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Abstract—The presence of a jammer in an IoT network
severely degrades all communication efforts between adjacent
wireless devices. The situation is getting worse due to retransmis-
sion attempts made by affected devices. Therefore, jammers must
be detected or localized quickly to activate a series of corrective
countermeasures so as to ensure the robust operation of the IoT
network. This paper proposes a novel metric called the number
of jammed slots (NJS). It can detect and localize both reactive
and proactive jammers that follow arbitrary jamming attack
patterns. NJS is applicable to all communication paradigms such
as unicast, broadcast, and multicast. In NJS, the wireless medium
status is monitored by IoT devices and summarized reports
are sent to a central node. Then, the central node determines
the jamming duration, the affected nodes, and the approximate
location of the jammer(s). Also, the specificity, precision, and
accuracy of NJS are at least 48%, 19%, and 20% better than the
other state-of-the-art statistical methods, respectively. In addition,
in terms of the detection time, NJS is four times faster when
detecting an active jammer in the network. It can also localize
the jammer with less jammer localization errors.

Index Terms—jammer detection, reactive jammer, proactive
jammer, IoT networks.

I. INTRODUCTION

The Internet of Things (IoT) refers to a massive number
of devices connected to the Internet so as to develop various
smart services (e.g., smart buildings, smart transportation, and
intelligent environments). IoT devices are often unsupervised
and distributed in a large scale via multiple wireless hops,
making IoT networks vulnerable to physical-layer jammers.
By physical-layer jammers, we mean non-networking trans-
mitters (e.g., a microwave oven, an outdoor working machine)
sending disturbing signals with sufficient strength to cause
interference or jams to valid data transmissions in wireless
channels. These non-networking transmitters do not partici-
pate in networking communications, i.e., do not implement
standards or protocols designed for networking devices, and
hence the generated jams are mostly due to physical-layer
noise. The generation of such jamming signals will potentially
cause a set of communication issues, including hindering
legitimate transmissions, prolonging channel busy time, dis-
rupting packet receptions at receivers, draining the batteries
of IoT devices, and degrading the overall performance of a
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IoT network. Therefore, it is crucial to quickly and accurately
detect physical-layer jammers in IoT networks.

Current solutions for detecting jamming attacks are either
employing a specialized hardware (e.g. measuring the noise
power level) to analyze signal strengths [2] [3] or conducting
statistical indices such as packet delivery ratios (PDR) [4],
channel busy time [5]. The hardware-based solutions are
faster and more accurate than statistical indices. However,
they may not be applicable in an IoT network consisting
of devices ranging from disposable devices to flagship gad-
gets. For example, it is impossible to equip out-dated IoT
devices with required hardware. The statistical indices are
intrinsically prone to false alarms due to background traffic
variations, causing inherent inaccuracy and slow reaction to
detect jammers. Jammer detection data which are acquired by
either hardware assisted methods or statistical studies could
be used to train neural networks [6], [7]. This technique may
help to predict jammers. But it requires considerable time and
computational complexity to be accurate in such predictions.

As for studies on localizing jammers, they usually start
after detecting a jammer in the network [8] [9]. Having the
position information of a jammer allows us to eliminate the
jammer from the network and provide useful information about
the jammer when designing a new MAC or routing layer
protocol. Existing solutions are mainly range-based or range-
free methods [10]. In the range-based schemes, the distance
or angle is estimated as range metrics. Techniques employed
include using received signal strength indication (RSSI), signal
arriving angles, signal arriving times, and the time differences
of arriving signals to determine the ranges of jammer locations.
The cost issues and extra hardware requirements preclude the
broad usage of range-based schemes. With regard to range-free
methods, they infer the location of IoT devices using radio
connectivity to communicate between them and carry their
topological information. The inferior accuracy of range free
methods is sufficient for many jammer detection applications
[11].

This paper presents a new jammer detection and localization
algorithm, called the number of jammed slots (NJS)-based
algorithm, to enable that a multi-hop IoT network not only
self-detects physical-layer jammers (without relying on any
external hardware devices) but also accurately determines the
locations of such jammers in a real-time fashion. With NJS,
each IoT device records its channel states and reports its
recorded states to a central node (e.g., a wireless gateway)
periodically. Four different channel states: idle, receiving,
transmitting, and corrupted are proposed to support our ac-
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curate yet real-time jammer detections and localizations. The
central node calculates the NJS metrics for all nodes that report
their states. Based on which, our NJS-based algorithm is able
to accurately determine whether there is a jamming attach or
not and if so, where the jammer is in a real-time fashion.
In general, the non-zero NJS value of an IoT device is a
clear indication of the jammer presence in the network. By
comparing the NJS values of neighboring nodes, the number
of jammers and their approximate locations are revealed. More
specifically, our contributions are concluded as below.
• Comprehensive jammer detection. Physical-layer jam-

mers can be reactive and proactive1. As compared to our
previous work [1] that uses witness nodes to detect reac-
tive jammers, our new NJS algorithm can efficiently and
accurately detect both reactive and proactive jammers.
This is achieved by enabling the jammer monitor center
(JMC) to identify a void region in the network where
there have been no valid communication activities for a
certain time period. Furthermore, the new NJS algorithm
is able to detect coexistent reactive and proactive jammers
as the algorithm can form understanding of witness nodes
and void regions simultaneously.

• Jammer detection in a multi-hop IoT network. Our
study in [1] detects jammers in a single-hop/local IoT
network. The new NJS algorithm in this paper can de-
termine jammers in a large-scale multi-hop IoT network.
The multi-hop scenario may introduce overlaps between
jammed areas, which cause our study in [1] not always
to accurately detect or localize jammers. We solve this
issue by integrating the NJS with the weighted centroid
localization method [12], allowing the jammer localiza-
tion errors to be reduced by at least 2.5 times as compared
to existing methods.

