
Dynamic Project Expediting:

A Stochastic Shortest-Path Approach

Luca Bertazzi1, Riccardo Mogre2, and Nikolaos Trichakis3

1Department of Economics and Management, University of Brescia, Brescia, Italy,
luca.bertazzi@unibs.it

2Durham University Business School, Durham University, Durham, UK,
riccardo.mogre@durham.ac.uk

3Operations Research Center and Sloan School of Management, MIT, Cambridge,
MA, USA, ntrichakis@mit.edu

February 8, 2023

Abstract

We deal with the problem of managing a project or a complex operational process by
controlling the execution pace of the activities it comprises. We consider a setting in which
these activities are clearly defined, are subject to precedence constraints, and progress ran-
domly. We formulate a discrete-time, infinite-horizon Markov decision process in which the
manager reviews progress in each period and decides which activities to expedite, so as to
balance expediting costs with delay costs. We derive structural properties for this dynamic
project expediting problem. These enable us then to devise exact solution methods that we
show to reduce computational burden significantly. We illustrate how our method generalizes
and can be used to tackle a wide range of so-called stochastic shortest-path problems that are
characterized by an intuitive property and can capture other applications, including medical
decision-making and disease-modeling problems. Moreover, we also deal with the state identi-
fication issue for our problem, which is a challenging task in and of itself, owing to precedence
constraints. We complement our analytical results with numerical experiments, demonstrat-
ing that both our solution and state identification methods significantly outperform extant
methods for a supply chain example and for various randomly generated instances.

Keywords: project management, project risk, Markov decision process, stochastic dynamic pro-
gramming, stochastic shortest path.

1 Introduction

Motivation. Managing projects, or complex operational processes, in general, is a notoriously
difficult problem. In their “Pulse of the Profession” studies, the Project Management Institute
reported that, in the last decade, only about 50% of projects were on time, only 55% were within
budget, and that firms wasted, on average, more than 11% of total investment due to poor project
performance (PMI 2018, 2020). Among the main underlying challenges, and therefore also pre-
senting opportunities, are ineffective monitoring, forecasting, and control (Pinto and Mantel 1990).
Monitoring and forecasting entail efficient ways to measure and predict progress. Control entails
timely and appropriate corrective actions based on the monitored progress, such as, for example,
resource deployment to expedite progress—a procedure known as dynamic expediting (Bregman
2009). Recent innovations and advances in automation, digitization, and AI have drastically cat-
alyzed effective monitoring and forecasting, as we illustrate below via a couple of examples, laying
fertile ground for control processes, like dynamic expediting, to have an impact in practice. Mo-
tivated by this opportunity, and envisioning that future project management will rely ever more
heavily on rigorous quantitative methods, we seek to devise optimal dynamic expediting poli-
cies that are computationally efficient so that they are implementable and can help improve the
management of complex operational processes in practice.

First, consider supply chain operations, like the ones undertaken by specialist firm Li&Fung, for
example, to produce garments (Magretta 1998). In such a chain, yarn, bought from Korea, is woven

1

and dyed in Taiwan, while at the same time, zippers are manufactured by Japanese contractors
in their Chinese plants. As supply chain tasks are orchestrated, various sensors dispersed from
manufacturing machines to transit vehicles could inform Li&Fung managers in real time about the
progress of each task, alerting them to potential delays. Such delays are of course exceedingly costly
due to lost demand. Based on this monitoring information, managers have the ability to deploy
resources in a smart way so as to expedite progress, e.g., to contract additional suppliers or capacity
to ramp up production, or to switch to different transport modes to speed up transhipments.

Second, consider a complex pharma project, like BioNTech’s repurposing of the Marburg bi-
ologics facility, for example, that it bought from Novartis in Fall 2020 so that it can produce
BNT162, the company’s mRNA COVID-19 vaccine (BioNTech 2021). Although the facility was
previously used by Novartis’ vaccine division, several conversion tasks needed to be undertaken
for it to handle the manufacturing needs of BNT162, which relied on the novel mRNA platform.
These included machine conversion tasks, such as calibration of bioreactors for mRNA production
and adjustments of purification processes, as well as workforce training tasks. As these tasks are
undertaken, AI models could help provide managers in real time with forecasts about potential
delays based on current progress, notwithstanding that some of these tasks are unprecedented.
Delays could again result in costly lost demand, but also loss of life as the pandemic continues
to spread. Based on delay forecasts, managers have again the ability to deploy resources in a
smart way so as to expedite progress, e.g., to buy extra equipment or to employ additional staff
specialists.

The infrastructure for effective forecasting and monitoring of processes is hardly unique to the
two examples above. As in the case of Li&Fung, Industry 4.0 practices are becoming widespread
with equipment increasingly using sensors and Internet-of-Things technology to provide real-time
monitoring. As in the case of BioNTech, equipped with historical data, deep learning and AI can
identify patterns of similarity among project tasks, hierarchies, and precedent relations, enabling
progress forecasting for complex processes. For instance, nPlan, a London-based startup, is using
AI and data from tens of thousands of projects involving millions of tasks to generate accurate
forecasts for project completion, including information about delay risks (Grushka-Cockayne 2020).
Indeed, be it a manufacturing task, a supply chain process, or a complex project, monitoring and
forecasting capabilities for operations management are becoming increasingly powerful.

To leverage these novel capabilities, implementable control policies are called for to “close the
loop” and go from data to decisions, paving the way for even more efficient and dynamic manage-
ment of operating processes. In this paper, we study one such important class of control policies
for project management, namely dynamic project expediting, that can be applied to a broad range
of problems. In particular, we assume that there is a project with clearly defined activities, which
the manager can effectively monitor, as was described in the aforementioned practical applications.
We strive to derive control policies that, based on the monitoring information, prescribe correc-
tive actions in terms of when and which processes to expedite, balancing costs associated with
expediting activities and project delays.

The types of control policies we research are not simply interesting and relevant because of the
opportunities presented by effective monitoring discussed so far, they are also necessary to deal
with the increasing complexity of projects and operating processes (De Meyer et al. 2006). Indeed,
with complexity rising, it becomes exceedingly harder to predict how changes in the effort of some
activities will affect other activities and ultimately the outcome of the project (Sterman 1992).
Consequently, in practice, dynamic expediting decisions are often dealt with in an unstructured
manner (ProjectManagementdotcom 2017). In response, rigorous control policies are called for.

At the same time, project complexity also increases the scale of the underlying control problems,
and in turn the required computational burden. Therefore, control policies have to be computa-
tionally efficient to be practical, and this is an important consideration in our work.

Our study. We aim to provide support to decision-makers who are managing a set of processes
and need to dynamically decide when and which processes to expedite, balancing expediting costs
and delay costs. In particular, in our problem, a decision-maker is in charge of a project with clearly
defined activities, some sequential and others parallel, subject to certain precedence constraints.
Motivated by the technological advancements discussed above, we consider a setting in which the
decision-maker is able to periodically monitor the progress of activities. The nominal duration
of each activity is known, but progress is uncertain as is usually the case in practice. Motivated
by data availability as discussed above, we consider a setting in which the decision-maker has a
credible probabilistic description of progress uncertainty for each activity.

As illustrated in the aforementioned supply chain and pharma project examples, the decision-
maker has some control over the progress of the project activities, and, in particular, has the

2

option of expediting them. To model this, we consider that there is a level of effort exerted for
each activity, which the decision-maker chooses in each period. For example, for each activity she
could decide whether to exert regular effort or to exert high effort, i.e., to expedite the activity.
Higher levels of effort “speed up” an activity’s random progress evolution, but also incur higher
effort costs.

As also illustrated in the supply chain and pharma project examples, the longer the project
takes to complete, the higher the associated delay costs are, e.g., due to lost demand. To model
this, we consider a delay cost that grows linearly with the project completion time.

In this setting, the problem for the decision-maker is to dynamically decide in each period
the level of effort to be exerted in each activity of the project, based on observed progress. The
decision-maker’s objective is to minimize the sum of expected future effort and delay costs. We
refer to this problem as the Dynamic Project Expediting (DPE) problem. We formulate the DPE
problem as a discrete-time Markov Decision Process (MDP), and we seek a non-anticipatory policy
that prescribes effort levels for each activity, based on observed progress.

Our contributions. The DPE problem we study belongs to a class of MDP problems known as
Stochastic Shortest-Path (SSP) problems. The tools currently available in the extant literature
to solve such problems are primarily based on generic dynamic programming techniques; value
iteration, policy iteration, or via linear programming (Bertsekas 2017). These techniques are exact,
but, it is well known that they quickly become computationally prohibitive to use in practice as
the state space grows. Indeed, for the case of the supply chain managed by Li&Fung we discussed
above, for example, we found in our computational experiments that these techniques fail.

Against this backdrop, among our main contributions is to develop and analyze an exact solution
method, which we call the Topological Backward Recursion (TBR) algorithm. The TBR algorithm
yields optimal policies for the DPE problem in a significantly less computationally burdensome
way. We also show that our algorithm can be applied not only to our DPE problem but also to a
large class of stochastic shortest-path problems that are characterized by an intuitive property.

In particular, we first derive insightful structural properties that the DPE problem possesses.
These structural properties enable a topological ordering of the state space, which in turn enables
us then to develop TBR. Furthermore, the analysis brings forth a broad class of SSP problems
that share similar ordering properties. We call problems that belong to this class as forward-only
SSP problems, and as we shall see, besides DPE, they arise often in practice, particularly within
medical decision-making applications. We show that the TBR algorithm works not only for the
DPE problem but for this larger class of forward-only SSP problems.

Then, we show that our TBR algorithm significantly dominates the existing value iteration,
policy iteration, and linear programming algorithms in terms of the computational burden. We
do this by providing both analytical and numerical evidence. For the former, we first demonstrate
how the TBR leverages the DPE’s structural properties we established so that it can calculate the
optimal cost-to-go in a single iteration for each recursion step. Second, we argue that it also requires
an amount of data storage that is proportional to s/2 on average, where s is the cardinality of the
state space, because in each iteration it accesses exclusively the states, the transition probabilities,
and the immediate costs needed for that iteration. In contrast, extant algorithms typically employ
expensive iterative procedures to calculate costs-to-go and also require an amount of data storage
that is proportional to s2—because they store all the states, all the transition probabilities, and
all the immediate costs. Put together, these two features help explain the computational benefits
of TBR, while the drastic reduction in data storage proves key to solving problem instances that
are of significantly larger scale in practice, and for which extant algorithms fail.

A further contribution we make is also in the direction of alleviating overall computational
burden, by introducing a faster method to identifying feasible states for the DPE problem. Feasible
state identification, which is a pre-requisite step to applying our TBR algorithm, or any other
extant dynamic programming algorithm for that matter, is a rather challenging task for the DPE
problem in and of itself, owing to the precedence constraints that activities have to satisfy. To
tackle this task, we follow a similar recipe as before: we first identify a key structural property,
namely, an equivalence relation on the states that partitions the feasible space into classes. This
property motivates a class identification (CId) algorithm we introduce. We then leverage the
output partition of the CId algorithm to identify feasible states through a state enumeration
(SEn) algorithm. Taken together, these algorithms provide a faster way to identify feasible states
compared to extant methods—a claim we back up with extensive numerical evidence.

Finally, we conduct a series of numerical experiments to demonstrate the practical value of
our algorithms. We begin by considering the Li&Fung supply chain example. In our tests, we
found that our algorithms succeed in solving the problem, whereas extant methods fail as they run

3

out of memory. We further conduct a range of experiments using synthetically generated data.
We again find that using our algorithm enables us to solve much larger problem instances. For
smaller instances that are also solvable using extant methods, we document a significant reduction
in computational time: in particular, compared with a value iteration implementation tailored to
stochastic shortest-path problems on Directed Acyclic Graphs (Bertsekas 2012, 209–210), which
was the best performing among the dynamic programming algorithms in our experiments, the
TBR algorithm reduces computation times on average by 42% and as much as 100.0%. In terms
of feasible state identification, compared with the fast class identification algorithm proposed by
Creemers et al. (2010), the average percent reduction of CId was 43% and the maximum percent
reduction was 99%.

