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Abstract 

 

Efficient decision-making requires accounting for sources of uncertainty (noise, or variability). Many 

studies have shown how the nervous system is able to account for perceptual uncertainty (noise, 

variability) that arises from limitations in its own abilities to encode perceptual stimuli. However, 

many other sources of uncertainty exist, reflecting for example variability in the behaviour of other 

agents or physical processes. Here we review previous studies on decision making under uncertainty 

as a function of the different types of uncertainty that the nervous system encounters, showing that 

noise that is intrinsic to the perceptual system can often be accounted for near- optimally (i.e. not 

statistically different from optimally), whereas accounting for other types of uncertainty can be 

much more challenging. As an example, we present a study in which participants made decisions 

about multisensory stimuli with both intrinsic (perceptual) and extrinsic (environmental) uncertainty 

and show that the nervous system accounts for these differently when making decisions: they 

account for internal uncertainty but under-account for external. Human perceptual systems may be 

well equipped to account for intrinsic (perceptual) uncertainty because, in principle, they have 

access to this. Accounting for external uncertainty is more challenging because this uncertainty must 

be learned. 
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Background 

 

Choosing the best course of action depends on evaluating the evidence in favour of different 

options. A problem for any decision-maker is the quality of the data available. Major limitations to 

data quality come from the bias (systematic error) and uncertainty (random error, or noise, or 

variability). An observer whose perception of the approach times of oncoming traffic is strongly 

biased, such that they systematically over-rate the available time to cross the road, is in danger. So is 

an observer whose perception is very uncertain: the high variability of their judgments means that, 

on any given occasion, there is a good chance of the percept deviating markedly from the true state. 

An effective decision-maker should strive to minimise bias and uncertainty in the data on which they 

base their decisions. Here, we particularly consider the problem of uncertainty (noise). To preview 

our argument: 1. The data available for decision-making can include uncertainty (variability) for 

several reasons, and there is a key difference between intrinsic and extrinsic uncertainty. 2. 

Perceptual systems can be remarkably efficient at taking uncertainty into account, particularly via 

reliability-weighed combination of estimates, a noise-minimising strategy. 3. In contrast, people 

typically do not make such efficient decisions in tasks with uncertainty that is not perceptual. 4. 

Existing studies have explored ways in which perceptual and other tasks differ but have not clearly 

separated out the type of uncertainty alone as a factor. 5. We consider the possibility that “extrinsic” 

uncertainty, of the kind common to non-perceptual decision problems, is more difficult to account 

for than “intrinsic” uncertainty. To test this idea, we assess how people perform on a new spatial 

localisation task, in which all decisions are made within the perceptual domain, and all use the same 

stimuli, but we manipulate the degree of uncertainty from intrinsic (perceptual) vs extrinsic 

(environmental) sources. 6. Our finding is that perceptual judgments are indeed less effective in 

taking extrinsic uncertainty into account than intrinsic uncertainty. This illustrates that not all kinds 

of uncertainty are treated in the same way: internal uncertainty can in principle be accessible to 

perceptual systems, while external uncertainty needs to be learned. 

 

1. Sources of uncertainty during perceptual decision making 

Why are estimates uncertain (noisy, variable, limited in precision)? In the perceptual domain, 

limitations in sensory apparatus and computational imprecisions in the brain mean that sensory 

signals are subject to noise1. In perception, this noise becomes particularly evident when fine 

discriminations are required: a person may struggle to correctly select the biggest of two similarly 

sized apples, or the shortest of two similarly long supermarket lines. This uncertainty greatly 
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increases when conditions for the sensory apparatus are degraded – for example, for a person 

choosing an apple in near darkness, or judging the supermarket line using eyes affected by 

progressive vision loss. We term this kind of uncertainty, related to variability (noise) in the sensory 

signal, intrinsic – in the sense that it is internal to the workings of a particular sensory system. We 

consider our example environmental (e.g. dark) or medical (e.g. vision loss) factors also to contribute 

to intrinsic uncertainty, as they lead to high variability (noise) in a particular sensory system. An ideal 

observer (or a different organism, or robot) equipped with better light-gathering apparatus would be 

subject to less noise during the nocturnal apple-selecting task1. Intrinsic uncertainty reflects the 

variability (noise) within a particular sensory system, not variability (noise) in the environment.  

In contrast, extrinsic uncertainty arises from variability in an environment, not in a sensory system. 

An example would be the variability in different lines’ speeds at supermarket checkouts due to the 

differing behaviours of individual cashiers. Cashiers’ speeds may vary as a function of their visuo-

motor speed, their propensity to take time talking to customers, their familiarity with unusual items 

that otherwise need to be looked up, and so on. Excluding (in this example) reliable instantaneous 

perceptual cues to all the determinants of how fast a cashier is, the ideal observer could only 

establish relative speeds by observing the environment for some time. This process may also be 

limited by variability in the observer’s perceptual processes – but crucially, even an ideal observer 

with negligible errors or computational limitations affecting these processes would still be subject to 

this externally determined uncertainty, and would need to spend time sampling the environment to 

build up an estimate of this source of variability - unless they had evolved, or been programmed to, 

have this information. 

To sum up, we define intrinsic uncertainty as straightforwardly perceptual, in that it reflects the 

limitations of the perceptual process. Perception always comes with some uncertainty1, but this 

uncertainty is particularly evident when making a fine discrimination and/or in degraded or sub-ideal 

conditions. In contrast, extrinsic uncertainty is outside of the perceptual process and reflects 

variability in the world itself. Examples include patterns of stochastic behaviour of agents or physical 

processes – e.g. the spread of droplets from a flow of water, the shooting accuracy of an archer, the 

likely waiting time for a bus. The statistics of these kinds of externally determined distributions can 

be learned, but the ideal observer needs to collect observations to learn them2. Internal uncertainty 

 
1 Other properties of observers, such as computational limitations, can also distinguish them from ideal 
observers. For the present discussion, we focus just on the more elementary issue of the noise (variability) 
affecting observers’ estimates. 
2 There are some interesting but limited cases in which evolution or (in artificial agents) programming could 
also provide an ideal observer with this information – mainly for simple physical processes, less obviously for 

 



Uncertainty in multisensory perceptual decision making: Supplement p. 5 of 35 

within a perceptual process itself could, in principle, be much more readily available to the 

perceiver. 

