. Consider the manifold M7
b,a given by swapping a and b. Equip

M7
b,a with a metric g′M defined in the same way as gM by simply switching

the roles of a and b in λ±, h±, u± and v±. Let ` := 1√
2
(i + j) ∈ S3. Then,

since the diffeomorphism

S3 × S3 → S3 × S3 ; (q1, q2) 7→ (`q1
¯̀, `q2

¯̀)

respects ∆Q fibres and intertwines the Pin(2)a action on S3 × S3 with the
action of Pjna(2), there is an induced orientation-reversing isometry

Ψ : (M7
a,b, gM )→ (M7

b,a, g
′
M )

[q1, q2, t] 7→ [`q1
¯̀, `q2

¯̀,−t]
(3.19)

mapping τ−1(t) ⊆M7
a,b to τ−1(−t) ⊆M7

b,a for each t ∈ [−1, 1]. In particular,

Ψ∗ maps e0 to −e0 and

e1 7→ e2, e2 7→ e1, e3 7→ −e3,

f1 7→ f2, f2 7→ f1, f3 7→ −f3,

x1 7→ x2, x2 7→ x1, x3 7→ −x3.

Furthermore, notice that λ±(−t) = λ∓(t) and λ′±(−t) = −λ′∓(t), so that,
for example, u−, v− on M7

b,a correspond to u+, v+ on M7
a,b. The isometry

Ψ hence ensures that the computations to follow need only be performed on
M− (and that the expressions involving parentheses containing terms with
‘+’ subscripts may be ignored).
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Given that the orbifold B4
a,b admits a (cohomogeneity-one) S3 action,

hence is foliated by S3-orbits, one can define vector fields e0, e1, e2 and e3

locally on B4
a,b exactly as in the case of M7

a,b, that is, as the projections of

local left-invariant vector fields. In the same way as in Proposition 3.2, one
can obtain a metric on B4

a,b.

Corollary 3.4. With the analogous notation as in Proposition 3.2, the met-
ric ǧt + dt2 on S3/Q× (−1, 1) given by

ǧt(eα, eβ) = δαβ
(
1 + δ1α(h2

− − 1) + δ2α(h2
+ − 1)

)
,

is smooth and pulls back to a (globally) smooth metric gB on B4
a,b. In par-

ticular, away from the singular orbits of B4
a,b, a local orthonormal frame of

vector fields on (B4
a,b, gB) is described by

ě0 := e0, ě1 :=
1

h−
e1, ě2 :=

1

h+
e2, ě3 := e3 .

Moreover, the Seifert fibration π : (M7
a,b, gM )→ (B4

a,b, gB) is a Riemannian

submersion and the vector fields ē0, . . . , ē3 on M7
a,b are the horizontal lifts of

the orthonormal vector fields ě0, . . . , ě3.

3.2. Chern-Weil forms for π : (M7
a,b, gM )→ (B4

a,b, gB).

The basic tool used to determine the various invariants involved in the
computation of the Eells-Kuiper invariant is Chern-Weil theory. The nec-
essary ingredients are gathered together in this section. By Remark 3.3,
only the computations for M− need to be carried out explicitly, and all ex-
pressions in Proposition 3.2 involving parentheses containing terms with ‘+’
subscripts may be ignored.

With this in mind, and to simplify the expressions to follow, it is conve-
nient to define smooth functions h, u, v : M7

a,b → R such that

(3.20)
h|M− = h−|M− , u|M− = u−|M− , v|M− = v−|M− ,
h|M+ = h+|M+ , u|M+ = u+|M+ , v|M+ = v+|M+ .

For the sake of notation, the shorthand h′, u′ and v′ will be used to denote
ē0(h) = ∂h

∂t , ē0(u) = ∂u
∂t and ē0(v) = ∂v

∂t respectively. Notice, in particular,
that

(3.21)

u|M− =
a2|a1|
4a1

h′|M− , v|M− =
a3|a1|
4a1

h′|M− ,

u|M+ = −b2|b1|
4b1

h′|M+ , v|M+ = −b3|b1|
4b1

h′|M+ .
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Lemma 3.5. The vector fields ē0, . . . , ē3 and f̄1, . . . , f̄3 on M7
a,b satisfy the

following Lie bracket identities:

[ē0, ē1]|M− = −h
′

h
ē1 −

u′

h
x̄1 +

v′

h
f̄1 , [ē1, ē2]|M− =

2

h
ē3 ,

[ē2, ē3]|M− = 2h ē1 + 2u x̄1 − 2 v f̄1 , [ē3, ē1]|M− =
2

h
ē2 ,

[f̄1, f̄2]|M− = 2 f̄3 , [f̄2, f̄3]|M− = 2 f̄1 , [f̄3, f̄1]|M− = 2 f̄2 ,

[ē1, f̄1]|M− = 0 , [ē1, f̄2]|M− = 2
v

h
f̄3 , [ē1, f̄3]|M− = −2

v

h
f̄2 ,

[x̄1, x̄2]|M− = −2 x̄3 , [x̄2, x̄3]|M− = −2 x̄1 , [x̄3, x̄1]|M− = −2 x̄2 ,

[ē1, x̄1]|M− = 0 , [ē1, x̄2]|M− = 2
u

h
x̄3 , [ē1, x̄3]|M− = −2

u

h
x̄2 .

All other Lie brackets of these vector fields vanish.

Proof. These identities are similar to those obtained in [26, (4.13)].
The undecorated vector fields eα and fα are the projections of (local) left-

invariant vector fields on different factors of S3×S3, hence satisfy [eα, eβ] =
2 eγ and [fα, fβ] = 2 fγ , for cyclic permutations (α, β, γ) of (1, 2, 3), as well
as [eα, fβ] = 0. On the other hand, the vector fields xα are the projections
of right-invariant vector fields and thus satisfy [xα, xβ] = −2xγ , for cyclic
permutations (α, β, γ) of (1, 2, 3).

As their flows are projections of commuting left and right actions respec-
tively, all Lie brackets of xα with eβ or fβ will vanish. Moreover, since e0

commutes with all eα, fα and xα on (S3 × S3)//∆Q × (−1, 1), the same is
true on M7

a,b via (3.6).

The Lie bracket identities in the lemma now follow from (3.16). �

Observe that the Lie brackets in Lemma 3.5 are compatible with the
isometry Ψ of Remark 3.3. This was the reason for the ‘−’ sign in the
definitions of u+ and v+.

