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Abstract

A common presumption is that the typical cyber attacker is assumed to exploit all possible
vulnerabilities with almost equal likelihood. That is, the probability of an attack on a given
vulnerability is at maximum entropy, one cannot importance sample which vulnerability will be
exploited first, hence decision making is purely a function of criticality. In this paper we present,
and empirically validate, a novel and more realistic attacker model. The intuition of our model
is that a mass attacker will optimally choose whether to act and weaponize a new vulnerabil-
ity, or keep using existing toolkits if there are enough vulnerable users. The model predicts
that mass attackers may i) exploit only one vulnerability per software version, ii) include only
vulnerabilities with low attack complexity, and iii) be slow at introducing new vulnerabilities
into their arsenal. We empirically test these predictions by analysing data collected on attacks
against more than one million real systems by Symantec’s WINE platform. Our analysis shows
that mass attackers’ fixed costs are indeed significant. Significant efficiency gains can be made
by individuals and organizations by accounting for this effect.

Keywords: Cyber Security; Dynamic Programming; Malware Production; Risk Management.

1 Introduction

Security vulnerabilities in an information system allow cyber attackers to exploit, infiltrate and
exfiltrate information for financial and/or political gain. Whilst a great deal of prior research has
focused on the security investment decision making process for security vendors and targets, the
choices of attackers are less well understood. This paper is the first attempt to define a cyber
attacker revenue function with costly effort from first principles and then to empirically fit this
function to a large data set.

Our main results challenge the notion of the all powerful attackers willing to exploit a broad
range of security vulnerabilities and provide important guidance to policy makers and potential
targets on how to utilize finite resources in the presence of cyber threats.1

1An early security reference on this conceit can be found in (Dolev and Yao, 1983a, page 199) where a protocol
should be secured “against arbitrary behavior of the saboteur”. The Dolev-Yao model is a quasi “micro-economic”
security model: given a population with several (interacting) agents, a powerful attacker will exploit any weaknesses,
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A natural starting point when attempting to evaluate the decision making of attackers is to
look at the actual ‘traces’ their attacks leave on real systems (also referred as ‘attacks in the
wild’): each attempt to attack a system using a vulnerability and an exploit mechanism generates
a specific attack signature, which may be recorded by software security vendors. Dumitras and Shou
(2011) and Bilge and Dumitras (2012) provide a summary of signature identification and recording,
whilst Allodi and Massacci (2014) shows how they can be linked to vulnerabilities that attackers
seek to exploit. By observing the frequency with which these attack signatures are triggered, it
is possible to estimate (within some level of approximation) the rate of arrival of new attacks.
Evidence from past empirical studies suggests a different behavior depending on fraud type; for
example, Murdoch et al. (2010) shows that attackers focussing on chip and pin credit cards, which
require physical access, are very proactive and rapidly update their menu of exploits; for web users,
Allodi and Massacci (2014) and Nayak et al. (2014) indicate that the actual risk of attacks in
the wild is limited to hundred vulnerabilities out of the fifty thousand reported in vulnerability
databases. Mitra and Ransbotham (2015) confirm these findings by showing that even (un)timely
disclosures do not correlate with attack volumes.

The current cannon of results provide strong prima-facie evidence that attackers do not quickly
mass develop new vulnerability exploits that supplement or replace previous attack implementa-
tions. This collective behavior is at odds with the classical theoretical models of attacker be-
haviour Dolev and Yao (1983b): attackers can and will exploit any vulnerability. We must there-
fore conclude that attackers are rational, that the effort required to produce an exploit and hence
deployable malware is costly, and that they will respond to incentives in a way that is consistent
with classical models of behaviour (Laffont and Martimort, 2009). This work addresses this obser-
vation and impacts the development of risk models for cyber-attacks by identifying empirical and
theoretical aspects of attack and malware production.2

Figure 1 shows the fractions of systems receiving attacks recorded by Symantec, a large security
vendor, for two different cases: the red line plots the fraction of systems receiving two attacks at two
different times that target the same software vulnerability (CVE). The abscissa values represent
the time, in days, between attacks, hence we would expect that the red line would decrease (which
it does) from near unity to zero. The black dashed line represents the dual case: the same system
and the same software are attacked but the attacker uses a new vulnerability, different from the
original attack. The data suggests that it takes more than two years before the number of attacks
using new vulnerabilities exceeds the number of attacks using the same vulnerabilities, and about
3-4 years before a complete refresh occurs.

Our methodological contribution is twofold. First, we specify a novel theoretical model of
the dynamic decision making process of the attacker that is based on Stokey’s logic of inaction,
see Stokey (2008). We model the timing of effort by the attacker as a dynamic programming

and security is violated if they can compromise some honest agent. So, every agent must be secured by mitigating
all vulnerabilities. An alternative formulation is that the likelihood that a given vulnerability is exploited should be
at maximum entropy and hence the only dominating factor will be the criticality of that vulnerability.

2Whilst challenging the maximum entropy notion of attacks (if it can, it will) may appear to the informed reader
as attacking a straw man, the underpinning ideas of Dolev-Yao persist through to present security practice, see
for instance the comments in Schneier (2008) that cover similar ground. Variants of the all-powerful attackers are
proposed (e.g. honest-but-curious, game-based provable security models) but they only changed the power and
speed of attacks not the will: if there is weakness that the attacker can find and exploit, they will do it. Papers
analyzing web vulnerabilities Stock et al. (2013); Nikiforakis et al. (2014) report statistics on the persistence of these
vulnerabilities on internet sites as evidence for this all powerful effect and broad coverage of security vulnerabilities.
A better understanding of the rationale behind attack might lead to more informed decision.
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Fraction of systems receiving the same attack repeatedly in time (red, solid) compared to those receiving
a second attack against a different vulnerability (black, dashed). The vertical line indicates number of
days after the first attacks where it is more likely to receive an attack against a new vulnerability rather
than against an old one.

Figure 1: Distribution of time between of subsequent attacks with similar signatures.

problem, which we initially solve in its generality. For the purpose of empirical analysis we then
restrict it to the case of an attacker focusing on the ‘next’ update.

Our main prediction is that the complexity of implementation of a vulnerability endogenously
interacts with the update time and attackers will predominantly flock to the low hanging fruit
of vulnerabilities with low complexity and high impact. Second, we capture such relations by
deriving, directly from the theoretical model, a corresponding robust parametric regression model
of equilibrium update times and hence reverse engineer part of the malware production function,
a first in this literature. To ensure that the causal relations predicted in the theoretical model
are captured in our empirical study, we control for several factors related to the characteristics
of the user and their system for each recorded pair of attacks in the data (e.g. user geographical
locations). This work is the first to explicitly consider an attacker with fixed-costs, and to validate
the theoretical predictions with an empirical analysis derived directly from the analytical model.

The next section (§2) provides a brief review of the current research on attacker technologies
and production functions. Then we provide a dynamic model of attacking effort in continuous
time with discrete update intervals (§3), this model is then used to compute a linear equilibrium
between updates of attackers technologies and attack intensity (measured by machines attacked).
We utilize the specific insights from this general model to derive several hypothesis amenable to
empirical verification. The WINE dataset spanning two millions of attack signatures recorded in
the wild by Symantec is introduced (§4) and extract a number of regression models from the prime
principles (§5.1) by a mathematical transformation of the general model introduced in Section
3. This approach is used to derive additional empirical hypothesis for the regression variables
(Summarized in Table 8). We finally discuss the results of the empirical analysis (§5) and conclude
the paper by outlining implications for theory and practice (§6).
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2 Background

The economic decision making and the organization of information system security has been ex-
plored from a target perspective quite thoroughly in recent years. Anderson (2008) provides a
good summary on the early extant literature.3 Commonly, the presence of vulnerabilities has been
considered as the starting point for the analysis, as it potentially allow an attacker to take (total
or partial) control of a system and subvert its normal operation for personal gain.

Asghari et al. (2013); Van Eeten and Bauer (2008); Van Eeten et al. (2010) address the economic
incentives (perverse or well aligned) in addressing security threats. Market based responses, such as
bug bounty programs, are discussed in Miller (2007) and Frei et al. (2010) whilst Karthik Kannan
(2005) and Finifter et al. (2013) also address the issue of vulnerability markets and the value of
vulnerabilities to developers, organizations that may potentially be targeted, and indeed attackers.
Policing aspect on the disclosure of vulnerabilities, and their effect on overall security and/or
availability of attacks to attackers has been investigated by multiple studies (Mitra and Ransbotham
(2015); Ransbotham et al. (2012); Arora et al. (2008)). For example, Ransbotham et al. (2012) finds
that the introduction of incentives for vulnerability disclosure tend to decrease exploitation attempts
and increase overall security. However, Mitra and Ransbotham (2015) finds early disclosure has no
impact on attack volume (number of recorded attacks) and there is only some correlation between
early disclosure and the ‘time-to-arrival’ of exploits.

Defender strategies in terms of patching times have been investigated both empirically (Arora
et al. (2004); Okhravi and Nicol (2008)) and theoretically (Cavusoglu et al. (2006); Serra et al.
(2015b)), assuming specific threat models and attack production functions. Kannan et al. (2016)
considers how software vendors may maximize profit by exploiting the (endogenously or exogenously-
defined) attacker behavior; August et al. (2014) evaluates the externalities caused by outsourced
security management, and find that under some circumstances diversification, as opposed to patch-
ing, may yield lower costs. Dey et al. (2015) finds that ‘single-metric’ patching policies may be
ineffective, and that additional parameters and metrics may be needed. Similarly, Lee et al. (2016)
find that security best practices do not necessarily lead to more robust firm security, and that
different managerial settings may affect the relation between liability and security. These findings
are also well-reflected in empirical studies (Bozorgi et al. (2010); Allodi and Massacci (2014); Nayak
et al. (2014)), but a theoretical explanation capable of predicting the appearance of new exploits
is still amiss.