 

2. Efficient mitigation of intrinsic uncertainty via combination of estimates during perceptual tasks 

A useful strategy for reducing uncertainty is combining a perceptual estimate either with another 

estimate of the same property2,3, or with prior knowledge of the statistics of the environment4. This 

has the effect of averaging-out random noise2. In the perceptual domain, this process has been 

studied in sensory cue combination tasks, which measure people’s abilities to reduce the uncertainty 

of a sensory estimate by combining it with other available estimates5. In a classic study6, people 

judged which of two bars was taller, using vision and/or touch. The ideal observer would obtain 

predictable reductions in their uncertainty given both estimates together vs either alone by 

reliability-weighted averaging – in which each estimate is weighted in inverse proportion to its 

uncertainty5. Participants followed this “optimal” strategy: they obtained the theoretically maximum 

uncertainty reduction when given the opportunity to combine cues, and they re-weighted (changed 

their relative reliance on) the visual cue to height as it was made more uncertain by addition of 

stereo noise6. Similarly, participants use prior statistical information to reduce their perceptual 

uncertainty, for example predicting visually noisy trajectories based on statistical distributions 

learned over the course of the experiment4. Observers often near-optimally combine noisy sensory 

estimates with each other6–9 and with prior distributions4,10–12, although there are also cases of 

suboptimal combination13–15. Perceptual cue combination is already evident in single neurons of 

early sensory areas during multisensory tasks16, and can also be detected using fMRI in humans, in 

sensory areas (even during passing viewing, in the case of combination of visual cues to depth)17–19 

and across a whole cortical hierarchy up to the frontal lobe during perceptual decision tasks20–22. 

For this kind of reliability-weighting to work, the perceptual system must correctly account for its 

own uncertainty. For example, it must adjust the weighting given to a visual cue to bar height, vs a 

haptic one, in line with more or less stereo noise being added6. Similarly, during visual-auditory 

localisation7, the observer must adjust the weighting given to a visual cue to location, vs an auditory 

one, in line with progressive visual blurring. How uncertainty-weighted averaging is implemented at 

a cells-and-circuits level is still being established 23–25, but it is clear that uncertainty intrinsic to 

perceptual estimates can be represented implicitly by population responses, because elementary 

perceptual properties tend to be represented by populations of tuned cells. Thus, a very precise 

 
specific cases – e.g. the waiting times on this bus route in particular, the shooting accuracy of this particular 
archer. 
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estimate of a line’s orientation might strongly engage a relatively small population of cells tuned to a 

specific orientation, while an uncertain estimate of orientation, e.g. in a more blurred stimulus, 

would more weakly engage a broader population. The distribution of population responses can 

therefore reflect the level of intrinsic uncertainty. Consistent with this, widths of neuronal 

probability distributions decoded from participants’ fMRI activity are predictive of their perceptual 

decisions26,27. 

In summary, perceptual tasks show abilities to account effectively for perceptual uncertainty. When 

sensory estimates are combined6–9, all the uncertainty is within the perceptual system itself (tasks 

combining sensory information and priors4,10–12 have the additional challenge of learning and 

representing the prior). It is not obvious that perceptual systems should necessarily accurately read 

out or represent the variabilities in their own estimates, but the evidence from cue combination 

tasks6–8 suggests that this must be the case. Considering how perceptual information is represented 

by neuronal populations 23–27 also provides plausible mechanisms for representing and reading out 

this variability information within the perceptual system itself, without the need to additionally learn 

about this variability. 

 

3. Less efficient mitigation of uncertainty during non-perceptual decision tasks 

The literature on economic decision making under uncertainty stands in stark contrast to these 

findings from perceptual tasks, documenting many inefficient and seemingly sub-optimal patterns of 

decision making28–31. By “classical” decision making, we mean decisions about verbally or 

symbolically presented options. One example of this type of problem is a lottery, such as “would you 

rather gain $3000 for sure or have an 80% chance of gaining $4000?”29. A second is a decision 

informed by a base rate (similar to a prior in perceptual tasks), for example: how likely it is that a 

blue vs green taxi was responsible for a traffic accident, knowing that 85% of taxis in the city are 

green and 15% blue, and that the witness (who judged that it was blue) is only correct at making this 

discrimination 80% of the time? (the “taxicab problem”30). A third kind is a multiple-factor 

combination judgment, such as deciding how toxic a fictitious bug is likely to be based on multiple 

predictive cues (e.g. leg length, colour)31. 

Perhaps most pertinent to the questions asked in this study is the issue of weighting of experience vs 

externally provided statistics. A veteran physician will have accumulated years of experience of 

diagnosing common diseases, but may have no experience with very rare diseases. A possible 

problem is that they may rely too heavily on their experience, and under-value the potential of 

diseases not previously diagnosed, possibly due to the Representativeness heuristic32. (This is in 
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contrast to a more junior physician who might over-represent the possibility of diseases that are 

very rare, an example of Base rate neglect)33. Phrased in terms of Bayesian inference, the 

experienced diagnostician might put too little weight on a likelihood of a disease that is verbally / 

symbolically presented to them, instead putting too much weight on their prior experience. 

Formally, this can also be used to describe the cause of stereotyping34. 

Tasks and situations like these are non-perceptual in the sense that the information (e.g. words, 

numbers, bug features, disease prevalences) is symbolic and not subject to relevant perceptual 

uncertainty. They can also differ from the perceptual tasks described above in the specific 

information integration problem (in the cue combination examples and in the taxi-cab and bug 

problems, multiplying likelihoods, probability distributions or probabilities; in the lottery example, 

combining posterior probability and value). Our aim here is to focus specifically on the source and 

representation of uncertainty, and to bring these kinds of problems closer, leading us to introduce a 

novel experimental task in which every aspect of the task except for the type of uncertainty is 

matched. In order to reach that point, we first review previous studies in which aspects of 

perceptual and non-perceptual decision tasks have been matched and compared in significant ways. 

 

4. Task differences and uncertainty differences 

Studies have directly compared people’s abilities to deal with internal estimates of uncertainty on 

the one hand, and explicitly stated probability information on the other. Some studies measured 

participants’ visuomotor precision at a speeded pointing task35,36, allowing them to calibrate the 

visual stimuli so that the same verbal lottery could equivalently be presented as a visuo-motor one. 

In the verbal task, participants had to choose which of two numerically expressed probabilistic 

scenarios they would prefer (of the general type x% chance of winning A vs y% chance of winning B), 

while in the visuo-motor task, they made equivalent decisions by choosing which of two visual 

targets they would prefer to attempt to hit for their respective rewards. One study found different 

biases towards risk-seeking and different weighting of probability and value across these tasks35; 

another found broadly comparable performance36. This general approach compares intrinsic (visuo-

motor) and extrinsic (stochastic) uncertainty, but there are other differences in the two task types: 

visuo-motor uncertainty is presented perceptually by a bar width, while extrinsic (stochastic) 

uncertainty is given via the classical numeric (symbolic) route. Therefore, differences in behaviour 

may depend in part on the origin and nature of the uncertainty (internal vs external) and in part on 

the manner of presentation (perceptual vs symbolic). 
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A study wholly within the perceptual domain manipulated an array of oriented gratings in two 

ways37: by changes in the stimulus contrast, and changes in the variability of orientations across the 

different gratings in the array. Expressing this in our framework, reducing contrast increases intrinsic 

(perceptual) uncertainty, while increasing variability increases the difficulty of the information 

integration problem of correctly averaging together disparate estimates. This study did not have 

“extrinsic” uncertainty (nothing is stochastic: an ideal observer without limitations in perceptual 

precision or computational abilities could deal with both the contrast and the variability 

manipulations), but is related by the authors to cognitive decision-making in an interesting way. 

