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Abstract. This paper develops a mathematical characterisation of object-oriented
concepts by defining an observation-oriented semantics for an object-oriented
language (OOL) with a rich variety of features including subtypes, visibility, in-
heritance, dynamic binding and polymorphism. The language is expressive enough
for the specification of object-oriented designs and programs. We also propose a
calculus based on this model to support both structural and behavioural refine-
ment of object-oriented designs. We take the approach of the development of the
design calculus based on the standard predicate logic in Hoare and He’s Unifying
Theories of Programming (UTP). We also consider object reference in terms of
object identity as values and mutually dependent methods.
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1 Introduction

Software engineering is mainly concerned with using techniques to systematically de-
velop large and complex program suites. However, it is well known that it is hard to ob-
tain the level of assurance of correctness for safety critical software using old fashioned
programming techniques. In the search for techniques for making software cheaper and
more reliable, two important but largely independent approaches have been visibly in-
fluential in recent years. They are

– object-oriented programming, and
– formal methods.

First, it becomes evident that objects are and will remain an important concept in soft-
ware development. Experimental languages of the 1970’s introduced various concepts
of package, cluster, module, etc, giving concrete expression to the importance of mod-
ularity and encapsulation, the construction of software components hiding their state
representations and algorithmic mechanisms from users, exporting only those features
which are needed in order to use the components. This gives the software components
a level of abstraction, separating the view of what a module does for the system from



the details of how it does them. It is also clear that certain features of objects, particu-
larly inheritance and the use of object references as part of the data stored by an object,
could be used to construct large system incrementally and efficiently, as well as making
it possible to reuse objects in different contexts.

At least for highly critical systems, it seems essential to give software engineering
the same basis in mathematics that is the hall mark of other important engineering
disciplines. In this there has good progress, resulting in three main paradigms: model-
based, algebraic and process calculi. Both practitioners of formal methods and experts
in object technology have investigated how formal specification can supplement object-
oriented development, e.g. [21], or how it may help to clarify the semantics of object-
oriented notations and concepts, e.g. [1]. Examples of such work include formalisation
of the OMG’s core object model [19] using Z.

Model-based formalisms have been used extensively in conjunction with object-
oriented techniques, via languages such as Object-Z [8], VDM++ [12], and methods
such as Syntropy [11] which uses the Z notation and Fusion [10] that is related to
VDM. Whilst these formalisms are effective at modelling data structures as sets and re-
lations between sets, they are not ideal for capturing more sophisticated object-oriented
mechanisms, such as dynamic binding and polymorphism.

Using predicate transformer, Cavalcanti and Naumann defined an object-oriented
programming language with subtype and polymorphism [9, 29]. Sekerinski [33, 28] de-
fined a rich object-oriented language by using a type system with subtyping and pred-
icate transformers. However, neither reference types nor mutual dependency between
classes are tackled in those approaches. America and de Boer have given a logic for
the parallel language POOL [5]. It applies to imperative programs with object sharing,
but without subtyping and method overriding. Abadi and Leino defined an axiomatic
semantics for an imperative, object-oriented language with object sharing [2], but it
does not permit recursive object types. Poetzsch-Heffter and Müller have defined a
Hoare-style logic for object-oriented programs that relaxes many of the previous re-
strictions [31]. However, as pointed by Leino in [23], instead of allowing the designer
of a method defining its specification and then checking that implementation meet the
specification, the specification of a method in the Poetzsch-Heffter and Müller logic
is derived from the method’s known implementation. Leino presented a logic in [23]
with imperative features, subtyping, and recursive types. It allows the specification of
methods of classes, but restricting inheritance and not dealing with visibility.

In this paper, we aim to develop a mathematical characterisation of object-oriented
concepts, and provide a proper semantic basis essential for ensuring correctness and
for the development of tool support for the use of formal techniques. We define an
object-oriented language with subtypes, visibility, reference types, inheritance, dynamic
binding and polymorphism. The language is sufficiently similar to Java and C++ and
can be used in meaningful case studies and to capture some of the central difficulties in
modelling object-oriented programs.

We build a logic of object-oriented programs as a conservative extension of the
standard predicate logic [18]. In our model, both commands and class declarations are
identified as predicates whose alphabets include logic variables representing the initial
and final values of program variables, as well as those variables representing the con-



textual information of classes and their links. Our framework allows local variables to
be redefined in its scope. Consequently, their states will usually comprise sequences of
values. A variable of a primitive type stores a data of the corresponding type whereas
a variable of an object type holds the identity or reference of an object as its value.
We define the traditional programming constructs, such as conditional, sequential com-
position, and recursion in the exactly same way as their counterparts in an imperative
programming language without reference types. This makes our approach more ac-
cessible to users who are already familiar with the existing imperative languages. For
simplicity, unlike [30], we consider neither attribute domain redefinition nor attribute
hiding. This assumption will be incorporated into the well-formedness condition of a
declaration section in Section 3. With this assumption, the set � ��� ��� C � of attributes
of C contains all the attributes declared in C and those inherited from its superclasses.
We simplify the model this way because our focus is program requirement specifica-
tion, design and verification, whilst attribute domain redefinition and attribute hiding
are languages facilities for programming around defects in the requirement specifica-
tion and design or for the reuse of some classes that were not originally designed for
program being developed.

After this introduction, Section 2 introduces the syntax of the language. The seman-
tics of the language is given in Section 3, with the discussion about behavioural refine-
ment of OO designs. In Section 4, we present some initial work towards a (structural)
refinement calculus for OO design and programming. We will draw some conclusions
in Section 5.

2 Syntax

In our model, an object system (or program) � is of the form cdecls � P, where cdecls
is a declaration of a finite number of classes, and P is called the main method and is of
the form �
	 � �  � � consisting of a finite set 	 � � of global variables with their types and
a command � . P can be understood as the ������� method if � is taken as a Java program.

2.1 Class declarations

A declaration cdecls is of the form: cdecls ��� cdecl � cdecls � cdecl, where cdecl is a
class declaration of the following form� ��� �����! �"$#�% & ��'(' N "$)( �"!� * ' M

�
��� �����! �",+.-0/21�/43657/.89/;: �=< < >,? ����@  �"�%� �" * +BA�/2C!/436DE/.89/
: �=< < FG? �(H I & �(%J+BKL/ M /436NE/.8 /;: �=< < O ?
�2"$ P @ * Q � + R � �TS ��U R � 	WV � U R � 
YX � 8 � N � � ?�ZEZEZE? Q\[]+ R [ �4S [ U R [ 	0V [ U R [ 
YX [ 8 � N^[ � �
Note that

– A class can be declared as
��� �����! �" or

�(H I & �(% . By default, it is assumed as
�(H I & �(% .

We use a function anno to extract this information from a class declaration such that
anno + cdecl 8 is true if cdecl declares a private class and false otherwise.

– N and M are distinct names of classes, and M is called the direct superclass of N.
– Attributes annotated with

��� �]���! �" are private attributes of the class, and simi-
larly, the

����@  �"�%� �" * and
�(H I & �(% declarations for the protected and public attributes.