Presence of vulnerability if oftentimes largely undifferentiated in the strictly empirical literature
from presence of exploit due to the lack of an explicitly or implicit attacker decision model under-
lying the analysis (Naaliel et al. (2014); Bozorgi et al. (2010)). The theoretical aspects behind the
data generation process are explored in a growing number of studies in the recent literature. These
studies consider exploitation as a costly factor that can significantly affect an attacker’s decision
to launch an attack or wait for better conditions to emerge (Ransbotham and Mitra (2009); van
Dijk et al. (2013); Smeets (2018)). For example, van Dijk et al. (2013) models the attack/defense
decision process with varying attacker strategies ranging from fixed attack updates to adaptive
strategies based on the defender’s decisions. Similarly, Smeets (2018) models attacker decisions
based on the expectations of the attack’s persistence and stealthiness to defender detection and
remediation capabilities. These applications generally consider the attacker to be potentially capa-

3Policy, cost sharing and incentives have also been comprehensively explored from a target perspective in August
and Tunca (2006, 2008, 2011) and Arora et al. (2004, 2008).
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ble of adopting any strategy with different degrees of probability, depending on the conditions of
the game (Manshaei et al. (2013)). This holds particularly relevant for targeted attacks scenarios
whereby attackers may accurately measure the state of a specific target and decide whether to em-
ploy or engineer a (new) attack based on their belief that this will maximize some variable of value
(e.g. extended control over a resource as in van Dijk et al. (2013)). Differently, attacks against
large pools of ‘similar’ targets (e.g. by geographical distribution, or system configuration) adapt
to the state of the population of potential targets (as opposed to one specific instance), for which
attack technologies developed ‘ad-hoc’ are not always viable (Ransbotham and Mitra (2009)).

An example from recent studies illustrates the development of an underground economy that
fuels the technological development required to deliver attacks at scale, whereby changing vul-
nerability conditions are reflected at market level, and not at level of the single attacker (Grier
et al. (2012)). This difference has been acknowledged in the modeling literature (e.g. Laszka et al.
(2013)), but an explicit characterization of the attacker decision model underlying this effect re-
mains unexplored, despite this type of attack carrying a disproportionately large fraction of the risk
suffered by the final users (Provos et al. (2008); Allodi (2015); Nayak et al. (2014)). We fill this gap
by providing a theoretical and empirical link between timing of attacks at scale and appearance of
new exploits targeting the mass of Internet users.

A precise connotation of exploitation timings remains hard to develop as empirical data iden-
tifying attacker decisions remains exceedingly rare, with few exceptions focusing on specific case
scenarios (Ransbotham and Mitra (2009); Mitra and Ransbotham (2015)). A few studies did pro-
pose to evaluate market and economic effects on attacked systems (Anderson and Moore (2006);
Ransbotham et al. (2012); Finifter et al. (2013)), but did not tackle the underlying problem of
attack production at scale. Similarly, recent developments modeled and quantified the risk relation
between attack generation and defenses (Allodi and Massacci (2017); Bilge et al. (2017)), but lack
of a prediction mechanism for the rate of arrival of new attacks (as opposed to new vulnerabilities).

Our study fills this gap by providing a long-missing link between theoretical models of the
attacker (typically assuming all vulnerabilities will lead to an attack with a certain probability),
and the contrasting empirical observation that most attacks are similar in nature and focused on
few target vectors only Allodi (2015); Nayak et al. (2014).

The consensus in the security literature appears to have settled on the view that the severity
of the vulnerability in terms of the criticality of the software for the functioning of the business, as
measured by a series of metrics, should be used as a direct analogue of risk. For a broad summary of
the metrics and risk assessments involved in this domain see Mellado et al. (2010) (technology based
metrics); Sheyner et al. (2002); Wang et al. (2008); Manadhata and Wing (2011) (attack graphs
and surfaces); and Naaliel et al. (2014); Wang et al. (2009); Bozorgi et al. (2010); Quinn et al.
(2010) (severity measure metrics and indexation). From an economic perspective Ransbotham
and Mitra (2009) studies the incentives that influence the diffusion of vulnerabilities and hence
the opportunities of the attacker to attack a target’s systems (software and infrastructure). The
standard de facto metric for the assessment of vulnerability severity is the Common Vulnerability
Scoring System, or CVSS4 in short CVSS-SIG (2015). Hence, the view is that any open vulnerability
will eventually be exploited by some form of malware and the target organization will then be
subject to a cyber attack.

4The CVSS score provides a standardized framework to evaluate vulnerability severity over several metrics, and is
widely reported in public vulnerability databases such as the National Vulnerability Database NIST (2015) maintained
by the National Institute of Standards in Technology (NIST).
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Recent studies in the academic literature have challenged the automatic transfer of the technical
assessment of the ‘exploitability’ of a vulnerability into actual attacks against end users. Bozorgi
et al. (2010) and Allodi and Massacci (2014) have empirically demonstrated on different samples
a substantial lack of correlation between the observed attack signatures in the wild and the CVSS
type severity metrics. The current trend in industry is to use these values as proxies demanding
immediate action (see Beattie et al. (2002) for operating system security, PCI-DSS (2010) for credit
card systems and Quinn et al. (2010) for US Federal rules).

In particular, prior work suggests that only a small subset of vulnerabilities are actually ex-
ploited in the wild (Allodi and Massacci, 2014), and that none of the CVSS measures of severity of
impact predict the viability of the vulnerability as a candidate for an implemented exploit (Bozorgi
et al., 2010). In particular, Bozorgi et al. (2010) argue that besides the ‘technical’ measure of a
vulnerabilities, one should also consider the value or cost of a vulnerability exploit and the ease
and cost with which the exploit can be developed and then deployed.

On a similar line, Herley (2013) posits the idea that for a (rational) attacker not all attack types
make sensible avenues for investment. This is supported by empirical evidence showing that attack
tools actively used by attackers embed only ten to twelve exploits each on the maximum (Kotov
and Massacci, 2013; Grier et al., 2012), and that the vast majority of attacks recorded in the wild
are driven by only a small fraction of known vulnerabilities (Nayak et al., 2014; Allodi, 2015). It is
clear that for the attacker some reward must be forthcoming, as the level of costly effort required
to implement and deliver the attack observed in the wild is far from negligible. For example, Grier
et al. (2012) uncovers the presence of an underground market where vulnerability exploits are rented
to attackers (‘exploitation-as-a-service’) as a form of revenue for exploit writers. Liu et al. (2005)
suggest that attacker incentives should be considered when thinking about defensive strategies:
increasing attack costs or decreasing revenue may be effective in deterring the development and
deployment of an attack. For example, Chen et al. (2011) suggests to ‘diversify’ system configura-
tions so that the fraction of attackable system by a single exploit diminishes, hence lowering the
return per attack.

The effort needed to engineer an attack can be generally characterized along the three classic
phases from Jonsson and Olovsson (1997): reconnaissance (where the attacker identifies potential
victims), deployment (the engineering phase), refinement (when the attack is updated). The first
phase is covered by the works of Wang et al. (2008); Howard et al. (2005); Nayak et al. (2014),
where the attacker investigates the potential pool of targets affected by a specific vulnerability by
evaluating the attack surface of a system, or the ‘popularity’ of a certain vulnerable software. The
engineering aspects of an exploit can be understood by investigating the technical effort required to
design one (see for example Schwartz et al. (2011) and Carlini and Wagner (2014) for an overview
of recent exploitation techniques). However,the degree of re-invention needed to update an exploit
and the anticipated time from phase two to phase three remain largely un-investigated (Yeo et al.,
2014; Serra et al., 2015a; Bilge and Dumitras, 2012, provide some useful results in this direction).

Our model aggregates deployment and reconnaissance costs into a single measure, whereas we
explicitly model the expected time to develop exploits and subsequent updating times to include
new vulnerabilities in the arsenal.
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3 A Dynamic Attacker Model with Costly Effort

We consider a continuous time setting, such that 0 < t <∞, where an attacker will be choosing an
optimal update sequence 0 < T1 < T2 < . . . Ti . . . T∞ for weaponizing new vulnerabilities v1, .., vn.
The attackers technology has a “combination” of exploit technology that undergoes periodic up-
dates. Each combination targets a specific mix of vulnerabilities and we presume that attackers
can make costly investments to develop the capability of their technology.

The attacker starts activity at time t = 0 by initially identifying a set of vulnerabilities V ⊂ V
from a large universe V affecting a large number of target systems N . A fraction θV of the N systems
is affected by V and would be compromised by an exploit in absence of security countermeasures.
Targets are assumed to deploy patches and/or update systems, whilst security products update
their signatures (e.g. antiviruses, firewalls, intrusion prevention systems). Hence, the number of
infected systems available for exploit will decay with time.

We can represent vulnerability patches and security signatures as arriving on users’ systems
following two independent exponential decay processes governed respectively by the rates λp and
λsig. The effect of λp and λsig on attacks has been previously discussed by Arora et al. (2004, 2008);
Chen et al. (2011), whilst a discussion on their relative magnitude is provided in Nappa et al. (2015).
Assuming that the arrival of patches and antivirus signatures are independent processes, and rolling
them up into a single factor λ = f(λp, λsig), the number of systems impacted by vulnerabilities in
V at time t is

NV (t) = NθV e
−λt. (1)

For the given set of vulnerabilities V targeted by their technologies combination the attacker will
pay an upfront cost C(V |∅) and has an instantaneous stochastic profit function of

ΠV (t) = [r(t,NV (t), V )− c(t, V )]e−δt, (2)

where r(t,NV , V ) is a stochastic revenue component,5 whilst c(t, V ) is the variable costs of main-
taining the attack,6 subject to a discount rate of δ. We do not make any assumption on the revenues
from successful attacks. They could be kudos in hackers fora (Ooi et al., 2012) or revenues from
trading victim’s assets in black markets (Grier et al., 2012; Allodi et al., 2015).

At some point, the attacker might decide to perform a refresh of its attacking capabilities by
introducing a new vulnerability and engineering its exploit by incurring an upfront cost of C(v|V ).
This additional vulnerability will produce a possibly larger revenue r(t,NV ∪{v}(t), V ∪ {v}) at an
increased marginal cost c(t, V ∪ {v}). As the cost of engineering an exploit is large with respect
to maintenance (C(v|V )� c(t, V ∪ {v})) and neither successful infection (Allodi et al., 2013), nor
revenues are guaranteed (Herley and Florencio, 2010; Rao and Reiley, 2012; Allodi et al., 2015),
the attacker is essentially facing a problem of deciding action vs inaction in presence of fixed initial
costs as described by Stokey (2008) and one’s best strategy is to deploy the new exploit only when
the old vulnerabilities no longer guarantee a suitable expected profit.