Lemma 3.6. The Seifert fibration π : (M7
a,b, gM ) → (B4

a,b, gB) has totally

geodesic fibres.

Proof. It is sufficient to show that ∇TM
f̄α

ēβ is always orthogonal to the vector

fields f̄γ , that is, orthogonal to the fibres, since this implies that the second
fundamental form of the fibres vanishes. From the Koszul formula one has

2 gM (∇TMf̄α ēβ, f̄γ) = gM ([f̄α, ēβ], f̄γ)− gM ([ēβ, f̄γ ], f̄α) + gM ([f̄γ , f̄α], ēβ)

and the result now follows from Lemma 3.5. �

Since the vector fields ě0, . . . , ě3 on B4
a,b are π-related to the vector fields

ē0, . . . , ē3 on M7
a,b, the corresponding identities on B4

a,b follow immediately.
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Lemma 3.7. Let B− := π(M−) ⊆ B4
a,b. Then the vector fields ě0, . . . , ě3 on

B4
a,b satisfy the following Lie bracket identities:

[ě0, ě1]|B− = −h
′

h
ě1 , [ě0, ě2]|B− = 0 ,

[ě0, ě3]|B− = 0 , [ě1, ě2]|B− =
2

h
ě3 ,

[ě2, ě3]|B− = 2h ě1 , [ě3, ě1]|B− =
2

h
ě2 .

Let ē0, . . . , ē3, f̄1, . . . , f̄3 be the local frame of the cotangent bundle T ∗M
of M7

a,b which is dual to ē0, . . . , ē3, f̄1, . . . , f̄3. In the computations to follow,

it will be necessary to understand the exterior differentials of these 1-forms.
Given 1-forms vα1 , . . . , vαk , the shorthand v α1...αk will be used to denote
vα1 ∧ · · · ∧ vαk . Finally, for (α, β, γ) a cyclic permutation of (1, 2, 3), let

x̄α := ϕα1f̄
1 + ϕα2f̄

2 + ϕα3f̄
3 ,

x̄αβ := ϕγ1f̄
23 − ϕγ2f̄

13 + ϕγ3f̄
12 ,

(3.22)

be the forms dual to x̄α and x̄α ∧ x̄β respectively.

Lemma 3.8. The exterior differentials of a function y := y ◦ τ : M− → R
and of the 1-forms ē0, . . . , ē3, f̄1, . . . , f̄3 are given on M− by

dy = y′ē0 , dē0 = 0 ,

dē1 =
h′

h
ē01 − 2h ē23 , df̄1 =

u′ϕ11 − v′

h
ē01 − 2(uϕ11 − v) ē23 − 2f̄23 ,

dē2 =
2

h
ē13 , df̄2 =

u′ϕ12

h
ē01 − 2uϕ12 ē

23 + 2
v

h
ē1f̄3 + 2f̄13 ,

dē3 = −2

h
ē12 , df̄3 =

u′ϕ13

h
ē01 − 2uϕ13ē

23 − 2
v

h
ē1f̄2 − 2f̄12 .

Proof. The expressions for the exterior differentials follow from the Cartan
formula together with Lemma 3.5, the relation gM (x̄1, f̄β) = ϕ1β and the
derivatives (3.15). �

For the computation of the adiabatic limit of the η-invariants of the spin-
Dirac operator D and the odd signature operator B, it is not necessary to de-
termine the curvature of the full Levi-Civita connection ∇TM of (M7

a,b, gM ).

Indeed, one need only compute the Chern-Weil forms (1.4) of the Levi-Civita
connection ∇TB of (B4

a,b, gB), and of two connections ∇W and ∇V related

to the fibres of the Seifert fibration.
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Lemma 3.9. The Pontrjagin and Euler forms of TB with respect to the
Levi-Civita connection ∇TB of (B4

a,b, gB) are given by

p1

(
TB,∇TB

)
=

1

π2

(
h′h′′

h
+ 4h′h2 − 4h′

)
ě0123 ,

e
(
TB,∇TB

)
=

1

4π2

(
6h′2 + 3h′′h− 4h′′

h

)
ě0123 .

Moreover, it follows that∫
B
p1

(
TB,∇TB

)
=

2

b21
− 2

a2
1

and

∫
B
e
(
TB,∇TB

)
=

1

|a1|
+

1

|b1|
.

Proof. The orbifold (B4
a,b, gB) is, up to a slightly different choice of the

function h, isometric to the one considered in [26, Section 4.c], with p− = a1

and p+ = b1. Therefore, via [26, (4.16)] the curvature 2-form ΩTB of TB is
given, with respect to the orthonormal basis ē0, . . . , ē3, by
(3.23)

ΩTB =


0 −h′′

h ě
01 + 2h′ě23 h′ě13 −h′ě12

h′′

h ě
01 − 2h′ě23 0 −h′ě03 + h2ě12 h′ě02 + h2ě13

−h′ě13 h′ě03 − h2ě12 0 2h′ě01 + (4− 3h2)ě23

h′ě12 −h′ě02 − h2ě13 −2h′ě01 − (4− 3h2)ě23 0

.
Together with the isometry (analogous to) Ψ in (3.19), it follows that the
Euler and Pontrjagin forms have been determined in [26, (4.17)]. The cal-
culation of the integrals now follows as in [26, (4.18)]. �

Consider now the Seifert fibration π : (M7
a,b, gM )→ (B4

a,b, gB) as an orbi-

bundle with structure group SO(4). Associated to the vertical bundle V =
ker(dπ) there is a fibre-bundle connection 1-form ωπ ∈ Hom(TM,V) which
acts as the identity on V and is uniquely determined by the horizontal bundle
H = ker(ωπ). Recall that H = span{ē0, ē1, ē2, ē3}. The following lemma will
prove useful when computing the contribution of the twisted sectors ΛB\B
to the adiabatic-limit formulae in Theorem 1.8.

Lemma 3.10. The curvature 2-form Ωπ associated to ωπ is given on M−
by

Ωπ|M− =

(
u′

h
ē01 − 2u ē23

)
x̄1 −

(
v′

h
ē01 − 2v ē23

)
f̄1 .

In particular, Ωπ|M− is smooth at τ−1{−1} and the two summands of Ωπ|M−
correspond to elements of the two summands of the Lie algebra so(4) ∼=
so(3)⊕ so(3).