To be sure, the algorithms we devise still scale with the size of the state space, thus the curse
of dimensionality would still kick in when applied in practice. After all, the DPE remains a quite
challenging stochastic optimization problem. However, the analytical and numerical evidence we
have provided demonstrates that our algorithms can greatly expand the sizes of problems we can
solve in practice. More importantly, the structural properties we uncover provide useful insights
that could help pave the way to devising further lines of attack to dynamic project expediting
problems and to the broader class of forward-only stochastic shortest-path problems.

Next, in Section 2, we position our contributions vis-a-vis the existing literature and review
relevant previous contributions. In Section 3, we provide a formulation of the DPE problem as
a stochastic shortest-path problem. In Section 4, we introduce the TBR algorithm, whereas,
in Section 5, we tackle the feasible state identification problem, introducing our CId and SEn
algorithms. Section 6 includes our numerical studies that compare the TBR and CId + SEn
algorithms to existing algorithms. In Section 7, we conclude and discuss directions for future
research.

2 Related Work

In a nutshell, we contribute to the sparse literature on dynamic project expediting by describing a
new expediting problem, proposing an MDP formulation for the problem, deriving insightful struc-
tural properties, and devising algorithms that can solve the problem optimally in a significantly less
computationally burdensome way, compared with extant dynamic programming algorithms. More
broadly, our work contributes to the literature on stochastic shortest-path problems (Bertsekas and
Tsitsiklis 1991) by bringing forth, for a class of problems that we call forward-only SSP problems,
an important ordering property, which we then use to devise more efficient solution techniques.
Besides the DPE problem, forward-only SSP problems subsume other important practical prob-
lems, specifically within medical decision-making and disease-modeling applications. Moreover, we
contribute to the literature on dynamic project management by proposing algorithms that 1) can
identify activities that can be performed in parallel, and 2) can enumerate the feasible states of a
dynamic project management problem in a way that appears to be significantly faster compared
with extant methods.

We next present a more detailed review, by first discussing previous literature that is themati-
cally related to our problem, namely on dynamic project expediting, dynamic project management,
and project crashing. Second, we focus on the methods employed in previous literature and com-
pare them with the ones used in this article.

Dynamic project expediting. Literature on dynamic expediting includes contributions in a
variety of settings, primarily in inventory management, but also in manufacturing management.
Very few studies analyze dynamic expediting in projects.

Bregman (2009) is among the first who study dynamic project expediting. In their context,
expediting consists of the allocation of extra resources to a project activity to accelerate its progress.
For a project with uncertain activity durations, they investigate the dynamic selection of expediting
options and aim to reduce the additional resource cost under the constraint of completing the
project before the due date. To solve this problem, they propose a heuristic solution procedure
that measures the probability of completing the project before the due date by using a matrix-
simulation approach.

For a project with uncertain activity times, Godinho and Branco (2012) investigate dynamic
scheduling and expediting policies. They restrict their attention to threshold policies based on
activity starting times that they use to determine expediting policies. To identify scheduling and
expediting policies, they propose an electromagnetic heuristic procedure.

4

Like Bregman (2009) and Godinho and Branco (2012), we aim to identify dynamic expediting
policies for a project with uncertain activity progress. Different from them, we seek to solve the
problem using exact algorithms, in the context of an MDP formulation.

Dynamic project management. Few more studies investigate the more general problem of
dynamically managing a project in presence of uncertainty. One of the earliest contributions in
this area is Jørgensen and Wallace (2000), which call for more stochastic dynamic models for the
allocation of resources, at least for budgeting purposes.

For a project with exponentially-distributed activity times, Sobel et al. (2009) investigate how
to dynamically choose the optimal start date of each activity. In their MDP formulation, they
optimize the expected present value of the project cash flow. They show that their formulation
corresponds to an optimization problem on a continuous-time Markov decision chain (CTDMC)
and propose an algorithm to compute an optimal dynamic policy.

Klastorin and Mitchell (2013) analyze a project which is under the threat of a disruptive event
that can stop all activities at the same time. They assume that the decision-maker reviews the
status of the project periodically and learns for how long the activities stop if a disruptive event
happens. In this setting, they study the time-cost trade-off problem, in which the decision-maker
aims to minimize the sum of a tardiness penalty and a resource deployment cost by choosing,
for each activity, between a regular time–cost combination and a faster, more expensive, crash
time–cost combination. They propose an MDP formulation for the problem and devise an algorithm
to solve it. Moreover, they show that, in comparison to a base case without a disruptive event,
the decision-maker should consider additional deployment of resources only at the beginning of the
project or just after the occurrence of the disruption.

For a project with uncertain activity durations, Li and Womer (2015) investigate the dynamic
allocation of resources to the activities of the project. In their Markov Decision Process (MDP)
formulation, they aim to minimize the total project duration. To solve this problem, they develop
approximate dynamic programming (ADP) algorithms based on a roll-out policy. Instead, our focus
is on deriving exact solution methods for a somewhat similar problem. That is, our methodological
contribution includes the solution of our MDP formulation with an exact, computationally-efficient
algorithm.

Like Sobel et al. (2009) and Klastorin and Mitchell (2013), and Li and Womer (2015), we
propose an MDP formulation for our dynamic project management problem. However, the focus
of these studies is on scheduling and resource allocation. Instead, we aim to derive dynamic
expediting policies.

The enumeration of the states for our problem requires the identification of the activities that
can be processed in parallel at any given time. Sobel et al. (2009) tackle the same problem. They
propose a simple algorithm that identifies more states than feasible ones. Creemers et al. (2010),
who build on Sobel et al. (2009), define the set of activities that can be processed in parallel as
Uniformly Directed Cutsets (UDC), a term which was introduced by Sigal et al. (1980). They
propose an efficient tree-based algorithm to identify the project UDCs. We also propose a very
efficient tree-based algorithm to identify all the classes of states for a project, which are equivalent
to UDCs. Our numerical studies demonstrate that our algorithm is significantly faster to compute.

Finally, Sobel et al. (2009) and Creemers et al. (2010) aim to identify the optimal start date for
each activity. They show that it is optimal to restrict the choice of start dates to time epochs when
activities are completed. With the additional assumption that activity times are exponentially
distributed, their formulation leads to an optimization problem on a CTDMC. Different from
them, we investigate how much effort should be allocated to activities. Moreover, we consider
partial completion of activities, because it could be optimal to change the effort allocated to an
activity while it is in progress.

Project crashing. The DPE problem is also closely related to the project crashing problem,
where crashing is an action that spends a certain amount of resources and shortens the duration
of the activity accordingly. This problem is rooted in the project management literature including
the seminal works by Kelley (1961) and Fulkerson (1961), among others.

The stochastic project crashing problem aims to identify a schedule for a project with uncertain
progress that minimizes the sum of a cost associated with the project duration and a cost that
increases in the deployment of the resources. As these costs are in trade-off with each other, these
problems are also called stochastic time-cost trade-off problems.

Stochastic project crashing problems are especially complicated because the critical path of the
network, which is used to estimate the total duration of the project, is not unique and varies with

5

the realizations of the random durations of the activities in the project. For this reason, studies
in this stream of literature approach this problem using heuristics rather than exact methods.
Gutjahr et al. (2000) use a stochastic branch-and-bound approach to solve the stochastic discrete
crashing problem. Laslo (2003) extends the project crashing problem by considering a continuum
of time–cost combinations. Azaron et al. (2007) solve a goal-programming formulation of the
discrete-time approximation of the stochastic continuous project crashing problem. Mitchell and
Klastorin (2007) devise a tailor-made compression heuristic to solve the stochastic continuous
project crashing problem. Shen et al. (2010) consider a variant of the project crashing problem in
which the project manager can insure activities instead of allocating extra resources to the project;
they provide decomposition strategies for solving this problem. Goh and Hall (2013) use robust
optimization to solve the stochastic continuous project crashing problem; they derive rules for
starting and crashing activities that can be used not only to define baseline schedules but also to
revise schedules during execution by applying static optimization iteratively in a rolling-horizon
setting.

Our project expediting problem is similar to the project crashing problem, in that it aims to
minimize the sum of two types of costs in trade-off with each other: project duration costs and
expediting costs. However, our problem differs from the project crashing problem, in that its
output is not a baseline schedule but rather a list of expedited activities at each stage at which
the project is reviewed.

Shortest-path problems. We also show that our problem is a specific type of MDP, called the
Stochastic Shortest-Path (SSP) problem. One of the first studies that investigate SSP problems
is Bertsekas and Tsitsiklis (1991). We observe that our SSP problem has some special ordering
properties, which are shared by other problems. We define the problems with such properties as
“forward-only SSP problems.” Our contribution to the literature on SSP problems is to elicit these
important ordering properties and utilize them to construct a more efficient, exact algorithm for
forward-only SSP problems.

Moreover, our study contributes to the literature on stochastic shortest problems on Directed
Acyclic Graphs (DAGs). For deterministic shortest-path problems on DAGs, effective algorithms
have been devised (Cormen et al. 2009, 655—658). However, we are not aware of any results or
any ways these results could be modified to obtain similarly effective algorithms for stochastic
shortest-path problems. One of the most efficient implementations has been suggested by Bert-
sekas (2012, 209–210), who propose an algorithm tailored to stochastic shortest-path problems on
DAGs combining the traditional value iteration algorithm and the Dijkstra algorithm, which was
developed for deterministic shortest-path problems. In our computational experiments, we show
that our TBR algorithm is substantially faster than this algorithm, which we use as a benchmark.

3 Problem Formulation

In this section, we introduce the model that we study for the dynamic project expediting problem.
To this end, we first provide a high-level description of the problem and introduce a network
structure to characterize the project’s activities. We then formalize the problem as a Markov
decision process, describing its states, controls, probabilities, and costs.

We consider a discrete-time horizon over which a decision-maker is in charge of a project with
clearly defined activities of finite time length, some sequential and others parallel, all of which are
required for the completion of the project. Once an activity is started, its progress is random.
In each time period t ∈ {0, 1, . . .}, the decision-maker tracks the progress on each activity of the
project. In practice, the amount of time between two consecutive periods (i.e., between the start
of one period and the start of the next one) could be in the order of seconds, hours, or days,
depending on the tracking frequency and the specific application. Just after tracking the progress
of all activities, the decision-maker chooses the level of effort to be invested in each activity in
the following time period. Higher levels of effort yield higher expected progress, but are also
associated with higher effort costs. Besides effort costs, there is also a cost that depends on
the project completion time. The problem for the decision-maker is to derive a non-anticipatory
dynamic expediting policy that minimizes her expected costs, the sum of effort costs and project
completion costs.

Network of activities. To describe the activities of the project, we model it as a network using
the so-called Activity-on-Node (AoN) diagramming technique. Figure 1 provides an example of
a sample project. In particular, the AoN network of a project is a directed acyclic graph with

6

Figure 1: AoN representation of a sample project.

one source, the “Start” node, and one sink, the “End” node. A directed acyclic graph (DAG)
is a directed graph with no cycle. We denote a network or a graph by G(A, E). A is the set of
nodes 1, 2, . . . , n, which represent the activities. E is the set of arcs (oriented edges), 1, 2, . . . ,m,
representing the precedence relations. We denote the nodes or activities by a and the arcs by e.
For an activity a, we define the set of all its predecessors, a subset of A, by Πa. Activity a′ belongs
to Πa if there exists at least one path from a′ to a. Similarly, we define the set of all the successors
of a, also a subset of A, by Sa. Activity a′′ belongs to Sa if there exists at least one path from
a to a′′. The length la of activity a is the number of time periods, such as days or weeks, within
which the manager expects the activity to be completed if a regular effort is employed.