They found that participants took contrast-related (intrinsic) uncertainty near-optimally into 

account, but failed to do so for variability-related (integration-demanding) uncertainty, and were 

well described by a model blind to this source of noise. The authors propose that the “optimality 

gap” in perceptual vs classical cognitive decision tasks may be explained in part by a blindness to 

noise introduced during the integration process that combines multiple information sources. The 

argument is that even perceptually presented estimates (low-contrast grating orientations), when 

combined in a non-standard way for the sensory system (averaging multiple gratings in an array), 

become subject to cognitive-like decision errors. Presumably, the contrast is between this type of 

novel averaging and the highly familiar averaging during cue combination where multiple sensory 

cues are associated with a single redundant property, such as size6 or location7. This study 

interestingly bridges perceptual uncertainty and the integration/decision process, suggesting a 

privileged role for intrinsic (perceptual) uncertainty and a relative blindness to noise that affects a 

computational (averaging) process. 

 

A recent study took a different approach to comparing how people presented with cognitive 

inference tasks approach the sort of precision weighting of estimates common in perceptual cue 

combination38. Participants performed three different cognitive decision tasks that require 

combining prior information with new data, and a model-based analysis was used to categorise 

them according to the extent to which they followed different principles underlying optimal 

inference. Just over half of participants appreciated the need to consider the prior as well as the 

data, but only a quarter appreciated the need to weight them according to their uncertainties. While 

there is no direct comparison with the perceptual domains within this study, and perceptual studies 

rarely categorise individual subjects in this way (though see Ref39), this very widespread blindness to 

uncertainty weighting during cognitive tasks is at odds with its usual strong implementation during 

perceptual tasks4,6–12. 
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In summary, while perceptual decision making in the face of perceptual (intrinsic) uncertainty is 

often highly efficient in dealing with this uncertainty4,6–12, this is not typically seen in classical or 

cognitive decision making28–31,35,38. A crucial question is to what extent different systems and 

representations underlie decision making in these domains. However, these domains differ across 

many dimensions. Examples of ways in which studies have explored these differences include 

whether probabilistic information is presented perceptually or symbolically35,36, how much 

uncertainty is at a perceptual vs at an integration stage37, and which models best explain precision-

weighting behaviour during cognitive tasks38.  

Behaviour during decision-making under uncertainty may differ for many of these and other 

reasons, but here we return to the key distinction introduced at the start: the source and nature of 

the uncertainty itself. It has been widely appreciated that internal uncertainty, due to variability 

within the perceptual system1, and potentially amenable to being read out by the system itself 23–27, 

has advantages compared with external uncertainty, which depends on stochastic events outside of 

the observer. It has also been appreciated that a privileged access to internal uncertainty may 

underlie many perceptual-cognitive task differences. However, tasks probing these differences tend 

not to allow for a clean interpretation of the role of type of uncertainty alone in judgments – since 

these also present the information in different ways 35,36, or do not compare these two types of 

uncertainty37,38.   

 

5. Explaining task differences: the present study 

It may be that different systems and representations underlie decision making across perceptual and 

cognitive domains and that the relative engagement of these depends on a range of task, 

informational, and perceptual parameters. However, here we consider one crucial factor that has 

not been clearly distinguished and tested: the nature of the uncertainty involved, intrinsic vs 

extrinsic. 

In the present study, we directly compare abilities to account for intrinsic vs extrinsic uncertainty 

during a perceptual decision-making task. Crucially, the task and even the stimuli are exactly 

matched across conditions, so that uncertainty is signalled in the same way (via spread of dots), and 

decisions and responses are made about the same property (location) and entered in the same way 

(clicking to indicate a screen location). We use a multisensory localisation task, in which visual (dot 

cloud) and auditory (white noise on a co-localised multi-speaker setup) provide redundant cues to 

the property to be estimated: location. We draw the dot clouds such that we calibrate the amount 
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of noise that is intrinsic (reflecting sensory imprecision at determining the centre of the cloud3) vs 

extrinsic (reflecting unreliability of the cloud centre as a guide to the target location). The colours of 

the dot clouds, together with a cover story (that they are guesses by two different players) are the 

cue to which levels of intrinsic and extrinsic noise underly a given trial. Since intrinsic uncertainty is 

available to the perceptual system itself, while extrinsic must be learned with experience, we predict 

that decision-making in the intrinsic case will show better following of signal reliabilities. 

 

6. Preview of findings  

 

We directly compared abilities to account for intrinsic vs extrinsic uncertainty during a perceptual 

decision-making task. Our main finding was near-optimal weighting of sensory estimates when 

uncertainty was only intrinsic, but mis-weighting of estimates when extrinsic uncertainty was added. 

Specifically, participants over-relied on an extrinsically uncertain signal, suggesting that they are to 

some degree “blind” to this source of uncertainty. This illustrates that not all kinds of uncertainty are 

treated in the same way: internal uncertainty may be accessible to the perceptual system, while 

external uncertainty needs to be learned. 

 

Methods 

Thirty participants (26 Female, min/median/max age 18/24/34 years, age information for one 

participant was lost) completed a series of trials where they used intrinsic+extrinsic visual cues, 

intrinsic-only visual cues, and intrinsic-only auditory cues to estimate the location of a hidden target 

on a projector screen.  

Participants were recruited from a combination of undergraduate students in Psychology 

department and social media, and were compensated for their time (£10 per hour plus performance 

bonus). Only restrictions were corrected or uncorrected normal vision and normal hearing. 

 
3 37We consider localising the centre of a dot-cloud to be an elementary spatial localisation task 

(similar task to finding the centre of a dim blob7). Dot clouds allow presentation of spatially-

uncertain stimuli to be operationalised in a highly controllable way, and multisensory combination 

tasks using dot clouds are well fit by standard cue combination models20,40.  
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Participants were fully briefed about the purpose of the experiment and gave informed consent, 

with ethical approval given by Durham Psychology department. 

Participants were placed 140 cm in front of a projector screen (width 235cm, height 131cm), with all 

visual stimuli projected unto it (Optoma GT1080E). Behind the screen were placed 9 speakers 

(Visaton SC 5.9) at a separation of 2.5 visual degrees. 

As a cover story, participants were told that they were taking part in a task similar to a fairground 

game, where they had to find a hidden object using visual cues of previous players, possibly together 

with the rustling sound made by the person placing the hidden object (see supplementary material 

for the full instructions). For the two types of visual stimuli (intrinsic-only and intrinsic+extrinsic, see 

below) participants were told the cues were guesses by two different individual players, “Rodger” 

and “June”, signalled by different coloured dots (blue or orange). The exact instructions given to 

participants are included in the Supplementary materials. 