This decision problem is then repeated over time for n newly discovered vulnerabilities, and n
refresh times denoted by Ti.

5This component accounts for the probability of establishing contact with vulnerable system (Franklin et al.,
2007), the probability of a successful infection given a contact (Kotov and Massacci, 2013; Allodi et al., 2013), and
the monetization of the infected system (Kanich et al., 2008; Zhuge et al., 2009; Rao and Reiley, 2012).

6For example, attackers may need to obfuscate the attack payload to avoid detection (Grier et al., 2012), or renew
the domain names that the malware contacts to prevent domain blacklisting (Stone-Gross et al., 2009).
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We define by C0 = C(V |∅) the initial development cost and by Ci+1 ≡ C(vi+1|V ∪ {v1 . . . vi})
the cost of developing the new exploits, given the initial set V and the additional vulnerabilities
v1 . . . vi. We denote by Ni(t) ≡ NV ∪{v1,...,vi}(t) the number of systems affected by adding the new
vulnerability at time t. Similarly, we define ri(t) and ci(t) as the respective revenue and marginal
cost of the vulnerability set V ∪ {v1, . . . , vi}. Then the attacker faces the following stochastic
programming problem for n→∞

{T ∗1 , . . . , T ∗n} = arg max
{T1,...,Tn}

n∑
i=0

−Cie−δTi +

∫ Ti+1

Ti

(ri(t,Ni(t))− ci(t)) e−δtdω. (3)

The action times T0 = 0, Ti+1 > Ti, and Tn+1 is such that rn(Tn+1, Nn(Tn+1)) = cn(Tn+1). Since
the maintenance of malware, for example through ‘packing’ and obfuscation (i.e. techniques that
change the aspect of malware in memory to avoid detection), is minimal and does not depend on
the particular vulnerability, see (Brand et al., 2010, § 3) for a review of the various techniques, we
have that ci(t)→ 0 and therefore also Tn+1 →∞. This problem can be solved with the techniques
discussed in Stokey (2008), Birge (2010), Rincón-Zapatero and Rodŕıguez-Palmero (2003) and
further developed in Birge and Louveaux (2011) either analytically or numerically by simulation.
Some further mild assumptions result in solutions with a clean set of predictions that motivate and
place in context our empirical work in the standard Markovian set-up needed to identify specific
effects.

By imposing an instantaneous, history-less payoff (adapted process), with a risk neutral pref-
erence, expected pay-off and expected utility for a given set of ordered action times {T1, . . . , Tn}
coincide. Risk preferences are then encapsulated in the discount factor, a common assumption in
dynamic programming literature (see the discussion on model choice in (Stokey, 2008, Ch. 1)).

Hence, the simplest approach is to presume risk neutrality (under the discount factor δ) and solve
in expectations as a non-stochastic Hamilton–Jacobi–Bellman type problem along the standard
principles of optimal decision making (Birge and Louveaux, 2011, Ch. 4). Under the assumption
of stationary revenues, we define r as the average revenue across all systems. The expected payoff
from deployed malware at time t (where t ≥ T is the amount of time since the attacker updated the
menu of vulnerabilities by engineering new exploits at time T ) is then approximated by definition
as follows:

E[r(t,NV ∪{v}(t))] =def rN
(
θV e

−λt + (θV ∪{v} − θV )e−λ(t−T )
)
, (4)

The first addendum caters for the systems vulnerable to the set V of exploited vulnerabilities that
have been already partly patched, whilst the second addendum accounts for the new, different
systems that can be exploited by adding v to the pool. For the latter systems, the un-patched
fraction restarts from one at time T .

Solving Eq. (3) in expectations we can replace the stochastic integral over dω with a traditional
Riemann integral over dt and evaluate the approximation in expectations. By solving the above
integral and imposing the usual f.o. condition we obtain a decomposition for the optimal profit for
the attacker.

{T ∗1 , . . . , T ∗n} = arg max
{T1,...,Tn}

n∑
i=0

(Π(Ti+1, Ti)− Ci)e−δTi (5)

Π(Ti+i, Ti) =
rN

λ+ δ

(
θi − θi−1 + θi−1e

−λTi
)(

1− e−(λ+δ)(Ti+1−Ti)
)

(6)
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where we abbreviate θ−1 ≡ 0, θ0 ≡ θV , and θi ≡ θV ∪{v1...vi}.

Proposition 1. The optimal times to weaponize and deploy new exploits for attackers aware of
initial fixed costs of exploit development results by solving the equations below for i = 1, . . . , n.

∂Π(Ti, Ti−1)

∂Ti
e−δTi−1 − δ(Π(Ti+1, Ti)− Ci)e−δTi +

∂Π(Ti+1, Ti)

∂Ti
e−δTi = 0 (7)

subject to T0 = 0, Tn+1 =∞, δ, λ > 0.

Proof of Proposition 1 is given in Appendix 7.1. �
Unrestricted dynamic programming problems such as that described in Proposition 1 do not

generally have analytic solutions for all parameter configurations. They can be log-solved either
in numerical format, or by computer algebra as a system of n equations by setting xi = e−λTi ,
yi = e−δTi and then adding the n equations δ log xi = λ log yi. However, we can obtain a closed
form solution in the case of a admit a myopic attacker who only considers a single individual
decision n = 1. This approximates the case when the true dynamic programming problem results
in T ∗1 > 0 and T ∗2 → ∞. For an overview of the appropriate domains for the use of this type of
simplification see DeGroot (2005).

Corollary 1. A myopic attacker, who anticipates an adapted revenue process from deployed ex-
ploits subject to a decreased effectiveness due to patching and anti-virus updates with a negligible
cost of maintenance for each exploit, will postpone indefinitely the choice of weaponizing a vulner-
ability v if the ratio between the cost of developing the exploit and the maximal marginal expected
revenue is larger than the discounted increase in the fraction of exploited vulnerabilities, namely
C(v|V )/rN > δ/(λ+ δ)(θV ∪{v} − θV ). The attacker would be indifferent to the time at which
deploy the exploit only when the above relation holds at equality.

Proof of Corollary 1 is given in Appendix 7.2. �

Whilst our focus is on realistic update times for the creation of new exploits, note that the
‘all–powerful’ attacker is still admitted as a particular case when the attacker cost function C(v|V )
for weaponizing a new vulnerability collapses to zero. In this case, Corollary 1 predicts that the
attacker could essentially deploy the new exploit at an arbitrary time [0,+∞] even if the new exploit
would not yield extract impact.

If the vulnerability v affects a software version for which there is already a vulnerability in V ,the
fraction of systems available for exploit will be unchanged (θV ∪{v} = θV ). Hence, the cost has to
be essentially close to zero (C(v|V ) → 0) for the refresh to be worth. In the empirical analysis
section §(5) we report a particular case where this phenomenon occurs in our dataset. Based on
these considerations we can now state our first empirical prediction.

Hypothesis 1. Given Corollary 1, a work-averse attacker will overwhelmingly use only one reliable
exploit per software version.

Engineering a reliable vulnerability exploit requires the attacker to gather and process technical
vulnerability information (Erickson, 2008).

This technical ‘exploit complexity’ is captured by the Attack Complexity metric provided in
the CVSS. When two vulnerabilities cover essentially the same population (θV ∪{v}−θV ≈ ε) a lower
cost would make it more appealing for an attacker to refresh their arsenal as this would make it
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easier to reach the condition (C(v|V )/rN ≈ δ/(λ+ δ)(θV ∪{v} − θV ) ≈ ε) when the attacker would
consider deploying an exploit to have a positive marginal benefit.

Hypothesis 2. Corollary 1 also implies that a work-averse attacker will preferably deploy low-
complexity exploits for software with the same type of popularity.

Corollary 1 describes a result in the limit and in presence of a continuous profit function. Indeed
according to Eq. (4) the attacker expects to make a marginal profit per unit of time equal to rNf(t)
where limt→∞ f(t)→ 0 and as a result ∂Π(Ti+1, Ti)/∂Ti+1 is a monotone decreasing function and
∂Π(Ti+1, Ti)/∂Ti+1 → 0 for Ti+1b → ∞. In practice, the profit expectations of the attacker are
discrete: as the marginal profit drops below r, it is below the expect marginal profit per unit of
compromised computers. Hence, the attacker will consider the time Ti+1 = T ? < ∞ where such
event happens as equivalent to the event where the marginal profit goes to zero (Ti+1 = ∞) and
hence assumes that the maximal revenue has been achieved and a new exploit can be deployed.

Proposition 2. A myopic attacker, who anticipates an adapted revenue process from deployed
exploits subject to a decreased effectiveness due to patching and anti-virus updates with a negligible
cost of maintenance for each exploit, and expects a marginal profit at least equal to the marginal
revenue for a single machine (∂Π/∂T ≥ r(0, NV (0), V )/NV (0)) will renew their exploit at

T ? =
1

δ
log

(
C(v|V )

r
− δ

λ+ δ
(θV ∪{v} − θV )N

)
(8)

under the condition that C(v|V )
rN ≥ 1

N + δ
λ+δ (θV ∪{v} − θV ).

Proof of Proposition 2 is given in Appendix 7.3. �
Assuming the cost and integral of the reward function over [0, T ∗i ] are measured in the same

numèraire and approximately within the same order of magnitude, the model implies that the
discount factor plays a leading role in determining the optimal time for the new exploit deployment,
the term 1

δ in Eq. (8). Typically the extant microeconomics literature (see Frederick et al., 2002)
sets exp(δ) − 1 to vary between one and twenty percent. Hence, a lower bound on T ∗1 would be
≈ [100, 400] when time is measured in days. This implies the following prediction:

Hypothesis 3. Given Proposition 2, the time interval after which a new exploit would economi-
cally dominate an existing exploit is large, T ∗1 > 100 days.