States. The progress on activity a, expressed in terms of the number of time periods’ worth of
work actually done, is xa. If activity a could be started but there has been no progress on it, we
set xa to 0. If activity a cannot be started because of precedence constraints, we set xa to −1.
Therefore, xa can take the values −1, 0, 1, . . . , la. We say that an activity a is engaged if xa ̸= −1,
and that it is un-engageable otherwise. We say that an engaged activity is in progress if xa ̸= la and
that it is completed otherwise. The state of the system is the vector x = (x1, x2, . . . , xn) that lists
the progress on each activity. Because of precedence constraints, not every vector x corresponds
to a feasible state. We define a feasible state as follows.

Definition 1. A feasible state is an n-dimensional vector x such that, for each of its components,
which corresponds to a specific activity a, the following hold:

1. If a is in progress, then all a′ ∈ Πa are completed and all a′′ ∈ Sa are un-engageable.

2. If a is un-engageable, then not all a′ ∈ Πa are completed and all a′′ ∈ Sa are un-engageable.

3. If a is completed, then all a′ ∈ Πa are completed and for all a′′ ∈ Sa:

If all elements of Πa′′ are completed, a′′ is engaged;

otherwise, a′′ is un-engageable.

Let X be the feasible state space. Note that identifying X is a challenging problem—for now,
let us take X as given, and we shall deal with the state identification problem in Section 5. We
denote the realization of the state in period t by Xt. Initially, the state of the project lists 0 for
the activities with the source as starting node and −1 for all other activities. We refer to this state
as the initial state and denote it with i. That is, we have that X0 = i. The terminal or final state
is f = (l1, l2, . . . , ln).

To exemplify, consider the sample project from Figure 1. In Table 1, we show the 21 feasible
states for our sample project. For example, for this sample project, if, in period t, activities C
and E are engaged, and there is no cumulative progress on activity C and there is one unit of
cumulative progress on activity E, then Xt = (1, 1, 0,−1, 1).

1 : [0, 0,−1,−1, 0] 8 : [1, 0,−1,−1, 1] 15 : [1, 1, 1,−1, 2]
2 : [0, 0,−1,−1, 1] 9 : [1, 0,−1,−1, 2] 16 : [1, 1, 2, 0, 0]
3 : [0, 0,−1,−1, 2] 10 : [1, 1, 0,−1, 0] 17 : [1, 1, 2, 0, 1]
4 : [0, 1,−1,−1, 0] 11 : [1, 1, 0,−1, 1] 18 : [1, 1, 2, 0, 2]
5 : [0, 1,−1,−1, 1] 12 : [1, 1, 0,−1, 2] 19 : [1, 1, 2, 1, 0]
6 : [0, 1,−1,−1, 2] 13 : [1, 1, 1,−1, 0] 20 : [1, 1, 2, 1, 1]
7 : [1, 0,−1,−1, 0] 14 : [1, 1, 1,−1, 1] 21 : [1, 1, 2, 1, 2]

Table 1: States for the sample project.

7

Controls. A control vector, which we shall denote with k, lists the level of effort ka to employ for
activity a; ka = 0 corresponds to no effort and ka = 1, . . . ,K denote increasing effort levels. For
example, for K = 2, the effort levels are 0, 1, and 2, which could correspond to no effort, regular
effort, and expediting, respectively. For the sample project, a control that expedites activity C
and employs regular effort for activity E is k = [0, 0, 2, 0, 1].

Associated with each activity a and effort level ka, is an effort cost ca,ka . These effort costs
are increasing in ka, and ca,ka = 0 for ka = 0. For example, for costs linear in the effort levels, we
have ca,ka

= qaka, with qa > 0 the cost per unit of effort for activity a. The effort cost ck that
corresponds to control k is ck =

∑
a ca,ka

.
Associated with each state x is a set of feasible control vectors, denoted with K(x), which could

capture certain constraints that the controls need to satisfy. For example, the manager may have
to satisfy a budget constraint b on the cost ck in each period, effectively reducing the control space
K(x), that is, ck > b implies k /∈ K(x) for each state x.

Consider now a function µt that maps each state to a single control at time t. That is, at period
t, the control µt(Xt) is applied. A policy is a collection {µ0, µ1, µ2, . . .}. We denote a stationary
policy by the collection µ = {µ, µ, µ, . . .}.

Transition probabilities. We model the progress on activity a at a time period in which the
activity is in state xa and the manager employs effort ka with the discrete random variable W a

xa,ka

which takes values in [0, la − xa]. The greater the effort level employed, the greater, in expec-
tation, the progress toward activity completion. More formally, if W a

xa,k′
a
and W a

xa,k′′
a

are two

discrete random variables with k′a < k′′a , we have the following relation for their expected values:
E(W a

xa,k′′
a
) ≥ E(W a

xa,k′
a
).

When the state of activity a is xa and the manager employs effort ka, the progress of activity a
transitions to the state ya = xa +W a

xa,ka
. The probability of transitioning from xa to ya using ka

is denoted with P a
xa,ya

(ka). In general, precedence constraints make the dependence of P a
xa,ya

(ka)
on the probabilistic description of W a

xa,ka
somewhat complex, so in the Appendix, we explain how

to calculate P a
xa,ya

(ka) in all possible cases.
For analytical tractability, we assume that the progress on each activity is independent of time

and of the progress on the other activities. In practice, the latter is realistic for projects in which
teams do not multitask. Let x ∈ X and y ∈ X denote two generic states. Assuming independence
among activities, the transition probability from x to y employing k is:

Px,y(k) = P 1
x1,y1

(k1) · P 2
x2,y2

(k2) · . . . · Pn
xn,yn

(kn).

If P a
xa,ya

(ka) = 0 for at least one activity a, no transition from x to y is feasible.

Costs. In period t, the manager observes the state Xt and decides the control k ∈ K(Xt) to
employ from t to t + 1 bearing the effort cost ck. Additionally, for each time period t at the end
of which the project is still not completed, i.e., Xt+1 ̸= f , the manager bears a cost, which could
represent a penalty for waiting, i.e., due to benefits that could have been achieved if the project
was completed. Let u denote this per-period waiting cost. Note that, for tractability, we implicitly
assumed that costs are stationary, i.e., they do not depend on time. The total cost in a period
starting at state x and arriving at state y while employing control k is then

g(x,k,y) =

ck + u, if x ̸= f and y ̸= f ;

ck, if x ̸= f and y = f ;

0, if x = f and y = f .

The expected total cost in a period starting at state x and employing control k is then

ḡ(x,k) =
∑
y∈X

Px,y(k)g(x,k,y).

When applying policy {µt}, the cost-to-go at some time t is then given by

lim
T→∞

E

{
T−1∑
τ=t

ḡ(Xτ , µτ (Xτ))

}
. (1)

Let J(i) be the cost-to-go at time 0. The Dynamic Project Expediting (DPE) problem that we
study involves finding a policy that minimizes this cost.

8

Discussion. Now that we formally introduced the DPE, it is worth discussing the assumptions
and generalizability of our model. In short, despite the specific application of project expediting
and certain modeling assumptions that we made, the problem we are tackling can still capture a
large subset of an important class of problems, as we discuss in the analysis section next.

To be more concrete, we assumed stationary costs and no discounting. Although these might
appear limiting at first glance, note that the important and broad class of Stochastic Shortest-Path
(SSP) problems also adopt these modeling choices. Within project management, there could be a
plethora of different cost structures in practice. Indeed, some instances might not be compatible
with the model we study, but there remains a large swath of problems that fit very well, among
others, projects that are not years long, for example, and feature final completion time costs that
scale approximately linear in the time taken to complete the project.

In the analysis that follows, we first present our solution technique tailored to the DPE formu-
lation we described. We then discuss how it can be applied to a large subset of the important class
of SSP problems, which we call forward-only, characterized by an intuitive property.

4 Analysis

We start this section by positioning the DPE problem as an SSP problem and we discuss why extant
solution approaches could be impractical to use for real-life-sized instances. Then, we introduce a
key structural property of our problem, namely a strict partial order relation on the state space.
We show that it is possible to obtain a linear order of the state space from this partial order by
using a topological sorting algorithm. Next, we devise an algorithm, using the linearly ordered
state space, that identifies the optimal solution for our problem. It does so in a more efficient way
than existing algorithms. Finally, we show that our algorithm can be applied not only to our DPE
problem but also to a large class of stochastic shortest-path problems that are characterized by an
intuitive property.

Stochastic shortest-path problem. The lack of a discounting factor and the presence of the
cost-free terminal state f categorize the DPE problem as a stochastic shortest-path problem (Def-
inition 2).

Definition 2 (Bertsekas (2017, 233)). A cost-minimization problem of an infinite-horizon MDP
formulation is a stochastic shortest-path problem if 1) no discount factor is present and 2) there is
a special cost-free terminal state.

We use the fact that our problem is a stochastic shortest-path problem to show that there exists
a cost-minimizing stationary policy µ∗ for equation (1).

Lemma 1. For the stochastic shortest-path problem that aims to minimize the cost in equation
(1), there exists an optimal stationary policy µ∗.

We can reformulate our problem using Lemma 1 as follows: The project manager aims to find a
stationary policy µ that minimizes the cost-to-go:

Jµ(i) = lim
T→∞

E

{
T−1∑
τ=0

ḡ(Xτ , µ(Xτ))

∣∣∣∣∣X0 = i

}
. (2)

We denote such an optimal policy with µ∗.

Existing algorithms. Extant methods to solve SSP problems, including the DPE problem, are
applications of value iteration, policy iteration, and linear programming algorithms. They are
based on Bellman’s equation, an optimality principle for MDP problems, which for our problem is
as follows:

J∗(x) =

 min
k∈K(x)

[
ḡ(x,k) +

∑
y∈X

Px,y(k)J
∗(y)

]
if x ∈ X \ {f}

0 if x = f

, (3)

where J∗ maps each feasible state to the anticipated minimum cost-to-go starting from that state.
We present the pseudo-codes of the value iteration, policy iteration, and linear programming
algorithms for our problem in the Appendix; a more detailed description can be found in Bertsekas
(2017, 245–249). The results of computational experiments presented in Section 6 show that

9

the use of these algorithms to identify the optimal policy for our problem is impractical. Their
computation times rapidly increase with the size of the network and the number of activities in
parallel. This motivated our work to identify more computationally efficient solution methods.

Partial and linear orders on the state space. We now introduce a key structural property of
the DPE problem. In particular, we shall show how to obtain a linear order on the state space in
two steps: the first and important step establishes how we can represent the states using a DAG,
while the second step simply applies the known result that every DAG has a topological order of
all its vertices.

We provide the definition of a linear order on a generic set H as follows.

Definition 3. Let a, b, and c be elements of a set H. A binary relation ≤ on H is a linear order
if it has the following properties:

1. Antisymmetry: If a ≤ b and b ≤ a, then a = b.

2. Transitivity: If a ≤ b and b ≤ c, then a ≤ c.

3. Connex property: a ≤ b or b ≤ a.

Consider state 17 : [1, 1, 2, 0, 1] and state 19 : [1, 1, 2, 1, 0] from Table 1, for example. These two
states are not comparable. Lacking the connex property, a “natural” linear order relation on the
state space X does not exist. Therefore, we look for a partial order relation on the state space,
and for a strict partial order relation in particular. Despite its name, a strict partial order relation
is an order relation that is less restrictive than a linear order relation. We provide the definition of
a strict partial order on a generic set H as follows, where the symbol ¬ denotes logical negation.

Definition 4 (Lehman et al. (2017, 400)). Let a, b, and c be elements of a set H. A binary
relation < on H is a strict partial order if it has the following properties, with asymmetry implied
by irreflexivity and transitivity.

1. Irreflexivity: ¬(a < a);

2. Transitivity: if a < b, and b < c, then a < c;

3. Asymmetry: if a < b, then ¬(b < a).

Intuitively, state x precedes state y if and only if the project progress in state x is less than
that in state y. We formalize this binary relation in Definition 5.

Definition 5. For x,y ∈ X , we say that x ≺ y if the following hold:

1. xa ≤ ya for all activities a that are engaged in x, and xa′ < ya′ for at least one of these
activities.