• Jammer detection for different transmission methods.
Our new NJS algorithm supports jammer detections in
unicast, multicast, and broadcast, an enhancement to the
unicast-based jammer detection in [1]. To achieve this
new capability, a superset of MAC layer states is defined
by integrating multiple MAC states into a single state,
providing a coarse-grained view of the network topology.
Such coarse-grained views help to generate more useful
NJS reports for the JMC to determine and localize
jammed nodes and jammers in multicast or broadcast
transmissions.

Our simulation results show that our algorithm is superior
to current statistical metrics such as PDR [5], carrier sense
time (CST) [13], packet send ratio (PSR) [14], and time-series
based method [15]. Also, the specificity and precision of NJS
are 100% and at least 48% and 19% better than the other
methods in all scenarios, broadcast, unicast, and multicast.
In addition, accuracy of NJS is at least 20% better than the
state-of-the-art statistical methods. Such performance is nearly
as accurate as hardware-based methods. It is worth mention
that hardware-based methods are hard to be implemented
in heterogeneous environments such as IoT networks. Also,
the NJS-based method is four times faster than statistical

1Reactive jammers and proactive jammers are defined in Section III.

methods in detecting a reactive or proactive jammer in the
IoT networks. With even such a fast detection process, NJS
can still generate fewer false alarms than statistical methods
in our simulations.

II. RELATED WORKS
Pirayesh etc. [16] surveyed jammer detection problems and

anti-jamming techniques in nearly all types of wireless net-
works. As mentioned, studies on physical-layer jammers can
be classified as jammer detections and jammer localization.
Physical-layer jammer detections employ by hardware-assisted
approaches [2], [17]–[19] or statistical indices methods [5],
[13], [14], [20]–[24].

In hardware-assisted approaches [17], [19], jammers are
detected by sensing the strength of jamming signals. The
measurements are reported to a central node which runs a
proprietary algorithm to locate a jammer based on the received
jamming signal strength. In [2], jamming signal strengths are
used to train a decision tree algorithm so that the jammer
presence can be predicted. In [6], jamming signals are used
to harvest energy by ambient backscatter techniques, instead
of only transmitting data. First, jammers are detected by
a detector circuit by comparing jamming signal strengths
with benign signal strength. Then, IoT devices generate fake
transmissions to stimulate a jammer to attack the channel. In
[7], the jamming signal strength and localization information
are used to train a neural network to detect jammers. Then,
they use another neural network to schedule links based on the
data produced by the first neural network. In [18], the location
and transmission range of a directional jammer is found by
analyzing jamming signal strengths from boundary nodes and
the geographical location of jammed nodes.

Statistical indices methods detect jammers by conducting
statistical analyses because jammer activities degrade wireless
medium characteristics (e.g., channel busy time, PDR). In [5],
the gradient descent method [5] is used to detect jammers by
tracing PDR reduction in the observed network. The authors in
[20] found that jammer activities increase packet transmission
time. If the packet transmission time exceeds a predefined
threshold, IoT devices determine that a jammer is detected.
If so, IoT devices switch to a safe channel and retransmit the
packets. Similarly, in [21], the packet-invalidity ratio is defined
as the probability that packet transmission delays are greater
than a threshold value. This ratio is used to detect jammers in
the context of cognitive radio networks for IoT applications.

In [13], [14], a combination of CST, PDR, and PSR are
examined to detect jammers. They found that jammer activities
decrease PSR and PDR but increase CST. In [22], a jammer
is identified by comparing the number of idle and busy slots
before and after jammer activities. Each IoT devices maintains
a medium profile which is updated periodically. These profiles
are reported to and processed at a central node, in order to
detect possible active jammers. In [23], PDR and bad packet
ratio (BPR) are used for identifying an active jammer. The
activation of a jammer degrades PDR and increases BPR. This
approach is used by [8] [24] in a similar way.

In [15], a new detection method is proposed using a time
series analysis. It modeled the network measurements, such as
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busy time, taken over time as a time series and proposed an
algorithm for detecting sequential change point. It can quickly
detect anomalies using a proper indicator that varies with the
jammer activities over time. In [25], the packet drop ratio and
inverse PDR are used alongside a machine-learning algorithm
to detect the presence of a jammer in vehicular networks.
In [26], a random forest classifier is proposed in the context
of vehicular networks using signal to noise ratio (SNR) and
PDR as training data. Similarly, in [4], a machine learning-
based method is employed to detect the presence of jammers
in the network using metrics such as PDR, BPR, SNR, and
RSSI. In [27], statistical process control (SCP) is used to
detect jammers. It employs packet drop ratios as the center
line with an upper control limit (UCL) and a lower control
limit (LCL). The presence of a jammer is detected when the
center line crosses the upper control limit. A very similar idea
is designed in [28] for IoT networks. In this work, the center
line is recalculated when two nodes encounter. Nodes only
exchange summary vectors or new messages (if any) when the
center line falls below LCL. A jammer presence is reported
when the center line is above UCL. Nodes enter the suspicious
zone when the center line is between LCL and UCL. Finally,
the nodes that are detected to be within the range of the
jammer, known as the jamming zone, will not participate in
the subsequent packet forwarding processes. Contrary to the
statistical-based method in [28], our method aims to identify
an actual footprint of a jammer among the receptions of the
affected nodes.

In general, with hardware-assisted solutions, all IoT devices
need to be equipped with a specialized hardware, which not
only increases deployment cost but also incurs the backward
compatibility problem with IoT devices. Also, most hardware
solutions work only in single-hop jamming detections. As for
statistical indices, they need to be measured in a periodical
manner, increasing the detection delays. Furthermore, the false
alarm problem resulted from background traffic and/or channel
issues decreases their accuracy.

In [29], multiple active jammers are localized in wireless
networks via two steps. First, they use the received jamming
signal strength (RJSS) value to determine the number of
overlapped jammers. Then, they use Region Growth Algorithm
(RGA) in an iterative manner to locate the jammers. In [30],
a jammer in an Internet of vehicles is localised using 1-Time
of Delay (TOD), 2-Time of Arrival (TOA), and 3-RSSI from
jammed vehicles. To find the location of a single jammer in
a wireless sensor network [31], an improved version of beetle
antennae search algorithm is used.