Proof. Let prH : TM → H denote orthogonal projection. The curvature 2-
form Ωπ = (dωπ)◦prH is given by twice the O’Neill tensor of π, namely, if X
and Y are vector fields on M7

a,b, then Ωπ(X,Y ) = −[XH, Y H]V . The desired

expression for Ωπ|M− now follows from Lemma 3.5, while the smoothness at

τ−1{−1} is a result of the vanishing of u′ and v′ on τ−1(−1, ε− 1). �
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By taking the cone over the fibres of π : M7
a,b → B4

a,b, one obtains a vector

orbi-bundle W → B of rank 4, that is, W = P 10
a,b×S3×S3 H, where the action

on the fibre is the usual one (cf. Lemma 2.3):

(S3 × S3)×H→ H : ((y1, y2), q) 7→ y1 q ȳ2 .

This action is effectively an SO(4) action and is defined in such a way that the
vector fields f̄α (respectively, x̄α) on M7

a,b correspond to right (respectively,

left) multiplication by α on H.
In particular, for α = i and the identification of H with C2 via q =

z+jw 7→ (z, w), left and right multiplication on H are given by the elements

(3.24) Li =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , Ri =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ∈ so(4) .

This orientation for H has been chosen to agree that of [26, (4.20), (4.21)],
where the case a3 = q−, b3 = q+ and a2 = b2 = 0 was considered.

Lemma 3.11. If ∇W denotes the connection on W induced by ωπ, then the
smooth Euler and Pontrjagin forms of (W,∇W ) are given by

e(W,∇W ) =
u′u− v′v
π2h

ě0123 ,

p1

2

(
W,∇W

)
=
uu′ + vv′

π2h
ě0123 .

The corresponding Euler and Pontrjagin numbers are∫
B
e(W,∇W ) =

1

8a2
1b

2
1

det

(
a2

1 b21
a2

2 − a2
3 b22 − b23

)
,∫

B

p1

2

(
W,∇W

)
=

1

8a2
1b

2
1

det

(
a2

1 b21
a2

2 + a2
3 b22 + b23

)
.

Proof. By Lemma 3.10 and (3.24), the curvature RW ∈ Ω2(B; End(W )) of
∇W is given by

RW |B− =

(
u′

h
ě01 − 2u ě23

)
Li −

(
v′

h
ě01 − 2v ě23

)
Ri .

This is clearly smooth at τ−1{−1}, since u′ and v′ vanish on τ−1(−1, ε− 1).
Given the isometry Ψ of (3.19), the definition e(W,∇W ) = 1

4π2 Pf(RW )
yields the Euler form. The expression for the Euler number follows directly
from ∫

B
e(W,∇W ) =

∫ 1

−1

uu′ − vv′

4
dt ,

which derives from the fact that the leaf S3/Q ∼= τ−1{t} ⊆ B4
a,b has volume

h vol(S3)/8 = π2h
4 with respect to gB, see [26, Section 4.c].
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To compute the half-Pontrjagin form and number of (W,∇W ), recall that
the elements x̄1 and f̄1 act on H via Li and Ri respectively. As both square
to −1 while, on the other hand, the product of the two is trace free, one
obtains the desired expressions from p1

2

(
W,∇W

)
= 1

16π2 tr
(
(RW )2

)
and∫

B

p1

2

(
W,∇W

)
=

∫ 1

−1

uu′ + vv′

4
dt .

�

The Pontrjagin form p1(TB,∇TB) has been computed in Lemma 3.9.
In the adiabatic limit (1.18) there is a second Pontrjagin form which must
also be computed, namely, that of the vertical bundle V → M7

a,b. The

compression of the Levi-Civita connection ∇TM on (M7
a,b, gM ) to V yields

a connection ∇V on V defined by ∇VXV = (∇TMX V )V for V ∈ Γ(V) and
X ∈ TM .

Lemma 3.12. The smooth Pontrjagin form p1(V,∇V) is given on M− by

p1(V,∇V)|M− =
uu′ + (uv)′ϕ11 + vv′

π2h
ē0123

+
1

2π2

((
u′

h
ē01 − 2u ē23

)
x̄23 +

(
v′

h
ē01 − 2v ē23

)
f̄23

)
On M+, p1(V,∇V) is given by replacing a with b and ϕ11 with ϕ22, and by
pulling back via the isometry Ψ of (3.19).

Proof. With respect to the orthonormal basis f̄1, f̄2, f̄3 of V, the connection
1-form is given by

ωV = (gM (f̄α,∇V· f̄β))α,β.

On M−\τ−1{−1} it then follows via the Koszul formula and Lemma 3.5
that

ωV =

 0 −f̄3 f̄2

f̄3 0 −2v
h ē

1 − f̄1

−f̄2 2v
h ē

1 + f̄1 0

 .

By applying Lemma 3.8 one derives the curvature 2-form to be

ΩV = dωV + ωV ∧ ωV

=



0
f̄12 − u′ϕ13

h ē01

+2uϕ13ē23

f̄13 + u′ϕ12

h ē01

−2uϕ12ē23

−f̄12 + u′ϕ13

h ē01

−2uϕ13ē23
0

f̄23 − u′ϕ11+v′

h ē01

+2(uϕ11 + v) ē23

−f̄13 − u′ϕ12

h ē01

+2uϕ12ē23

−f̄23 + u′ϕ11+v′

h ē01

−2(uϕ11 + v) ē23
0
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Since u′ and v′ vanish on τ−1(−1, ε−1), it is clear that ΩV can be extended
smoothly to τ−1{−1}, hence that the Pontrjagin form p1(V,∇V) is given on
M− by

p1

(
V,∇V

)
|M− =

1

8π2
tr
(
(ΩV)2

)
=

1

4π2

((
4uu′

h
(ϕ2

13 + ϕ2
12 + ϕ2

11) +
4(uv)′

h
ϕ11 +

4vv′

h

)
ē0123

+ ē01

(
2u′

h

(
ϕ11f̄

23 − ϕ12f̄
13 + ϕ13f̄

12
)

+
2v′

h
f̄23

)
− ē23

(
4u
(
ϕ11f̄

23 − ϕ12f̄
13 + ϕ13f̄

12
)

+ 4v f̄23
))

=
uu′ + (uv)′ϕ11 + vv′

π2h
ē0123

+
1

2π2

((
u′

h
ē01 − 2u ē23

)
x̄23 +

(
v′

h
ē01 − 2v ē23

)
f̄23

)
as claimed. �

Remark 3.13. Note that π∗W is stably isomorphic to the vertical bundle V,
since π : M7

a,b → B4
a,b is the unit-sphere orbi-bundle associated to the vector

orbi-bundle W → B4
a,b. Moreover, both the order |n| of H4(M7

a,b;Z) and the

number m appearing in the expression for the Eells-Kuiper invariant given
in Theorem C can be written in terms of orbifold characteristic numbers.
Indeed, from Lemma 3.11 one has∫

B
e(W,∇W ) =

n

a2
1b

2
1

,

while, on the other hand, Lemmas 3.9 and 3.11 yield∫
B

p1

2
(TB ⊕W,∇TB ⊕∇W ) =

1

8a2
1b

2
1

det

(
a2

1 b21
a2

2 + a2
3 + 8 b22 + b23 + 8

)
= m.