Types and initial values of attributes are also given in the declaration.



– the �2"$ P @ * declaration declares the methods, their value parameters ( R / �4S / ), result
parameters( R / 	 V / ), value-result parameters ( R / 
WX / ) and bodies ( NE/ ). We sometimes
denote a method by QL+ paras 8 � N � , where paras is the list of parameters of Q and N is
the body command of Q .

– The body of a method N�/ is a command that will be defined later.

We will use Java convention to write a class specification, and assume an attribute�(��@  �"�%] �" * when it is not tagged with
��� �����! �" or

�$H I & �(% . We have these different kinds
of attributes to show how visibility issues can be dealt with. We can have different kind
of methods too for a class.

2.2 Commands

Our language supports typical object-oriented programming constructs, but we also
allow some commands for the purpose of specification and refinement:

N ��� 3 skip
�
chaos

�
var R x=e

�
end S � N ? N � N�� D��LN � N � N� D	�YN ��
��� Q + � U C U 1 8 ��
� � 3 ���

C.new + S 8 � � #
where D is a Boolean expression, � is an expression, and


�
is an expression which may

appear on the left hand side of an assignment and is of the form

� ��� 3 S ��
��� 5 where S is

a simple variable and 5 an attribute of an object. Unlike [30] that introduces “statement
expressions”, we use


��� QL+ � U C U 1 8 to denote a call of method Q of the object denoted
by the left-expression


��
with actual value parameters

�
for input to the method, actual

result parameters C for the return values, and value-result parameters 1 that can be
changed during the execution of the method call and with their final values as return
values too; and use the command C.new + S 8 � � # to create a new object of class C with the
initial values of its attributes assigned to the values of the expressions in

�
and assign it

to variable S . Thus, C.new + S 8 � � # uses S with type C to store the newly created object.

2.3 Expressions

Expressions, which can appear on the right hand sides of assignments, are constructed
according to the rules below.

� � ��� � � null � self � � � � � � ��� C � � C � � ��� � � �
where null represents the special object of the special class NULL that is a subclass of
all classes and has null as its unique object, self will be used to denote the active object
in the current scope (some people use ��� ��� ), � � � is the � -attribute of � , � C � � is the type
casting, � is C is the type test.

3 Semantics

We now show how to use the basic model of the UTP to define the semantics of our
language. We will adopt the convention that the semantics � � � � � of an element � , such
as � � � � � or � � � � , of the language is denoted by � itself in a semantic defining
equation. When � appears on the left hand side of a defining equation, it means that its
semantics is defined as the right hand side of the equation. When � appears on the right
hand side, it denotes its defined semantics of � .



3.1 Programs are designs

In [18], Hoare and He proposed a state-based model in which a program or a program
command is identified as a design, represented by a pair +�� U P 8 , where � denotes the set
of variables of the program, and P is a predicate of the form

� + S 8 � R + S U=S�� 803 df +����
	 � + S 8=8 � +���� � 	 R + S U S�� 8=8
Notice that

– we call � the alphabet of the design and P the contract of the design; � declares the
variables (including logical ones) whose values form the state of the program at a
moment of time, and the contract specifies the behaviour of the program in terms
of what change in the state it may make.

– S and S � stand for the initial and final values of program variables S in � , respec-
tively.

– predicate � , called the precondition of the program, characterises the initial states
in which the activation of the program will lead its execution to termination.

– predicate R, called the post-condition of the program, relates the initial states of the
program to its final states, and

– we describe the termination behaviour of a program by the Boolean variables ���
and ��� � , where the former is true if the program is properly activated and the later
becomes true if the execution of the program terminates successfully.

In what follows, we give formal definitions of sequential composition of designs and
design refinement.

Definition 1. For a given alphabet � and two contracts P � and P 	 , the sequential com-
position P � ? P 	 is defined as the relation composition

+ P � + S U9S�� 8 ? P 	 + S U9S�� 8=803 df � Q Z P � + S�U Q 8	 P 	 +;Q U9S�� 8
We also define the composite design +�� U P � 8 ? +�� U P 	 8 by +�� U P � ? P 	 8 .

Within this model, the concept of refinement is defined as predicate implication.

Definition 2. (Design refinement) Design D 	 3 df +�� U P 	 8 is a refinement of design
D � 3 df +�� U P � 8 , denoted by D ��� D 	 , if � S U S � � � � U X7U X � Z + P 	 � P � 8 U where S�U � ��� U=X are
variables contained in � . D ��� D 	 if and only if D ��� D 	 and D 	�� D � .
Definition 3. (Data refinement) Let � be a mapping (that can also be specified as a
design) from � 	 to � � . Design D 	 3 df +�� 	 U P 	 8 is a refinement of design D � 3 df +�� � U P � 8
under � , denoted by D ��� � D 	 , if ��� � P � � � � P � � � ���

A program command usually modifies a subset of the program variables in � . Let V
be a subset of � , the notation V � + � � R 8 denotes the (framed) design � � + R 	 M � 3 M 8 ,
where M contains all variables in � but those in V. V is called the frame of the design
� � R. In examples, we often omit the frames of designs by assuming that a design only
changes the value of a variable S if its primed version S � occurs in the design.

For simplicity, the above model in [18] adopts a universal data type and allows
neither reference types nor nested declaration. This assumption will not be applicable
to modelling OO designs anymore. However, we can still follow this classical way of
defining a state-based model for a programming language and define our OOL in terms
of values, variables, states, expressions, commands, declarations and programs.



3.2 Values, Objects, Variables and States

Each program declares a set %]�7�E�2" of class names, a partial function ' H(� " � % & ��'(' that
maps a class name in %]�7�E�2" to its direct superclass, a function �! ( � that associates
each class name C � %]�7�E�2" with the set �! ( � + C 8 of its attributes, and a function

@��
that

associates each C � %��7�E�2" the set
@�� + C 8 of its methods. We use � to denote the reflexive

and transitive closure of ' H(� " � % & �('(' and C � � C 	 denotes that C � is a subclass of C 	 .
We assume a set � of primitive types and an infinite set REF of object identities (or

references), and null � REF. A value is either a member of a primitive type in � or an
object identity in REF. Let the set of values be VAL 3 df � ��� REF. An object � is an
entity defined by the following structure � ��� 3 null

���
ref U  	� � " U�
������� , where ref � REF,

and  	� � " is a class name, and '� ��! �" is a mapping from �� ( � +; 	� � "�8 to VAL. Given an
object � 3 �

ref U C U � � , we use identity +��$8 to denote the identity ref of � ,  	� � "�+��$8 the type
C of the object � , and '� ��! �"�+��$8 +;528 the value � +;5 8 of an attribute 5 of class C.

Let � be the set of all objects, including null. Notice that infinite recursive and
looping constructions are allowed, such as

��� / U C U � / � such that � /=+;52803 � / , where 5 is an
attribute of C that is type of C too.

The following notations will be employed in the semantics definitions.