2. xa ≤ ya for all activities a that are un-engageable in x, and xa < ya if and only if all
predecessors of the starting node of a are completed in y.

We highlight an important fact that links the relation ≺ to the probability Px,y(k) in Remark
1.

Remark 1. If x,y ∈ X and x ≺ y, then Py,x(k) = 0 for every k ∈ K(x).

Remark 1 follows from the definition of Px,y(k) in Section 3. Intuitively, it says that it is not
possible to move from a state y to a state x if the progress in x is less than the progress in y.

The relation ≺ is the “natural” order relation on the state space and provides a strict partial
order of the states (Lemma 2).

Lemma 2. The binary relation ≺ is a strict partial order on X .

We are ready to supply a graphical characterization of ≺. Consider the directed acyclic graph
G≺(V≺, E≺), constructed as follows:

1. We include a node v in V≺ for every state x ∈ X .

2. We include an arc between node v1 corresponding to state x and node v2 corresponding to
state y if and only if x ≺ y.

10

The number of arcs in the graph G≺(V≺, E≺) is in general large, even for small problems. For
this reason, it is convenient to introduce a graph with the same number of nodes as G≺(V≺, E≺)
but with a smaller set of arcs. The relation “a is covered by b” on a generic set H, which is defined
as follows, is instrumental to the introduction of this graph.

Definition 6. Let a, b, and c be elements of a set H with a strict partial order relation <. We
say that “a is covered by b” if and only if a < b and ¬(a < c < b) for all c ∈ H.

We can also provide a definition of what it means to say that a state x is covered by y based on
the strict partial order ≺. Intuitively, state x is covered by state y if and only if the progress in y
is the progress in x increased by one unit. This guarantees that there are no other states between
x and y.

Definition 7. For x,y ∈ X , we say that x is covered by y if and only if the following hold:

1. There is one activity a′ in progress in x such that xa′ = ya′ − 1 and xa = ya for all activities
a ̸= a′ that are in progress in x.

2. xa = ya for all activities a that are completed in x.

3. xa ≤ ya for all activities a that are un-engageable in x, where xa < ya holds if and only if
all predecessors of the starting node of a are completed in y.

We are ready to supply a graphical characterization of the relation x is covered by y. Consider
the directed acyclic graph G′(V ′, E ′), constructed as follows:

1. We include a node v in V ′ for every state x ∈ X .

2. We include an arc between node v1 corresponding to state x and node v2 corresponding to
state y if and only if x is covered by y.

We call G′(V ′, E ′) the Hasse diagram of ≺. Formally, G′(V ′, E ′) is the transitive reduction of
G≺(V≺, E≺), as detailed in the proof of Lemma 3. We present in Figure 2 the Hasse diagram for
the states in Table 1. State 1 is the source of the graph and the initial state i. State 21 is the sink
of the graph and the final state f . Both states are depicted in gray in Figure 2.

Figure 2: Hasse diagram for the sample project

The binary relation R+ allows us to formalize the relationship between ≺ and its Hasse diagram.
We provide the definition of R+ for a generic directed acyclic graph G as follows:

Definition 8. Let v1 and v2 be nodes of a directed acyclic graph G. We say that v1R
+v2 if and

only if v1 and v2 are connected by a walk of positive length.

We note that R+ is transitive and irreflexive, and therefore asymmetric. Moreover, R+ is
equivalent to ≺, as made clear in Lemma 3.

Lemma 3. The binary relation ≺ is equivalent to the positive-walk relation R+ on its Hasse
diagram G′(V ′,A′).

From the diagram in Figure 2, it is clear that 12 : [1, 1, 0,−1, 2] > 7 : [1, 0,−1,−1, 0], because
there is at least one path in the graph from state 7 to state 12 (for example, through states 8 and
11). Moreover, it is clear that ¬(6 : [0, 1,−1,−1, 2] > 7 : [1, 0,−1,−1, 0]), because there is no path
in the graph from state 7 to state 6. A topological sort is an ordered list of nodes obtained from
a finite directed acyclic graph (Definition 9).

11

Definition 9. [Lehman et al. (2017, 393)] Let G be a finite directed acyclic graph. A topological
sort of G is a list of all nodes such that each node v appears earlier in the list than all the nodes
connected from v.

We can now leverage previous results on finite directed acyclic graphs to argue that we can
obtain a linear order of the state space X . Theorem 10.5.4 in Lehman et al. (2017, p. 395) or
Proposition 1.4.3 in Jensen and Gutin (2007) show that every finite directed acyclic graph has a
topological sort. The Hasse diagram G′(V ′, E ′) is finite. Therefore, its topological sort is a list of
nodes v ∈ V ′. Every node v corresponds to a state x, hence we obtain a linear order on the state
space X .

Remark 2. The Hasse diagram G′(V ′, E ′) has a topological sort which defines a linear order of
the state space X .

We denote the cardinality of the state space X by s. We also denoted the linearly ordered
state space by X̃ = {x1,x2, . . . , xs}. The initial state is always the first element of X̃ , that is,
x1 = i. The final state is always the last element of X̃ , that is, xs = f . A topological sort of a
directed acyclic graph needs not be unique. We can use the depth-first search (DFS) algorithm,
as described in Cormen et al. (2009, 612–614), to obtain a topological sort of a directed acyclic
graph.

Topological Backward Recursion (TBR) algorithm. We now formally introduce our solu-
tion approach, which we refer to as the TBR algorithm. It uses the linearly ordered state space
X̃ to identify the optimal solution for our problem. We present the pseudo-code for the TBR
algorithm as Algorithm 1.

Algorithm 1: TBR algorithm
begin

X̃ = {x1,x2, . . . , xs};
J∗(xs) ≜ J∗(f) = 0;

end
for i = s− 1, s− 2, . . . , 1 do

Compute J∗(xi) = mink∈K(xi)

ḡ(xi,k)+
∑s−1

j=i+1
Pxi,xj

(k)J∗(xj)

1−Pxi,xi
(k)

;

end
return J∗(xi) and k∗(xi) for i = s− 1, s− 2, . . . , 1

The TBR algorithm calculates the optimal cost-to-go function using a backward recursion that
iterates on the topologically-sorted state space. Notice that the algorithm only requires a single
computation for each state as opposed to existing dynamic programming algorithms such as value
iteration, which requires multiple iterations of the algorithm for each state—the interested reader
could also contrast TBR’s pseudo-code with that of value iteration, presented in the Appendix
as Algorithm 4. This important feature already provides an explanation for the computational
benefits that can be obtained using the TBR algorithm.

To shed more light on how TBR achieves the calculation of the optimal cost-to-go function at
each state using a single iteration, consider the following technical Lemma.

Lemma 4. Consider k ∈ K, where K is a finite set. Let ak > 0 and 0 < δk < 1. Then ŷ = ak∗
1−δk∗ ,

with k∗ = argmink
ak

1−δk , solves the equation

y = min
k

[ak + δky]. (4)

Now, let us apply the Lemma above with the following choice of parameters y, ak, and δk:

1. y = J∗(xi);

2. ak = ḡ(xi,k) +
∑s−1

j=i+1 Pxi,xj
(k)J∗(xj);

3. δk = Pxi,xi(k).

With this choice, and by leveraging the topological sort of the state space that we established,
equation (4) corresponds to the Bellman equation for our problem, applied for the ith state.
Therefore, Lemma 4 then suggests that to evaluate the optimal cost-to-go function at that state,
namely J∗(xi), we require the optimal cost-to-go values only at states i + 1, . . . , s, which, in
a backward recursion process, would be already calculated. The TBR algorithm leverages this

12

structure to obtain J∗(xi) with a single calculation. In contrast, to calculate J∗(xi), classical
applications of the Bellman equation require knowledge of J∗(xi) as well, and therefore require
iterative procedures to solve.

The above application of Lemma 4 can also be used to prove the optimality of the TBR
algorithm.

Theorem 1. The TBR algorithm finds an optimal policy for our problem.

With the TBR algorithm formally introduced, we are now in a position to make two important
points. First, we argue that the TBR algorithm can be applied not merely to the DPE problem,
but to a large class of SSP problems. Second, we discuss further and shed more light on why
the TBR algorithm outperforms all extant solution methods by significantly reducing the required
computational burden.

Forward-only stochastic shortest-path problems. The TBR algorithm identifies an optimal
policy for a more general class of problems, which we term forward-only stochastic shortest-path
problems. We first provide a formal definition, followed by an intuitive interpretation.

Definition 10. The forward-only stochastic shortest-path problem is a stochastic shortest-path
problem (Definition 2) in which the following hold:

1. There exists a strict partial order on the state space.

2. For any two states a and b of the problem, if a precedes b in the strict partial order, then the
probability of moving from b to a is zero.

Intuitively, the forward-only property asks that most states are transient and that state tran-
sitioning is governed by some progression process. The latter means that there is some dominant
progression pattern that states follow, as is, for example, the progression of a project towards the
completion within the DPE. Other examples could include disease management when dealing with
diseases that worsen over time, such as end-stage renal disease, cardiac allograft vasculopathy,
Alzheimer’s, or osteoarthritis to name a few. Thus, our analysis and the TBR algorithm could be
useful in a wide range of medical decision-making and disease-modeling applications.

In particular, for a forward-only stochastic shortest-path problem, we can obtain a linearly
ordered state space by applying the same procedure described in this section. Moreover, the proof
of Theorem 1 requires only the assumptions stated in Definition 10. Therefore, we can state a
corollary of Theorem 1 without proof.

Corollary 1. The TBR algorithm finds an optimal policy for any forward-only stochastic shortest-
path problem.

Comparison with existing algorithms. The computational benefits of the TBR algorithm
stem from two important points. The first point relates to the elimination of the need for an
iterative procedure in the calculation of the optimal cost-to-go. That is, as discussed above, the
topological sort of the state space we established enables one to calculate the optimal cost-to-go
function for each state using a single iteration in each step of the backward recursion.

Second, the TBR deals with data that are linear in the size of the state space, as opposed
to quadratic. In particular, extant implementations of the value iteration algorithm, the policy
iteration algorithm, and the linear programming algorithm need memory access to all the transition
probabilities and the costs at all times. Thus, these algorithms store an amount of data proportional
to s2 for each control. In contrast, the TBR algorithm stores an amount of data proportional to
1 in the first iteration and to the number of states s in the last iteration. To see this, note that
the TBR can be applied without the need to generate all the transition probabilities and the costs
beforehand; at each iteration, it computes only the transition probabilities and the costs needed
for that iteration. Importantly, this is only possible because of the particular structure of the TBR
algorithm and it is unclear how to leverage this approach in implementations of extant algorithms.
Consequently, the amount of data stored by the TBR is proportional to s/2 on average for each
control. This drastic reduction in memory usage and access not only yields a significant speed-up
in the computational time but also critically reduces memory requirements.

In Section 6, we conduct several numerical experiments that verify the anticipated gains in
computational performance provided by the TBR algorithm.

13

5 State Identification

Recall that up to this point we have assumed that the set of feasible states is given. As we discuss
below, it turns out that identifying this set for the DPE problem is a rather challenging task in
and of itself. Given that this set is an input to the TBR algorithm, or to any of the classical extant
dynamic programming approaches for that matter, it is essential to have access to a “smart” way
of obtaining it.

To this end, we shall devise a process to identify all feasible states. We follow the same recipe
as before: we first identify an important structural property, namely, we introduce an equivalence
relation on states that partitions the feasible state space into classes. Next, we introduce two algo-
rithms, termed CId and SEn, that we devised, leveraging this partitioning property, to enumerate
classes and states, respectively. In the next section, we pit our algorithms against existing state
identification approaches to illustrate the important computational gains that they offer.