The experiment began with a visual cue calibration block where participants estimated the location 

of a hidden target using low or high variance intrinsic-only visual cues (4-dot clouds, each dot shown 

in succession for 100ms, generated by shifting and scaling the four dot centres drawn from a 

standard normal distribution so that the mean was exactly the true location, and the standard 

deviation (SD) was fixed at 0.05 or 0.2, respectively; stimulus parameters are defined as proportions 

of total screen width such that zero maps to the left of the screen and one to the right). There were 

90 interleaved trials for each cue (10 repeats for 9 test locations; approximately evenly spaced 

points between 0.37 and 0.63). We interpret dot clouds generated in this way as being corrupted 

only by intrinsic noise as variability in location estimates made using these cues is due to noise that 

is intrinsic to the observer, such as sensory noise. Put differently, an ideal observer who is free from 

sensory noise, computational imprecision, memory imperfections, response noise, etc., could 

provide a perfect estimate on every trial (Figure 1A). 

The purpose of the initial visual cue calibration block was to measure perceptual variance using each 

of the low and high variance intrinsic-only visual cues (𝜎𝐿
2 and 𝜎𝐻

2, respectively) so that the difference 

in variance using each of the two cues (𝜎𝐸
2 =  𝜎𝐻

2 − 𝜎𝐿
2) could be used as the variance of the extrinsic 

noise distribution. The extrinsic noise distribution was used to generate random shifts (𝑧𝑖 ∼

𝑁(0, 𝜎𝐸
2), where 𝑧𝑖  is independently drawn for every appearance of each intrinsic+extrinsic sensory 

cue) of all dots in a cloud (same shift for each dot in a single cloud, or equivalently, only one 𝑧𝑖  per 

trial) away from the true hidden location. For the remainder of the experiment, extrinsic noise 

generated in this way was only added to the low intrinsic-only cue to create a single 

intrinsic+extrinsic visual cue. Adding noise in this way, with the level of noise calibrated individually 
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for each participant, should lead to participants being equally variable using the intrinsic+extrinsic 

visual cue and the high intrinsic-only visual cue (referred to hereafter as the intrinsic-only visual cue). 

Indeed, that was our intention to allow for a direct comparison of the weight placed on each cue.  

 

Figure 1: Figure 1: Schematics of experiment. A) Subjects were presented with three different types of cues: 

intrinsic-only visual, intrinsic+extrinsic visual, intrinsic-only auditory. The total variance of the intrinsic+extrinsic 

cue (blue) was matched to the intrinsic only visual cue (orange) by adding noise to the mean of the four dots. B) 

Subjects on some trials were presented with single cue stimuli of either the visual or auditory cue. Dots were 

presented sequentially, while the auditory cue was continuous for 400 ms. Feedback was provided for all single 

cue trials. C) For On other trials, subjects could be presented with two cues (visual and auditory). The cues were 

identical to the single cue trials, but feedback was only provided on trials where visual and auditory cues were 

congruent (i.e. from the same location).. 

The visual cue calibration block was followed by the audio cue training block, where participants 

used an intrinsic-only auditory cue to estimate the location of the hidden object. The intrinsic-only 

auditory cue was a 400ms burst of white noise from one of nine speakers located behind the 

projector screen presenting the dot clouds. The locations corresponded to the locations used in the 
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calibration block and we tested each location 10 times for a total of 90 interleaved trials in this 

block. We say this auditory cue is only intrinsically uncertain as an ideal observer, who perfectly 

localises sounds, would choose the exact location of the hidden object on every trial. Thus, 

variability in the responses is intrinsic to the observer, again generated by factors such as sensory 

noise, computational imprecision, and response noise. 

The audio cue training block was followed by the test block. In the test block of the experiment, 

participants used either the intrinsic+extrinsic visual cue, intrinsic-only visual cue, or an intrinsic-only 

auditory cue alone to estimate the hidden object location (single cue trials; Figure 1B), or one of the 

visual cues paired with the auditory cue (double cue trials; Figure 1C). In total, there were 405 single 

cue trials (Figure 1B) in the test block, made up of 15 repeats of each location used in the calibration 

block for each single cue (intrinsic+extrinsic visual cue, intrinsic-only visual cue, and intrinsic-only 

auditory cue). The single cue trials were interleaved with congruent and incongruent double cue 

trials (Figure 1C). The intrinsic-only and intrinsic+extrinsic trial types were randomly interleaved. In 

congruent double cue trials, each visual cue could be presented simultaneously with the auditory 

cue with both cues corresponding to the same hidden location. There were 270 congruent double 

cue trials made up of 15 repeats of each location used in the calibration block for each audio-visual 

cue pairing. Incongruent double cue trials were like the congruent cue trials, with each visual cue 

being presented simultaneously with the auditory cue, except that in these trials, rather than 

indicating the same location, these cues were in conflict, allowing us to estimate the amount of 

weight that participants placed on each visual cue when paired with the audio cue. There were 400 

incongruent double cue trials, made up of 10 repeats of all combinations of intermittent calibration 

locations (0.37, 0.43, 0.5, 0.57, and 0.63) for each audio-visual cue pairing. 

Due to an error in the experimental code for the incongruent conditions of the test block, only 

stimuli in the left  hemisphere were presented. To ensure there were no left-right biases which could 

affect our results we compared variable error in Left vs Right hemisphere for the Intrinsic-only, as 

well as Intrinsic+External, congruent conditions and found no significant difference (Wilcoxon 

signed-rank test, p=0.8555, median difference =-0.0037 for congruent Intrinsic only, p=0.8555, 

median difference =0.0011 for congruent Intrinsic plus Extrinsic). Encouraged by this we continued 

with the originally planned analysis (a post-hoc analysis for the incongruent data that allowed the 

central tendency bias to be shifted away from the screen center found no differences, see 

Supplementary Material). 

Participants received feedback on every trial in the visual cue calibration block, the audio cue 

training block, and on single cue and congruent double cue trials in the test block. Feedback 
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consisted of a green circle or square that indicated the location of the hidden object, presentation of 

all dots from the dot cloud simultaneously on any trial involving a visual cue, and a score out of 

1000. Feedback showing the object location alongside all four dots was the means by which 

participants could, in principle, learn the magnitude of the extrinsic noise on intrinsic+extrinsic trials 

(noting that two different signals, shown by differently coloured dots, indicated two individual 

named ‘players’ – see participant instructions above and in Supplement). 

Scores followed a squared error loss function so that the score reduced quadratically with increasing 

distance from the target until it reached zero. The function was scaled so that the function would 

reach 0 points at a distance from the target of 10 percent of the screen width (0.1). With this 

modification, participants only score if the absolute difference between the hidden and guessed 

locations is less than 0.1. This may seem small, but as the experiment was completed on a projector 

screen of width 190cm, this means participants only received points if their guess was within 19cm 

of the true location on the screen. The formula for calculating the score was: 

𝑠 =  1000(1 − ((ℎ − 𝑔)/0.1)2), 

 

 

where 𝑠 is the score, ℎ is the hidden location, and 𝑔 is the guessed location.  