– Given a non-empty sequence � 3 � � � U ��� U � O � , we have head +�� 8W3�� � , tail +�� 803 � � 	 U ��� U � O � .
We use

� � � to denote the length of � , and � / +�� 8 the ��� � element � / , for � ��� U ��� U � .
– For two sets � and � � , � �! � is the set obtained by removing elements in � � from
� . Note that  has higher associativity than normal set operators like � , " .

– For a mapping # � D $ % E, &'� D and
� � E,

#)( � &+*% � � 3 df # � where # � +;DE803 df

, � U if D 3�& ?
# +;D�8 U if D-� � & �  D

�
– For an object � 3 �

ref U C U � � , an attribute 5 of C and a value & ,
ref ( � 5'*% & � 3 df

�
ref U C U � ( � 5+*% & � �

– For a set � ./� of objects,

� 0 �1�
ref U C U � � � 3 df

� � � identity +��$803 ref �  � � �1�
ref U C U � � �

Ref + � 803 df
�
ref

�
ref is the identity of an object in � �

Our model describes the behaviour of an OO program as a design containing the
logical variables given in Fig 1 as its free variables that form the alphabet of the pro-
gram.

The semantic model will ensure that for any 2 � and 2 � in 3 , identity
� 2 � � � identity

� 2 � �
implies � 4 5 6 � 2 � � � � 4 5 6 � 2 � � and � � � � 6 � 2 � � � � � � � 6 � 2 � � . We therefore can use
identity of an object to refer to an object in 3 . In the rest of the paper, an object
2 �87 ref  C :9!; means one in 3 if there is no confusion, and will use ref � � to denote the
value of � � � � 6 � 2 � � � � , and � 4 5 6 �

ref � to denote � 4 5 6 � 2 � (i.e. C).

3.3 Evaluation of expressions

The evaluation of an expression
�

determines its type  	� � "�+ � 8 and its value that is a
member of  	� � "�+ � 8 if this type is primitive, and an object of the current type that is



variable representation description
cname the set of classes declared so far

pricname the set of private class names

attr(C)
�1� 5 / � R / U & / � � >/�� �

R / and & / are the type and initial value of attribute
57/ , and will be referred by * "�% &  	� � "�+ C � 5 /.8 and��� �� 7�$� & + C � 57/.8 respectively. We also abuse the nota-
tion 5/� �! ( � + C 8 and use it to denote � R U & Z + � 5 �
R U & � � �! ( � + C 8=8 . Again, we do not allow attribute
hiding (or redefinition) in a subclass. We also use an
attribute name to represent its value and a type name
to denote the set of its legal values.

op(C)

��������
	�
 ���

T
�� ��� � � T ��� �� ��� T ��� � D ��� �

����� �������
	�
 � �

T
� � ��� � � T � � �� � � T � � � D �����

each method Q / has S / , V / and X / as its
value, result and value-result parameters respectively,
that are denoted by ��� & + C � Q /.8 , � "�'7+ C � Q /B8 , and��� & � "�'2+ C � Q / 8 , and the behaviour of Q / is defined
by the design � / referred by � " � + C � Q / 8 . Sometimes
we simply denote each element in

@�� + C 8 as Q / *%+ paras / U � /B8 . We also sometimes abuse the notation
Q � @�� + C 8 and use it to denote � paras U � Z +;Q *%+ paras U � 8 � @�� + C 8=8

 + C 8 U   3 df

!

C "$#&%�'&(*)
 + C 8

 + C 8 :the set of objects of class C that currently exist
in the execution of the program. 

: system state, also called current configuration [30]

superclass
�
N *% M U ����� � a partial function mapping a class (N) to its direct su-

perclass (M).

glb
the set of global variables declared at the beginning of
the main program

locvar

� + S � U � R � � U � � U R �B> � 8 U����� U
+ S F U � R F � U ��� U R F(O � 8 �

the set of local variables which are known to the cur-
rent scope of the program. R / � , for � 3 � U ��� U�+ is the
most recently declared type of S /

var ��� � 3-, & I � & @ %]��� �

visibleattr

the set of attributes which are visible from inside the
current class, i.e. all its declared attributes plus the
protected attributes of its superclasses and all public
attributes. Every time before a method of an object is
executed, this set is set to the attributes of the class of
the object, and it will be reset after the execution of
the method.

S

the state of variable S � ��� � . Since a local vari-
able can be redeclared, its state usually comprises a
nonempty finite sequence of values, whose first (head)
element represents the current value of the variable.S for S �., & I contains at most one value and thus
we can simply use S to denote it. A primitive variable
takes values of primitive type, while an object variable
can store an object name or identity as its value.

Fig. 1. The Alphabet: Logical Variables



attached to
�
. The evaluation makes use of the state of

 
. However, an expression can

only be evaluated when it is well-defined. Some well-definedness conditions are static
that can be checked at compiling time, but some are dynamic. The evaluation results of
expressions are given in Fig. 2.

Expression Evaluation
null � + null 803 df true U  	� � "�+ null 803 df NULL U ��� & H "�+ null 803 df null

S

� + S 8 3 df S � ��� � 	L+ * "�% &  	� � "�+ S 8 � ��� * "�% &  	� � "G+ S 8 � %]�7�E�2"�8 + Static 8
	 * "�% &  	� � "G+ S 8 � � � head + S 8 � * "�% &  	� � "G+ S 8 + Dynamic 8
	 * "�% &  	� � "G+ S 8 � %]���E�2" �

head + S 8 � Ref +  + * "�% &  	� � "G+ S 8=8=8 + Dynamic 8
 � � "�+ S 8 3 df

� * "�% &  � � "G+ S 8 * "�% &  	� � "G+ S 8 � � 	� � "�+ head + S 8=8 otherwise��� & H "�+ S 8W3 df head + S 8

self

� + self 8 3 df self � & @ %���� � 	 * "�% &  � � "G+ self 8 � %]�7�E�2"\+ Static 8
	 head + self 8 � Ref +  + * "�% &  	� � "�+ self 8=8=8 + Dynamic 8

 � � "�+ self 8 3 df  � � "�+ head + self 8=8
��� & H "�+ self 8W3 df head + self 8

S � 5
� + S � 5 803 df � + S 8

	 * "�% &  	� � "G+ S 8 � %]���E�2" 	\ 	� � "�+ S 8 � 5 � �7�('(� I & "��! $ � + Static 8
	 head + S 8��3 null

 � � "�+ S � 5 803 df  � � "�+ head + S 8 � 5 8��� & H "�+ S � 5 803 df head + S 8 � 5

��� 5 � + 
��� 5 803 df � + 
� 8 	  	� � "�+ 
� 8 � 5 ���	� 
 ��
� ����������� & H "�+ 
��� 5 803 df ��� & H "�+ 
� 8 � 5 � � "�+ 
��� 5 8 3 df  � � "�+;��� & H "�+ 
� 8 � 528