4 Data Set

Our empirical dataset merges three data sources, these are:
The National Vulnerability Database (NVD) is the vulnerability database maintained

by the US. Known and publicly disclosed vulnerabilities are published in this dataset along with
descriptive information such as publication date, affected software, and a technical assessment of
the vulnerability as provided by the CVSS. Vulnerabilities reported in NVD are identified by a
Common Vulnerabilities and Exposures identifier (CVE-ID) that is unique for every vulnerability.

The Symantec threat report database (SYM) reports the list of attack signatures detected
by Symantec’s products along with a description in plain English of the attack. Amongst other
information, the description reports the CVE-ID exploited in the attack, if any.
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Table 1: Variables included in our dataset

Variable Description

CVE1,2 The identifier of the previous and the current vulnerability v exploited on the user’s machine.
T The delay expressed in fraction of year between the first and the second attack.
N The number of detected attacks for the pair previous attack, actual attack.
U The number of systems attacked by the pair.
Compl The Complexity of the vulnerability as indicated by its CVSS assessment. Can be either High, Medium

or Low as defined by CVSS(v2) Mell et al. (2007).
Imp The Impact of the vulnerability measured over the loss in Confidentiality, Integrity and Availability of

the affected information. It is computed on a scale from 0 to 10 where 10 represents maximum loss in
all metrics, and 0 represents no loss. Mell et al. (2007).

Day The date of the vulnerability publication on the National Vulnerability Database.
Sw The name of the software affected by the vulnerability.
Ver The last version of the affected software where the vulnerability is present.
Geo The country where the user system is at the time of the second attack.
Hst The profile of the user or “host”. See Table 2 for reference.
Frq The average number of attacks received by a user per day. See Table 2.
Pk The maximum number of attacks received by a user per day. See Table 2.

The Worldwide Intelligence Network Environment (WINE), maintained by Symantec,
reports attack signatures detected in the wild by Symantec’s products. In particular, WINE is a
representative, anonymized sample of the operational data Symantec collects from users that have
opted in to share telemetry data (Dumitras and Shou, 2011). WINE comprises attack data from
more than one million hosts, and for each of them, we are tracking up to three years of attacks.
Attacks in WINE are identified by an ID that identifies the attack signature triggered by the
detected event according to Symantec’s threat database. To obtain the exploited vulnerability we
match the attack signature ID in WINE with the CVE-ID reported in SYM.

The data extraction involved three phases: (1) reconstruction of WINE users’ attack history;
(2) building the controls for the data; (3) merging and aggregating data from (1) and (2). Because
of user privacy concerns and ethical reasons, we did not extract from the WINE dataset any
potentially identifying information about its hosts. For this reason, it is useful to distinguish two
types of tables: tables computed from WINE, namely intermediate tables with detailed information
that we use to build the final dataset; and extracted tables, containing only aggregate information
on user attacks that we use in this research. The full list of variables included in our dataset is
described in Table 1.7

4.1 Understanding the Attack Data Records

We are interested in the new vulnerability v whose mass exploit is being attempted in the wild
after an exploit for V vulnerabilities have been already engineered and attempted in the recent
past. Our goal is to empirically evaluate whether this past is indeed more or less recent.

7Replication of our analysis can find NVD publicly available at http://nvd.nist.gov; SYM is available online by
visiting http://www.symantec.com/security_response/landing/threats.jsp. The version of SYM and NVD used
for the analysis is also available from the authors at https://securitylab.disi.unitn.it/doku.php?id=datasets;
the full dataset computed from WINE was collected in July 2013 and is available for sharing at Symantec Research
Labs (under NDA clauses for access to the WINE repository) under the reference WINE-2012-008. In the online
Appendix B we provide a full ‘replication guide’ that interested researchers may follow to reproduce our results from
similar sources by Symantec or other security vendors.

11



Table 2: Values of the Hst, Frq, and Pk control variables for WINE users.

Hst Description

STABLE Host does not update and
does not change country be-
tween attacks.

ROAM Host’s system is the same but
it changed location.

UPGRADE Host’s system was upgraded
without moving.

EVOLVE Host both upgraded the sys-
tem and changed location.

Frq/Pk Description

LOW #attacks ≤ 1.
MEDIUM #attacks ≤ 10.
HIGH #attacks ≤ 100.
VERYHIGH #attacks ≤ 1000.
EXTREME #attacks > 1000.

Frq average × day
Pk maximum × day

To do so we initially (1) extract from WINE two attack signatures received by a system (host)
monitored by Symantec at different moments in time, (2) associate each attack signature to the
corresponding vulnerability whose exploit is attempted (Combining WINE, SYM and NVD), and
(3) collect from WINE some features of the host which suffered such attacks as control variables.

We use the host’s profile in terms of countries it connects to the Internet from, whether the
host moves geographically, and whether the host upgraded to a new version of the operating system
because users with profiles that change in time may look different to the attacker, and may therefore
be subject to different attacks and attack volumes (see Chen et al. (2011); Kotov and Massacci
(2013); Grier et al. (2012); Baltazar (2011) for a discussion).

Table 2 reports the measured values for each dimension and their definition. The Hst variable
measures whether the host changed geographical The Hst variable measures whether the host
changed geographical region since the first attack happened (as this may affect their likelihood
of receiving an attack), and whether it update its system in the observation period. Frq and Pk

measure respectively the average and maximum number of attacks received per day by the host.
We use them as proxy variables measuring the ‘exposure’ of a host to attacks. Thresholds have
been chosen based on attacks distribution received per day by users in WINE.

To avoid idiosyncratic noise from individual systems (as well as avoid processing sensitive data
such as IP numbers) we aggregated the information across hosts having the same characteristics.
Hence, each row of the dataset shows the aggregated number of attacked hosts (U) and the ag-
gregated volume of attacks (N ) that have targeted a vulnerability v identified by CVE2, such that
the very same hosts have previously (T days before) received an attack on another vulnerability
identified by CVE1. Hence, an “attack-pair” describes the subsequent exploitation of two (pos-
sibly identical) vulnerabilities on a set of host systems with similar characteristics. This allows
us to evaluate the evolution attack arrivals against comparable systems worldwide. Whilst each
< CVE1, CVE2, T , Geo, Hst, Frq, Pk > tuple is unique in the dataset, the same CVEi may appear
multiple times in the dataset, as may the same pair CVE1, CVE2.

Table 3 reports an excerpt from the dataset (we omit Frq, Pk, and all the CVSS details of CVE1

and CVE2 for brevity). Each row represents a pair of detected attack signature. The columns CVE1

and CVE2 report respectively the CVE-ID of the attacked vulnerability in v and in the novel attack
against V . Column T reports the time delay, measured in days, between the two attacks. Column
N reports the overall number of attacks detected for CVE2 after an attack against CVE1; U reports
the number of single systems receiving the same pair of attacks. Column Geo reports the country in
which the second attack was recorded. Finally, Hst reports the type of user affected by the attack
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Table 3: Summary Excerpt from our dataset.

CVE1 CVE2 T U N Geo Hst

2003-0533 2008-4250 83 186 830 IT Up
2003-0818 2003-0818 146 1 1 US Rm
2003-0818 2009-4324 616 1 1 CH Ev
2003-0818 2009-4324 70 52 55 US Ev

For example, on the third row, one WINE system (U=1) located in Switzerland (Geo=CH) suffered only once (N=1)
from an attack targeting the vulnerability CVE2 = CVE-2009-4324 that was preceded by an attack targeting CVE1 =
CVE-2003-0818 almost two years earlier (T =616). On the fourth row, U=52 systems in the United States (Geo=US)
received N=55 times the first attack on CVE1 on followed by the second attack on CVE2 just two months apart (T =70).
In both cases the systems considered are of type EVOLVE, indicating that the affected systems have been upgraded
and moved from some other country to the country listed in Geo during our observation period.

as defined in Table 2.
Information regarding both attacked CVEs is extracted from the NVD: for each CVE we collect

publication date (Day), vulnerable software (Sw), last vulnerable version (Ver), and an assessment
of the Compl of the vulnerability exploitation and of its Imp, provided by CVSS (v2).

As we mentioned, we associate attack signature to CVE by combining information from WINE
with Symantec own database of attack signatures (SYM). However, attack signatures as reported
by Symantec have varying degrees of generality, meaning that they can be triggered by attacks
that targets different vulnerabilities but still follow some common pattern. For this reason, some
signatures reference more than one vulnerability. In this case, we have no means to know which of
the vulnerabilities was effectively targeted by the attack. Out of 1,573 different attack signatures,
112 involve more than one vulnerability; to avoid introducing counting errors on the number of
attacks per CVE, we dropped these attack signatures from further consideration.

Figure 2 reports the observed distribution on a logarithmic scale. It is apparent that most
WINE hosts receive only a handful of attacks per day, while few hosts are subject to ‘extreme’
levels of attack density (> 1, 000/day). These may be hosts subject to network floods sent by
the attacker in a ‘scripted’ fashion, or a large number of individual users whose actual, private IP
address is behind a large proxy (e.g. by their internet service provider).

4.2 Descriptive statistics

Descriptive statistics of all variables are reported in Table 4. The upper left quadrant presents the
mean and standard deviation Delay (T ), Volume (N ) and Machines (U), we have 2.57 Million rows
of data for each pair of attacks. The average delay is about a year, whilst the associated volume,
the number of attacks for the pair, is about thirteen and a half, against an average U count of
eleven. However, whilst the standard deviation of T is less than the mean, the Nand U counts are
substantially larger, as both are truncated at zero, the right tail is very large.

The left lower quadrant of Table 4, in three parts, presents the counts for the dummy variables
generated from the categorical variables that represent the user profile of the user or host (Hst),
the number of attacks received by the user per day (Frq) and the maximum number of attacks
received (Pk). We can see that the EVOLVE option in Hstis the most common with 1.42 million
observations from 2.57 million attack pairs. For Frq the LOW and MEDIUM categories are the
most common at around one million occurrences each. Finally Pk is dominated by the medium
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Figure 2: Distribution of attacks received per day by WINE users.