State-space identification problem. Identifying the feasible state space X is challenging, pri-
marily because of precedence constraints, but also because we consider partial completion of ac-
tivities. A possible approach to tackling this problem could be the complete enumeration of the
n-dimensional vectors over the n activities, followed by the removal of vectors that are not feasible
states. This approach is impractical because of the large number of vectors it would generate that
are unfeasible states. For example, complete enumeration for the sample project in Figure 1 leads
to 3 · 3 · 4 · 3 · 4 = 432 vectors of which only 21 are feasible states. For this reason, we propose
two algorithms that identify the feasible state space X directly. This approach is in general more
efficient than the complete enumeration of vectors over the activities, followed by the removal of
vectors that are not feasible states. Our algorithms enumerate the feasible states from classes of
states.

Classes of states. A class of states is a subset of activities that can be processed in parallel,
also known in the literature as Unified Directly Cuts (UDCs). We induce the class of states by an
equivalence relation. We provide the relation on the states in Definition 11. Lemma 5 shows that
this relation is an equivalence relation that partitions the feasible state space into classes.

Definition 11. We say that x ∼ y if the following hold:

1. If xa is engaged, ya is also engaged.

2. If xa is un-engageable, ya is also un-engageable.

Lemma 5. The relation ∼ is an equivalence relation that partitions the feasible state space X into
classes of states.

We use X̂1, X̂2, . . . to denote the classes of states induced on the feasible state space X by the
equivalence relation of Definition 11. An extended notation for class X̂i is an n-dimensional vector
that, for each a, lists the components corresponding to a as follows:

1. −1 if a is un-engageable.

2. x̂a if there exists a state in X̂i with xa < la.

3. la if xa = la for all states in X̂i.

Every class of states has a sub-graph representation. From the class X̂i, we obtain its sub-graph
representation Γ(Âi, Êi) as follows:

1. Âi ⊂ A includes the activities a whose component in X̂i is x̂a;

2. Êi ⊂ E includes all the arcs that connect activities a ∈ Âi.

As a consequence of Lemma 5, we can identify the state space in two distinct phases. In the first
phase, the class identification (CId) algorithm identifies all classes of states for a project network.
In the second phase, the state enumeration (SEn) algorithm enumerates all states from each class.

14

Algorithm 2: CId algorithm.
Algorithm CId()

L←− ∅;
H ←− ∅;
build G(A, E);
call CIdvisit(G(A, E), L, H);
return L;

Procedure CIdvisit(Γ(Â, Ê), L, H)

H = H ∪ {Γ(Â, Ê)};
for all a ∈ Â, compute Πa and Sa;
if Πa = ∅ for all a ∈ Â then

compute the class X̂ corresponding to Γ(Â, Ê);
L = L ∪ {X̂};

else

for all a ∈ Â, compute Πa ∪ Sa and Āa = Â \ {Πa ∪ Sa};
for each a such that Πa ∪ Sa ̸= ∅ do

build Γ(Āa, Ēa), where Ēa corresponds to Āa;

if Γ(Āa, Ēa) /∈ H then
call CIdvisit(Γ(Āa, Ēa), L, H);

end

end

end

CId algorithm. The CId algorithm is a recursive algorithm that generates the sub-graph rep-
resentations of the classes of states from the network G(A, E). The algorithm uses a collection H
of visited graphs and a collection L that will contain all the classes generated. Recall that Πa and
Sa are the sets of all predecessors and all successors, respectively, of activity a. We define Āa as
follows: Āa = Â \ {Πa ∪ Sa}. We denote by Γ(Āa, Ēa) the graph where Ēa is the set of arcs that
connect activities a′ ∈ Āa. We present the pseudo-code for the CId algorithm as Algorithm 2.

The CId algorithm is based on the observation that, for any activity, its predecessors cannot
be processed in parallel with its successors. We illustrate the application of the CId algorithm to
the sample project of Figure 1.

In the CId algorithm, we initialize the collections L and H as empty sets, and we build the
graph G(A, E) with A = {A,B,C,D,E} depicted in Figure 1. Then we call the recursive procedure
CIdvisit on G(A, E). When we call the CIdvisit procedure on G(A, E), we add the graph to the
list H of visited graphs, to avoid examining the graph again in the future. In Table 2, we present
the details for Πa, Sa, and Āa for each activity a in G(A, E).

a Πa Sa Āa = Â \ {Πa ∪ Sa}
A ∅ C,D A,B,E
B ∅ C,D A,B,E
C A,B D C,E
D A,B,C ∅ D,E
E ∅ ∅ A,B,C,D,E

Table 2: CId algorithm calculations for the sample project.

We proceed to compute the sub-graphs Γ(Āa, Ēa) because Πa ̸= ∅ for activities C and D. We
obtain the three sub-graphs depicted in Figure 3 for the activities a such that Πa ∪ Sa ̸= ∅.

Figure 3: Sub-graphs for the sample project.

Then we call the CIdvisit procedure on these graphs. In all three graphs, Πa = ∅ for all the
activities. Therefore, we add the corresponding classes of states to L. Using the lengths of the
activities from Figure 1, we obtain the classes as follows:

X̂1 = (x̂A, x̂B ,−1,−1, x̂E);

X̂2 = (1, 1, x̂C ,−1, x̂E);

15

X̂3 = (1, 1, 2, x̂D, x̂E).

Finally, the CId algorithm returns the list L = {X̂1, X̂2, X̂3}; the SEn algorithm will enumerate
the feasible states from these three classes. Towards the end of this section, we provide proof of
correctness for the CId algorithm, i.e., that it succeeds for any problem instance.

Creemers et al. (2010) proposed a fast algorithm to identify all subsets of activities that can be
processed in parallel (UDCs). This algorithm generates a tree in which each node is an activity.
Also, the CId can be viewed as a tree-generation algorithm in which each node is a sub-graph.
In Section 6, we compare the computation times of our CId algorithm against those of our im-
plementation of the one suggested by Creemers et al. (2010) and find that our algorithm provides
significant reductions.

SEn algorithm. The SEn algorithm generates the feasible states for each class. The collection
of states X̂i will include the states generated. For each class, the algorithm calls the recursive
procedure SEnvisit. At each iteration, the procedure SEnvisit takes an activity a and a vector u
as input. The vector u represents a partial state, that is, a state whose elements are included up
to activity a − 1. The procedure stores the partial states in a temporary collection T . For each
value taken by the corresponding state xa, the procedure creates a temporary vector v, sets v = u,
and adds the value of xa to the vector. In other words, the vectors are built up coordinate by
coordinate. If a vector does not meet the precedence constraints, it is immediately discarded. We
present the pseudo-code for the SEn algorithm as Algorithm 3.

Algorithm 3: SEn algorithm
Algorithm SEn()
X ←− ∅;
for all classes X̂i ∈ L do

create empty vector u;

call SEnvisit(u, 0, X̂i, X);

end
return X ;

Procedure SEnvisit(u, a, X̂i, X)
T ←− ∅;
if X̂i[a] ̸= −1 or X̂i[a] ̸= la then

for each i such that 0 ≤ i ≤ la do
create vector v and set v = u;
add i as the next element of v;

end
if a ̸= n then

T = T ∪ {v};
else
X = X ∪ {v};

end

else
create vector v and set v = u;

add X̂i[a] as the next element of v;
if v satisfies the precedence constraints then

if a ̸= n then
T = T ∪ {v};

else
X = X ∪ {v};

end

end

end
for all v ∈ T do

call SEnvisit(u, a + 1, X̂i, X);
end

In Table 3 we present, for each class, the feasible states generated by applying the CId algorithm
to our example. The state space X for our example has 21 states.

Proof of correctness. Theorem 2 summarizes the main theoretical results for algorithms CId
and SEn.

Theorem 2. For any project network G(V,A) with a ∈ A of length la:

1. The CId algorithm enumerates all the equivalence classes X̂i of feasible states.

2. The SEn algorithm enumerates all the feasible states x in each equivalence class.

Lemma 5 shows that X =
⋃
i

X̂i. Therefore, the application of CId and SEn in succession will find

all the feasible states x ∈ X for the problem.

16

X̂1 = X̂2 = X̂3 =
(x̂A, x̂B ,−1,−1, x̂E) (1, 1, x̂C ,−1, x̂E) (1, 1, 2, x̂D, x̂E)
1 : [0, 0,−1,−1, 0] 10 : [1, 1, 0,−1, 0] 16 : [1, 1, 2, 0, 0]
2 : [0, 0,−1,−1, 1] 11 : [1, 1, 0,−1, 1] 17 : [1, 1, 2, 0, 1]
3 : [0, 0,−1,−1, 2] 12 : [1, 1, 0,−1, 2] 18 : [1, 1, 2, 0, 2]
4 : [0, 1,−1,−1, 0] 13 : [1, 1, 1,−1, 0] 19 : [1, 1, 2, 1, 0]
5 : [0, 1,−1,−1, 1] 14 : [1, 1, 1,−1, 1] 20 : [1, 1, 2, 1, 1]
6 : [0, 1,−1,−1, 2] 15 : [1, 1, 1,−1, 2] 21 : [1, 1, 2, 1, 2]
7 : [1, 0,−1,−1, 0]
8 : [1, 0,−1,−1, 1]
9 : [1, 0,−1,−1, 2]

Table 3: SEn algorithm results for the sample project

6 Computational Studies

In this section, we present numerical studies aimed at demonstrating the advantages of using our
algorithms compared with existing approaches. As a short summary, our experiments showcase
the significant computational benefits of our algorithms in terms of computational time, with
reductions averaging 40% and being as much as 99% across numerous problem instances. Of
particular note is also that the memory requirement reduction of our approach makes the solution
of practical problem sizes often feasible, while extant algorithms fail to compute. We also consider
a heuristic to solve the problem, and, by measuring its optimality gap, we shed light on when using
the exact method is worthwhile.

After introducing some implementation details next, in 6.1 we consider the TBR algorithm
within the context of the sample Li&Fung supply chain discussed in the Introduction, as well as
randomly-generated instances. In 6.2, we consider a heuristic approach and compare it with our
exact method. In 6.3, we assess the efficiency of our class identification algorithms for various
randomly-generated networks.

In all our experiments, we used the following parameters. For activity a, the project manager
could choose the effort levels ka = 0, 1, 2, with 0 corresponding to no effort, 1 to the regular
effort, and 2 to expediting. The costs for regular effort and expediting are ca,ka=1 = $10 and
ca,ka=2 = $40, respectively. The waiting cost per unit of time, which is borne by the clients of the
project, is u = $60. The budget constraint on the cost ck in each period t is b = $120. Unless
stated otherwise, the progress of activity a when the manager employs regular effort or expediting
follows a discrete uniform distribution: W a

ka=1 ∼ U{0, 2} and W a
ka=2 ∼ U{1, 3}.

We compare the computation times of the TBR algorithm against existing dynamic program-
ming algorithms. The implementations of the value iteration (VI), policy iteration (PI), and
linear programming (LP) algorithms were based on pseudo-codes presented in the Appendix as
Algorithms 4, 5, and 6, respectively. The value iteration implementation is based on an algorithm
tailored to stochastic shortest-path problems on Directed Acyclic Graphs (DAGs), which com-
bines the traditional value iteration algorithm and the Dijkstra algorithm, originally developed for
deterministic shortest-path problems (Bertsekas 2012, 209–210).

6.1 TBR algorithm computational performance

First, we consider a dynamic project expediting problem for the Li&Fung supply chain discussed
in the Introduction. The AoN network representation of the problem is as described in Magretta
(1998), with representative durations, and is depicted in Figure 4.

We succeeded in solving the problem using the TBR algorithm. The classes associated with
this example are 23, the states are 122, 431, and the average number of controls for each state is
145.57. In our tests, the existing dynamic programming algorithms failed to solve this problem
because they ran out of memory when trying to generate the transition matrix.

Second, to study in more depth the performance of our algorithms we devised a series of
computational experiments using randomly generated networks. In particular, we compared the
computation times of TBR against existing dynamic programming algorithms using random AoN
networks generated with the Rangen2 software, described in Vanhoucke et al. (2008).