Given that both TB and W are orbi-bundles, there is no reason to expect
that n

a21b
2
1

and m should be integers. However, whenever a1 = b1 = 1, that

is, whenever π is a classical S3-bundle over S4, these are integers.

3.3. Evaluation of the Pontrjagin term.
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Recall from (1.18) that the adiabatic limit of the Pontrjagin term in (1.3)
is given by

lim
ε→0

∫
M
p1(TM,∇TM,ε)∧ p̂1(TM,∇TM,ε)

=

∫
M

(
p1(V,∇V) + π∗p1(TB,∇TB)

)
∧
(
p̂1(V,∇V) + p̂1(π∗TB,∇TB)

)
,

where

dp̂1(V,∇V) = p1(V,∇V),

dp̂1(π∗TB,∇TB) = π∗p1(TB,∇TB).

By Lemmas 3.9 and 3.12, only the 3-form

p̂1 := p̂1(V,∇V) + p̂1(π∗TB,∇TB)

in the integrand remains to be determined. Given an exact form ζ, a form
ξ with dξ = ζ will be called a primitive of ζ.

Lemma 3.14. On M− one has the identity

p1

(
V,∇V

)
|M− = π∗p1

(
W,∇W

)
|M− + dξ− ,

where

ξ− :=
1

4π2

((
u′

h
ē01 − 2u ē23

)
x̄1 −

(
v′

h
ē01 − 2v ē23

)
f̄1

)
.

In particular, ξ− is smooth at t = −1 and ξ−|τ−1(−ε,ε) ≡ 0. After switching
the roles of a and b, and pulling back by Ψ (3.19), one obtains on M+ a
similar smooth primitive ξ+ of p1

(
V,∇V

)
|M+ − π∗p1

(
W,∇W

)
|M+.

Proof. The existence of such a form ξ− follows from Remark 3.13, since
the Pontrjagin classes of stably isomorphic bundles must agree, hence their
representatives differ by an exact form.

In order to compute dξ−, some further exterior differentials are needed.
Given dϕαβ(v) = v(ϕαβ), one derives from (3.15) that

dϕ11 = 2ϕ12f̄
3 − 2ϕ13f̄

2 ,

dϕ12 = 2
v

h
ϕ13ē

1 + 2ϕ13f̄
1 − 2ϕ11f̄

3 ,

dϕ13 = −2
v

h
ϕ12ē

1 + 2ϕ11f̄
2 − 2ϕ12f̄

1 ,

which, together with Lemma 3.8 and (3.22), yield

dx̄1 =
u′ − v′ϕ11

h
ē01 − 2(u− vϕ11) ē23 + 2x̄23 .
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Lemma 3.8 now gives

d

((u′
h
ē01 − 2u ē23

)
x̄1

)
=

2(uv)′ϕ11 − 4uu′

h
ē0123 + 2

(u′
h
ē01 − 2u ē23

)
x̄23 ,

d

((v′
h
ē01 − 2v ē23

)
f̄1

)
=

4vv′ − 2(uv)′ϕ11

h
ē0123 − 2

(v′
h
ē01 − 2v ē23

)
f̄23 ,

(3.25)

which, with Lemmas 3.11 and 3.12, yields

dξ− = −
(
uu′ − (uv)′ϕ11 + vv′

π2h

)
ē0123

+
1

2π2

((
u′

h
ē01 − 2u ē23

)
x̄23 +

(
v′

h
ē01 − 2v ē23

)
f̄23

)
= p1

(
V,∇V

)
|M− − π∗p1

(
W,∇W

)
|M−

as desired. The smoothness of ξ− at t = −1 now follows from the vanishing
of h′′, u′ and v′ on τ−1(−1, ε− 1). �

Lemma 3.15. The 3-form

κ− := ξ− +
1

π2
(h3 − 2h)ē123

+
1

2π2h

(
(h′)2 + 2(u2 + v2)− 2

(
a2

2 + a2
3 + 8

a2
1

))
ē123

on M− is a smooth primitive of p1(V,∇V)|M−+π∗p1(TB,∇TB)|M−, that is,

dκ− = p1(V,∇V)|M− + π∗p1(TB,∇TB)|M− .
By swapping a with b and pulling back via the isometry Ψ of (3.19), one
obtains an analogous 3-form κ+ on M+ which is a smooth primitive of
p1(V,∇V)|M+ + π∗p1(TB,∇TB)|M+.

In particular, on M− ∩M+ = τ−1(−ε, ε) one has

κ−|τ−1(−ε,ε) − κ+|τ−1(−ε,ε) =
8m

π2
ē123 .

Proof. The smoothness of κ− along τ−1{−1} is a consequence of the smooth-
ness of the forms h ē1 = gM (h ē1, ·) and ē23 at the singular leaf, together with
Lemma 3.14 and the vanishing of the second ē123 term on τ−1(−1, ε− 1).