Calculating perceptual variance 

During the experiment, we calculated variance using each of the low and high variance intrinsic-only 

visual cues in the calibration block as the standard deviation of all errors (response – target 

location). These values (𝜎𝐿
2 and 𝜎𝐻

2) were used to define the variance of the extrinsic noise 

individually for each participant (𝜎𝐸
2 = 𝜎𝐻

2 − 𝜎𝐿
2) that was added to the low intrinsic-only visual cue 

to create the intrinsic+extrinsic visual cue. This was calculated online in the experiment immediately 

following the calibration block so that test trials could be generated. As mentioned above, adding 

extrinsic noise in this way should lead to equal variance when estimating the location of the hidden 

object using either the intrinsic+extrinsic cue or the intrinsic-only (high noise) cue in the test block of 

the experiment.  

Since collecting these data, we have become aware of an important issue with variance estimates 

from data with continuous responses, such as those here: a frequent finding of central tendency 

biases41–43, where participants bias their responses towards the middle of the set of presented 

stimuli. Such biases lead to an under-estimation of variable error. We have recently described a 

method that recovers corrected estimates of variable error44 in this situation. As described in the 
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Supplement and Ref. 44, we apply this method to recovering correct variable errors in the present 

data set. Unfortunately, the variance calculations that were done online to calibrate stimuli within 

the experiment itself did not use this correction, and as a result we did not match variable error 

using the intrinsic-only and intrinsic+extrinsic visual cues in the test block as intended. Matching the 

conditions would allow us to have a simple non-model based comparison, and while the difference 

in variance makes the two conditions a little less comparable than intended, it does not prevent us 

from comparing the extent to which participants weighted stimuli appropriately in response to the 

two kinds of uncertainty using our model-based analysis. In short, given the corrected uni-modal 

variances it is straightforward to calculate the expected visual weighting and compare to the 

empirical measured weight. 

Summary and predictions 

In summary, we asked participants to localise a hidden object using visual (dot-cloud) and/or 

auditory (white noise) cues. The object’s location was uncertain because of either only intrinsic noise 

(visual or auditory), or because of extrinsic as well as intrinsic noise. Extrinsic noise was implemented 

as an additional offset of cue dots vs the true location. Through feedback, participants had an 

opportunity to observe and learn about the level of this extrinsic noise.  

Using trials with minor offsets in cue positions, we measured the relative weighting for (reliance on) 

visual vs auditory cues during perceptual judgments. We predicted that, in line with previous 

sensory cue combination studies6–9, participants would not weight the visual cue with only intrinsic 

noise differently to the optimal (reliability-weighted) prediction. We predicted that, in contrast, 

participants would overweight the intrinsic+extrinsic cue, as they would be less sensitive to the 

added extrinsic uncertainty. 

 

All stimuli, data and code are available at https://osf.io/6paq9/ 

 

Results 

 

Participants overweight the visual cue with extrinsic uncertainty 

We used estimates of variable error using the intrinsic-only, intrinsic+extrinsic, and auditory cues 

alone in the test block (𝜎𝐼 , 𝜎𝐼𝐸 , and 𝜎𝐴) to calculate the optimal, reliability based, weight that 

participants should place on each cue in a pair. The formulas we used to calculate the optimal 

weight to place on the intrinsic-only cue (𝑤𝐼) and the intrinsic+extrinsic cue (𝑤𝐼𝐸) when either cue is 

paired with the auditory cue are given below. 



Uncertainty in multisensory perceptual decision making: Supplement p. 16 of 35 

𝑤𝐼 =  
𝜎𝐴

2

𝜎𝐼
2 + 𝜎𝐴

2                𝑤𝐼𝐸 =  
𝜎𝐴

2

𝜎𝐼𝐸
2 + 𝜎𝐴

2 

This formulation is reliant on small discrepancies between visual and auditory stimuli (less than 10 

visual degrees), for large discrepancies subjects might instead rely on a causal inference model40,45. 

The empirical weights were determined by modelling responses to the incongruent trials as 

 𝑟 = (1 − �̂�𝑃)(�̂�𝑉𝑥𝑉 + �̂�𝐴𝑥𝐴) + 0.5�̂�𝑃 + 𝜖,  

where  �̂�𝑃 estimates the strength of the central tendency bias (for this cue pairing),  

�̂�𝑉 estimates the weight placed on the visual cue (the intrinsic-only or intrinsic+extrinsic cue: �̂�𝐼 or 

�̂�𝐼𝐸), 

 �̂�𝐴 = (1 − �̂�𝑉) estimates the weight placed on the auditory cue, 

 𝑥𝑣 is the centroid of the dot cloud (the same as the visual cue source location for the intrinsic-only 

cue but not for the intrinsic+extrinsic cue), 

 𝑥𝑎 is the source location of the auditory cue, and 

 𝜖 ∼ 𝑁(0, 𝜎𝑛
2) is a noise term.  

To allow for the fact that we assume subjects receive a noisy (uncertain) input, the perceptual cues 

had noise with variance of 𝜎𝑉
2 and 𝜎𝐴

2, with �̂�𝑉 =𝜎𝐴
2/(𝜎𝐴

2 + 𝜎𝑉
2). A participant with a veridical 

estimate of their own relative perceptual uncertainties would thus correctly set their variances 

based on these. For a linear model this has no effect on the mean estimates, but can affect 

estimates for more complicated models. 

We fit this model separately for each participant to all conflict trial responses for combinations of 

the intrinsic-only and auditory cue, and intrinsic+extrinsic and auditory cue separately. The model 

was fit using JAGS46 via the MATLAB-to-JAGS interface matjags.m to estimate posterior probability 

distributions for the free parameters �̂�𝑃 , �̂�𝑉 , and 𝜎𝑛.  

We ran three independent chains, discarding the first 1000 samples of each chain as burn-in, and 

recording 4000 samples after the burn-in period, thinned by recording only every 5th sample. Both 

fitted weights (�̂�𝑃 and �̂�𝑉) were initialised at 0.5 in all chains. The standard deviation of the noise 

(𝜎𝑛) was initialised at 0.01. The priors on 𝑤𝑉 and 𝑤𝑝 were uniform distributions between 0 and 1. 
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The prior on 𝜎𝑛 was a uniform distribution between 0.001 and 0.2. The final parameter estimates 

were taken as the mean of the expected values for each chain. 

Figure 2A shows that the weight participants placed on the intrinsic-only cue relative to the auditory 

cue is positively correlated with the optimal prediction (𝑟 = .536, 𝑝 =  .002), suggesting participants 

weight the cues according to their reliabilities. Figure 2D shows that empirical and optimal weights 

do not differ significantly (𝑡(29) =  −1.74, 𝑝 =  .092), although the Bayes factor in favour of the null 

is approximately 1, suggesting both the null and alternative hypotheses are equally good 

explanations of the data (BF01 = 1.34). 