To generate a random network, Rangen2 requires two factors in input: n, the number of
activities in a network, and I2, with 0 ≤ I2 ≤ 1, the relative length of a network. I2 measures how
“sequential” the shape of a network is (Tavares et al. 1999). I2 = 1 if all activities in the network
are sequential, and I2 = 0 if all activities in the network are parallel. Rangen2 also generates
a random duration value for each activity of a network. Rangen2 is primarily used to generate
project networks for static scheduling problems and its duration generation is not very suitable
for dynamic problems like ours, in which the durations of the activities affect the size of the state

17

Figure 4: Li&Fung supply chain example.

space substantially. As the software does not allow us to explicitly control the duration of the
activities, to obtain problems of a size that is more appropriate to dynamic problems, we divided
each random activity generated by 3 and rounded it up to obtain the length of each activity.

In our study, an experiment is defined by the combination of n and I2. We generated ten
random networks for each experiment. In our experiments, I2 takes values 0.9, 0.6, and 0.3 and n
takes values 10, 15, 20, 25, and 30.

We implemented all the algorithms in C++ and ran them on an HP Z400 Workstation with
an Intel(R) Xeon(R) 3.33-GHz CPU and 12 GB of RAM. We used CPLEX 12.8.0 to solve the
linear programming and the mixed-integer programming models. We present the results of our
computational study in Table 4 and Table 5.

In Table 4, we present the percentage of instances successfully solved by the algorithms. The
first three columns of the table give the coefficient I2, the average number of states over 50 instances,
and the average number of controls per state over 50 instances. The fourth to seventh columns of
Table 1 give the percentage of successfully solved instances for value iteration (VI), policy iteration
(PI), linear programming (LP), and the TBR algorithms, respectively.

I2 # States # Controls % VI % PI % LP % TBR
0.9 2144.9 28.0 94% 94% 86% 100%
0.6 2801.8 59.4 88% 88% 84% 100%
0.3 6859.5 152.8 42% 42% 26% 100%

Table 4: Percentage of solved instances for each algorithm.

The TBR algorithm successfully identified the solution for all the instances. VI and PI did
not find an optimal policy only when the memory of our workstation was not sufficient to store all
the transition probabilities and the costs for our problem. LP did not find an optimal policy also
for other instances.

In Table 5 we compare the computation times of the TBR algorithm against those of existing
dynamic programming algorithms only for instances in which all algorithms solve the problem.
The first four columns of the table give the coefficient I2, the number of activities n, the average
number of states over the instances solved by all algorithms, and the average number of controls
per state over the instances solved by all algorithms. The fifth through seventh columns of Table 5
give the improvement in the average computation times over the instances solved by all algorithms
compared to the slowest algorithm on average (LP), for the value iteration (VI), policy iteration
(PI), and the TBR algorithms, respectively.

The average computation times for TBR were always shorter compared with the other algo-
rithms. TBR reduced the computation times of VI, the second-best algorithm, on average by

18

I2 n # States # Controls ∆tV I ∆tPI ∆tTBR

0.9 10 190.9 11.6 -4.8% +5.9% -63.4%
0.9 15 622.0 20.8 -3.7% +10.8% -66.5%
0.9 20 1239.7 22.9 -56.0% -32.1% -70.5%
0.9 25 1828.9 25.9 -67.2% -42.8% -75.5%
0.9 30 2633.2 27.6 -65.2% -33.5% -78.0%
0.6 10 291.5 26.6 -3.6% -0.4% -65.8%
0.6 15 1108.7 36.6 -42.4% -30.4% -78.9%
0.6 20 1946.1 71.3 -42.9% -34.0% -56.9%
0.6 25 2994.2 50.0 -64.8% -46.2% -76.0%
0.6 30 2135.9 37.8 -37.5% -15.0% -58.1%
0.3 10 1675.2 154.6 -63.5% -61.9% -73.5%
0.3 15 3003.5 111.3 -49.1% -39.0% -80.1%
0.3 20 3283.2 62.3 -42.7% -19.5% -75.1%
0.3 25 3541.0 68.9 -56.9% -46.3% -78.2%

Table 5: Improvement in computational times compared to the slowest algorithm on average (LP)
for instances in which all algorithms solve the problem.

41.9% and as much as 100.0%. Notice that it is not possible to obtain statistics when I2 = 0.3 and
n = 30 because the TBR algorithm is the only algorithm that can solve the instances associated
with this experiment.

The computation times of all algorithms increased when the number of activities increased.
Moreover, the computation times of all algorithms increased when the relative length I2 decreased,
that is, when the number of activities in parallel increased. The effect of a reduction in I2 had a
larger effect on the increment in the computation times of all algorithms than the increment in n.
The computation times were strongly affected by increases in the number of states and controls,
which in turn were affected by the number of activities, their lengths, and the number of parallel
activities.

6.2 Heuristic approach

In this section, we consider a heuristic approach to obtain approximate solutions to the DPE prob-
lem. By measuring the optimality gaps across different experimental setups, we shed some light
on conditions under which obtaining exact solutions could yield significant benefits. In particu-
lar, we consider a heuristic approach based on popular “Certainty Equivalent Model Predictive
Control” methods. Across our experiments, we find optimality gaps to range between 3.93% and
35.64%. Higher optimality gap values corresponded to problem instances in which the underlying
“randomness” was higher, as measured by the standard deviation of random activities’ progress.

In Certainty Equivalent Model Predictive Control (CEMPC) methods, at any point in time,
unknown values of future parameters are replaced with point estimates over a planning horizon
extending from the current time to some time in the future. For the DPE problem, at the end
of time t, we consider a planning horizon {t + 1, . . . , T}, where T is selected large enough so
that the project is guaranteed to have been completed by then. We also substitute the random
variables measuring activities’ progress with their conditional expectations based on the current
state. This process gives rise to a deterministic optimal control problem, the solution of which
yields a plan of action, i.e., control vectors, over the remaining horizon. The CEMPC heuristic
then simply implements at time t+1 the first control vector in the plan. After uncertainty realizes
and we transition to the next state at t+2, this process is repeated using updated point estimates.
Although CEMPC heuristics are usually suboptimal in general, they often perform remarkably
well in practice and are therefore widely used to deal with stochastic control problems in several
application areas, including, for example, revenue management, inventory control, scheduling, and
others.

For the DPE problem, employing CEMPC is appealing as the resulting deterministic optimal
control problem that one obtains at each time step can be readily solved using Mixed-Integer
Optimization techniques. Although various formulations can be used to this end, we present the
one that we employed in our computational studies in the Appendix.

We compared the average total costs obtained with the CEMPC heuristic over 50 simulation
runs against the total expected optimal costs calculated using the TBR algorithm.

Table 6 shows the comparison when the progress of activity a follows a discrete uniform dis-
tribution: W a

ka=1 ∼ U{0, 2} and W a
ka=2 ∼ U{1, 3}, as in our previous experiments. The average

optimality gap ∆J∗(0) is 5.76%.
Table 7 shows the cost comparison between CEMPC and TBR in presence of different discrete

distributions used to model the progress of activity a. These distributions have the same mean of
the discrete uniform distributions used elsewhere in the paper, but a higher standard deviation:

19

I2 n # States # Controls J∗(0) ∆J∗(0)
0.9 10 190.9 11.6 919.6 8.13%
0.9 15 622.0 20.8 1358.0 5.65%
0.9 20 1239.7 22.9 1887.4 4.46%
0.9 25 2987.6 36.7 2381.3 5.23%
0.9 30 5684.3 48.0 2801.6 4.07%
0.6 10 291.5 26.6 846.2 9.28%
0.6 15 1108.7 36.6 1283.7 5.30%
0.6 20 2699.2 76.8 1692.0 5.31%
0.6 25 7773.9 119.2 2016.4 5.48%
0.6 30 2135.9 37.8 2636.8 4.57%
0.3 10 4265.2 251.8 638.5 10.96%
0.3 15 5300.6 135.2 1098.3 4.15%
0.3 20 4257.6 69.1 1513.4 5.46%
0.3 25 9610.9 187.9 1832.6 4.40%
0.3 30 10863.2 120.1 2080.3 3.93%

Table 6: Comparison between CEMPC and TBR with W a
ka=1 ∼ U{0, 2} and W a

ka=2 ∼ U{1, 3}.

when k = 1, the progress is 0 with probability 0.5 and 2 with probability 0.5, and when k = 2 the
progress is 1 with probability 0.5 and 3 with probability 0.5. The average optimality gap ∆J∗(0)
is 24.37%.

I2 n # States # Controls J∗(0) ∆J∗(0)
0.9 5 48.9 9.3 390.3 35.01%
0.9 10 190.9 11.6 431.8 35.64%
0.9 15 622.0 20.8 457.8 32.99%
0.9 20 1239.7 22.9 667.0 30.03%
0.9 25 2987.6 36.7 854.9 30.82%
0.9 30 5684.3 48.0 918.9 32.23%
0.6 5 62.8 11.4 1125.8 21.38%
0.6 10 291.5 26.6 1302.1 23.31%
0.6 15 1108.7 36.6 1365.0 22.45%
0.6 20 2699.2 76.8 1562.1 18.50%
0.6 25 7773.9 119.2 1714.8 21.31%
0.6 30 2135.9 37.8 1889.6 20.59%
0.3 5 174.1 27.1 1879.0 18.35%
0.3 10 4265.2 251.8 2057.3 19.89%
0.3 15 5300.6 135.2 2396.8 19.54%
0.3 20 4257.6 69.1 2161.9 17.32%
0.3 25 9610.9 187.9 2674.2 21.61%
0.3 30 10863.2 120.1 2795.7 19.24%

Table 7: Comparison between CEMPC and TBR with P (W a
ka=1 = 0) = P (W a

ka=1 = 2) = 0.5 and
P (W a

ka=2 = 1) = P (W a
ka=2 = 3) = 0.5.

In summary, the CEMPC heuristic shows limited optimality gaps when the standard deviations
of the random activity progress is small. In this case, project managers could consider using the
heuristic for very large projects, for which even our TBR algorithm cannot identify the solution.
However, the optimality gaps increase when the standard deviations of the random activity progress
increase. For projects with high underlying “randomness,” it is crucial to use modeling frameworks
that explicitly consider the variability of activities.

6.3 Class identification algorithms

We compared the computational performance of CId against our implementation of the fast class
identification algorithm proposed by Creemers et al. (2010). As before, we compared the compu-
tation times of the two algorithms using networks randomly generated by the Rangen2 software.

In our experiments, the number of activities n takes values ranging from 30 to 300, and I2,
which measures how sequential a network is, takes values 0.9, 0.6, and 0.3. For each experiment,
we calculate the average computation times by averaging the times required to identify the classes
of 10 random networks.

The third through fifth columns of Tables 8, 9, and 10 give the average number of classes
for each experiment, and the average computation times over 10 instances (in seconds) for the
CId algorithm and for our implementation of the algorithm developed by Creemers et al. (2010)
(Creemers).

The average computation times of CId are significantly smaller than those of our implementa-
tion of the algorithm developed by Creemers et al. (2010). The average percent reduction of CId
with respect to Creemers’ algorithm was 43% and the maximum percent reduction was 99%.

The CId algorithm has a clear performance advantage over Creemers’ algorithm for networks
with a large number of activities. The computation times of the two algorithms increased when
the number of activities increased.

20

I2 n # Classes tCreemers tCId

(seconds) (seconds)
0.9 30 165.7 < 0.01 < 0.01
0.9 60 453.1 0.02 0.04
0.9 90 577.7 0.05 0.03
0.9 120 824.3 0.05 0.05
0.9 180 1269.9 0.36 0.14
0.9 240 1863.6 0.40 0.31
0.9 300 3044.1 11.42 0.97

Table 8: Comparison between Creemers et al. (2010) and CId for I2=0.9.