HIGHLY CONNECTED 7-MANIFOLDS AND NON-NEGATIVE CURVATURE 51

By Lemmas 3.9, 3.11 and 3.14, as well as the definitions of u and v, one
has

p1(V,∇V)|M− + π∗p1(TB,∇TB)|M−
= dξ− + π∗p1(W,∇W )|M− + π∗p1(TB,∇TB)|M−

= dξ− +

(
(a2

2 + a2
3 + 8)h′h′′

8π2h
+

4h′(h2 − 1)

π2

)
ē0123

= dξ− +
1

π2
d
(
(h3 − 2h)ē123

)
+ d

((
(a2

2 + a2
3 + 8)

8π2

)(
(h′)2

2h
− 8

a2
1h

)
ē123

)
= dκ− ,

where the second-last equality follows by applying Lemma 3.8 to obtain
dē123 = h′

h ē
0123. �

As a consequence of Lemma 3.15, to obtain a smooth, global primitive
p̂1 for p1(V,∇V) + π∗p1(TB,∇TB) it suffices to find closed 3-forms ν− and
ν+ on M− and M+ respectively, such that (κ− + ν−) − (κ+ + ν+) = 0 on
τ−1(−ε, ε).
Lemma 3.16. The 3-form

ν− :=
a2

1b
2
1m

π2n

(
f̄123 − 1

h

(
(u2 − v2)− a2

2 − a2
3

a2
1

)
ē123

−1

2

((
u′

h
ē01 − 2u ē23

)
x̄1 +

(
v′

h
ē01 − 2v ē23

)
f̄1

))
on M− is smooth and closed. Moreover, if ν+ is the corresponding closed 3-
form on M+ obtained by swapping a and b and pulling back via the isometry
Ψ of (3.19), then

ν−|τ−1(−ε,ε) − ν+|τ−1(−ε,ε) = −8m

π2
ē123 .

Proof. The smoothness of ν− at τ−1{−1} is clear, since u′, v′ and the coef-
ficient of ē123 all vanish identically on τ−1(−1, ε− 1).

From Lemma 3.8 it can be shown that

(3.26) df̄123 =

(
u′

h
ē01 − 2u ē23

)
x̄23 −

(
v′

h
ē01 − 2v ē23

)
f̄23 .

Together with (3.25) and the identity dē123 = h′

h ē
0123, it is now easy to

confirm that dν− = 0. �

Proposition 3.17. The 3-form

p̂1 :=

{
κ− + ν− , on M− ,

κ+ + ν+ , on M+ .

is a smooth, global primitive for p1(V,∇V) + π∗p1(TB,∇TB).
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Proof. The result follows immediately from Lemmas 3.15 and 3.16. In par-
ticular, on the intersection M− ∩M+ = τ−1(−ε, ε) one has

(κ− + ν−)|τ−1(−ε,ε) − (κ+ + ν+)|τ−1(−ε,ε) = 0 .

�

It is finally possible to evaluate the Pontrjagin term in the formula for
the Eells-Kuiper invariant given in Corollary 1.9.

Theorem 3.18. If n 6= 0 then, with respect to the metric gM on M7
a,b given

in Proposition 3.2, the adiabatic limit of
∫
M p1(TM,∇TM ) ∧ p̂1(TM,∇TM )

is given by

1

27 ·7

∫
M

(
p1(V,∇V) + π∗p1(TB,∇TB)

)
∧
(
p̂1(V,∇V) + p̂1(π∗TB,∇TB)

)
=

1

27 ·7

(
4a2

1b
2
1m

2

n
− n

a2
1b

2
1

)
.

Proof. By Lemmas 3.9 and 3.12, together with Proposition 3.17, the inte-
grand is given on τ−1[−1, 0] ⊆M− by

dκ− ∧ (κ− + ν−) = d((κ− − ξ−) + ξ−) ∧ ((κ− − ξ−) + ξ− + ν−)

= d(κ− − ξ−) ∧ (κ− + ν−) + dξ− ∧ ξ−
+ dξ− ∧ (κ− − ξ− + ν−)

= d(κ− − ξ−) ∧ (κ− + ν−) + dξ− ∧ ξ−
+ d(ξ− ∧ (κ− − ξ− + ν−)) + ξ− ∧ d(κ− − ξ− + ν−).

Given that ν− is closed and

d(κ− − ξ−) = d(κ− − ξ− + ν−) = π∗p1(W,∇W )|M− + π∗p1(TB,∇TB)|M−
involves only ē0123 terms, it follows from Lemma 3.14 that

(3.27) ξ− ∧ d(κ− − ξ− + ν−) = ξ− ∧ d(κ− − ξ−) = 0 ,

and from Lemmas 3.9, 3.11, 3.15 and 3.16 that

d(κ− − ξ−) ∧ (κ− + ν−)

=
a2

1b
2
1m

π2n

(
π∗p1(W,∇W )|M− + π∗p1(TB,∇TB)|M−

)
∧ f̄123

=
a2

1b
2
1m

π4n

(
h′h′′

h
+ 4h′h2 − 4h′ +

2(uu′ + vv′)

h

)
ē0123f̄123 .(3.28)

On the other hand, from (3.22) it follows that x̄123 = f̄123 and f̄1x̄23 =
x̄1f̄23 = ϕ11f̄

123. Therefore, from Lemma 3.14 one derives

(3.29) dξ− ∧ ξ− = −uu
′ − vv′

2π4h
ē0123f̄123 .



HIGHLY CONNECTED 7-MANIFOLDS AND NON-NEGATIVE CURVATURE 53

Finally, since ξ−|τ−1(−ε,ε) ≡ 0, it follows from Stokes’ Theorem that

(3.30)

∫
τ−1[−1,0]

d(ξ− ∧ (κ− − ξ− + ν−)) = 0 .

Together with the fact that, with respect to the metric gM , a leaf τ−1{t} ⊆
M7
a,b has volume

(
π2h

4

)
(2π2) = π4h

2 [26, (4.33)], equations (3.27), (3.28),

(3.29) and (3.30) yield∫
τ−1[−1,0]

(
p1(V,∇V) + π∗p1(TB,∇TB)

)
∧
(
p̂1(V,∇V) + p̂1(π∗TB,∇TB)

)
=

∫ 0

−1

a2
1b

2
1m

2n

(
1

2
((h′)2)′ + (h4)′ − 2(h2)′ + (u2 + v2)′

)
− (u2 − v2)′

8
dt

=

(
a2

1b
2
1m

2n

(
1

2
(h′)2 + (h4)′ − 2h2 + u2 + v2

)
− u2 − v2

8

) ∣∣∣∣0
−1

= C0 −
a2

1b
2
1m

2n

(
a2

2 + a2
3 + 8

a2
1

)
+
a2

2 − a2
3

8a2
1

,

where C0 denotes the t = 0 boundary term. Similarly, bearing in mind
that the isometry Ψ (3.19) is orientation reversing, on τ−1(0, 1] ⊆ M+ one
obtains∫

τ−1(0,1]

(
p1(V,∇V) + π∗p1(TB,∇TB)

)
∧
(
p̂1(V,∇V) + p̂1(π∗TB,∇TB)

)
=
a2

1b
2
1m

2n

(
b22 + b23 + 8

b21

)
− b22 − b23

8b21
− C0 .