Note: Scatterplot distribution of attack frequency per user. Log-number of users is reported on the y-axis;
the x-axis reports (log) frequency of attacks. There is an exponential relationship between the variables:
few users receive thousands of attacks (> 1000 in the observed period), as opposed to the vast majority
that only receive a few.

category with 1.57 million occurrences, about 60% of the observations in this category.
The right half of Table 4 presents the geographical split of the attack pairs. As expected Western

Europe (15%) and North America (47%) represent about two thirds of the attack pairs. However, a
substantial number, 29%, did not have an available geographical location. It is notable that Easter
Asia and Australia & New Zealand do represent about a tenth of the observations in the sample.
Summary statistics of the collected variables are reported in Table 5.

To look into the specific properties N by geography in particular, Figure 3 reports the dis-
tribution of the mean number of attacked systems per day in each geographic area of the five
continents. The distributions are significantly different among and within continents with the ex-
ception of Africa, for which we observe little intra-continental variance. The highest mean arrival
of attacks per day is registered in Northern America, Asia and throughout Europe with the ex-
ception of Southern Europe. The mapping of country and region is defined as in the World Bank
Development Indicators.8

5 Empirical Analysis

The data is quite obviously unique and hence prior to conducting any correlative analysis we illus-
trate some scenarios that provide prima facie statistical evidence on the validity of the hypotheses
identified from our theoretical model. In accordance with Hyp. 1 the attacker should prefer to (a)
attack the same vulnerability multiple times rather than for only a short period of time, and (b)
create a new exploit only when they want to attack a new software version.

8See http://data.worldbank.org/country for a full categorization and breakdown.
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Figure 3: Distribution of attacks per day received in different geographic regions.

Note: Kernel density of mean cumulative attacks per day by geographical region. Regions in Americas,
Asia, and Europe show the highest rates of attacks. Attack densities vary can vary substantially per
region (possibly also depending on the vendor’s market share). Oceania accounts for a negligible fraction
of attacks overall.

Table 4: Descriptive statistics of variables for T , N , U , Hst, Frq, Pk, Geo.

Variable Mean/Freq. St. dev. Obs. Variable Freq. Obs.

Delay, Volume, Machines Geo

T 0.99 0.831 2.57 Australia & New Zeal. 0.039 0.101
N 13.552 102.28 2.57 Caribbean 0.013 0.033
U 11.965 93.11 2.57 Central America 0.007 0.018

Central Asia 0 0.000063
Hst Eastern Africa 0.001 0.00173
Ev 0.552 1.42 Eastern Asia 0.043 0.109
Rm 0.109 0.280 Eastern Europe 0.011 0.0282
St 0.076 0.195 Melanesia 0 0.000159
Up 0.263 0.677 Micronesia 0.001 0.00312

Middle Africa 0 0.000112
Frq Not Avail. 0.112 0.289
XH 0.004 0.0101 Northern Africa 0.002 0.00409
H 0.179 0.461 Northern America 0.468 1.20
L 0.436 1.12 Northern Europe 0.023 0.0600
M 0.379 0.975 Polynesia 0 0.0000028
VH 0.001 0.0357 South America 0.008 0.0208

South-Eastern Asia 0.023 0.0593
Pk Southern Africa 0 0.00103
XH 0 0.000292 Southern Asia 0.013 0.0339
H 0.296 0.760 Southern Europe 0.063 0.161
L 0.091 0.235 Western Africa 0.001 0.00296
M 0.609 1.57 Western Asia 0.018 0.0468
VH 0.004 0.01018 Western Europe 0.154 0.395

To evaluate these scenarios we identify three types of attack pairs that are summarized in
Table 6: in the first type of attack pair (A1) the first attacks and the second attack affect the
same vulnerability and, consequently, the same software version; in the second pair (A2) the first
attack and the second attack affect the same software, but different CVEs and different software
versions; finally the first and second attacks affect the same software and the same version but
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Table 5: Descriptive statistics for CVE1 and CVE2 variables.

CVE1 CVE2
Variable Mean Obs. Variable Mean Obs.
ComplCV E1,H 0.009 23K ComplCV E2,H 0.009 24K

ComplCV E1,L 0.42 1.08M ComplCV E2,L 0.334 0.86M

ComplCV E1,M 0.571 1.47M ComplCV E2,M 0.657 1.69M

ImpCV E1 9.549 2.57M ImpCV E2 9.681 2.57M
Internet Explorer 0.096 .25M Internet Explorer 0.04 0.10M
PLUGIN 0.791 2.03M PLUGIN 0.9 2.31M
PROD 0.083 .21M PROD 0.037 95K
SERVER 0.03 77K SERVER 0.023 59K
Pub. Year 2008.8 2.57M Pub. Year 2009.4 2.57M

Table 6: Sample Attack Scenarios and Compatibility with Work-Aversion Hypothesis

Type Condition Description Hypothesis

A1 CVE1 = CVE2 The first attacks and the second attack affect
precisely the same vulnerability and, conse-
quently, the same software version

Often for Hyp 3 as
T ? →∞

A2 CVE1 6= CVE2∧
SwCVE1 = SwCVE2∧
VerCVE1 6= VerCVE2

The first attack and the second attack affect
the same software but different CVEs and dif-
ferent software versions.

Less frequent for Hyp 1
and Hyp 2 as 0 < T ? <
∞

A3 CVE1 6= CVE2∧
SwCVE1 = SwCVE2∧
VerCVE1 = VerCVE2

First and second attacks affect the same soft-
ware and the same version but exploit different
vulnerabilities

Almost never for Hyp 1
as θV ∪{v} = θV

Note: We expect the vast majority of attacks generated by the work-averse attacker to be of type A1. A2 should
be less frequent than A1, as it requires to engineer a new exploit. A3 contradicts the work aversion hypothesis and
should be the least common type of attack.

exploit different vulnerabilities (A3). According to our hypothesis we expect that A1 should be
more popular than A2 (in particular when the delay between the attacks is small) whilst A3 should
be the least popular of the three. To evaluate these attacks it is important to consider that users
have diverging models of software security (Wash, 2010), different software have different update
patterns, frequencies and attack vectors, see Nappa et al. (2015), and Provos et al. (2008).

For example, an attack against a browser may only require the user to visit a webpage, while an
attack against a word processing application may need the user to actively open a file on the system
(see also the definition of the Attack Vector metric in the CVSS standard CVSS-SIG (2015)). As
these clearly require a different attack process, we further classify Sw in four categories: SERVER,
PLUGIN, PROD(-ductivity) and Internet Explorer. The categories are defined by the software
names in the database. For example SERVER environments are typically better maintained than
‘consumer’ environments and are often protected by perimetric defenses such as firewalls or IDSs.
This may in turn affect an attacker’s attitude toward developing new exploits. This may require the
attacker to engineer different attacks for the same software version in order to evade the additional
mitigating controls in place. Hence we expect the difference between A2 and A3 to be narrower for
the SERVER category.

Figure 4 reports a fitted curve of targeted machines as a function of time by software category.
As expected, A1 dominates in all software types. The predicted order is valid for PLUGIN and
PROD. For PROD software we find no attacks against new vulnerabilities for different software
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Figure 4: Loess regression of volume of attacks in time.

Volume of received attacks as a function of time for the three types of attack. A1 is represented by a
solid black line; A2 by a long-dashed red line; A3 by a dashed green line. The grey areas represent 95%
confidence intervals. For Internet Explorer vulnerabilities the maximum T between two attacks is 1288
days; for SERVER is 1374 days; PROD 1411; PLUGIN 1428. This can be determined by the timing of
first appearance of the attack in the WINE database.

versions, therefore A2 = A3 = 0. This may be an effect of the low update rate of this type of
software and relatively short timeframe considered in our dataset (3 years), or of a scarce attacker
interest in this software type. Results for SERVER are mixed: the difference between A2 and A3

is very narrow and A3 is occasionally higher than A2. Since oscillations occur within confidence
intervals they might be due to chance.

Internet Explorer is an interesting case in itself. Here, contrary to our prediction, A3 is higher
than A2. By further investigating the data, we find that the reversed trend is explained by one
single outlier pair: CVE1 =CVE-2010-0806 and CVE2 =CVE-2009-3672. These vulnerabilities affect
Internet Explorer version 7 and have been disclosed 98 days apart, within our 120 days threshold.
More interestingly, they are very similar: they both affect a memory corruption bug in Internet Ex-
plorer 7 that allows for a heap-spray attack resulting in arbitrary code execution. Two observations
are particularly interesting:

1. Heap spray attacks are unreliable attacks that may result in a significant drop in exploitation
success. This is reflected in the Access Complexity:Medium assessment assigned to both
vulnerabilities by the CVSS v2 framework. In our model, this would imply a lower return
r(t,NV (t), V ) for the attacker, as the unreliable exploit may yield control of fewer machines
among the vulnerable ones.
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2. The exploitation code found on Exploit-DB9 is essentially the same for these two vulnera-
bilities. The code for CVE2 is effectively a rearrangement of the code for CVE1, with different
variable names. In our model, this would indicate that the cost C(v|V ) ≈ 0 to build an exploit
for the second vulnerability is negligible, as most of the exploitation code can be re-used from
CVE1 (See Appendix §A for details).

Hence, this vulnerability pair is only an apparent exception: the very nature of the second
exploit for Internet Explorer 7 is coherent with our model and in line with Hyp. 1 and Hyp. 2.
Removing the pair from the data confirms the order of attack scenarios identified in Table 6.

We now check how the trends of attacks against a software change with time. Hyp. 3 states that
the exploitation of the same vulnerability persists in time and decreases slowly at a pace depending
on users’ update behaviour. This hypothesis offers an alternative behavior with respect to other
models in literature where new exploits arrive very quickly after the date of disclosure, and attacks
increase following a steep curve as discussed by Arora et al. (2004).

5.1 An Econometric Model of the Engineering of Exploits

We can use Proposition 2 to identify a number of additional hypothesis that are useful to formulate
the regression equation. At first we notice that T ? = O(log(θv − θV )N). Therefore we have a first
identification relation between the empirical variable U (corresponding to N) and the empirical
variable T (whose correspondence to T ? is outlined later in this section).