I2 n # Classes tCreemers tCId

(seconds) (seconds)
0.6 30 55.9 < 0.01 < 0.01
0.6 60 133.4 0.01 0.01
0.6 90 232.9 0.03 0.02
0.6 120 211.1 0.25 0.03
0.6 180 347.6 0.11 0.08
0.6 240 697.9 1.19 0.23
0.6 300 787.2 NA 0.39

Table 9: Comparison between Creemers et al. (2010) and CId for I2=0.6.

I2 n # Classes tCreemers tCId

(seconds) (seconds)
0.3 30 66.7 < 0.01 0.01
0.3 60 101.5 0.03 0.02
0.3 90 207.5 0.22 0.04
0.3 120 169.1 3.80 0.04
0.3 180 963.7 2.05 0.88
0.3 240 210.8 NA 0.17
0.3 300 853.8 NA 0.66

Table 10: Comparison between Creemers et al. (2010) and CId for I2=0.3.

For I2 = 0.9, the CId has a performance advantage against the Creemers’ algorithm when the
number of activities is very large.

For I2 = 0.6 and I2 = 0.3 and a large number of activities, Creemers’ algorithm runs out of
memory in some instances. This is because the algorithm needs to store upfront all the data that
it needs to identify the classes of a network. Instead, the use of recursion in the CId algorithm
limits its data storage requirements.

7 Conclusions

In this paper, we formulated and solved a dynamic model to identify optimal expediting policies
for a project with random progress. Our results contribute to the effectiveness of monitoring and
control, which is critical to project success (Pinto and Mantel 1990). It provides practical control
policies that build on recent technological advances, which have enabled effective monitoring of
complex operational processes.

In particular, we dealt with an MDP formulation of the Dynamic Project Expediting problem
and derived useful structural properties. In turn, these enabled us to devise TBR, an exact solution
method that is significantly less computationally burdensome compared with extant available solu-
tion methods. We showed how our method can be used to attack a larger class of so-called stochastic
shortest-path problems. The latter, termed forward-only stochastic shortest-path problems, are
characterized by intuitive ordering properties and could capture other important applications, in-
cluding medical decision-making and disease modeling. We also dealt with the state identification
problem and devised the SEn and CId algorithms. Numerical experiments demonstrated that both
our solution and state identification methods significantly outperform extant methods for a supply
chain example and for various randomly generated instances.

We briefly discuss some possibilities for future research. The formulation of the problem and its
state-space identification are quite general and could be used in future contributions on dynamic
project management under uncertainty, such as those that study dynamic stochastic models for
leveling and resource-constrained scheduling. The scope of application of the TBR algorithm is also
quite general. We showed that the algorithm finds the optimal solution to forward-only stochastic
shortest-path problems, a broad class of MDP problems we characterized. Future studies could
apply the TBR algorithm to solve other problems belonging to this class.

21

Acknowledgement

The authors thank the associate editor and the anonymous referees for their suggestions, which
considerably improved the paper. The authors are also grateful to Dimitri Bertsekas, George
Mertzios, Tava Olsen, Christos Tsinopoulos, and Marion Weinzierl for the fruitful discussions on
earlier drafts of this paper. Funding: Dr. Riccardo Mogre acknowledges support from the US-UK
Fulbright Commission and the Lloyd’s Tercentenary Research Foundation through the Fulbright-
Lloyd’s Scholar Award, which allowed him to spend an extended period of time at MIT.

References

Azaron A, Katagiri H, Sakawa M (2007) Time-cost trade-off via optimal control theory in Markov PERT
networks. Annals of Operations Research 150(1):47–64.

Bertsekas D (2012) Dynamic Programming and Optimal Control, volume 2 (Nashua, NH, USA: Athena
Scientific), 4th edition.

Bertsekas D (2017) Dynamic Programming and Optimal Control, volume 1 (Nashua, NH, USA: Athena
Scientific), 4th edition.

Bertsekas D, Tsitsiklis J (1991) An analysis of stochastic shortest path problems. Mathematics of Opera-
tions Research 16(3):580–595.

BioNTech (2021) Update on vaccine production at biontech’s manufacturing site in marburg. Retrieved
March 23, 2021, from https://investors.biontech.de/node/9301/pdf.

Bregman R (2009) A heuristic procedure for solving the dynamic probabilistic project expediting problem.
European Journal of Operational Research 192(1):125–137.

Cormen T, Leiserson C, Rivest R, Stein C (2009) Introduction to Algorithms (Cambridge, MA, USA: MIT
Press), 3rd edition.

Creemers S, Leus R, Lambrecht M (2010) Scheduling Markovian PERT networks to maximize the net
present value. Operations Research Letters 38(1):51–56.

De Meyer A, Loch C, Pich M (2006) Management of novel projects under conditions of high uncertainty.
Working paper, Cambridge Judge Business School .

Fulkerson D (1961) A network flow computation for project cost curves. Management Science 7(2):167–178.

Godinho P, Branco F (2012) Adaptive policies for multi-mode project scheduling under uncertainty. Eu-
ropean Journal of Operational Research 216(3):553–562.

Goh J, Hall N (2013) Total cost control in project management via satisficing. Management Science
59(6):1354–1372.

Grushka-Cockayne Y (2020) Use data to revolutionize project planning. Harvard Business Review Feb.

Gutjahr W, Strauss C, Wagner E (2000) A stochastic branch-and-bound approach to activity crashing in
project management. INFORMS Journal on Computing 12(2):125–135.

Jensen J, Gutin G (2007) Digraphs: Theory, algorithms and applications. (Springer-Verlag).

Jørgensen T, Wallace S (2000) Improving project cost estimation by taking into account managerial flexi-
bility. European Journal of Operational Research 127(2):239–251.

Kelley J Jr (1961) Critical path planning and scheduling: Mathematical basis. Operations Research
9(3):296–320.

Klastorin T, Mitchell G (2013) Optimal project planning under the threat of a disruptive event. IIE
Transactions 45(1):68–80.

Laslo Z (2003) Activity time-cost tradeoffs under time and cost chance constraints. Computers & Industrial
Engineering 44(3):365–384.

Lehman E, Leighton F, Meyer A (2017) Mathematics for computer science (Available at:
https://courses.csail.mit.edu/6.042/spring18/mcs.pdf), 3rd edition.

Li H, Womer N (2015) Solving stochastic resource-constrained project scheduling problems by closed-loop
approximate dynamic programming. European Journal of Operational Research 246(1):20–33.

Magretta J (1998) Fast, global, and entrepreneurial: Supply chain management, hong kong style. Harvard
Business Review Sep-Oct.

Mitchell G, Klastorin T (2007) An effective methodology for the stochastic project compression problem.
IIE Transactions 39(10):957–969.

Pinto J, Mantel S (1990) The causes of project failure. IEEE Transactions on Engineering Management
37(4):269–276.

PMI (2018) Project management institute: Pulse of the profession. Retrieved March 23,
2021, from https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-
leadership/pulse/pulse-of-the-profession-2018.pdf.

22

PMI (2020) Project management institute: Pulse of the profession. Retrieved March 23, 2021, from
https://www.pmi.org/learning/library/forging-future-focused-culture-11908.

ProjectManagementdotcom (2017) Discussion board: When should you update baselines and when
should you not? Retrieved October 22, 2018, from https://www.projectmanagement.com/discussion-
topic/65058/When-should-you-update-baselines-and-when-should-you-not-.

Shen S, Smith J, Ahmed S (2010) Expectation and chance-constrained models and algorithms for insuring
critical paths. Management Science 56(10):1794–1814.

Sigal C, Pritsker A, Solberg J (1980) The stochastic shortest route problem. Operations Research
28(5):1122–1129.

Sobel MJ, Szmerekovsky JG, Tilson V (2009) Scheduling projects with stochastic activity duration to
maximize expected net present value. European Journal of Operational Research 198(3):697–705.

Sterman J (1992) System dynamics modeling for project management. Working paper, MIT.

Tavares L, Ferreira J, Coelho J (1999) The risk of delay of a project in terms of the morphology of its
network. European Journal of Operational Research 119(2):510–537.

Vanhoucke M, Coelho J, Debels D, Maenhout B, Tavares L (2008) An evaluation of the adequacy of project
network generators with systematically sampled networks. European Journal of Operational Research
187(2):511–524.

Appendix

How to calculate P a
xa,ya

(ka) in all possible cases.

1. If a is in progress in x:

If ya ≥ xa:

If a is in progress in y, P a
xa,ya

(ka) = P (Wa,ka
= ya − xa).

If a is completed in y, P a
xa,ya

(ka) = 1−
∑ya−xa−1

i=0 P (Wa,ka
= i).

If ya < xa, P
a
xa,ya

(ka) = 0.

2. If a is un-engageable in x:

If a is un-engageable in y, P a
xa,ya

(ka) = 1.

If ya = 0:

If all a′ ∈ Πa are completed in y, P a
xa,ya

(ka) = 1;

otherwise, P a
xa,ya

(ka) = 0.

If ya > 0, P a
xa,ya

(ka) = 0.

3. If a is completed in x:

If ya < la, P
a
xa,ya

(ka) = 0.

If a is completed in y (ya = la), P
a
xa,ya

(ka) = 1.

Proof of Lemma 1. Bertsekas (2017, 237–240) shows that for a stochastic shortest-path problem
there exists an optimal stationary policy µ if there exists an integer M such that, regardless of
the policy used and the initial state (which in our case is always equal to i), there is a positive
probability that the terminal state will be reached after no more than M periods. Equivalently,
there exists an optimal stationary policy for a stochastic shortest-path problem if, for each control,
every state is connected to the terminal state by a path of positive-probability transitions. To
prove this for our problem, it is sufficient to show that for each state x ∈ S and each control
k ∈ K(x) there is a positive probability to move to at least one state y that is “closer” than x to
the terminal state f in a sense that will now be made clear.
If x = f , there is nothing to prove. Therefore, let x ̸= f . This implies that P, the set of all
activities in progress in x, is non-empty. The assumption 0 /∈ K(x) implies that there exists at
least one a′ ∈ P such that ka′ ̸= 0. Take a state y ∈ X such that the following hold:

1. ya′ > xa′ , and ya ≥ xa for all other activities a that are in progress, where ya > xa holds
only if ka ̸= 0.

2. ya = xa for all completed activities a.

23

3. ya ≥ xa for all un-engageable activities a, where ya > xa holds only if all predecessors of a
are completed in a possible transition from x to y.

The probability of moving from x to y is Px,y(k) =
∏

a∈A P a
xa,ya

(ka). For a = a′, and for all
other activities a in progress such that ya > xa, 0 < P a

xa,ya
(ka) < 1. For all other activities a,

P a
xa,ya

(ka) = 1. Therefore, Px,y(k) > 0.

Proof of Lemma 2. To prove this lemma, we have to show that the relation ≺ is irreflexive and
transitive. It is irreflexive, that is, ¬(x < x), because xa = xa for all activities a. It is obviously
transitive, that is, x < y and y < z imply that x < z. Therefore, it is a strict partial order on the
non-empty state space X .

Proof of Lemma 3. Theorem 10.6.8 in Lehman et al. (2017, 400) shows that a relation is a strict
partial order if and only if it is the positive-walk relation on a directed acyclic graph. The Theorem
establishes the equivalence between ≺ and the positive-walk relation on G≺(V≺,A≺). A transitive
reduction of a directed graph G is a directed graph G′ with the same set of nodes and as few arcs
as possible, such that if there is a path from node v1 to node v2 in G, there exists such a path in
G′ as well. G′(V ′, E ′) is the transitive reduction of G≺(V≺, E≺). This is because every arc e in E ′
corresponds to just one unit of progress, which is the smallest progress possible. It is obvious from
the definition of transitive reduction that the positive-walk relation on a graph is equivalent to the
positive-walk relation on its transitive reduction. This applies to G≺(V≺, E≺) and its transitive
reduction G′(V ′, E ′).