Figure 2B shows that the weight participants placed on the intrinsic+extrinsic cue relative to the 

auditory cue is also positively correlated with the optimal prediction (𝑟 = .524, 𝑝 = .003), again 

suggesting participants weight the cues according to their reliabilities. However, most points are 

above the identity line (empirical weight greater than optimal). Figure 2E shows that mean empirical 

and optimal weights differ significantly (𝑡(29) =  −5.14, 𝑝 <  .001), with participants overweighting 

the intrinsic+extrinsic visual cue. The Bayes factor in favour of the alternative suggests there is 

extreme evidence for a difference between empirical and optimal weights (𝐵𝐹10 = 1291.3). 

We hypothesised that participants would overweight the intrinsic+extrinsic cue as they would be 

insensitive to the added extrinsic uncertainty. If participants are completely insensitive to the 

extrinsic uncertainty, they should weight the intrinsic+extrinsic cue according to the variability of 

their responses when using the low intrinsic-only cue measured in the calibration block. We call the 

use of this insensitive strategy the suboptimal intrinsic+extrinsic cue weight prediction. Figure 2C 

shows that empirical weights are correlated with the suboptimal insensitive predictions (𝑟 =

 .482, 𝑝 = .007), but the position of most points below the identity line and Figure 2F show that 

empirical weights differed significantly from the suboptimal insensitive predictions (𝑡(29) =

 4.16, 𝑝 <  .001). The Bayes factor in favour of the alternative suggests there is extreme evidence for 

a difference between empirical and suboptimal weights (𝐵𝐹10 = 110.7). This suggests that 

participants are not completely insensitive to the extrinsic uncertainty, but only partially account for 

it.  
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Figure 2: Comparison between visual weights for Intrinsic-only (A) and Intrinsic-extrinsic (B-C), empirically 

measured weights against either optimal weights (A,B) and suboptimal insensitive weights (C). While both 

Intrinsic-only and Intrinsic+Extrinsic empirical weights correlated with the optimal weights, the visual weights 

for Intrinsic-only were not significantly higher than optimal (D), whereas the weights for Intrinsic+Extrinsic were 

significantly higher than optimal (E). Intrinsic+Extrinsic visual weights were also significantly lower than 

weights from a suboptimal model that ignores the Extrinsic variability (F). 

 

Individual differences 

An advantage of running a Bayesian model with JAGS is that it provides uncertainties around the 

variable fits, unlike a Maximum Likelihood approach which just gives the best fitted parameter value. 

We can therefore also examine how well individual subject parameters were fitted, e.g. the Bayesian 

Confidence Intervals of parameters such as the visual weight. Using the JAGS output we calculated 

the Bayesian Confidence interval for the visual weight, finding that for the intrinsic-only data set for 

18 out of 30 participants the optimal weight was outside their 95 percent confidence intervals, while 

for the intrinsic+extrinsic data set the proportion was 22 of 30 participants (see Fig. 3).  

To explore further what participants did we also compared the empirically fitted weight values to 

those of a model participant who only used their best modality (whether visual or auditory). Only 2 

of the participants in the intrinsic-only condition had a Bayesian confidence interval that included 

the possibility of just using their best modality, and none of the participants did in the 

intrinsic+extrinsic condition. For all the remaining participants (28 and 30) we could therefore rule 

out that they only used their best modality. 



Uncertainty in multisensory perceptual decision making: Supplement p. 19 of 35 

 

Figure 3: Individual visual weights, with 2* standard deviation error bars, as reported from JAGS Bayesian fit to 

the intrinsic-only (above) and intrinsic+extrinsic (below) data sets. Gray asterisk indicated the optimal 

weighting. A value of 0 indicates all weight on audio, a value of 1 that all weight is on visual. 

 

Switching  

One possible reason that participants could attain a weight on the visual cue that would be 

indistinguishable from optimal would be to perform a random switching between reporting the 

noisy percept from the two modalities, at the right ratio but without actually combining them (also 

referred to as probability matching). Such behaviour has previously been found in perceptual cue 

integration experiments (see e.g. Ref. 47). To rule out this idea we ran a variant of the model above 

that included an individually fitted probability of the participants performing switching instead of 

integration. We found a low average probability of subjects using a switching strategy of 0.195 for 

intrinsic-only and 0.212 for intrinsic+extrinsic. These values were not significantly different (ranksum 

test p=0.631), hence there was no evidence that the data sets differed based on propensity to use 

switching over integration. Overall, this implies that there is a small likelihood that participants were 

using a switching strategy and that it was more likely that were indeed combining stimuli based on 

the optimal weights for the intrinsic-only data set (but not for intrinsic+extrinsic). 

Variable Error 

An advantage of using Bayesian inference is the reduction in error, hence if we expected participants 

to be using optimal weighting there should be an advantage in error. However in practice these 

error reductions are only found when visual and auditory stimuli are calibrated to have well matched 
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error levels, otherwise the ideal observer predicted advantage may differ too little from the best 

single cue to be measurable in noisy responses48,49. Unfortunately, as we did not foresee the issue of 

central tendency bias (see Methods above, Ref. 44, and Supplement), we did not match variable error 

using the intrinsic-only and intrinsic+extrinsic visual cues in the test block as intended (see 

Supplement). 

The Variable Error for the intrinsic-only data set (calculated for congruent audio and visual stimuli, 

unlike the calculation above for visual weight based on incongruent stimuli) did not show a 

significant improvement over the variable error for the single best modality for each participant 

(Wilcoxon signed-rank test, p=0.371, median=-0.002). Non-intuitively, there was however a small but 

significant advantage of using intrinsic+extrinsic visual together with audio (p=0.032, median=0.004), 

likely due to the better matching of the visual error with the audio error. The unintended higher 

uncertainty in the intrinsic only than the intrinsic+extrinsic condition meant that noise in this 

condition was less well matched to the audio noise, leading to a lower potential gain. See the 

Supplementary material for full details of this analysis. 

 

Discussion 

 

We introduced a distinction between intrinsic and extrinsic uncertainty during decision-making. 

While perceptual and other decision tasks can vary in many ways, a key difference is often the kind 

of uncertainty involved. Perceptual decision-making usually involves uncertainty that is intrinsic to 

the perceptual system itself, and to which it may therefore have good access23–27. In line with this, 

the intrinsic uncertainty in perceptual tasks is often efficiently mitigated by reliability-weighted 

combination6–9. In contrast, when uncertainty arises in processes external to the observer, it must be 

learned in order to be accounted for. While this difference may go some way towards accounting for 

differences in how people deal with uncertainty across decision tasks, those tasks typically have 

many other differences too. Therefore, in the present study, we developed a perceptual task to 

make this specific comparison directly. To do so, we manipulated levels of intrinsic vs extrinsic 

uncertainty while keeping the task and stimuli the same across these manipulations. We tested the 

extent to which decision-makers take uncertainty into account when using multiple sensory 

estimates for a localisation task, and tested the prediction that participants would follow the 

reliabilities of estimates better with intrinsic-only than with intrinsic+extrinsic uncertainty. 
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As predicted, we found near-optimal (or rather, not statistically different from optimal) weighting of 

sensory estimates when uncertainty was only intrinsic, but mis-weighting of estimates when 

extrinsic uncertainty was added. Specifically, participants over-relied on an extrinsically uncertain 

signal, suggesting that they are to some degree “blind” to this source of uncertainty. However, they 

relied on it more than the prediction for participants completely blind to the extrinsic uncertainty. 