+ � is C 8
� + � is C 8 3 df � + � 8	L+; 	� � "2+ � 8 � %]�7�E� "�8 	 + C � %]�7�E� "�8 � � "�+ � is C 8 3 df Bool��� & H "�+ � is C 8Y3 df ��� & H "G+ � 8��3 null 	\ � � "�+ � 8 � C

+ C 8 � � +=+ C 8 � 8 3 df � + � is C 8	\��� & H "�+ � is C 8 � � "�+=+ C 8 � 8 3 df  	� � "�+ � 8��� & H "�+=+ C 8 � 8Y3 df ��� & H "�+ � 8
����� � + ����� 8 3 df � + � 8 	 � + � 8 	 * "�% &  	� � "G+ � 8T3 Real

	 * "�% &  	� � "�+ � 8W3 Real 	 ��� & H "�+ � 8��3����� & H "�+ ����� 8Y3 df ��� & H "�+ � 8 � ��� & H "�+ � 8
Fig. 2. Evaluation of Expressions

3.4 Semantics of commands

A typical aspect of an execution of an OO program is about how objects are to be at-
tached to program variables (or entities [27]). An attachment is made by an assignment,
the object creation or parameter passing in a method invocation. With the approach of
UTP, these different cases are unified as an assignment of a value to a program vari-
able. We shall only present the semantic definitions for assignment, object creation and



method calls, due to page limit. All other programming constructs will be defined in
exactly the same way as their counter-parts in a procedural language, thus are omitted
here. We also present some basic refinement laws for commands.
Assignments: An assignment


�� � 3 �
is well-defined if both


�
and

�
are well-defined

and current type of
�

matches the declared type of

��

� + 
� � 3 � 803 df � + 
� 8 	 � + � 8	\ 	� � "�+ � 8 � * "�% &  	� � "G+ 
� 8
Notice that this requires dynamic type matching. However, it is safe to replace the con-
dition  	� � "2+ � 8 � * "�% &  	� � "G+ 
� 8 with * "�% &  	� � " + � 8 � * "�% &  	� � "G+ 
� 8 , as the semantics will
ensure the later implies the former. With the use of type test e is C and type casting
+ C 8 � , changing the dynamic type matching to the static matching will not lose expres-
sive power either.

There are two cases of assignment. The first is to (re-)attach a value to a variable
(i.e. change the current value of the variable), but this can be done only when the type of
the object is consistent with the declared type of the variable. The attachment of values
to other variables are not changed.

S � 3 � 3 df
� S � � � + S � 3 � 8 � + S � 3 � ��� & H "�+ � 8 � Z tail + S 8=8

As we do not allow attribute hiding/redefinition in subclasses and semantics of assign-
ment, the assignment to a simple variable has not side-effect, and thus the Hoare triple� � 	 � 5 3�� � � � � 3 � 	 � � � � 5 3�� � is valid in our model for variables � � of class C � and � 	
of C 	 , where C 	 � C � and C � has 5 as protected attribute of integer type. This has made
the theory much simpler than the Haore-logic based semantics for OO programming in
[30].

The second case is to modify the value of an attribute of an object attached to an
expression. This is done by finding the attached object in the system state

 
and mod-

ifying its state accordingly. Thus, all variables that point to the identity of this object
will be updated.


��� 5 � 3 � 3 df
�  + * "�% &  � � "G+ 
� 8=8 � � � + 
��� 5 � 3 � 8 �

�  + * "�% &  	� � "�+ 
�� 8=8 � 3  + * "�% &  	� � " + 
�� 8=8
0 + � ��� & H "�+ 
� 8 � ( � 5�*% ��� & H "�+ � 8 �!8 �

For example, let S be a variable of type C such that C has an attribute & of � and
� has an attribute 5 of integer type. S � & � 5 � 3 � will change state of S 3 � � U C U � & *% � � � ,
where reference � is the identity of

� � U � U � 5+*% � � � to S 3 � � U C U � & *% � � � , but the � is
now the identity of the object

� � U � U � 5'*% � � � .
This semantic definition shows the side-effect of an assignment and does reflect the

OO feature pointed out by Broy in [7] that an invocation to a method of an object which
contains such an assignment or an instance creation defined later on, changes the state 

of the system.

Law 1 + 
�� � 3 � ? 
� � 3 � + 
� 8=8 � + 
� � 3 � + � 8=8
Law 2 + 
�� � � 3 � � ? 
� 	 � 3 � 	 8 � + 
� 	 � 3 � 	 ? 
� � � 3 � � 8 , provided


�� � and

� 	 are distinct

simple names which do not occur in
� � or

� 	 .
Note that the law might not be valid if


� / are composite names. For instance, the fol-
lowing equation is not valid when S and V have the same value:

S � 5 � 3 � ? V � 5 � 3�� � V � 5 3�� ? S � 5 3 �



Object creation The execution of C.new + S 8 � � # is well-defined if C � %]�7�E� " , the length
of the list

�
of the expressions is the same as the number of attributes of C and the types

of the expressions match those of the corresponding attributes of C, i.e.

� + C.new + S 8 � � # 8 3 df C �4%]���E�2" 	 � � � 3 size +B�! ( � + C 8=8 	 � � Z  	� � "�+ � /
8 � * "�% &  	� � "G+ C � 57/.8
The command (re-)declares variable S , creates a new object, attaches the object to S and
attaches the initial values of the attributes to the attributes of S too.

C.new + S 8 � � #G3 df
� ��� � U9S U  + C 8 � �

� + C.new + S 8 � � # 8 � � ref �� Ref +  8 Z�������
�

+  + C 8 � 3  + C 8 � � �
ref U C U � 57/ * % ��� & H "�+ � /B8 � � � 57/ � �! $ � + C 8 �!8 	+=+ S � , & I 	L+ S � 3 ref 8

� + S � & @ %���� � 	 + S � 3 � ref � Z S 8=8	 + & @ %]��� � � 3 � S �  & @ %���� � � � + S U � C � Z & @ %���� � + S 8=8 �!8
� + S �� ��� � 	 + S � 3 �

ref � 8	 + & @ %���� � � 3 & @ %���� � � � + S U � C � 8 �!8=8=8

��������
�

We will use C.new + S 8 to denote the command C.new + S 8 � � � �] 7�$� & + C � 5 8 # that creates an
instance of C with the default initial values of its attributes.

Law 3 If S and V are distinct, S does not appear in
�

and V does not appear in
�
,

C � � new + S 8 � � # ? C 	 � new + V 8 � � # � C 	 � new + V 8 � � # ? C � � new + V 8 � � #
Law 4 If S is not free in the Boolean expression D , then

C.new + S 8 � � # ? + � �LD�� 	 8 � + C.new + S 8 � � # ? � 8 �LD�� + C.new + S 8 � � # ? 	 8
Method Call Let C ,

�
and C � be lists of expressions. The command


��� QL+;C U � U C � 8 as-
signs the values of the actual parameters C and C � to the formal value and value-result
parameters of the method Q of the object � that


�
refers to, and then executes the body

of Q . After it terminates, the value of the result and value-result parameters of Q are
passed back to the actual parameters

�
and C�� .