Hypothesis 4. The relation between number of attacked systems U and delay T is log-linear.

Since ∂T ?/∂((θv−θV )N) < 0 a larger number of attacked systems U on different versions (θv 6=
θV ) would imply a lower delay T (as there is an attractive number of new systems that guarantee
the profitability of new attacks). In contrast, the baseline rate of attacks impacts negatively the
optimal time T as ∂T ?/∂(θVN) > 0 since a larger pool of vulnerable machines makes it more
profitable to continue with existing attacks (as per Hyp. 1).

Hypothesis 5. The possibility of launching a large number of attacks against systems for which
an exploit already exists lengthens the time for weaponizing a vulnerability (N · (Ver0 = Verv) ↑
=⇒ T ↑), whereas an increase in potential attacks on different systems is an incentive towards a
shorter weaponization cycle (N · (Ver0 6= Verv) ↑ =⇒ T ↓).

When considering the effects of costs, we observe that, as ∂T ?/∂C(v|V ) > 0, the presence of a
vulnerability with a low attack complexity implies dC(v|V ) < 0, and therefore reflects a drop in
the delay T between the two attacks. We have already discussed this possibility as Hypothesis 2.

As for revenues, it is ∂T ?/∂r < 0 so that an higher expected profit would imply a shorter time
to weaponization. However, we cannot exactly capture the latter condition since in our model the
actual revenue r is stationary and depends only on the captured machine rather than the individual
type of exploit. A possible proxy is available through the impact variable Imp, but it only shows the
level of technical compromise that is possible to achieve. Unfortunately, such information might not
correspond to the actual revenue that can be extracted by the attacker. For example, vulnerabilities
that only compromise the availability of a system are scored low according to the CVSS standard.
However, for an hacker offering “booter services” to on-line gamers (i.e. DDoS targeted attack

9See Exploit-DB (http://www.exploit-db.com, last accessed January 15, 2017.), which is a public dataset for
vulnerability proof-of-concept exploits. CVE1 corresponds to exploit 16547 and CVE2 corresponds to exploit 11683.
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N(ΘV ∪{v},∆) =
∫∞

max{∆,T ∗} min{N(ΘV , t−∆,∆), N(ΘV ∪{v}, t,∆)}dt

At T ∗ Attacker deploys vulnerability v

ΘV ∪{v}N →

N(ΘV ∪{v}, t,∆) ← ΘV ∪{v}Ne−λ(t−T ∗)

New attacks on v after ∆
↓
ΘVNe−λ(t−∆)

Attempted attacks on v0 ∈ V

T ∗t−∆ ≥ 0 t ≥ T ∗

∆

Figure 5: Computing the delay (T ) against different vulnerabilities.

Change in the number of attacked systems for two attacks against different systems ∆ = T days apart.
The first attack happens at t − T ≥ 0 and the number of attacked systems U(ΘV ∪ {v}, t, T ) is derived
from Eq. (1) as ΘVNe

−λ(t−T ). The number of systems attacked by the new exploit introduced at T ? is
derived as U(ΘV ∪{v}, t, T

?) = NΘV ∪{v}e
−λ(t−T?)dt.

against fellow gamers) these vulnerabilities are the only interesting source of revenues Hutchings
and Clayton (2016).

However Imp can also be seen as a potential conditional factor to boost the attractiveness of a
vulnerability as the additional costs of introducing an exploit might be justified by the increased
capability to produce more problems for the target if this is the objective of the attacker.

Hypothesis 6. Vulnerabilities with higher impact increase revenue and therefore decrease number
of attacks (ImpCVE2 > ImpCVE1 =⇒ U ↓).

As the time of introduction of an exploit T ? can not be directly measured from our dataset, we
use T (i.e. the time in between two consequent attacks) as a proxy for the same variable. Figure 5
reports a pictorial representation of the transformation. Each curve represents the decay in time
of number of attacks against two different vulnerabilities. The first attack (blue line) is introduced
at t = 0, and the second (red line) at t = T ?. The number of received attacks is described by
the area below the curve within a certain interval. Let U(ΘV ∪ {v}, t, T ) represent the number of
systems that receive two attacks T days apart, at times t − T and t respectively. Depending on
the relative position of t− T with respect to T ?, the interval within which the attacks on the pair
of vulnerabilities will be measures is

∫∞
max(T ?,T ) U(·)dt. Setting the number of attacks at time t−T

as U(θv, t − T ) = Nθve
−λ(t−T ) and the attacks received on the second vulnerability at time t as

U(θV ∪{v}, t) = NθV ∪{v}e
−λ(t−T ?), we obtain

U(θV ∪{v}, t, T ) = min
(
Nθve

λT ), NθV ∪{v}e
λT ?
)∫ ∞

max(T ,T ?)
e−λtdt (9)

Solving for the two cases T ? > T and T ? < T , we formulate the following claim:
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Claim 1. The sign of the coefficient for T oscillates from positive to negative as T increases.

logU(θV ∪{v}, t, T ) =

{
log N

λ − λT
? + λT + log θv if T ? > T

log N
λ + λT ? − λT + log θV ∪{v} if T ? < T

(10)

Proof of Claim 1 and its empirical evaluation are given in Appendix 7.4. �
Figure 1 indicates that T is on average more than 100 days with respect to T ?, as such:

logU = −λT + λT ? + log
N

λ
+ log θV ∪{v}

Substituting T ? from Eq. (8), the number of expected attacked systems after T days is:

logU = −λT + λ

[
1

δ
log

(
C(v|V )

r
− δ

λ+ δ
(θV ∪{v} − θV )N

)]
+ log

N

λ
+ log θV ∪{v}. (11)

Our regression model tests the hypotheses above by reflecting the formulation provided in Eq. (11).
T can be measured directly in our dataset; the cost of development of an exploits C(v|V ) can be
estimated by the proxy variables ComplCVE2 , as the complexity associated with exploit development
requires additional engineering effort (and is thus related to an increase in development effort)
CVSS-SIG (2015).

We can not directly measure the revenue r and the number of systems N affected by the
vulnerability, but we can estimate the effect of an attack on a population of users by measuring the
impact (Imp) of that vulnerability on the system: higher impact vulnerabilities (i.e. (ImpCV E2 >
ImpCV E1) allow the attacker to control a higher fraction of the vulnerable system, and therefore
extract higher revenue r from the attack. Similarly, the introduction of an attack with a higher
impact can approximate the difference in attack penetration (θV ∪{v} − θV )N for the new set of
exploits as it allows the attacker for a higher degree of control on the affected systems. Finally,
high impact vulnerabilities (ImpCV E2,H), for example allowing remote execution of arbitrary code on
the victim system, leave the ΘV ∪{v}N systems under complete control of the attacker; in contrast, a
low impact vulnerability, for example causing a denial of service, would allow for only a temporary
effect on the machine and therefore a lower degree of control.

In Table 7 we report the sample correlation matrix for the variables included in the regression
system we will use to parameterize the model, from an econometric standpoint, the highest pairwise
correlations with Ti are Frq MEDIUM and Pk HIGH, however these have correlations of less than
20%, as such the standard issues on rank and collinearity are not present.

The model predicts that for each pair the logarithm of Ui should be statistically related to Ti
with the coefficient parameterizing attackers anticipated arrival of patches and antivirus signatures
λ, presuming the additional controls orthogonalize the effort effects from the complexity and op-
portunity set provided by the attack type. The residual of the regression can then be interpreted as
being the function T ? of the idiosyncratic stochastic discount factor δ that each individual attacker
applies when making their decision to refresh their malware technology.

As we cannot ascribe a specific collection of observations to a specific individual, this is an
unobserved variable. To attempt to correct for this statistical feature, we attempt to identify
commonalities in attacks by including the significant principal components estimated from user
data and geographical location, see Figure 6 and related discussion for details.

As such, we estimate three equations to evaluate the effect of our regressors on the dependent
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Table 7: Correlation Matrix of All Variables Included in the Model.

Model variable 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

1. T 1
2. ComplCV E2L -0.130 1
3. ImpCV E2H 0.058 -0.237 1
4. ImpCV E2>ImpCV E1 0.092 -0.097 0.055 1

5. Geo North. Am. 0.020 0.146 -0.040 -0.035 1

6. Geo Western Eu. 0.022 -0.026 0.011 -0.051 -0.410 1

7. Hst EVOLVE -0.084 0.024 -0.065 0.022 -0.057 0.015 1

8. Hst UPGRADE 0.054 0.004 0.030 -0.017 0.084 -0.042 -0.656 1

9. Frq HIGH 0.104 -0.050 0.052 0.107 0.087 -0.183 -0.225 -0.024 1

10. Frq MEDIUM 0.136 0.077 -0.103 0.127 0.014 0.096 -0.087 0.186 -0.369 1

11. Pk HIGH 0.166 -0.008 0.045 0.049 0.020 0.033 -0.288 0.034 0.678 0.052 1

12. Pk MEDIUM -0.087 0.031 -0.054 -0.004 -0.023 -0.008 0.197 0.004 -0.549 0.101 -0.814

Notes: The correlation matrix is presented for the whole sample, for variable definitions see Table 1.

Table 8: Summary of predictions derived from the model.

Model variable Regressor Expectation Hyp. Rationale
T T β1 < 0 Hyp. 3,

Hyp. 4,
Hyp. 5

Shorter exploitation times are associated with
more vulnerable systems, hence T ↑ =⇒ U ↓.

C(V |v) ComplCV E2,L β2 < 0 Hyp. 1,
Hyp. 5,
Hyp. 2

The introduction of a new reliable, low-
complexity exploit minimizes implementation
costs, thus C ↓ =⇒ U ↓.