That is, participants fully accounted for uncertainty when it was purely intrinsic, but only partially 

accounted for it when it was also extrinsic. These results are in line with the observation that 

intrinsic uncertainty within a perceptual process can in principle be read out from the estimate’s 

neural representation23–27, while extrinsic uncertainty as reflected by the statistics of how an 

external process or agent behaves needs to be learned – either from an external information source 

29–31, or (as here), by directly learning from experience. 

These results also add to a growing literature on the description-experience gap50, which shows how 

information that is not directly experienced, but based on abstract symbolic representation, is not 

correctly weighted within a Bayesian framework. This account of the issue of an experienced 

physician under-weighting the likelihood of a disease they have not personally encountered (see 

Introduction) would propose that they do not accurately represent the uncertainty of this 

information, as it was not experienced but merely described to them. In our task, the new 

information about external uncertainty was experienced, but was presented and learned in a 

manner different to internal noise. This provides a clue to which factors are important for the 

correct Bayesian inference: an insight is that not only whether the information is experienced, but 

the manner in which it is experienced, may be important. 

Our task was designed to allow participants to learn about the extrinsic uncertainty. We explained 

the different trial types with a cover story that suggests a model for different kinds of uncertainty 

across conditions consistently denoted by differently coloured stimuli, and participants received 

feedback through which they could learn about the uncertainties of the two different cues. Our 

results showed that there was some learning of the extrinsic uncertainty: participants were not 

completely blind to it, as would be the case if they had not learned about it. An open question is the 

time scale over which observers might or might not perfectly learn and/or use this kind of 

uncertainty during decision-making: given much longer experience with stimuli like these, how much 

closer would performance come to optimal? Even with perfect learning of the external variability, 

would people still account for this differently to internal variability in their perceptual decisions? 

How does this generalise to other tasks and sources of external variability / uncertainty? This calls 

for longer studies, supported by ideal observer models of the process of learning about uncertainty 

based on the feedback given. 
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A key benefit of weighted combination of estimates is a reduction in variance. An unexpected result 

of the present study is that participants in the intrinsic uncertainty only condition did not reduce 

their variance, even though they used near-optimal weights. Our model-based analysis excludes the 

interpretation that they were switching rather than averaging estimates, so we believe that the most 

likely explanation for the absence of this finding is that our unplanned mis-matching of reliabilities 

across intrinsic and intrinsic+extrinsic uncertainty conditions. As with all cue combination studies, 

attending to this issue is important to reliably detect variance reductions48,49. Using continuous 

response (as compared with alternative forced choice) methods, as here, has advantages for 

collecting highly informative measurements, but should in future be checked and corrected for 

central tendency biases in order to accurately recover measurements of variability44. 

 

Conclusions 

Decision making under uncertainty varies in many ways across real-life settings and experimental 

tasks. We have highlighted one under-studied but crucial issue: the origin of the uncertainty itself, 

intrinsic or extrinsic. With a novel perceptual task designed to manipulate this factor alone, we show 

that while participants account well for intrinsic uncertainty, they under-account for extrinsic. The 

time scale for learning about this kind of uncertainty, and the generality of this finding for other 

tasks, settings, and sources of external uncertainty, are open questions for further research. 
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Supplemental Methods: Accounting for Central Tendency Bias 

 

Figure S1A plots measured variable error (the standard deviation, or square root of the variance) 

using the intrinsic+extrinsic cue, 𝜎𝐿+𝐸
2 , from the test block against the measured variable error using 

the intrinsic-only cue during the test block. The dashed line in the figure is the identity line. Most 

points fall below this line, indicating that measured variable error using the intrinsic+extrinsic cue 

was often lower than when using the intrinsic-only cue and this difference was significant (𝑧 = 4.56, 

𝑝 <  .001, two-tailed Wilcoxon signed-rank test with normal approximation). 

 

Figure S1: A. Individual participants’ intrinsic-only vs intrinsic+extrinsic variable errors, uncorrected. B. One 

participant’s guesses vs object locations, with a regression diverging from the identity line and indicative of a 

central tendency bias. C. Individual participants’ intrinsic-only vs intrinsic+extrinsic variable errors, once 

corrected. 

The mismatch between measured variable error using the intrinsic-only and intrinsic+extrinsic cues 

is caused by a feature of the continuous response data that, unless properly accounted for, can lead 

to underestimates of variable error. That feature is a central tendency bias1–3 illustrated for a single 

participant’s responses using the intrinsic-only visual cue in the test block in Figure S1B. The dashed 

line in Figure S1B is the identity line. Clearly, the mean response for each of the nine unique test 

locations is biased towards the middle of the range, with the magnitude of the bias increasing as the 

test location moves further from the centre. This is a classic central tendency bias, where estimates 

are pulled towards the mean of the stimulus distribution. We have recently described a method 

elsewhere that recovers corrected estimates of variable error4. The method is designed to account 

for central biases in continuous responses. To calculate measures of variability according to the 

method, we first regress responses for each trial type on the true hidden object locations and 

calculate the standard deviation of the residuals. If the slope of the fitted regression line is 

significantly less than one, the standard deviation of the residuals is divided by the fitted slope of the 



Uncertainty in multisensory perceptual decision making: Supplement p. 29 of 35 

regression line to correct for a central bias. Importantly, if there is no evidence of a central bias (the 

slope is not significantly less than one), no correction is performed.   

These data demonstrate the appropriateness of calculating a corrected variable error by showing 

that the corrected estimate for the intrinsic+extrinsic cue does not differ from a prediction based on 

the corrected estimate for the low intrinsic-only cue (during the calibration block) and the amount of 

extrinsic noise that was added (𝜎𝐿+𝐸
2 ≈ 𝜎𝐿

2 + 𝜎𝐸
2 using corrected variable error estimates; 𝑧 =

 −1.9, 𝑝 = .058, two tailed Wilcoxon signed-rank test with normal approximation; Figure S1C). This 

is strong evidence that our recently proposed analysis method recovers a meaningful quantity from 

the data. Note that the calculation of the expected variable error with extrinsic noise does not 

depend on any assumptions about behaviour but is based on statistical theory. The fact that 

corrected variable errors are a better match to the predictions than the uncorrected variable errors 

suggests that it is the corrected variable errors that offer a better representation of how perceptual 

location estimates vary before any additional biases corrupt the resulting response. We used this 

method to generate the variable errors that are analysed in the main paper results section. 

Unfortunately, as we did not foresee the need for this analysis before we ran the experiment, this 

means that we did not match variable error using the intrinsic-only and intrinsic+extrinsic visual cues 

in the test block as intended. 