III. SYSTEM MODELS AND PROBLEM DEFINITION

A. System Model

Suppose that there are N IoT nodes in the system with
each denoted as ni where 0 ≤ i < N . Also, there is a
jammer monitor center (JMC) in our system, responsible for
collecting information from IoT nodes and implementing our
NJS algorithm to detect and localize a jammer. In practice, a
JMC can be a wireless gateway in an IoT network. As shown
in Fig. 1, in our system, IoT nodes may connect with each

Fig. 1. An example of the system model in a single-hop IoT network.

other for distributing IoT application data. A physical-layer
jammer interferes with the data transmissions of those IoT
nodes that are within the coverage of this jammer. Also, each
IoT node periodically sends channel state packets to the JMC
every m seconds, allowing the JMC to utilize the information
for jammer detection and localization. The description of our
NJS algorithm defines the following key terms.

1. Channel States: The JMC must have a broad view of
all wireless media events in order to deduce the presence and
location of a jammer correctly. These types of information
are available at the MAC layer in the form of MAC layer
states such as IDLE, waiting for CTS (WFCTS), and waiting
for data (WFDATA) [32]. Similar states are also defined for
broadcast and multicast scenarios [33]. The MAC-layer states
of a wireless IoT node are defined as doing an action (such as
frame transmission) or waiting for an action accomplishment
(such as a data frame reception). The latter is done by adjusting
a proper timer. The MAC layer switches between the defined
states when it receives/transmits a frame or a timer expires.
This will solves several media challenges such as hidden and
exposed terminals.

In our NJS algorithm, multiple MAC states are combined
into a superset to provide a coarse-grained view of the MAC-
layer states of IoT devices for the JMC. We summarise various
medium events as the following four channel states observed
by an IoT node using the channel (see Fig. 1) :
• Idle: ni is not sending/receiving a signal via the channel;
• Receiving: ni is receiving a valid data or control frame

correctly from the channel;
• Transmitting: ni is sending a data or control frame to the

channel;
• Corrupted: ni is receiving a corrupted frame from the

channel. The frame corruption might be due to collision,
fading, jamming, etc.

2. Channel state updating period: The channel status is
recorded every τ seconds by ni (0 ≤ i < N ). Then, the
node aggregates channel states and sends the aggregated states
via a report every m ∗ τ . The period τ is proportional to the
time required to send/receive a data frame. More specifically,
its value must be slightly greater than the largest frame size
divided by the channel bit rate. For example, τ could be 7ms,
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if bandwidth was 2Mbps and the data frame length was 1518B.
Nodes in our system may employ some network timing

protocol (say NTP [34]) to synchronize their periods, allowing
a synchronized snapshot of the channel states from different
viewpoints to be achieved in each time slot. Each wireless IoT
device reports the collected MAC-layer states from the last m
time period to the JMC. Similar to other well-known routing
metrics in wireless networks [32], the collected reports could
be delivered to the JMC by flooding or unicasting methods or
via a direct channel between IoT nodes and JMC.

3. Jammer Types: We classify physical-layer jammers
into proactive jammers and reactive jammers. A proactive
jammer is a jammer that constantly jams the wireless medium
regardless of channel states. Proactive jammers remain active
for multiple continuous periods. In contrast, a reactive jammer
is normally silent but becomes activated whenever it detects an
ongoing transmission between other nodes. Therefore, when
there is a reactive jammer in the network, even though IoT
nodes sense the medium as idle, their transmissions may suffer
from interference.

B. Problem Definition

The open access property of wireless transmission medium
makes it challenging to detect physical-layer jammers since it
is hard to differentiate between normal channel events and a
jammer activity. Fortunately, in many cases, there are always
some IoT nodes that receive only jamming signals when a
jammer is active. Since physical-layer jamming signals are
non-decodable, such a node will report a Corrupted state to
JMC. The JMC will know the existance of a jammer based
on the fact that there is no valid sender around the reporting
node. To implement this basic idea to develop our NJS-based
algorithm, we need to address the following major challenges:

Signal degradation vs. jamming attacks: The first chal-
lenge is to differentiate signal degradation caused by path
loss, fading, shadowing, and interference from the deliberate
collisions caused by the jammer. However, the jammer activity
not only explicitly affects some nodes, but there are also some
nodes that are simultaneously exposed to the jammer signal
and a transmission of a valid sender. These nodes are receiving
a corrupted signal from the channel. Receiving reports of these
nodes by the JMC could be analyzed as follows. First, the
JMC finds the explicitly jammed nodes. Having the location of
these nodes, it can approximately predict the jammer location.
Now, it can find an implicitly jammed node when the jammed
node is in the vicinity of both the jammer and a valid sender
at the same time. Otherwise, if the reporting IoT device is
only located in the vicinity of one or multiple valid senders,
the erroneous reception could be blamed on normal channel
events.

Communication Primitives: Unicast communication prim-
itive uses multiple control frames (i.e. CTS, RTS, and ACK)
for handshaking between a sender and a receiver. The receiver
must send CTS and ACK frames in response to RTS and DATA
frames. Other wireless nodes around the receiver which receive
a CTS or a ACK frame, report their NJS state as Receiving
or Corrupted (in the case that they could not decode the

received frame due to normal channel events). These reports
confuse the JMC since there is no valid data sender at that
time period around reporting nodes. In order to avoid possible
confusions at the JMC, any attempt by a node to transmit a
frame, including RTS, CTS, DATA, and ACK, is reported as
”Transmitting” by NJS-enabled nodes. Also, reception of a
frame on the channel could only be reported as ”Receiving”
or ”Corrupted”. It means that NJS does not take into account
the actual role of the node in the unicast communication.
Instead, it pays attention to a node’s status with regard to the
transmission media.