The result now follows from the definitions of m and n by combining the
integrals over τ−1[−1, 0] and τ−1(0, 1]. �

3.4. The contribution of the η-forms.

Given the computations in Subsection 3.2,some further terms can be com-
puted in the expression for the Eells-Kuiper invariant given by the adiabatic-
limit formula of Corollary 1.9.

Theorem 3.19. If n 6= 0 then, with respect to the metric gM on M7
a,b given

in Proposition 3.2, it follows that

1

2

∫
ΛB
ÂΛB(TB,∇TB) 2 ηΛB(DS3) +

1

25 ·7

∫
ΛB

L̂ΛB(TB,∇TB) 2 ηΛB(BS3)

= − 1

27 · 7

(
n

a2
1b

2
1

)
−D(a) +D(b) .
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Proof. Recall from Corollary 2.4 that the inertia orbifold ΛB associated to
B4
a,b is described by the disjoint union

ΛB = B4
a,b t

(
S2
− ×

{
1, . . . ,

|a1| − 1

2

})
t
(

S2
+ ×

{
1, . . . ,

|b1| − 1

2

})
.

As such, the integrals in the statement can be performed over each of the
connected components separately. On B4

a,b ⊆ ΛB the integrals can be com-

puted using Theorem 3.9 of [24] (as was done in [26, Prop. 4.2]), which,
following Lemma 3.11 and Remark 3.13, yields

1

2

∫
B
ÂΛB(TB,∇TB) 2 ηΛB(DS3) +

1

25 ·7

∫
B
L̂ΛB(TB,∇TB) 2 ηΛB(BS3)

= − 1

27 · 7

∫
B
e(W,∇W ) = − 1

27 · 7

(
n

a2
1b

2
1

)
.

It remains, therefore, only to show that the contribution of ΛB\B4
a,b

consists of the generalised Dedekind sums −D(a) and +D(b). In order
to do this, it is necessary to determine some equivariant characteristic num-
bers and the equivariant η-forms for the pullback of the Seifert fibration
π : M7

a,b → B4
a,b to the double covers S2

± of the components RP2
± of the

singular locus of B4
a,b. As there is an analogous orientation-reversing isome-

try on B4
a,b to that given on M7

a,b by Ψ in (3.19), only the computations for

RP2
− need to be carried out explicitly. Observe first that Lemma 3.7 yields

∇ě2 ě2 = ∇ě3 ě3 = 0 and ∇ě2 ě3 = −∇ě3 ě2 = hě1, from which it follows that
RP2

− is totally geodesic in B4
a,b.

Following the notation of Corollary 2.4 and recalling the discussion pre-
ceding (1.6), let (b, [γs−]) be a point in ΛB\B4

a,b, let N− → RP2
− be the

normal bundle of RP2
− ⊆ B4

a,b, and let Ñ− → S2
− denote the pullback of N−

to S2
−. Since B4

a,b is oriented by ě0123 and the twisted sector S2
− is locally

oriented by ě23, the orientation on Ñ− is given (in a limiting sense) by ě01.

The bundle Ñ− carries a natural spin structure with an associated spinor
bundle S(Ñ−).

By Lemma 2.3, in an orbifold chart V the elements γs−, s ∈ {1, . . . , |a1|−1
2 },

of the isotropy group Z|a1| act on Ñ− via multiplication by e8πis/a1 ∈ S1 ∼=
SO(2). As Z|a1| is an odd cyclic group, this action has a unique lift to
Spin(2), represented by

(3.31) γ̃s− = e4πis/a1 ∈ S1 ∼= Spin(2) .

Similarly to the arguments employed for [26, (4.22), (4.23)], the curvature

2-forms for Ñ− and TS2
− can be computed in an orbifold chart by considering

the upper and lower (2× 2)-blocks of the curvature (3.23) and taking limits
as t→ −1. It then follows that the corresponding curvatures are given by

RÑ− = − 8i

|a1|
ě23 and RTS

2
− = −4i ě23 .



HIGHLY CONNECTED 7-MANIFOLDS AND NON-NEGATIVE CURVATURE 55

In particular, using the (non-standard) convention from [26] that the Clifford

actions of c(ě0)c(ě1) on S±(Ñ−) and of c(ě2)c(ě3) on S±(TS2
−) are both

given by ±i, one derives (from, for example, [40, Sec. II, Thm. 4.15]) that
the curvature of the summands of the spinor bundle is given by

RS
±(Ñ−) = ∓ 4i

|a1|
ě23 and RS

±(TS2
−) = ∓2i ě23 .

On the other hand, by (3.17) and (3.31) the action of γ̃s− on S±(Ñ−) is given
by

γs−|S±(Ñ−) = exp

(
a1

|a1|
4πs

a1
c(ě0)c(ě1)

) ∣∣∣∣
S±(Ñ−)

= exp

(
± a1

|a1|
4πis

a1

)
respectively. Therefore, one deduces that

γ̃s− exp

(
−R

S±(Ñ−)

2πi

)
= exp

(
± a1

|a1|
4i

a1

(
πs+

ě23

2πi

))
,

which in turn, via (1.6), yields the equivariant Chern character

chγ̃s−(S+(Ñ−)− S−(Ñ−),∇S(Ñ−))

= exp

(
a1

|a1|
4i

a1

(
πs+

ě23

2πi

))
− exp

(
− a1

|a1|
4i

a1

(
πs+

ě23

2πi

))
(3.32)

= 2i
a1

|a1|
sin

(
4

a1

(
πs+

ě23

2πi

))
.