θV ∪{v} ImpCV E2,H β3 > 0 Hyp. 6,
Hyp. 5

High impact vulnerabilities allow the attacker
for a complete control of the attacked systems,
hence θV ∪{v} ↑ =⇒ U ↑.

r, (θV ∪{v} − θV ) ImpCV E2 >
ImpCV E1

β4 < 0 Hyp. 6 Selecting a higher impact exploit for a new vul-
nerability increases the expected revenue and
increases the fraction of newly controlled sys-
tems with respect to the old vulnerability. r ↑
=⇒ U ↓ and (θV ∪{v} − θV ) ↑ =⇒ U ↓.

variable. The formulation is derived from first principles in Eq. (11). Our equations are:

Model 1: log(Ui) = β0 + β1Ti + εi (12)

Model 2: log(Ui) = · · ·+ β2Compli,CV E2,L + εi (13)

Model 3: log(Ui) = · · ·+ β3Impi,CV E2,H + β4(Impi,CV E2 > Impi,CV E1)εi (14)

Where i indexes the pair of attacks received by each machine after T days, Compli,CV E2,L indicates
that CVE2 has a low complexity, and Impi,CV E2,H indicates that CVE2 has a High (≥ 7) impact. Both
classifications for Compl and Imp are reported by the CVSS standard specification. The correlation
matrix of the model variables is reported in Table 7.

The mapping of each term with our hypotheses and the predicted values of the regressors are
described in the Table 8. Further, we add the vector of controls Z to the regression to account for
exogenous factors that may confound the observation, as discussed in Section 4.2: Geo, Hst, Frq,
Pk. Z is defined as

Zalli =
∑
d∈Geo

αd(Geoi = d) +
∑
d∈Hst

αd(Hsti = d) +
∑
d∈Frq

αd(Frqi = d) +
∑
d∈Pk

αd(Pki = d) (15)

Given the model, it is reasonable to expect the variance in attacked systems to be related to the level
of some independent variables. For example, the variance of the dependent variable U may depend

21



-0.6

Northern America

1

-0.4

-0.2

0

1

0.2

Western Europe

P
C

3
 -

 E
x
p

la
in

 9
%

 o
f 

G
e

o
 v

a
ri
a

n
c
e

0.5

0.4

Principal Components of Geo-location

0.6

PC2 - Explain 23% of Geo variance

0.5

0.8

Northern Europe

PC1 - Explain 55% of Geo variance

1

0

Eastern Europe
Southern Asia

0

-0.5 -0.5

Eastern Asia

evol:EVOLVE

-0.4

peak:MEDIUM

1

-0.2

0

0.2

0.5 0.6

freq:EXTREME

P
C

3
 -

 E
x
p
la

in
 1

7
%

 v
a
ri
a
n
c
e

0.4

evol:ROAM

freq:VERYHIGH

0.4

freq:HIGH

peak:EXTREME

0.6

Principal Components of Users

peak:VERYHIGH

PC2 - Explain 26% variance

0 0.2

0.8

PC1 - Explain 37% variance

0

evol:UPGRADE

1

-0.5 -0.2

peak:HIGH

freq:MEDIUM

-0.4
-1 -0.6

Figure 6: Principal component analysis of location and user factors.

Each dot corresponds to the loading values for the geographical location and user specific factors denoted
Geo, Hst, Frq, and Pk factors. The axes report the loadings of the components for the eigenvalues that
explain the most variance. The farthest points from the graph origin (in green) are factor levels with the
highest level of independence.

on the value of T . To address possible heteroskedasticity of the data, we employ a robust regression
next to a regular OLS and compare the results. To evaluate the independence between the control
factor levels over the respective contingency table we employ a standard Principal Component
Analysis. Figure 6 shows a plot of the analysis for loadings of the principal components in Table 2.

We select all eigenvalues that explain at least 10% of the variance: Geo has only three eigen-
values above the threshold, whereas Hst, Frq, and Pk have four eigenvalues above the threshold.
Altogether they explain 87% of the variance for geo-location and 80% for user characteristics. The
corresponding components of the eigenvectors (corresponding to the loadings of the controls) are
identified and we select the control values that have the greatest distance from the origin in the
eigenvector space (at least 10% again as a sum of squares). This guarantees that we select the
controls with the highest degree of independence. This results in eight selected controls, identified
in green in Figure 6.

Our regression results are reported in Table 9. We utilize two estimators as we have little
information on the error structure of the regression model and we are subject to certain statistical
issues caused by the right truncation of the data, that is we do not observe T asymptotically by
construction.

First is a simple OLS estimator with Huber-White standard errors and second is a Robust
fit model that utilizes a WLS type estimator with iterative re-weighting and we implement the
sandwich form standard error from the WLS iterations. The weighting function for the iterative
re-weighting is a bisquare function, experimentation with spectral and Andrews type weightings
suggest the regressions are insensitive to kernel and tuning function. For the robust fit we compute
a McFadden adjusted pseudo-R2, which sets the numerator as the log likelihood function at the
estimate and the denominator as the log likelihood of just the intercept alone. Note that it is not
appropriate to compare directly the pseudo-R2 and the R2 from the OLS estimates, which suggests
that the model captures roughly 10% of the variation in numbers of attacked machines, as opposed
to explaining 35% of the model likelihood for the pseudo-R2.
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The set of OLS and Robust regressions returns very similar estimations. We also experimented
with various regression estimators (e.g. 2SLS, 3SLS) and they produced markedly similar results to
OLS, subject to the standard caveats on mis-identification. The introduction of the controls only
change the sign of β1 from positive to negative for Model 1. This may indicate that the type of
user is a significant factor in determining the number of delivered attacks, which is consistent with
previous findings Nappa et al. (2015). Interestingly, the factor that introduces the highest change
in the estimated coefficient β1 for T is Compl (Model 2), whereas its estimate remains essentially
unchanged in Model 3. This may indicate that the cost of introduction of an exploit has a direct
impact on the time of delivery of the exploit. The coefficients for all other regressors are consistent
across models, and their magnitude changes only slightly with the introduction of the controls.
This observation is to be expected: user characteristics should not influence the characteristics of
the vulnerabilities present on the system; as such, the distribution of attacks in the wild seems to
depend mostly on system characteristics rather than user type.

The signs of coefficients for the Imp variables suggest that both impact of a new vulnerability and
its relation with the impact of previous vulnerabilities have an effect on the number of attacked
systems. Interestingly, a high impact encourages the deployment of attacks and increases the
number of attacked systems, whereas the introduction of a higher impact vulnerability requires the
infection of a smaller number of systems as revenues extracted from each machine increase. Hence,
when introducing a new exploit, the attacker will preferably choose one that grants a higher control
over the population of users (θV ∪{v} > θV ) and use it against a large number of system. This is
consistent with recent findings suggesting that vulnerability severity alone is not a good predictor
for exploitation in the wild Allodi and Massacci (2014); Bozorgi et al. (2010). Other factors such
as software popularity may play a role Nayak et al. (2014).

6 Discussion, Conclusions and Implications

This paper implements a model of the Work-Averse Attacker as a new conceptual framing to
understand cyber threats. Our model presumes that an attacker is a resource-limited actor with
fixed costs that has to choose which vulnerabilities to exploit to attack the ‘mass of Internet
systems’. Work aversion simply means that effort for the attacker is costly (in terms of cognition
and opportunity costs), hence a trade-off exists between effort exerted on new attacking technologies
and the anticipated reward schedule from these technologies. As technology combinations mature,
their revenue streams are presumed dwindle.

In this framework, an utility-maximizing attacker will drive exploit production according to
their expectations that the newly engineered attack will increase net profits from attacks against
the general population of internet users. As systems in the wild get patched unevenly and often
slowly in time (Nappa et al., 2015), we model the production of new vulnerability exploits following
Stokey’s ‘economy of inaction’ logic, whereby ‘doing nothing’ before a certain (time) threshold is the
best strategy. A cost constraint driving the attacker’s exploit selection strategy naturally emerges
from the model. In particular, we find theoretical and empirical evidence that:

1. An attacker massively deploys only one exploit per software version. The only exception we
found is for Internet Explorer; the exception is characterized by a very low cost to create
an additional exploit, where it is sufficient to essentially copy and paste code from the old
exploit, with only few modifications, to obtain the new one. This finding is predicted by the
model and supports Hyp. 1.
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Table 9: Ordinary Least Squares and Robust Regression Results

Dependent Variable: natural logarithm of the number of attacked machines log(Ui)
Model 1 Model 2 Model 3

OLS Robust OLS Robust OLS Robust
Z1 : Z8 Z1 : Z8 Z1 : Z8 Z1 : Z8 Z1 : Z8 Z1 : Z8

c 0.927 0.006 0.731 0.096 1.065 0.122 0.845 0.171 0.933 -0.106 0.783 0.039
(0.001) (0.003) (0.001) (0.003) (0.001) (0.003) (0.001) (0.003) (0.004) (0.005) (0.003) (0.004)

T 0.018 -0.051 0.012 -0.044 -0.006 -0.092 -0.003 -0.071 -0.005 -0.091 -0.004 -0.071
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ComplCVE2 L -0.326 -0.479 -0.228 -0.324 -0.313 -0.464 -0.22 -0.314
(0.002) (0.002) (0.001) (0.001) (0.002) (0.002) (0.001) (0.001)

ImpCVE2 H 0.144 0.236 0.063 0.131
(0.003) (0.003) (0.003) (0.003)

ImpCVE 2 > ImpCV E1 -0.088 -0.209 0.012 -0.087
(0.003) (0.003) (0.002) (0.002)

Z1: Geo North. Amer. 0.604 0.37 0.679 0.422 0.671 0.419
(0.002) (0.001) (0.002) (0.001) (0.002) (0.001)

Z2: Geo West. Eu. 0.155 0.105 0.17 0.116 0.163 0.114
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Z3: Hst EVOLVE 0.191 0.129 0.208 0.141 0.223 0.149
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Z4: Hst UPGRADE 0.112 0.072 0.116 0.076 0.113 0.075
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Z5: Frq HIGH 0.24 0.147 0.212 0.127 0.279 0.157
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Z6: Frq MEDIUM 0.328 0.227 0.358 0.246 0.41 0.271
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Z7: Pk HIGH 0.513 0.442 0.567 0.49 0.531 0.477
(0.004) (0.003) (0.004) (0.003) (0.004) (0.003)

Z8: Pk MEDIUM 0.379 0.274 0.412 0.299 0.411 0.301
(0.003) (0.002) (0.003) (0.002) (0.003) (0.002)