During handshaking phase, an IoT device switches between
sending and receiving modes. For example, the sender sends
a RTS frame and receives a CTS frame in response before
sending the DATA frame. Therefore, the device may experi-
ence both Transmitting and Receiving states at a single time
slot. But, the IoT device is not allowed to report multiple
states at a single time slot. The device must report its state
as Transmitting because the JMC is sensitive to orphanage
signals (i.e. a transmitted signal without owner).

In both broadcast and multicast modes, the number of
reporting receivers is enough to deduce the jammer’s pres-
ence. In fact, some receivers could be jammed implicitly or
explicitly. In unicast mode, where RTS and CTS must be
exchanged before receiving and acknowledging data frames,
any node that occupies the media to send DATA, RTS, CTS,
or ACK frames is considered as the sender. On the other
hand, any node that receives such a frame from the channel
is considered as a receiver. This strategy increases the number
of collected reports and their diversity which enables the JMC
to differentiate between channel interferences and jamming
signals more accurately.
Frame Loss: Both control and data frames could be lost

on the wireless media. It leads to an incomplete handshake
or transmission. When a RTS or its subsequence CTS is
lost, the handshake is incomplete. When a DATA frame or
its corresponding ACK frame is lost, the transmission is
incomplete. Since in all cases, the sender of a control or a
data frame is forced to report its state to the JMC, the JMC
is able to discriminate between an incomplete communication
and an active jammer case.
Multiple Simultaneous Jammers: Suppose that there are

multiple jammers that were activated simultaneously. Our
mission is to detect the number of jammers and their location.
However, in a multi-hop IoT network, jamming areas are not
distinct. They are often overlapped. Such overlapping makes it
more difficult to determine the number of jammers and localize
these jammers. When the corresponding jamming areas are
distinct, we can detect a jammer in each jamming area by our
method in [1]. The location of the jammer could be estimated
using weighted centroid algorithm [12].

C. An Example

NJS uses a similar set of states for unicast, broadcast and
multicast transmission modes. We use a unicast scenario in
the presence of a reactive jammer to discuss the effectiveness
of the defined states. In Fig. 2, node A sends a RTS frame in



IEEE INTERNET OF THINGS JOURNAL, VOL.XX, NO. XX, XXX 2023 5

time slot t0. Node B, after correctly receiving the RTS frame,
transmits a CTS frame. Their NJS state is ”Transmitting” since
both nodes transmit a frame on the channel. Upon reception
of the CTS frame by the reactive jammer, it starts to jam the
network by sending a nonsense frame on the channel. Both
C and D receive a corrupted frame from the channel. They
record their NJS states as ”Corrupted” in t0 and t1. The JMC
finds the jammer’s footprint because there is not a valid sender
around D and it has reported a ”Corrupted” state in time slots
t0 and t1.

Fig. 2. A unicast scenario in the presence of a reactive jammer.

IV. NUMBE OF JAMMED SLOTS (NJS)

Our basic idea is to track the jammer’s footprint among
the reported states at JMC to detect and/or locate jammers.
First, the JMC prunes the correct data frame’s reception and
transmissions based on the network topology and received
timelines. A normal or correct reception has a valid sender
in its transmission range. Also, the JMC assumes that all
erroneous receptions in the neighborhood of a valid sender
are due to normal channel errors. Hence, NJS is not sensitive
to traffic variation, link quality, fading, etc., which enables it
to accurately detect the jammer.

To find the actual effects of the jammer, we present a general
and comprehensive assertion that helps us to prune normal
frames from the jammer-influenced frames.

Assertion: The frame or an erroneous signal received
without a valid owner (sender) is meant to be sent by a jammer.
This frame is called a jammed frame.

Based on that assertion, two useful propositions are derived
which help us to predict the jammer’s type and its location.
A proactive jammer continuously broadcasts the noise signal
regardless of the existence of an active transmitter on the
channel. As a result, the receivers will continuously receive
frames/signals on the channel while there is no active sender
around them. Therefore, we can use the following proposition
to identify a proactive jammer. Suppose that the collision area
of a wireless device is bounded by a circle whose radius is the
device’s transmission range RS . The device is in the center of
this circle (see Fig. 4).

Proposition 1: ”If we can find at least one time slot in
which almost all nodes that reside in a collision area reported
”Corrupted” receptions or did not report at all, and there is
not a valid sender in their transmission ranges, a proactive
jammer exists in the center of the collision area.”

A proactive jammer will black out all IoT devices in its radio
range. Therefore, if a proactive jammer remains active for a
time period longer than m time slots, all affected IoT devices
cannot obtain the channel to send the recorded observations.

However, prior to the jammer activation, the JMC was able
to receive their reports. Therefore, during the jammer activity,
the JMC notices that there is a permanent hole in the topology
and recognize the jammer location easily using preposition 1.
Also, the existence of another channel is helpful. This channel
could be used to send NJS reports when a proactive jammer
is active.

In contrast to a proactive jammer which continuously oc-
cupies the channel, a reactive jammer only sends a jammed
frame whenever a valid sender is activated in its vicinity. The
necessary and sufficient condition to detect the existence of a
reactive jammer in the network is that the report message of
the sender must be available at JMC. The existence of reactive
jammers will be confirmed using the following proposition:

Proposition 2: ”If multiple jammed frames alongside a
valid sender is found in a collision area in two or more
consecutive time slots, there is a reactive jammer in the
network.”

For detecting a reactive jammer, we introduce the concept
of witness nodes. As depicted by Fig. 3, the reactive jammer
should be in the transmission range of the sender (RS) in
order to detect the ongoing transmission. It then tries to jam
the network by transmitting a meaningless signal. The grey
nodes receive intact frame sent by S. the node in bold gray
area only receive the jammer signal. But, we cannot find a
valid sender around them. However, the nodes in hatched area
have a very nice property. Although they are jammed by the
jammer, we can find a valid sender in their transmission range.
We call those nodes as witness nodes and the hatched area as
the witness area. According to preposition 2, the presence of
at least one witness node is a valid sign of presence of an
active reactive jammer. Then, we can use the witness nodes
and jammed nodes together to locate the jammer using well-
known techniques such as the weighted centroid algorithm
[12].