From (1.7) and (1.8), and given that Â(TS2
−,∇S2

−) = 1 since it has degree

≡ 0 mod 4, it can now be concluded that the orbifold Â-form on S2
−×{s} ⊆

ΛB is given by

(3.33) ÂΛB

(
TB,∇TB

)
= − 1

a1 · 2i sin
(

4
a1

(
πs+ ě23

2πi

)) .
Similarly, since the action of γs− tangential to S2

− is trivial, one derives

chγ̃s−(S+(TB) + S−(TB),∇S(TB))

= 2

(
exp

(
a1

|a1|
4i

a1

(
πs+

ě23

2πi

))
+ exp

(
− a1

|a1|
4i

a1

(
πs+

ě23

2πi

)))
= 4 cos

(
4

a1

(
πs+

ě23

2πi

))
,

where the additional factor of 2 is a consequence of TS2
− being a rank-2

bundle. From (1.9) one concludes that the orbifold L̂-form on S2
−×{s} ⊆ ΛB
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is given by

L̂ΛB(TB,∇TB) = ÂΛB(TB,∇TB) chΛB(S+(TB) + S−(TB),∇S(TB))

=
2i

a1
cot

(
4

a1

(
πs+

ě23

2πi

))
.

(3.34)

To compute the equivariant η-forms of M7
a,b|RP2

−
→ RP2

−, recall from

Lemma 2.3 that γs− acts on the fibre S3 via

(3.35) (γs−, q) 7→ γsa2− q γ̄sa3− = e2πi(a2−a3)s/a1z + je−2πi(a2+a3)s/a1w ,

where q = z + jw ∈ S3. This action clearly extends to the fibres of the
associated rank-4 vector orbi-bundle W → B. Furthermore, by the proof of
Lemma 3.11, the curvature of W at RP2

− is given by

RW− := RW |RP2
−

= −2a2

a1
ě23 Li +

2a3

a1
ě23Ri ,

which then acts on the fibres of W via

exp

(
−
RW−
2πi

)
· (z + jw)

= exp

(
−2(a3 − a2)

a1

ě23

2πi

)
z + exp

(
−2(a2 + a3)

a1

ě23

2πi

)
jw .

(3.36)

On the other hand, given that the fibres of π have positive scalar cur-
vature, hence that the kernel of DS3 is trivial, explicit formulae for the
equivariant η-invariants ηγs− exp(−RW− /2πi)

(DS3) and ηγs− exp(−RW− /2πi)
(BS3) of

the (untwisted) spin-Dirac operator DS3 and the odd signature operator
BS3 can be found in [32, Eqns. (5), (11), (14)] and [2, proof of Prop. 2.12]
respectively, as well as in [23]. Therefore, in analogy with the result in [26,
(4.24)], on the component S2

− × {s} ⊆ ΛB\B4
a,b these formulae, together

with (1.12), (1.13), (3.35) and (3.36), yield

2ηΛB(DS3) = − 1

2 sin
(
a2+a3
a1

(
πs+ ě23

2πi

))
sin
(
a3−a2
a1

(
πs+ ě23

2πi

)) ,
2ηΛB(BS3) = − cot

(
a2 + a3

a1

(
πs+

ě23

2πi

))
cot

(
a3 − a2

a1

(
πs+

ě23

2πi

))
.

(3.37)

For the sake of notation below, let

q = a1, p1 = 4, p2 = a2 + a3, p3 = a3 − a2
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Now, by combining the expressions obtained in (3.33), (3.34) and (3.37),
one obtains that the integrand on S2

− × {s} is given by

1

2
ÂΛB(TB,∇TB) 2 ηΛB(DS3) +

1

25 ·7
L̂ΛB(TB,∇TB) 2 ηΛB(BS3)

= − i

q · 24 · 7

14 +
∏3
`=1 cos

(
p`πs
q + p`

q
ě23

2πi

)
∏3
`=1 sin

(
p`πs
q + p`

q
ě23

2πi

)
 .

The goal now is to extract the degree-two term from this expression, that
is, the term involving the volume form ě23. By expanding the respective
formal power series and noting that (ě23)k = 0 for k > 1, one obtains

sin

(
p`πs

q
+
p`
q

ě23

2πi

)
= sin

(
p`πs

q

)
+
p`
q

cos

(
p`πs

q

)
ě23

2πi
,

cos

(
p`πs

q
+
p`
q

ě23

2πi

)
= cos

(
p`πs

q

)
− p`
q

sin

(
p`πs

q

)
ě23

2πi
.

This observation yields, in particular, that

cos
(
p`πs
q + p`

q
ě23

2πi

)
sin
(
p`πs
q + p`

q
ě23

2πi

) =
cos
(
p`πs
q + p`

q
ě23

2πi

)
sin
(
p`πs
q + p`

q
ě23

2πi

) · sin
(
p`πs
q

)
− p`

q cos
(
p`πs
q

)
ě23

2πi

sin
(
p`πs
q

)
− p`

q cos
(
p`πs
q

)
ě23

2πi

=
sin
(
p`πs
q

)
cos
(
p`πs
q

)
− p`

q
ě23

2πi

sin2
(
p`πs
q

) .

From this one deduces that

14 +
∏3
`=1 cos

(
p`πs
q + p`

q
ě23

2πi

)
∏3
`=1 sin

(
p`πs
q + p`

q
ě23

2πi

)
=

14
∏3
`=0

(
sin
(
p`πs
q

)
− p`

q cos
(
p`πs
q

)
ě23

2πi

)
∏3
`=1 sin2

(
p`πs
q

)
+

∏3
`=1

(
sin
(
p`πs
q

)
cos
(
p`πs
q

)
− p`

q
ě23

2πi

)
∏3
`=1 sin2

(
p`πs
q

)

=

−∑
(i,j,k)=
�(1,2,3)

pi
q

(
14 cos

(
piπs
q

)
+ cos

(
pjπs
q

)
cos
(
pkπs
q

))
sin2

(
piπs
q

)
sin
(
pjπs
q

)
sin
(
pkπs
q

)
 ě23

2πi

+
14 +

∏3
`=1 cos

(
p`πs
q

)
∏3
`=1 sin

(
p`πs
q

) .
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Since S2
− has constant curvature 4, hence volume π, the contribution

of the twisted sectors S2
− × {1, . . . ,

|q|−1
2 } to the Eells-Kuiper invariant is,

therefore, given by

1

2

∫
ΛB\B4

a,b

ÂΛB(TB,∇TB) 2 ηΛB(DS3)

+
1

25 ·7

∫
ΛB\B4

a,b

L̂ΛB(TB,∇TB) 2 ηΛB(BS3)

=
1

q2 · 25 · 7

|q|−1
2∑

s=1

∑
(i,j,k)=
�(1,2,3)

pi

(
14 cos

(
piπs
q

)
+ cos

(
pjπs
q

)
cos
(
pkπs
q

))
sin2

(
piπs
q

)
sin
(
pjπs
q

)
sin
(
pkπs
q

)