��� Q +;C U � U C � 8 3 df + � + 
� 8	\ 	� � "�+ 
� 8 � %]�7� �2"�	\Q � @]� +; 	� � "2+ 
�� 8=8 �
� N Z +; 	� � "�+ 
� 8T3 N 8 	

�� ��� � N self 3 
� U R � S 36C U R 	 V 3 � U R 
 X 3 C � ?
 + N � Q 8 ? � U C � � 3 VGU X ?
"!� * self U=S U9VGU X

��
where S U=VGU=X are resp. value, result and value-result parameters of the method Q of class
 � � "�+ 
� 8 , and


 + N � Q 8 stands for the design associated with method Q of class N, that
will be defined in the semantics of the whole program in Section 3.6.

3.5 Class declarations

A class declaration cdecl given in Section 2.1 is well-defined if the following conditions
hold.

1. N has not been declared before: N �� %��7�E�2" .
2. N and M are distinct: N �3 M.
3. The attribute names in the class are distinct.



4. The method names in the class are distinct.
5. The parameters of every method are distinct.

Let � + cdecl 8 denote the conjunction of the above conditions for class declaration
cdecl. The class declaration cdecl adds the structural information of class N to the state
of the program, and this role is characterised by the following design.

cdecl 3 df� %]���E�2" U ��� �(%]�7�E� " U ' H(� " � % & ��'(' U ��� �$� U ����@  �� U �(H I � � � � + cdecl 8 ����������
�

%]���E�2" � 3 %]�7� �2"-� �
N �

	 ��� �(%]�7�E� " � 3 + �(� �(%]�7� �2"-� �
N � � anno + cdecl 8 � ��� �(%]���E�2"78

	 ' H$� " � % & ��'(' � 3 ' H(� " � % & ��'$' ( �
N *% M �

	 ��� �$� � 3 ��� �$� ( �
N *% �1� 1 � - U 5 � � �

	 ����@  �� � 3 ����@  �� ( �
N *% �1� C � A U D � � �

	 �(H I � � 3 �(H I � ( �
N *% �1� M � K U N � � �

	 @�� � 3 @�� ( �
N *% � +;Q � *% + paras 8 � U N � 8=8 U Z�ZEZEZEZ Z U +;Q [ *% + paras [ U N [ 8=8 � �

����������
�

where the logical variables pria, prota and puba are introduced to record the
declared attributes of N, from which the state attr can later be constructed. Similarly,
the dynamic behaviour of the methods cannot be defined before the dependency rela-
tion among classes is specified. At the moment, the logical variable

@�� + N 8 binds each
method Q / to code N / rather than its definition which will be calculated in the end of the
declaration section.

Example Consider a simple bank system illustrated by the UML class diagram in
Figure 3. Account is an abstract class1 and has two subclasses of current accounts CA
and saving accounts SA. The declaration of class Account, denoted by declAccount,

Bank

name
address

withdraw(aID, amount)
getBalance(aID, res)

openAcc(name, amount)

Account

aNo : Int
balance: Int

withdraw(amount)
getBalance()

CA

withdraw(amount)

SA

Fig. 3. A bank system

is written as follows. Note that we allow specification notations (designs) to appear in
methods and commands.

� ������� Account ��
	����� � ������ Int aNo � Int balance �� ���������� getBal ����� Int � �!�#"$��� � % balance &'�
withdraw � Int (��)���*�'"*� balance +,( - balance . % balance /0(1&#&

The declaration declCA of CA is given as
� ������� CA ��213�54��
� Account� ���������� withdraw � Int (��!���!�'"*� balance � % balance /0(1&
&

1 See [25] for a formal definition of an abstract class.



We can write the declarations of SA (in which method withdraw is just inherited the
from Account) and Bank (which has a set of accounts associated with it) in the same
way.

It is easy to see that both declAccount and declCA are well-formed. The semantics
of declAccount is defined by the following design.

declAccount 3 true ��� %]�7� �2" � 3 %]�7�E� "-� �
Account � 	 �(��@  � 3 �

Account *% � �
Int aNo � U � �]�� balance � � � 	@�� � 3 �

Account *% �
getBal *% + ��� U Int D U � � U D � 3 balance 8 U

withdraw *% + � Int S U � U � � U balance � S � balance � 3 balance $ S 8 � �

��
The semantics of declCA is the following.

declCA 3 true �

���
�
%]�7� �2" � 3 %]�7�E� "-� �

CA � 	' H(� " � % & �('(' � 3 �
CA *% Account � 	@�� � 3 �

Account *% �
withdraw *%

+ � Int S U � U � � U balance � 3 balance $ S 8 � �

� ��
�

The semantics of declSA and declBank for classes SA and Bank can be defined in the
same way.

A class declaration section cdecls comprises a sequence of class declarations. Its
semantics is defined from the semantics of a single class declaration given above, and
the semantics of sequential composition. However, the following well-definedness con-
ditions need to be enforced onto a declaration section:

1. All class names used must be declared in the declaration section;
2. Any superclass of a declared class is declared too;
3. The function superclass does not induce circularity;
4. No attributes of a class can be redefined in its subclasses;
5. No method is allowed to redefine its signature in its subclass.

The formal definitions for these conditions are omitted here due to page limitation. In
what follows we denote them as � � , � � � , � � , respectively.

3.6 The semantics of a program

Let cdecls be a class declaration section and P main method of the form + , & I U N�8 , the
meaning of a program + cdecls � P 8 is defined as the composition of the meaning of class
declarations cdecls (defined in Section 3.5), the design init, and the meaning of command
P:

cdecls � P 3 df cdecls ? init ? %]�7�E�2" � 3 ��� �(%]�7�E� "  %]�7�E� " ? N
where the design init performs the following tasks

1. to check the well-definedness of the declaration section,
2. to decide the values of �! $ � and �7�('$� I & "��� ( � from those of

�(� �$� , ����@  �� and
�(H I � ,

3. to define the meaning of every method body N ,



4. to check the well-definedness of , & I , i.e. its consistency with the class declarations:

� + , & I 803 df �T+ S � R 8 � , & I Z R � + �/� + ��� �(%]�7�E� "  %]�7�E�2"�8=8
The design init is formalised as:

init 3 df
� �7�('$� I & "��� ( � U �! ( � U @�� � �

� � 	 � 	 	 � 
 	 � � 	 � � 	 � + , & I 8 ����
�

�7�$'(� I & "(�! ( � � 3 !

N "$# %�'�(*)
�
N
� 5 � 5 � �(H I �2+ N 8 �

	 � N � %]�7� �2" Z �! ( � � + N 803 �(� �$�2+ N 8 � � �E����@  ���+ M 8 � �(H I �2+ M 8 � N � M �
	 @�� � + N 803 � Q *% + paras U 
 + N � Q 8=8 � +;Q *% + paras U N�8=8 � @�� + M 8	 N � M �

����
�

where the family of designs

 + N � Q 8 is defined in the rest of this section.