Fig. 3. Detection of a reactive jammer using witness nodes.

Lemma 1: The density of witness nodes in witness area
is more than one for a connected topology provided that the
node density is more than one node per R2

s .
Proof: We show that the witness area is greater than R2

s .This
will complete the proof. We assume that the transmission
ranges of the sender (RS) and the jammer (Rj) are equal.
It is worth noticing that in reality Rj is more than RS . The
distance between S and the jammer could not be less than RS .
Clearly, the witness area is slightly larger than the shaded area

as shown in Fig. 4a. The area of shaded area is
πR2

s

3
.

In Fig. 4b, we have depicted the most convenient arrange-
ment of IoT devices to preserve our assumption about node
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Fig. 4. a) the witness area, and b) minimum node density.

density (i.e. one node per R2
s). The lemma 1 has a very

important consequence. It guarantees that NJS could detect
a reactive jammer even in the sparsely connected topologies.

A. The NJS algorithm

We need a carefully crafted algorithm to determine jammed
nodes and the number of jammed slots in the presence of
a jammer using the defined assertion and propositions. First,
we notice that the jammer activity impacts the IoT devices in
two different ways. Some wireless devices are only exposed
to the jammer, while others are exposed to both a legitimate
signal and the jammer’s signal. In the first case, the jammer’s
footprint could be revealed explicitly. But in the second case,
the jammer has implicitly affected the IoT devices.

The algorithm calculates the number of jammed slots from
the node’s perspective in the most recent m time slots. The
NJS metric has a simple, robust way to find jammed nodes,
jammed slots, and the number of jammers. It is composed of
two distinct parts: finding explicitly jammed slots (NJSexp)
and inferring implicitly jammed slots (NJSimp). First, to
calculate the explicit part of NJS, i.e. NJSexp, we seek for a
time slot with corrupted receptions and without a valid sender.
In other words, we ignore the corrupted receptions in the
range of a valid sender. To infer NJSimp, we look at the
IoT nodes in the intersection area of a sender and the jammer.
For those IoT nodes, the corrupted receptions are blamed on
the presence of the jammer and their NJSimp is increased
per corrupted time slots. In the following, we have devised a
simple algorithm to calculate NJS.

In lines 1-4 of the algorithm, the explicit counterpart of
NJS is calculated in most recent m time slots. For each
receiver node such as j in time slot i, if it could not find
a valid sender in its neighborhood, NJSexp[j] is increased. In
lines 5-8, NJSimp is increased for those IoT nodes that their
NJSexp > 0. Finally, the value of the NJS metric for node is
calculated as follow:

NJS[j] = NJSexp[j] +NJSimp[j] (1)

Some interesting scenarios are depicted in Fig. 5. In Fig. 5a, a
proactive jammer is active in the network and all transmitters
are inactive due to channel business. Here, the IoT nodes have
received a signal/frame on the channel from an invalid sender.
Therefore, the NJSexp > 0 is for all IoT devices located in
the collision area of the proactive jammer. The JMC will easily
locate the proactive jammer since the NJSexp for all jammed
nodes is the same. In other words, according to proposition
1, NJSexp of all jammed nodes will be 1 and their NJSimp

will be 0 for time slot j.

Algorithm 1: NJS Calculation
Input: Nodes’ state timeline
Output: NJS metric for all jammed nodes

1 for slot i← 0 to m do
2 for node j ← 0 to N do
3 if CheckJammedNode(i,j)==true then
4 NJSExp[j] + +

5 for slot i← 0 to m do
6 for node j ← 0 to N do
7 if IsThisAJammedSlot(i,j)==true &&NJSExp[j] > 0&&

CheckJammedNode(i,j)==false &&Timelineji! = Idle then
8 NJSImp[j] + +

9 for node j ← 0 to N do
10 NJS[j] = NJSExp[j] + NJSImp[j]

11 Function CheckJammedNode(slot i,node j):
12 ValidSender=false
13 if Timelineji == RX then
14 for node k ← 0 to N do
15 if k! = j&&distancekj < R &&Timelineki == TX

then
16 ValidSender=true

17 if Timelineji == IdleorTX then
18 ValidSender=true

19 return !ValidSender

20 Function IsThisAJammedSlot(slot i,node j):
21 Result=false
22 if Timelineji! = Idle then
23 for node k ← 0 to N do
24 if k! = j&&distancekj < 2R

&&CheckJammedNode(i, k) == true then
25 Result=true

26 return Result

27 comments:
28 Timelineji == the state of node i in slot j.
29 distancekj == the distance between nodes k and j
30 R = Tx range

Fig. 5. a) a proactive jammer, and b) a reactive jammer.

In Fig. 5b, a legitimate sender (i.e., A) starts sending a
data frame; the jammer is notified and jams the network
simultaneously. The nodes in the intersection between the
sender and jammer have NJSimp > 0, while the nodes that
are only in the range of jammer have NJSexp > 0. The JMC
could detect the reactive jammer by comparing explicit and
implicit NJS values for the jammed nodes using proposition 2
(i.e. for any jammed slot j, NJSimp of at least one jammed
node will be 1). We note that the computational complexity
of the algorithm is O(N2m) , where N and m are the number
of nodes and slots in each timeline, respectively.

In Fig. 6, we have shown that how NJS detects a reactive
jammer in a complex network. In the beginning, the jammer
is silent. When the jammer detects some active senders in
the network, it jams the network in consecutive time slots.
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Fig. 6. The calculation of NJSimp is illustrated.

Since there is no legitimate sender around D in time slots
4-6, NJS deduces that (in the first loop of the algorithm) the
corrupted receptions at node D are due to the existence of an
active jammer. Therefore, it increases NJSexp for D. More
interestingly, although it finds a valid sender in these time
slots, it increases NJSimp for nodes A, C, and E since there
is a node (i.e. D) with NJSexp ≥ 0 in their vicinity.