=
1

q2 · 26 · 7

|q|−1∑
s=1

∑
(i,j,k)=
�(1,2,3)

pi

(
14 cos

(
piπs
q

)
+ cos

(
pjπs
q

)
cos
(
pkπs
q

))
sin2

(
piπs
q

)
sin
(
pjπs
q

)
sin
(
pkπs
q

)
= D(q; p1, p2, p3)

= D (a1; 4, a2 + a3, a3 − a2) = −D(a),

where the second equality follows from the invariance of the summands under
the map s 7→ q−s and the final equality from the remarks preceding Theorem
C. Replacing a with b and applying the isometry Ψ of (3.19) yields the

analogous contribution +D(b) of the twisted sectors S2
+×{1, . . . ,

|b1|−1
2 }. �

Despite their complicated appearance, it is sometimes straightforward to
compute the generalised Dedekind sums D(q; p1, p2, p3), where gcd(q, pi) = 1
for i = 1, 2, 3. For example, in the case q = 1, it is clear thatD(1; p1, p2, p3) =
0. A non-trivial situation which arises in Corollary D is detailed below.

Example 3.20. Consider the case q = −3 and pi = 2xi, i = 1, 2, 3, where
xi ∈ Z satisfies gcd(3, xi) = 1 for all i ∈ {1, 2, 3}. Then, for all i ∈ {1, 2, 3}
and ` ∈ {1, 2}, one has cos

(
−2xiπ`

3

)
= −1

2 and sin
(
−2xiπ`

3

)
= −%(xi`)

√
3

2 ,

where % : Z→ {0,±1} is defined by

%(x) =


0, if x ≡ 0 mod 3,

1, if x ≡ 1 mod 3,

−1, if x ≡ 2 mod 3.

Therefore, for cyclic permutations (i, j, k) of (1, 2, 3) and ` ∈ {1, 2}, one
has

14 cos

(
−2xiπ`

3

)
+ cos

(
−2xjπ`

3

)
cos

(
−2xkπ`

3

)
= −27

4
,

whereas

sin2

(
−2xiπ`

3

)
sin

(
−2xjπ`

3

)
sin

(
−2xkπ`

3

)
= %(xj`)%(xk`)

9

16
.
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However, as the sign of %(xi`) changes depending on the choice of ` ∈ {1, 2},
it follows that both expressions are independent of ` and, hence, that

D(−3; 2x1, 2x2, 2x3) = − 24 · 3
26 · 32 · 7

∑
(i,j,k)=
�(1,2,3)

%(xj)%(xk)xi

= − 1

22 · 3 · 7
∑

(i,j,k)=
�(1,2,3)

%(xj)%(xk)xi .

Notice, in particular, that D(−3; 2x1, 2x2, 2x3) ∈ 1
28Z , since xi 6≡ 0 mod

3 for every i ∈ {1, 2, 3} ensures that the numerator of D(−3; 2x1, 2x2, 2x3)
is always divisible by 3.

As an application of this formula to the situation in Corollary D, consider
D(a) = D(a1; 4, a2 + a3, a2 − a3) for a = (−3, 12k − 3, 12l + 1), k, l ∈ Z. In
this case, x1 = 2, x2 = 6(k+ l)−1 and x3 = 6(k− l)−2, which ensures that
%(x1) = %(x2) = −1 and %(x3) = 1. It now easily follows that D(a) = 4l+1

28 .

3.5. The contribution of the very small eigenvalues.

Recall that the term 1
25·7 limε→0 τε in the formula for the Eells-Kuiper

invariant given in Corollary 1.9 is the signature of the quadratic form (1.14)
coming from the E4-page of a Leray-Serre spectral sequence for the Seifert
fibration π : (M7

a,b, gM )→ (B4
a,b, gB).

Theorem 3.21. If n 6= 0 then, with respect to the metric gM on M7
a,b given

in Proposition 3.2, the contribution of the very small eigenvalues of the
odd signature operator B to the adiabatic-limit formula for the Eells-Kuiper
invariant µ(M7

a,b) is given by

1

25 · 7
lim
ε→0

τε =
|n|

25 · 7 · n
.

Proof. As in [26, Section 4.g.], given that the entries on the E4-page are

trivial except for Eij4 = R whenever i ∈ {0, 4}, j ∈ {0, 3}, it suffices to de-
termine the sign of the integral

∫
M ξ dξ , where ξ ∈ Ω3(M7

a,b) is a 3-form such

that the fibrewise integral is nowhere zero, and such that dξ ∈ π∗Ω4(B4
a,b)

is basic. Consider the 3-form

ξ =

2f̄123 −
(
u′

h ē
01 − 2u ē23

)
x̄1 −

(
v′

h ē
01 − 2v ē23

)
f̄1 on M− , and

2f̄123 −
(
u′

h ē
02 + 2u ē13

)
x̄2 −

(
v′

h ē
02 + 2v ē13

)
f̄2 on M+ .

It is clear that ξ|M−∩M+ = 2f̄123 and that the fibrewise integral is nowhere
zero, as desired. Furthermore, from (3.25) and (3.26) it follows that

dξ =
4uu′ − 4vv′

h
ē0123 =

2(u2 − v2)′

h
ē0123 ∈ π∗Ω4(B4

a,b) .
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Since the leaves τ−1(t) ∈M7
a,b have volume π4h

2 , the result now follows from∫
M
ξ dξ =

∫
M

4(u2 − v2)′

h
ē0123f̄123

= 2π4

∫ 1

−1
(u2 − v2)′ dt

=
16π4n

a2
1b

2
1

.

�

3.6. The Eells-Kuiper invariant.

Combining the results of the previous sections, it is finally possible to
compute the Eells-Kuiper invariant of M7

a,b.

Theorem 3.22. If n 6= 0, then the Eells-Kuiper invariant of M7
a,b is given

by

µ(M7
a,b) =

|n| − a2
1b

2
1m

2

25 · 7 · n
−D(a) +D(b) mod 1 ∈ Q/Z .

Proof. Equip M7
a,b with the metric gM given in Proposition 3.2. Using the

adiabatic-limit formula in Corollary 1.9, the claimed expression for µ(M7
a,b)

now follows immediately from Theorems 3.18, 3.19 and 3.21. �
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