Across 240 calculations (30 participants and eight trial types) we performed the correction of 

variable error 175 times. The number of corrections and mean strengths of the (corrected) central 

bias for each trial type were: low intrinsic-only (calibration) 𝛽 = 0.13, high-intrinsic-only (calibration) 

𝛽 =  0.25, audio (training) 𝛽 =  0.1, intrinsic-only (test) 𝛽 =  0.38, intrinsic+extrinsic (test) 𝛽 =

0.21, audio (test) 𝛽 = 0.18, intrinsic-only and audio (test) 𝛽 = 0.15, intrinsic+extrinsic and audio 

(test) 𝛽 = 0.12. 
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Supplemental Methods: Instructions to Participants 

 

The initial instructions for participants were: 

'Hello! Thank you for agreeing to take part in this experiment. In this task you will always be trying to 

locate an object behind the screen as if playing a fairground game where you are trying to find a 

hidden object. Sometimes your clue to where the object is hidden will be the presentation of 4 dots 

in quick succession. You can think of these as the guesses of a previous player that were close to the 

correct answer but not quite right. The best way to use this clue is to guess that the location of the 

object coincides with the average horizontal location of the dots (the centroid). Here is an example.' 

 

Instructions for calibration: 

'Let's start with some practice using this visual clue. Remember, you will see 4 dots presented on the 

screen in quick succession. After the last dot has been presented, a black line will appear. Using the 

mouse, position the black line to where you think the dots were, on average, horizontally across the 

screen. Once you are happy with the placement of the line, click the left mouse button to save that 

response and see the true location (green square). You will gain points after each trial depending on 

how well you did on that trial. Points are converted to a cash reward at the end of the task. The trials 

will start immediately after you press enter so be ready!' 

 

Instructions for auditory clue: 

'Great! That's plenty of practice with the visual clue. Sometimes, rather than the visual clue to the 

hidden objects location, you will get an auditory clue. The auditory clue can be thought of as a 

rustling sound made by the person hiding the object that comes from behind the screen in the same 

location as the object is hidden. The best way to use this clue is to guess that the object is in the 

location that you heard the sound coming from. Here is an example.' 

 

Followed by: 

‘Let's do some practice using this auditory clue. Remember, on each of these trials you will hear a 

noise from behind the screen. Once you have heard the noise a black line will appear. Position this 
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line to where to think the noise came from using the mouse. Like before, a left click issues your 

response and you will see feedback.' 

 

The instructions given for the test phase of the experiment were: 

'Great! You are now well practiced with both clues and we are ready to start playing the game. 

When playing the game you will get two types visual clues and an auditory clue. The two types of 

visual clues are previous guesses from different individuals and this will be signalled by the dot 

colour and the person’s name (Rodger - blue dots, June - orange dots) will be displayed at the top of 

the screen. The auditory clue is always a sound made by the person hiding the object. On most trials, 

you will get only one of these clues. However, on some trials, you will get one of the visual clues and 

auditory clue together. Feedback will not be given on all trials, including the amount of points 

gained, but we will still be tallying them up in the background.' 
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Supplemental Results: Variable Error 

 

Figure S2A shows that the measured reduction in variable error (best-both) when combining the 

intrinsic-only visual cue with the auditory cue is not significantly different to zero (𝑧 =  −0.89, 𝑝 =

 .371, two-tailed Wilcoxon signed-rank with normal approximation), significantly less than the 

optimal or best possible reduction from taking the reliability-weighted average (𝑧 =  −4.08, 𝑝 <

 .001), significantly less than a prediction tailored (𝜎2 = 𝑤𝑣
2𝜎𝑉

2 + 𝑤𝐴
2𝜎𝐴

2) to the measured weights for 

each individual (z=-3.05, p=.002), and significantly greater than if participants were switching (𝜎2 =

𝑤�̂�𝜎𝑉
2 + 𝑤�̂�𝜎𝐴

2) which cue they used from trial to trial (𝑧 = 4.43, 𝑝 <  .001). In sum, while 

participants did not show a benefit in precision when using the cues in combination, they did not do 

worse than with their best single cue either, implying that they were not switching between the 

cues. When combining the intrinsic+extrinsic and auditory cues, the measured gain was significantly 

greater than zero (𝑧 = 2.15, 𝑝 =  .032), significantly less than the optimal gain (𝑧 =  −4.17, 𝑝 <

 .001), not significantly different to the tailored prediction (z = -1.43, p = .153), and significantly 

greater than the switching prediction (𝑧 = 4.62, 𝑝 <  .001; Figure S2B). 

 

Figure S2: Reduction in variable error in the experiment, for congruent data. A) Intrinsic-only data set, empirical 

reduction (relative to best modality), the optimal reduction given the two modalities, reduction given the 

estimated weights and reduction for a model that in each trial either uses audio or visual modality only. B) 

Same for Intrinsic+extrinsic data set. 

While it seems surprising that the reduction in error is not significant for intrinsic-only (where one 

would expected it to be) and is significant for intrinsic-extrinsic (where one would not expect it to 

be) it is worth keeping in mind that any benefit is only to be expected to be possible to detect if the 



Uncertainty in multisensory perceptual decision making: Supplement p. 33 of 35 

two perceptual modalities are evenly matched for variable error. If visual stimulus is very uncertain it 

will tend to have a large error, and there will be little benefit to auditory localisation in combining 

them.  

 

Figure S3: Variable error for audio-test (horizontal axis) against the visual int-only (blue) or int-ext (red). Points 

close to the diagonal line would have well matched variable errors. 

However Fig. S3 shows that, because of the issues discussed in the Methods and Supplemental 

Methods, the intrinsic+extrinsic variable error is better matched with audio than intrinsic-only is, 

making it difficult to test for any multisensory advantage of combination. In line with this, the 

optimal prediction in Fig. S2 shows that there is more benefit available in the Instinsic+Extrinsic 

(Mean=0.0093) than the Intrinsic-only condition (Mean=0.0076). This difference was significant 

(t(29)=3.16,p<.005). 
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Supplemental Results: Non-central central bias 

 

While the incongruent data were erroneously presented on the left side, congruent data were 

presented bilaterally. As subjects would find it difficult to tell which stimuli were congruent and 

incongruent, we would expect a small effect.   

Nevertheless, we ran a version of the analysis for the incongruent data that allowed the central 

tendency bias to be shifted away from the screen center, to model the possibility that a central prior 

would be shifted away.   

We would expect that presentation of stimuli only on the left side could potentially create a central 

tendency bias shifted towards the left side of the screen, but instead found a small, albeit significant 

bias towards the right side (intrinsic-only: mean 0.542, sign-rank test p<0.01, intrinsic-only: mean 

0.558, sign-rank test p<0.01. Center of the screen is 0.5.)   

Re-running the main the analysis using this alternative calculation of the central tendency bias, we 

again found a non- significant difference between empirical and optimal weights for Intrinsic-only 

(t(29)=-1.79, p=0.084), and a significant difference between empirical and intrinsic+extrinsic data 

(t(29)=-5.19, p<0.001). See figure below.  

  

Overall, this implies no effect of the (unfortunate) presentation on the left side of the screen for the 

incongruent stimuli. 
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