The family of designs

 + N � Q 8 captures the dynamic binding and is defined by a set

of recursive equations, which contains for each class N � %]���E�2" , each class M such that
N � M, and every method Q � @�� + M 8 and equation


 + N � Q 8 3 # N < > + 
 8 where ' H(� " � %$� & '$'�+ N 803 M

where # is constructed according to the following rules:

(1) Q is not defined in N, but in a superclass, i.e. Q �� @�� + N 8	\Q � � ��@�� + M 8 � N � M � .
The defining equation for this case is simply

# N < > + 
 8 3 df Set + N 8 ? � N + 
������ + M � Q 8=8 ? Reset

where the design Set + N 8 finds out all attributes visible to class N in order for the
invocation of method Q of N to be executed properly, whereas Reset resets the en-
vironment to be the set of variables that are accessible to the main program only:

Set + N 803 df
� ���('(� I & "��! ( � � � true �

�7�('(� I & "��! ( � � 3
� �

N
� 5 � 5 � ��� �!�2+ N 8 � � � N � M

�
M
� 5 � 5 � ����@  ��2+ M 8 � �

� M "$#&%�'&(*)
�
M
� 5 � 5 � �(H I �2+ M 8 � �

Reset 3 df
� �7�('$� I & "��� ( � � � true � �7�('$� I & "��� ( � � 3 � M " #&%�'�( )

�
M
� 5 � 5 � �(H I �2+ M 8 �

The function � N renames the attributes and methods of class N in the code 
������ + N � Q 8
by adding object reference self that represents the active object that is executing
its method. The definition of � N is given in Fig. 4. Note that Set and Reset are
used to ensure data encapsulation that is controlled by �7�('(� I & "��! $ � and the well-
formedness condition of an expression.

(2) Q is a method defined in class N. In this case, the behaviour of the method N
� Q is

captured by its body 
��	�	� + N � Q 8 and the environment in which it is executed

# N < > + 
 8 3 df Set + N 8 ? � N + 
������ + N � Q 8=8 ? Reset



P �
N + P 8 P �

N + P 8
skip skip chaos chaos

P � �LD�� P 	 �
N + P � 8�� � N +;DE8�� � N + P 	 8 P � ? P 	 �

N + P � 8 ? Set + N 8 ? � + P 	 8
P � � P 	 �

N + P � 8 � � N + P 	 8 D	� P �
N +;D�8 � + � N + P 8 ? Set + N 8=8

��� � S � R 3 � ��� � S � R 3 �
N + � 8 "!� * S "!� * S

C.new + S 8 C.new + � N + S 8=8 
� � 3 � �
N + 
�� 8 � 3 �

N + � 8
��� Q +;C U � U C � 8 �
N + 
� 8 � Q + � N +;C78 U � N + � 8 U � N +;C � 8=8 
��� 5 �

N + 
� 8 � 5
Q +;C U � U C � 8 self

� QL+ � N +;C78 U � N + � 8 U � N +;C � 8=8 null null
self self

� + � 8 � + � N + � 8=8
S , self

� S U S � � N � M �! ( � �7�E�2"G+ M 8S U otherwise

Fig. 4. The Definition of � N

4 Refinement

We would like the refinement calculus to cover not only the early development stages
of requirements analysis and specification but also the later stages of design and imple-
mentation. This section presents the initial results of our exploration on three kinds of
refinement:

1. Refinement relation between object systems.
2. Refinement relation between declaration sections.
3. Refinement relation between commands.

From now on, we assume the main method of each program does not use direct field
access, that is, expressions of the form le.a. This assumption actually does not reduce
the expressiveness of the language, as we can always use getField and setField methods to
replace direct field access where necessary. In what follows, we give formal definitions
for the above-mentioned refinement relations.

Definition 4. Let � � and � 	 are object programs which have the same set of global
variables , & I , let

� C�5 ����� , �T3 � U � , be the set of all other variables that are free in � / and� C�5 � ���� be the set of their primed versions. � � is a refinement � 	 , denoted by � �	��
 � 
 � 	 ,
if its behaviour is more controllable and predictable than that of � 	 :

� �	� sys � 	 3 df � , & I U , & I � Z + � � C�5 ��� � U � C�5 � �� � Z � � 8 � + � � C�5 ��� � U � C�5 � �� � Z � 	 8
This indicates the external behaviour of � � , that is, the pairs of pre- and post global
states, is a subset of that of � 	 .
Definition 5. Let cdecls � and cdecls 	 be two declaration sections. We say cdecls � is a
refinement of cdecls 	 , denoted by cdecls ������ � 
�
 cdecls 	 , if the former can replace the
later in any object system:

cdecls �	� class cdecls 	 3 df � P Z + cdecls � � P �
sys cdecls 	 � P 8

where P stands for a main method + , & I U NE8 .



Intuitively, it states that cdecls � supports at least the same set of services as cdecls 	 .
Definition 6. Let P � and P 	 be main methods with the same global variables, and N �
and N 	 be commands. We define

P �	�
cmd P 	 3 df � cdecls Z + cdecls � P � 8 � sys + cdecls � P 	 8N �	� N 	 3 df �GC U C � Z +;N � � N 	 8

where cdecls is a declaration section, and C and C � are free variables in N � and N 	 .
Intuitively, it denotes that P � does better than P 	 , i.e. ensures a stronger postcondition
with a weaker precondition, under the same environment.

We have already given some refinement laws for refining program commands in
Section 3.4, which are to ensure the correctness of the semantic model. In what follows,
we first give a group of refinement laws that in fact formalize principles of refactoring
[13]. After that, we will present three refinement laws which capture three key principles
and patterns in object-oriented design, that are well known as the Expert Pattern, High
Cohesion Pattern and Low Coupling Pattern [22, 24].

We first introduce some notations. We use N
�
supc U pri U prot U pub U ops # to denote a well-

formed class declaration that declares the class N that has supc as its direct superclass;
pri, prot and pub as its sets of private, protected and public attributes; and ops as its set
of methods. supc is always of either a class name M, when M is the direct superclass of
N, or

�
when N has no superclass. We may also only refer to some, or even none of M,

pri, prot, pub, ops when we talk about a class declaration. For example, N denotes a class
declaration for N, and N

�
pri # a class declaration that declares the class N that has pri as

its private attributes.

Law 5 The order of the class declarations in a declaration section is not essential:

N � ? � � � ? N F 3 N / � ? � � � ? N /��
where N / is a class declaration and � � U � � � U � F is a permutation of

� � U � ��� U + � .

A law like this may look utterly trivial, but it is not so obvious for a semantic definition
of a class declaration to guarantee this law. For example, if the the pre-condition of the
class declaration requires that the direct superclass has been declared, this law would
not hold.

The next law says that more services may come from more classes.

Law 6 If a class name N is not in cdecls, cdecls � N
�
M U pri U prot U pub U ops # ? cdecls

�
Introducing a private attribute has no effect.