B. The NJS Properties

NJS metric has the following properties:
1) A non-zero NJS metric is a clear indicator of the presence

of an active jammer.
2) Similar NJS values in a neighborhood means that only a

single jammer is active.
3) Non-similar NJS values in a neighborhood is resulted

from the presence of multiple jammers. For example, the
NJS values for IoT nodes that exist in the intersection
area of two active jammers are expected to be more.

4) When NJS values are composed of both implicit and ex-
plicit values for some nodes, the jammer type is proactive.

C. Discussion

• Inconsistency: Since an IoT device arbitrarily claims the
channel, it is impossible to always acquire the channel
in the start of a time slot. Therefore, a transmission may
span two consecutive slots. In that case, the transmission
is started in slot i and finished at slot i + 1. In NJS, all
IoT nodes are obliged to consider the finish time of an
action when reporting to the JMC.

• None-NJS aware devices: In general, some IoT devices
may not wholly participate in NJS algorithm due to one
of the following reasons:

1) The devices are old and it is not possible to update
their protocol.

2) Some of the device’s reports are lost due to collision,
interference, etc.

3) Some nodes are involved with internal issues such as
insufficient energy or periodical software updates.

For a persistent proactive jammer, the non-cooperation of
some nodes has no harmful effect on the NJS accuracy.
In that case, the presence of the jammer could be detected
through the missing reports of the jammed node. More
interestingly, the silent device works in the favor of NJS
in this situation. If the jammer is not persistent, the

accuracy of the NJS protocol in detecting the jammer
will be degraded. If the status information of some nodes
is not available, the JMC only checks the nodes whose
adjacent nodes’ information is available. For example, in
Fig. 7, node C is a non-NJS aware device and does not
report its status information to JMC.
When node C transmits a frame, the reactive jammer is
activated and its jamming signal affects B, D and F .
In this case, there is an active transmitter in B’s range
(i.e. C) that does not send its report to JMC. So, the
JMC receives multiple Corrupted reports without a valid
sender around reporting nodes and records the issue as
a suspicious case. If this phenomenon is repeated, the
JMC concludes that there is a jammer in this area. The
transmission of other nodes does not differ with normal
case if we assume that C does not exist.

Fig. 7. The impact of non-NJS aware nodes on the algorithm accuracy.

D. Protocol Details

One of main IoT networks challenges is the inherent
limitation in power, processing, and memory. Therefore, the
processing power of IoT devices must be taken into account
in design of the NJS algorithm. In general, the key design
choices are:

• First, all processing tasks are carried out in a gateway
device (i.e. the JMC) where power and processing con-
straints are not violated.

• The NJS algorithm is executed in two modes: periodic
and on-demand. In the periodic mode, each IoT device
must send a REPORT message to the JMC at a specified
time interval (i.e. τ ). In the on-demand mode, the JMC
floods a SOLICITE message in the network. The IoT
devices who received this message send their periodic
reports to the JMC. The JMC could cancel the reports
later by flooding a PAUSE message in the network.
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• The REPORT messages are sent using TCP protocol. This
message contains the link status of the most recent m
slots, node Id and its location information if available.

• The SOLICIT and PAUSE messages are broadcast over
the network. The SOLICIT message contains the values
of τ and m fields.

V. SIMULATION RESULTS

In order to evaluate the NJS metric, several extensive
simulations are carried out using an improved version of
MIXIM 2.3 framework and OMNET++ simulator. The NJS is
compared with the following major relevant studies. Conven-
tional PDR (labeled as PDR-c) [35] detects the presence of the
jammer in the network whenever PDR of links between IoT
devices reduces dramatically. Conventional busy-time (labeled
as BT-c) [13] utilizes an increase in the channel busy time as
an indication of the jammer presence. The increase of channel
busy time is used by conventional busy-time (labeled as BT-c)
[13] to detect the presence of the jammer. In PDR-c and (BT-
c), the presence of a jammer is proclaimed when the average
PDR (BT-c) is decreased (increased) by 10% in comparison to
the previous time interval. Also, we have implemented the time
series analysis as proposed in [15] with z=0.2. It considered
network measurements taken over time as a time series and
proposed an algorithm for detecting the state alterations in the
time series. We have applied their algorithm to PDR and busy-
time measurements. The resulting methods are called PDR-t
and BT-t for convenience. In PDR-t and BT-t, the measurement
is updated every 20 time slots (i.e. 140ms). Finally, we have
simulated [28] (labeled as DR). This work is using packet drop
ratio to detect the jammer. The sample size is set to 50 and
updated every 10 time slots.

A. SIMULATION SETTINGS

Our simulations are implemented in different scenarios:
broadcast, multicast, and unicast. Table I shows the common
simulation settings of these different scenarios. The channel is
exposed to the normal frame loss due to fading, propagation,
etc. Thus, to calculate the probability of receiving a frame
successfully as a function of the distance between two nodes,
we use the model in [36]. The model employs path loss
exponent or power attenuation factor β = 2 and a transmission
range with the radius up to R. The network topology is
a simple grid, as shown in Fig. 8. For each square and
simulation, a wireless node is placed in a random location
inside the square. Also, the simulation time is 10s, equal to
1428 slot times, that is enough for study jammer detection
under different scenarios. Finally, each simulation experiment
is repeated 50 times. Also, the confidence interval of 95%
shows in the diagrams.