Proof of Lemma 4. Substituting ŷ for y in equation (4), we obtain:

ak∗

1− δk∗
= min

k

[
ak + δk

ak∗

1− δk∗

]
;

ak∗

1− δk∗
= min

[
ak∗ + δk∗

ak∗

1− δk∗
, min
k ̸=k∗

[
ak + δk

ak∗

1− δk∗

]]
;

ak∗

1− δk∗
= min

[
ak∗

1− δk∗
, min
k ̸=k∗

(1− δk∗)ak + δkak∗

1− δk∗

]
.

From ak∗
1−δk∗ = mink

ak

1−δk it follows that

ak ≥ ak∗

1− δk∗
(1− δk), k ̸= k∗;

(1− δk∗)ak + δkak∗ ≥ (1− δk∗)
ak∗

1− δk∗
(1− δk) + δkak∗ = ak∗ , k ̸= k∗;

min

[
ak∗

1− δk∗
, min
k ̸=k∗

(1− δk∗)ak + δkak∗

1− δk∗

]
=

ak∗

1− δk∗
.

Therefore, ŷ = ak∗
1−δk∗ solves equation (4).

Proof of Theorem 1. The linearly ordered state space X̃ = {x1,x2, . . . , xs} is a list of states.
Because we obtained X̃ through topological sort (Definition 9), we have that for any state xi ∈ X̃ ,
all states xj with xi ≺ xj will appear later in X̃ . Thus if xl precedes xi in the list X̃ , there are
two possibilities:

1. xl and xi are incomparable. Then Pxi,xl
(k) = 0 and Pxl,xi(k) = 0 for every control k.

2. xl ≺ xi. Then Remark 1 implies that Pxi,xl
(k) = 0 for every k ∈ K(xi).

Thus for any state xi, it suffices to consider in its Bellman’s equation only xi and those states that
appear later than xi in X̃ , that is, xj such that j ≥ i. Therefore, we can write Bellman’s equation
for state xi as follows:

J∗(xi) = min
k∈K(xi)

ḡ(xi,k) +

s−1∑
j=i

Pxi,xj
(k)J∗(xj)

 i = 1, 2, . . . , s− 1.

For a generic state xi, we already obtained the costs-to-go J∗(xi+1), . . . , J
∗(xs−1) by applying the

TBR algorithm. Next, we apply Lemma 4 with the following:

24

1. y = J∗(xi);

2. ak = ḡ(xi,k) +
∑s−1

j=i+1 Pxi,xj
(k)J∗(xj);

3. δk = Pxi,xi
(k).

Note that this is possible because

1. ḡ(xi,k) +
∑s−1

j=i Pxi,xj
(k)J∗(xj) > 0;

2. 0 < Pxi,xi
(k) < 1.

Then the following cost satisfies Bellman’s equation:

J∗(xi) =
ḡ(xi,k

∗) +
∑s−1

j=i+1 Pxi,xj
(k∗)J∗(xj)

1− Pxi,xi
(k∗)

= min
k∈K(xi)

ḡ(xi,k) +
∑s−1

j=i+1 Pxi,xj (k)J
∗(xj)

1− Pxi,xi(k)

Therefore, it is optimal.

Proof of Lemma 5. The relation in Definition 11 is reflexive, symmetric, and transitive because
each component of a state is either engaged or un-engageable. Therefore, it is an equivalence
relation on the state space X . As X is non-empty, the equivalence classes Ŝ1, Ŝ2, . . . partition the
state space X .

Proof of Theorem 2. First, we prove that the CId algorithm enumerates all classes of feasible
states. Consider any sub-graph Γ(Â, Ê) ∈ H.

If the set of predecessors Πa is empty for all activities a ∈ Â, then all a ∈ Â are parallel,
because, for each a, their predecessors are completed. Therefore, Γ(Â, Ê) provides a class of states.

If the set of predecessors Πa is non-empty for at least one a ∈ Â, then some activities are
sequential in Γ(Â, Ê). Consider one such a. For this activity, build the sub-graph Γ(Āa, Ēa), where
Āa = Â \ Πa ∪ Sa. Notice that a ∈ Āa because it cannot be a predecessor or a successor of itself.
Then, in Γ(Āa, Ēa), a is no longer in a sequence because its predecessors and successors are not in
Āa by definition. Consider the activities a′ ∈ Āa. If Π′a is empty for all activities a′ ∈ Āa, then
Γ(Āa, Êa) provides a class of states. Otherwise, there exists an activity a′ ̸= a that is in a sequence
in Āa. If that is the case, build a sub-graph Γ(Āa′ , Ēa′) where a′ is no longer in a sequence. In this
way, it is possible to recursively build the sub-graphs until we obtain a collection of sub-graphs in
which all their activities are in parallel. These are the classes of states.

The CId algorithm starts with Γ(Â, Ê) = G(A, E) and terminates only when H = ∅, that is,
when all the sub-graphs have been visited. Therefore, it generates all the classes of states.

Second, we prove that the SEn algorithm enumerates all feasible states.
In a project without precedence constraints, for each class, the recursive procedure SEnvisit

generates a complete tree in which each level corresponds to an activity a and each leaf corresponds
to a state. In a project with precedence constraints, for each class, the only leaves that are not
generated by the procedure are those that correspond to infeasible states because of precedence
constraints. Therefore, the SEn algorithm enumerates all the feasible states for all classes.

25

Algorithm 4: Dijkstra-based value iteration algorithm
begin

e = 0;

g̃(x,k) =
ḡ(x,k)

1−Px,x(k)
∀x ∈ X ;

P̃x,x(k) = 0;

P̃x,y(k) =
Px,y(k)

1−Px,x(k)
∀x,y ∈ X |x ̸= y;

L←− f ;
B ←− ∅;
Set J(x) to +∞ ∀x ∈ X \ {f} and J(f) = 0;

end
repeat

y∗ = argmin
y∈L

J(y);

L = L \ {y∗};
B = B ∪ {y∗};
for each x /∈ B do

K̂(y) = {k ∈ K(x)| P̃x,y∗ (k) > 0 and P̃x,y(k) = 0 ∀y /∈ B};

J(x) = min

[
J(x), min

k∈K̂(x)

[
g̃(x,k) +

∑
y∈B

P̃x,y(k)J(y)

]]
;

L = L ∪ {x};
end
e = e + 1;

until L = X ;
return k∗(x), the control corresponding to J(x), ∀x ∈ X .

Algorithm 5: Policy iteration algorithm
begin

e = 0;
Set ke(x) to a random value ∀x ∈ X \ {f} and ke(f) = 0;

end
repeat

Solve the linear system of equations:
Jke (x) = ḡ(x,ke(x)) +

∑
y∈X

Px,y(ke(x))Jke (y) ∀x ∈ X \ {f} ;

Compute:

ke+1(x) = argmin
k∈K(x)

[
ḡ(x,k) +

∑
y∈X

Px,y(k)Jke (y)

]
∀x ∈ X \ {f} ;

e = e+1;
until Jke+1

(x) = Jke (x) ∀x ∈ X \ {f};
return k∗(x) = ke+1(x) ∀x ∈ X .

Algorithm 6: Linear programming algorithm
begin

Let ω(x) be non–negative continuous variables ∀x ∈ X \ {f};
end
Obtain optimal ω∗(x) by solving the linear programming model:
max

∑
x∈X\{f}

ω(x)

ω(x) ≤ ḡ(x,k) +
∑

X Px,y(k)ω(y) ∀x ∈ X \ {f} and ∀k ∈ K(x)
ω(x) ≥ 0 ∀x ∈ X \ {f};
Compute:

k∗(x) = argmin
k∈K(x)

[
ḡ(x,k) +

∑
y∈X

Px,y(k)ω
∗(y)

]
∀x ∈ X \ {f};

return k∗(x) ∀x ∈ X \ {f}

26

Algorithm 7: Tree constructor (based on Creemers et al. (2010)).

Algorithm TreeConstructor()
build empty tree T (V, E);
build root node r;
associate to r fictitious activity a = −1;
call AddNodes(T (V, E), r);
return T (V, E);

Procedure AddNodes(T (V, E), v)
if a ̸= −1 then

add Sa to forbidden branches T.frb[v];
end

for a′ = a + 1, a + 2, . . . , n do
if a = −1 then

add u (node associated to a′) to V;
add u to adjacency list T.adj[v];

else
if a′ /∈ T.frb[v] then

add u (node associated to a′) to V;
add u to T.adj[v];
T.frb[u] = T.frb[u] ∪ T.frb[v];

end

end
if a = n then

clear T.frb[v];
end

end
for each u ∈ T.Adj[v] do

call AddNodes(T (V, E), u);
end

Algorithm 8: Tree exploration (based on Depth First Search and Creemers et al. (2010)).

Algorithm TreeExplorationDFS(T (V, E))
for each node v ∈ V do

v.visited = FALSE;
end
L←− ∅;
call DFSVisit(root r, T (V, E), L);
return L;

Procedure DFSVisit(v,T (V, E), L)
v.visited = TRUE;
if a(v) ̸= −1 then

add a(v) to T.Sbs[v] (subset of activities associated to v);
end
if v is a leaf then

if T.Sbs[v] is not included in any of the elements of L then
L = L ∪ T.Sbs[v];

end

else
for each u ∈ T.Adj[v] do

if u.visited = FALSE then
T.Sbs[u] = T.Sbs[v];
if a(v) ̸= −1 then

T.Sbs[u] = T.Sbs[u] ∪ {a(v)};
end
call DFSVisit(u,T (V, E), L);

end

end

end

27

CEMPC Heuristic

We present the optimization problem formulation that we use to solve the certainty equivalent
deterministic optimal control problem at the end of each time t, as discussed in Section 6.2.

For each activity a, state xa and control ka, we consider the expected progress to be made and

denote it by wa
xa,ka

= ⌊E
[
W a

xa,ka

]
⌋. The main decision variables are then the effort levels to be

exerted in the planning horizon. Let ya,τ,κ indicate whether the planned effort level for activity
a at some time τ ∈ {t + 1, . . . , T} is at least κ ∈ {1, . . . ,K}. A formulation for the deterministic
optimal control problem at time t that yields an optimal solution for the main decision variables
is as follows:

minimize

T∑
τ=t+1

u · zτ +

T∑
τ=t+1

∑
a

K∑
κ=1

(ca,κ − ca,κ−1)ya,τ,κ (5)

subject to xa,τ = xa,τ−1 +

K∑
κ=1

(wa
xa,τ−1,κ − wa

xa,τ−1,κ−1)ya,τ,κ, τ = t+ 1, . . . , T, ∀a (6)

ya,τ,κ+1 ≤ ya,τ,κ, τ = t+ 1, . . . , T, κ = 1, . . . ,K − 1, ∀a (7)

ya,τ,1 ≤ xa′,τ−1

la′
, τ = t+ 1, . . . , T, ∀a, ∀a′ immediate predecessor to a (8)

zτ ≥ 1− xa,τ−1

la
, τ = t+ 1, . . . , T, ∀a (9)

∑
a

K∑
κ=1

(ca,κ − ca,κ−1)ya,τ,κ ≤ b, τ = t+ 1, . . . , T (10)

xa,τ ∈ {0, 1, . . . , la}, τ = t+ 1, . . . , T, ∀a (11)

ya,τ,κ ∈ {0, 1}, τ = t+ 1, . . . , T, κ = 1, . . . ,K, ∀a (12)

zτ ∈ {0, 1}, τ = t+ 1, . . . , T, (13)

with variables xa,τ , ya,τ,κ, and zτ , for τ = t + 1, . . . , T , κ = 1, . . . ,K, and ∀a. The variables xa,τ

correspond to the state that activity a is planned to be at time τ—note that xa,t is not a variable,
but rather input data, as the state at time t is known. The variables zτ indicate whether the
project is still in progress at time τ .

The first constraint reflects state transitioning. The second constraint enforces that if the effort
level is at least κ + 1, it is also at least κ and that if it is not at least κ, then it is not at least
κ+1 either. The third constraint ensures that effort can be exerted for some activity at some time
only if all immediate predecessor activities are complete. The fourth constraint ensures that the
project remains in progress if any of the activities is still in progress. The fifth constraint reflects
the budget constraint.

28