Law 7 If neither N nor any of its superclasses and subclasses in cdecls has S as an
attribute N

�
pri # ? cdecls � N

�
pri � � R S 3�& ��# ? cdecls.

Changing a private attribute into a protected one may support more services.

Law 8 N
�
pri � � R S 3�& � U prot # ? cdecls � N

�
pri U prot � � R S 3 & �E# ? cdecls.

Similarly, changing a protected attribute to a public attribute refines the declaration too.
Adding a new method can refine a declaration.



Law 9 If Q is not defined in N, let QL+ paras 8 � N � be a method with distinct parameters
paras and a command N . Then

N
�
ops # ? cdecls � N

�
ops � � Q + paras 8 � N � ��# ? cdecls

provided that there is no superclass of N in cdecls.

Law 10 We can refine a method to refine a declaration. If N � � N 	 ,
N
�
ops � � Q + paras 8 � N � � �E# ? cdecls � N

�
ops � � QL+ paras 8 � N 	 � ��# ? cdecls

Inheritance introduces refinement.

Law 11 If none of the attributes of N is defined in M or any superclass of M in cdecls,

N
� � U pri U prot U pub U ops # ? cdecls � N

�
M U pri U prot U pub U ops # ? cdecls

We can introduce a superclass as given in the following law.

Law 12 Let C � 3 N
� � U pri � � U prot U pub U ops # , C 	 3 N

� �
M � U pri U prot U pub U ops # . Assume M

is not declared in cdecls,

C ��? cdecls � C 	�? M � � U � U � U � U � # ? cdecls

We can move some attributes of a class to its superclass.

Law 13 If all the subclasses of M but N do not have attributes in � , then

M
�
prot � # ? N � � M � U prot � � # ? cdecls � M

�
prot � � � # ? N � � M � U prot # ? cdecls

We can move the common attributes of the direct subclasses of a class to the class itself.

Law 14 If M has N � U � ��� U N O as its direct subclasses,

M
�
prot # ? N � � prot / � � # ? � ��� ? N O � prot O � � # ? cdecls� M
�
prot � � # ? N � � prot � # ? � � � ? N O � prot O # ? cdecls

We can move some methods of a class to its superclass.

Law 15 Let Q + paras 8 � N � be a methods of N, but not a method of its direct superclass
M. Assume that N only involves the protected attributes of M, then

M
�
ops # ? N � � M � U ops � � � Q + paras 8 � N � ��# ? cdecls

� M
�
ops � � Q + paras 8 � N � �E# ? N � � M � U ops � # ? cdecls

We can remove a redundant method from a subclass.

Law 16 Assume that N has M as its direct superclass and QL+ paras 8 � N � � ops " ops � ,
and N only involves the protected attributes of M,

M
�
ops # ? N � � M � U ops � # ? cdecls � M

�
ops # ? N � � M � U ops � � � Q + paras 8 � N � �E# ? cdecls

We can remove any unused private attributes.



Law 17 If + R S 8 is a private attribute of N
�
pri # that is not used in any command of N,

N
�
pri # ? cdecls � N

�
pri

� � R S 3�& ��# ? cdecls

We can remove any unused protected attributes.

Law 18 If + R S 3 &78 is a protected attribute of N
�
prot # that is not used in any command

of N and any subclass of N,

N
�
prot # ? cdecls � N

�
prot

� � R S 3 & �E# ? cdecls

The expert patterns says that a class is allowed to delegate some tasks to its associated
classes that contain the information for the tasks.

Law 19 + � ��� � � � � ����� ����� � �
	'��
 ��� � 
 ��
� ��� � ��� 
 
 �  � � ��� � 8 Suppose M
�
ops � # is de-

fined in cdecls, Q + paras � 8 � N � � � ops � , and + M �(8 be an attribute of N, then

N
�
ops � � + + paras 8 � N ���N � # � �E# ? cdecls � N

�
ops � � + + paras 8 � N � � � Q # � ��# ? cdecls

Here N � is obtained from
�N � by replacing � � S with S , that is, N � 3 �N � � S � � � S # . Notice

that
�N � does not refer to any attribute of N. While N ���N � # denotes that

�N � occurs as part
of command N , and N � � � Q\# denotes that the command obtained from N ���N � # by substituting
� � Q for

�N � . Note also that paras � . paras.

This law is illustrated by the UML class diagram in Figure 5. It will become an equation
if S is a public attribute � .

N

o:M

n {c[c1(o.x}]}

M

x

m {c1(x)}

N

o:M

n {c[o.m ]}

M

x

m {c1(x)}

Fig. 5. Object-oriented Functional decomposition

To understand the above law, let us consider a simple example from the afore-
mentioned bank system in Section 3.5.

Consider method getBalance of class Bank. Initially, we might have the following
design for it:

getBalance � Int aID � Int res �!�#" % df�
a � � � Account "�� a.aNo % aID - � a � � � Account "�� a � aNo % aID � res . % a.balance



Note that it requires the attributes of class Account to be visible (public) to other classes
(like Bank). Applying Law 19 to it, we can get the following design:

getBalance + Int aID U Int res U � 8W3 df

� a �  + Account 8 Z a.aNo 3 aID � � a �  + Account 8 Z a � aNo 3 aID � res � 3 a.getBalance +B8
The refinement delegates the task of balance lookup to the Account class.

It is important to note that method invocation, or in another term, object interaction
takes time. Therefore, this object-oriented refinement (and the one described in Law 21
later) usually exchanges efficiency for “simplicity”, ease of reuse and maintainability,
and data encapsulation.

After functionalities are delegated to associated classes, data encapsulation can be
applied to increase security and maintainability. The visibility of an attribute can be
changed from public to protected, or from protected to private under certain circum-
stances. This is captured in the following law.

Law 20 + � ���� � � � � � 
�� � ��� � � � 8 Suppose M
�
pri U prot U pub # , and + R � a � 3�& � 8 � pub,

+ R 	 a 	 3�& 	 8 � prot.

1. If no operations of other classes have expressions of the form le.a � , except for those
of subclasses of M, we have

M
�
pri U prot U pub # ? cdecls � M

�
pri U prot � � R � a � 3�& � � U pub

� � R � a � 3�& � �E# ? cdecls

2. If no operations of any other classes have expressions of the form le.a 	 , we have

M
�
pri U prot U pub # ? cdecls � M

�
pri � � R 	 a 	 3�& 	 � U prot

� � R 	 a 	 3 & 	 � U pub # ? cdecls

After applying Law 19 exhaustively (i.e. the expert pattern) to the class Bank for method
getBalance, we can then apply Law 20 to the class diagram on the right hand side of
Figure 5 to achieve the encapsulation of the attribute balance of the class Account. The
attribute aNo can be encapsulated in a similar way.

Another principle of object-oriented design is to make classes simple and highly
cohesive. This means that the responsibilities (or functionalities) of a class, i.e. its meth-
ods, should be strongly related and focused. We therefore often need to decompose a
complex class into a number of associated classes, so that the system will be

– easy to comprehend
– easy to reuse
– easy to maintain
– less delicate and less effected by changes

We capture the High Cohesion design pattern [22] by the following refinement rule.