B. PERFORMANCE METRICS

The following performance metrics are used to evaluate the
effectiveness of the evaluated methods:
Accuracy: It is defined as the percentage of the number of

correctly predicted nodes (jammed or non-jammed) over the
total number of predicted nodes, i.e.,

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
, (2)

Where true positive (tp) and true negatives (tn) record the
number of truly predicted jammed and non-jammed IoT
nodes, respectively. Also, the false positive (fp) and false
negative (fn) outcomes occur when the system incorrectly
predicts jammed and non-jammed IoT nodes, respectively.
The accuracy demonstrates how close a jammer detection
method can identify jammed and non-jammed nodes in the
network. The accuracy is of a vital importance in routing
applications that reroute the traffic around the jammed area. In
such applications, detection of both jammed and non-jammed
nodes are of equal importance.
Precision: It is defined as the ratio of the number of correctly

predicted jammed nodes to the number of correctly and
incorrectly predicted jammed nodes, i.e.,

Precision =
tp

tp+ fp
, (3)

The precision metric demonstrates how a jammer detection
method can guarantee the detection of all jammed nodes.
In jammer localization methods, the location of a jammer is
predicted based on the locations of the relevant jammed nodes.
Hence, the precision of the jammer detection method plays an
important role is such applications.
Recall: It is defined as the ratio of the number of correctly

predicted jammed nodes to the total number of nodes that are
correctly predicted as jammed nodes and incorrectly predicted
as non-jammed nodes (i.e., the total number of real jammed
nodes). The recall is defined as:

Recall =
tp

tp+ fn
, (4)

The recall demonstrates how a jammer detection method can
guarantee the identification of all jammed nodes.
Specificity: It is defined as the ratio of correctly predicted

non-jammed nodes (tn) over the total number of correctly
predicted non-jammed nodes (tn) and incorrectly predicted
jammed nodes (fp). The formula of specificity is defined by:

Specificity =
tn

tn+ fp
. (5)

The specificity demonstrates how a jammer detection method
can guarantee the identification of all non-jammed nodes.
Jammer localization error (JLE): JLE indicates the relative

error of the predicted jammer location to its actual location.
First, a centroid localization algorithm [19] is used to predict
the jammer location as follows:

(Xavr, Yavr) = (

∑N
i=1 xi

N
,

∑N
i=1 yi
N

) , (6)

Where N is the total number of the predicted jammed nodes,
and (Xavr, Yavr) is the average of their Cartesian location.
Then, the distance between the actual and the predicted posi-
tions of the jammer is calculated. Then, the error is obtained
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by dividing the difference by the transmission range of the
jammer (RJ ) as follow:

JLE =

√
(Xavr −Xi)2 + (Yavr − Yj)2

RJ
(7)

Where (Xavr, Yavr) is Cartesian location of the jammer.
The JLE demonstrates how a jammer detection method can
guarantee to localize the actual position of the jammer in the
network.

TABLE I
THE SIMULATION PARAMETERS.

Name Value
MAC Protocol 802.11

Tx radius of nodes (R) 220m
Tx radius of jammer 220m, 330m

Bandwidth 2Mb
Tx rate of nodes Random(0,100), (0,200), and (0,1000)ms

Packet size of nodes 1500 B
Packet (noise)size of jammer 500, 1000 B

Simulation time (1428 slots) = 10s

Fig. 8. A generated network topology with a random distribution of the nodes.

C. JAMMING STRATEGIES

In the ON-OFF jamming attack, the jammer follows a
cyclical pattern switching between OFF and ON states. In our
simulations, the jammer is active for one second and inactive in
the next second. A proactive jammer always jams the network
during ON cycle. But the reactive jammer only performs the
jamming task when it senses an ongoing transmission over
the channel in ON state. As a result, the jammer detection
methods cannot find enough evidence to detect the jammer,
and the jammer remains hidden in the network for a longer
time. Also, IoT devices follow a random pattern to generate
data packets in the network layer. They firstly wait for a
random time between (0,1)s and then generate a data packet,
and continue this pattern to generate another data packets.

The simulations for ON-OFF attack have been shown for
unicast, broadcast, and multicast scenarios in Fig. 9. As shown
in Fig. 9a, the NJS accuracy for both reactive and proactive
cases in broadcast scenario is at least 20% better than other
jammer detection methods. Also, the NJS precision is always
100% and it is at least 23% better than other jammer detection
methods. It implies that NJS does not generate any false
positive. Similarly, NJS specificity is equal to 1. It means that
NJS also correctly identifies all non-jammed nodes (i.e. fp is
zero). However, other jammer detection methods have lower
specificity because due to false positive errors. For example,
PDR T and BT T have specificity equal to zero because these

Fig. 9. The performance of evaluated methods during the ON-OFF attacks
for a) Broadcast scenario, b) Multicast, and c) Unicast.

methods labels all nodes as jammed nodes. In terms of recall,
NJS is 1-2% lower than PDR T and BT T. The recall of DR
[28] is less than other methods since the number of undetected
jammers (fn) is comparable to the number of detected ones
in this methods. This phenomenon is accentuated when the
network traffic is increased as it is evident in fig. 12. By
considering all performance metrics, including accuracy, as
the most important metric, recall, precision, and specificity,
the NJS has better performance among all jammer detection
methods.

Fig. 9b reveals that NJS accuracy is at least 23% better
than other jammer detection methods in the presence of the
reactive and proactive jammers for the multicast scenario. In
addition, the precision and specificity of the NJS metric are
always one and at least 27% and 54% better than the other
methods, respectively. However, NJS recall is 2-3% lower than
PDR T and BT T because these methods predict almost all
nodes as jammed nodes. The overall NJS performance is much
better than other jammer detection methods. Figure 9c shows
the results for the unicast scenario. The NJS accuracy is at
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least 19% better than other jammer detection methods. The
precision and specificity of NJS are always one and, at least
25% and 48% better than other methods, respectively. In the
unicast scenario, more frames are exchanged due to data frame
retransmissions and transmission of RTS, CTS, as well as ACK
frames. Thus, BT C predicts most nodes as jammed nodes,
and its specificity is lower than NJS in broadcast and multicast
scenarios.

According to [8], in DIFS jamming attack, a jammer will
generate jamming signals over the channel after DCF Inter-
frame Space (DIFS) time period. Therefore, jamming signals
of the jammer will corrupt data packets in broadcast and
multicast scenarios and RTS/CTS frames in unicast scenario.
As shown in Fig. 11, the NJS accuracy is almost one and
at least 21% better than other jammer detection methods
for the broadcast scenario. The precision and specificity of
NJS are always one and, 37% and 51% better than other
jammer detection methods, respectively. However, in terms
of recall, NJS is 1-2% lower than PDR T and BT T. The
overall performance of NJS is much better than other jammer
detection methods because NJS correctly detect jammed and
non-jammed nodes in the network and does not have false
positive. But, other jammer detection methods suffer from
high false positive rate since they predict most nodes as
jammed node. Similarly, the NJS performance for multicast
and unicast are better than other jammer detection methods.
For the brevity, we have just presented the result of the
broadcast scenario.

Fig. 10. The performance of NJS and the other jammer detecion methods
during DIFS attacks in the broadcast scenario.

D. EFFECTS OF JAMMER DETECTION ON JAMMER LO-
CALIZATION

In the next set of experiments, we evaluate the performance
of jammer detection methods on the jammer localization
accuracy using centroid localization [12]. We measure JLE
in the presence of one reactive or proactive jammer, two
simultaneous reactive or proactive jammers, and a mix a
proactive and a reactive jammer in the network. As shown
in Fig. 11, NJS JLE values are at least 2.5X better than
other jammer detection methods in all scenarios. In fact, other
jammer detection methods cannot accurately determine the
coverage area of the jammer due to high false positive and
false negative rate.

Fig. 11. The performance evaluation of the jammed detection methods on
jammer localization.

E. EFFECTS OF BACKGROUND TRAFFIC

To evaluate the performance of NJS and other jammer
detection methods under high traffic rates, we use (0,100ms)
and (0,200ms) cases. In the random (0,100ms) case, each node
generates a random number r between 0 and 100ms and waits
for r to generate a data packet in the network layer. After
generating a packet, the node will generate another random
number r between 0 and 100ms and follow this pattern until
the end of the simulation. Clearly, the frame generation rate of
(0,200ms) scenario is two times larger than (0,100ms) scenario
on average.

the simulation results for the broadcast scenario are pro-
vided in Fig. 12a. The NJS accuracy is 27% and 15% better
than other methods in the presence of a proactive jammer for
a transmission rate of (0,100ms) and (0,200ms), respectively.
Also, the NJS accuracy in the presence of a reactive jammer
for a transmission rate of (0,100ms) and (0,200ms) are 26%
and 20% better than other jammer detection methods. In the
proactive case, NJS finds more footprints of the jammer at the
higher rate than the lower rate, so its accuracy for the higher
rate is better than the lower transmission rate. However, the
NJS accuracy for the reactive case for (0,200ms) is lower than
(0,100ms) because NJS cannot find enough evidence in the
higher rate. In another word, in most cases, there is a valid
sender in the vicinity of the node that received a corrupted
frame. Moreover, the precision for NJS metric is equal to 1
and it is at least 34%, 21% better than other jammer detection
methods for the both transmission rates in the presence of a
proactive jammer. Additionally, the NJS precision in detecting
reactive jammer is 37% and 22% better than other methods
for transmission rate of (0,100ms) and (0,200ms), respectively.
However, the recall of NJS in the proactive (reactive) scenario
is 4% and 3% (16% and 5%) lower than the current best among
other methods for (0,100ms) and (0,200ms) cases. The overall
performance of the NJS is much better than other methods
because NJS correctly detect jammed and non-jammed nodes
due to its zero false positive rate.

Fig. 12b shows the performance evaluation for the multicast
scenario. Similar to the broadcast case, the accuracy, precision,
specificity, and overall performance of NJS is better than other
jammer detection methods. Figure 12c shows the performance
evaluation for the unicast scenario. The accuracy of NJS in
the presence of a proactive jammer is 16% and 29% better
than other jammer detection methods for the transmission rate
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Fig. 12. High traffic rate in a)broadcast, b)multicast, and c)unicast.

of (0,100ms) and (0,200ms). Also, for the reactive jammer
case, the accuracy of NJS is 15% and 28% better than other
methods for two transmission rates. Since in the unicast
scenario, many legal transmissions, including RTS, CTS, and
ACK and data frame, are occurred around each wireless nodes.
Therefore, it becomes harder for NJS to filter these events and
detects the jammer activities. However, NJS is still better than
other methods in terms of precision, specificity, and overall
performance

F. NJS PROPERTIES

The first detection time metric is depicted in Fig. 13.
Clearly, NJS detects reactive and proactive jammers sooner
than other methods. It is four times faster than the closest
rival (i.e. BT T).
Next, we evaluate the ability of the NJS metric in detecting

two adjacent reactive jammers, as depicted in Fig. 14. NJS1
and NJS2 are calculated for the nodes in the vicinity of jammer
1 and jammer 2. Evidently, the NJS value for the nodes in the

Fig. 13. First time detection of a jammer.

Fig. 14. The NJS values when two active jammers simultaneously jam the
network.

intersection area is higher than NJS1 and NJS2. It means that
the proposed algorithm is able to deal with this situation and
detect both jammers.

Fig. 15. The NJS value during the activation time of a jammer.

Figure 15 shows the average of the NJS values for all
jammed nodes vs. the jammer activation time. In the proactive
scenarios, the jammer always occupies the same number of
slots proportional to its ON/OFF rate. Hence, the number of
frame collisions in (0,100)ms 2 configuration is higher than
(0,200)ms ones. As a result, NJS is lower in (0,100)ms case.
Similarly, one could conclude that the NJS value should be
lower in (0,100)ms configuration for reactive scenarios as
depicted in the figure.

VI. CONCLUSIONS

The jammers exploit the open access nature of the shared
wireless media to execute sophisticated jamming patterns and
disrupt the communication for wireless nodes. The current
proposals for jamming detection and localization either need
a proprietary hardware or suffer from subpar performance.
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In this study, a local, straightforward, and numerical metric,
called NJS, is proposed by which reactive and/or proactive
jammers are detected and localized quickly and precisely.
NJS is superior to current jamming detection proposals in
terms of accuracy, recall, and specificity. Also, it determines
affected IoT devices accurately. Then, we can use the location
of affected device to locate the jammer. NJS’s accuracy in
locating the jammer is also superior to current localization
methods. NJS’s operation and performance is independent
from jammers type and numbers.
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