Law 21 + � �  ��� ��� ��
 � � � � ����:� ��� 8 Assume M
� � � � U � � # is a well-formed class declara-

tion, � � � 3 � S U=V � are (or lists of) attributes of M, Q � � N � + S 8 � � � � only contains attributeS , method Q 	 � N 	 � Q � # � � � � can only change S by calling Q � (or though it does not have
to change it at all). Then

1. M � M
� � � � F
	�� U � � F	�� # ? M � � � � � � U � � � # ? M 	 � � � � 	 U � � 	 # ,

where



M

x
y

m1 {c1(x)}
m2 {c2[m1]}

M

M1 o1

M2 o2

m1 {o1.m1}
m2 {o2.m2}

M1

x

m1 {c1(x)}

M2

y
M1 o1

m2 {c2[o1.m1]}

M

x
y

m1 {c1(x)}
m2 {c2[m1]}

M

M2 o2

m1 {o1.m1}
m2 {o2.m2}

(a )

M 2

y
M1 o1

m1 {o1.m1}
m2 {c2[o1.m1]}

M1

x

m1 {c1(x)}

(b)

fo ral l o :M . (o .o 1= o .o 2.o 1)

Fig. 6. Class Decomposition

– � � � F	�� 3 �
M � � � U M 	 � 	 �

– � � F	�� 3 � Q � � � � � Q � � U Q 	 � � 	 � Q 	 � �
– � � � � 3 � S � , � � � 3 � Q � � N � + S 8 � �
– � � � 	 3 � V U M � � � � , � � 	 3 � Q 	 � N 	 � � � � Q � # � �

such that ��� � M Z +�� � � � 3 � � � 	 � � � 8 is an invariant of M. This invariant has to be
established by the constructors of these three classes.
This refinement is illustrated by the diagram in Figure 6(a).

2. M � M
� � � � F
	�� U � � F	�� # ? M � � � � � � U � � � # ? M 	 � � � � 	 U � � 	 # ,

where

– � � � F	�� 3 �
M 	 � 	 �

– � � F	�� 3 � Q � � � � � Q � � U Q 	 � � 	 � Q 	 � �
– � � � � 3 � S � , � � � 3 � Q � � N$+ S 8 � �
– � � � 	 3 � V U M � � � � , � � 	 3 � Q � � � � � Q � � U Q 	 � N 	 � � � � Q � # � �

such that � +�� � � S U=V 8 is an invariant of M 	 .
This refinement is illustrated by the diagram in Figure 6(b).

Notice that the first refinement in Law 21 requires that M to be coupled with both M �
and M 	 ; and in the second refinement M is only coupled with M 	 , but more interaction
between M 	 and M � are needed than in the first refinement. We believe that the above
three laws, together with the other simple laws for incremental programming effectively
support the use-case driven and iterative RUP development process [22]. The use of
the patterns for responsibility assignment in object-oriented software development is
clearly demonstrated in Larman’s book [22] and in the lecture notes of Liu in [24].

For each of the laws, except for Law 13 in the Appendix, let LHS and RHS denote
the declarations on the left and right hand sides, respectively. For any main program P,
each refinement law becomes an equational law: LHS � P � RHS � P, provided LHS � P
is well-defined.



5 Conclusion

We have shown how Hoare and He’s design calculus [18] is used to define an OO
language. A program is represented as a predicate called a design, and the refinement
relation between programs is defined as implication between predicates.

In [7], Broy gave an assessment of object-orientation. Our model reflects most of the
features, no matter good or bad, of object-oriented designs. For example, the model does
show that inheritance with attribute hiding and method overriding makes it difficult to
analyse the system behaviour, and method invocation on an object may indeed change
the system’s global states.

Nevertheless, formal techniques for object-orientation have achieved significant ad-
vance in areas of both formal methods and object technology, e.g. [1, 2, 6, 4, 8, 29].
There are a number of recent articles on Hoare Logics for object-oriented program-
ming (see, e.g. [30, 35, 20, 31, 23, 9]). The normal form of a program in our paper is
similarly to that of [9, 30]. However, one major difference of our work is that we also
provide a formal characterisation and refinement of the contextual/structural features,
i.e. the declaration section, of an object program. This is motivated by our work on the
formalisation and combinations of UML models [25, 26] to deal with consistency prob-
lems of different UML models. This characterisation has been proven to be very useful
in defining semantics for integrated specification languages in general. For example,
[32] uses this characterisation in defining a semantics of TCOZ.

The notions of different kinds of refinements in our model are very close to those
in [9], though the semantics in [9] is defined in terms of the weakest precondition pred-
icate transformer and does not deal with reference types. We take a weak semantic
approach meaning that when the pre-condition of a contact is not satisfied in a state,
the program will then behave as chaos, and any modification to the program, such as
adding exceptional handling, will be a refinement to the program. We also describe
static well-formedness conditions in the pre-condition so that any correction of any
static inconsistency in a program, such as static type mismatching, missing variables,
missing methods, etc. will be refinement too. This decision is required for structural
refinement calculus of OO designs in order to treat refactoring [13] as refinement and
properly combine it with functional/behavioural refinement. This combination is im-
portant for the application of the model to composing different UML models and to
reasoning about their consistency [25, 26] and in giving semantics for integrated lan-
guage [32]. Also our work on formal object-oriented design with UML [25, 26] has
provided us with the insight of functional decomposition in the object-oriented setting
and its relation with data encapsulation. The functional decomposition and data encap-
sulation are characterised by the refinement laws 19 - 20. They reflect the essential
principle of object-oriented design.

The power of UTP[18] for describing different features of computing, such as state-
based properties, communication, timing, higher-order computing [18, 36, 34], makes
our approach ready for an extension to cope with these different aspects of object-
oriented designs. Alternatively, one can also use temporal logic, such as [3], for the
specification and verification of multithreading Java-like programs. However, we would
like to deal with concurrency at a higher level when we extend this model for component-
based software development [17, 16].



In [7], Broy also argued that the property of object identities is of too low level
and implementation oriented. This is true to some extent and the use of references
does cause some side-effects, making the semantics a bit more difficult. A preliminary
version of the model without references can be found in [15]. However, that version is
only slight simpler than this version. On the other hand, the complexity in fact mainly
affects reasoning about low level design and implementation. At high level requirement
analysis and design, we can simply use the identities as the objects they refer to or just
talk about objects in an abstract way. In our approach for analysis of use cases [25],
we mainly describe the change of system states in terms of what objects are created or
deleted, what modifications are made to an object and what links between objects are
formed or broken. We think that features like method overriding and attribute hiding
are only useful to program around the requirement and design defects detected at the
coding stage or even after, or when one tries to reuse a class with a similar template in
a program that the class was not originally designed. These features cause problems in
program verification and the smooth application of the notion of program refinements.

Future work includes the study of the issue of completeness of the refinement cal-
culus, applications to more realistic case studies, and formal treatment of patterns [14].
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