Pseudo R2 - - 0.326 0.341 - - 0.331 0.347 - - 0.331 0.347

R2 0.00 0.093 - - 0.016 0.126 - - 0.017 0.13 - -
F 348.66 26,551.47 - - 18,548.25 33,422.78 - - 9,989.88 28,915.60 - -
Obs. 2,324,500 2,324,500 2,324,500 2,324,500 2,324,500 2,324,500 2,324,500 2,324,500 2,324,500 2,324,500 2,324,500 2,324,500

Model 1: log(Ui) = β0 + β1Ti + εi

Model 2: log(Ui) = β0 + β1Ti + β2Compli,CV E2,L + εi

Model 3: log(Ui) = β0 + β1Ti + β2Compli,CV E2,L + β3Impi,CV E2,H + β4Impi,CV E2 > Impi,CV E1εi

Notes: The three model equations reflect the definition of the expected (log) number of affected machines after an interval
T . The regression model formulation is derived from prime principle from Eq. 11. The expected coefficient signs are given in
Table 8. For each model we run four sets of regressions. OLS and Robust regressions are provided to addresses heteroscedasticity
in the data. R2 and F − statistics are reported for the OLS estimations. Note that the pseudo-R2 are computed for the robust
regressions, using the McFadden adjusted approach R2 = 1 − (log(LLfull) − K)/ log(LLint), where log(LLfull)is the log
likelihood for the full model minus the number of slope parameters K versus the log likelihood of the intercept alone and should
not be compared directly to the OLS R2. Coefficient estimations of the two sets of regressions are consistent. All regressions
are run with and without the set of controls defined by the PCA analysis pictorially reported in Fig. 6.
All coefficient signs for the three models reflect the work-averse attacker model predictions, with the only exception of the
estimation for T with no controls for which the prediction for β1 is inverted. This may indicate that user characteristics are
relevant factors for the arrival time of exploits when other factors related to the system are not accounted for. The introduction
of Compl in Model 2 significantly changes the estimate for β1, whereas Imp in Model 3 leaves the estimates for Compl and
T unchanged. High Imp vulnerabilities tend to increase volume of attacks. We report only standard errors without starring
p-values as all coefficients are significant due to the number of observations in the dataset. All standard errors are estimated
using the Huber-White approach.
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2. Low complexity vulnerabilities for which a reliable exploit can be easily engineered lower the
production costs and favor the deployment of the exploit. This finding supports Hyp. 2.

3. The attacker deploys new exploits relatively slowly over time, driven by a slowly decreasing
instantaneous profit function; empirically, we find that attacks 1000 days apart are still driven
by the same exploits in about 20% of the cases, and that the effect of the passage of time
in between attacks (T ) on the number of affected system is indeed negative and very small
given the current patching rate. This finding supports Hyp. 3 and Hyp. 5.

4. The presence of a high impact vulnerability increases the incidence of exploitation in the wild.
Similarly, gaining a higher control over attacked systems heightens the attacker’s revenue and
decreases the number of systems that need to be infected to balance costs. This supports
Hyp. 6.

The above findings suggest that risk associated with software vulnerabilities can not be solely
measured in terms of technical severity, and that other, measurable factors may be included in the
assessment, as previously suggested by some authors (see for example Bozorgi et al., 2010; Houmb
et al., 2010; Allodi and Massacci, 2014). While characteristics of attackers and users, such as skill
or competence in system security, may remain hard to measure, this paper shows how measurable
environmental indexes may be used to estimate economic incentives that exists for the attacker (as
suggested, e.g. by Anderson, 2008).

6.1 Reconstructing the Attacker Discount Factor

Given the estimates in Table 9 the final step is to reconstruct the curves that relate the expected
revenue per machine versus the minimum implied discount factor that an attacker would require
to engage in those attacks. There are some caveats to this approach, first, the distribution of
stochastic discount factors across attackers is unimodal and the distribution of machines attacked
is stationary. Hence, solving Equation 11 by plugging in values of logU , λT , log θV ∪{v} from the
distributions observed in the dataset we can reconstruct the curves relating the discount rate δ to
a grid of revenues r. As would be expected the discount rate is a downward sloping curve with
respect to an increasing return on investment. However, we can see that for many feasible values
of the expected return on investment per machine, the discount factor attains reasonably plausible
values.

6.2 Limitations

Our model describes an attacking adversary with costly production of malware. The model aims at
explaining the attacker’s preference in exploiting one vulnerability over another rather than casting
their net repeatedly after each new vulnerability is discovered. This preference can not be directly
measured, but must be inferred through their real attack signatures from a record of attempted
security incursions.

Records of attacks detected over a user’s machine are necessarily conditioned over the user’s
proneness in receiving a particular attack. For example, a user may be inclined to open executable
email attachments, but not in visiting suspicious websites. Thus, there may be a disassociation
between the observed attacks and those engineered by the attacker. For our empirical dataset this
limitation is mitigated by WINE reporting attack data on a very large representative sample of
Internet users (Dumitras and Shou, 2011). However, we also need to have additional conditioning
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Figure 7: Discount rates versus expected return.

Implied relationship between the attacked discount rate δ and expected revenue
per machine r.

variables to permit identification of the impact on various behavioral characteristics. Many of
the additional characteristics of users that may influence the observed volume of attacks, such
as educational level and culture which, are very difficult or close to impossible to gauge at the
scale of data presented in this paper. As proxies to control for this effect we employ the User

Profile, Frequency, Peak and geographic location variables, as these outline the user’s proneness
in receiving attacks. Further, geographic location may not only influence effects related to user
culture, but also on attack diffusion.

Software versioning information is known to be unreliable at times with respect to vulnerability
existence (Nguyen et al., 2015). Further, software versions can not be easily ‘ordered’ throughout
software types, as different vendors adopt different naming schemes for software releases (Christey
and Martin, 2013, for an overview). We can not therefore order software versions over time easily.
This is however irrelevant to our study as we are interested in measuring the sequences of newer
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attacks received by internet users, as opposed to measuring the existence of new exploits for subse-
quent software releases, our model predicts that the attacker will perform this information filtration
dynamically as they view the rewards from their activities. A limitation of our empirical dataset
is obviously the market penetration of Symantec, as of 2016 Symantec self reports that it is the
largest security vendor10 by market share in anti-virus and overall software security and hence has
a broad coverage recording attacks on customers. However, third party verifiable measurement of
these claims is difficult hence replication studies across different security vendors would be easily
implemented, given the simplicity of our model specification

6.3 Implications For Theory

The modeling of cyber attacks and cyber risk has traditionally been centered on the vulnerabil-
ities present on systems and their technical severity. Little theoretical discourse has been devel-
oped around the identification of models of vulnerability exploit production. Most assessments
on whether the attacker will be successful are still produced, in practice, by means of ‘expert es-
timates’ (Wang et al., 2008) or ‘technical measures of vulnerabilities’ (Naaliel et al., 2014) that,
however, are known not to correlate with attacker choices as shown by Bozorgi et al. (2010). That
“some vulnerabilities are different than others” (Nayak et al., 2014) is now a known fact, yet a
distinction between vulnerabilities is yet to be fully discussed. In recent years, this perspective
has been reinforced as the limited nature of attacker resources became empirically apparent (Grier
et al., 2012), and advances in security modeling started distinguishing between opportunistic and
deliberate attacks (see Ransbotham and Mitra, 2009, for a discussion on this). Current studies
modeling cybersecurity events typically think of the attacker as employing an undefined ‘attack
generation function’, which often collapses to an ‘all-powerful’ attacker that may generate an at-
tack for whichever vulnerability exists: as each attacker determines an effort function that directly
identifies exploitable vulnerabilities not currently monetized by others, for a large enough number
of attackers all vulnerabilities are covered and the maximum entropy condition is achieved. In this
paper we demonstrate that there are are common production obstacles in malware production:
attackers will agglomerate around existing technologies and only upgrade when those technologies
ceases to have greater marginal benefit than marginal cost.

This paper addresses fundamental assumptions on attacker strategies and parametrization by
identifying and empirically validating the attack production function based on the notion of ‘work-
averseness’ for the class of “non-reactive” (as opposed to “reactive”) attackers (van Dijk et al.,
2013). This classification is implicitly present across the spectrum of research in the information
security domain, for example referring to “targeted” or “untargeted” attackers (Laszka et al., 2013).
Modeling decisions under these classes are subject to a number of assumptions on the strategies
adopted by both attackers and defenders. For example, period renewal strategies consider a process
of periodic evolution of attacker (and/or defender) capabilities under the “non-reactive” assump-
tion; van Dijk et al. (2013) find that periodic strategies are strongly dominant under a number
of variants of their game, even when the attacker can evaluate some parameter of the defender’s
strategy (e.g. the defender’s renewal period). A number of questions remain however open: what
is the process that characterizes the attacker’s renewal process? Can we identify contextual and/or
technical considerations that affect periodicity? Are all attacks equivalent under the same strategy?

10Indeed, according to the 2016 market share Symatec has held this position for the last 15 years, see https:

//www.symantec.com/en/uk/about/newsroom/analyst/reports
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Our work is of particular relevance here on two aspects: firstly, we identify a theoretical under-
pinning to the attacker’s periodic renewal process that extends current assumptions on its nature
(e.g. technical severity vs exploit availability). This overcomes generalist assumptions on the fac-
tors characterizing this process by identifying aspects of malware engineering (e.g. vulnerability
complexity or presence of ‘equivalent’ exploit) that affect the attacker’s renewal period, opening
to further differentiations in cost-effective defender strategies (for example to the development of
fine-grained models for efficient exploit patching selection on the defender side). Second, our the-
oretical and empirical findings strongly support previous results on the dominance of periodic,
non-reactive strategies on the attacker side in settings where the defender is not reactive (van Dijk
et al., 2013); this dominance remains even in the case where the attacker can reliably evaluate
some characteristics of the defender’s setting (e.g. a system configuration, or an average patching
rate as evaluated in Nappa et al. (2015)); this is a case of prominent importance in reality, as
attacking tools and malware at large rely on an infrastructure that automatically optimizes attack
delivery on the basis of target characteristics such as geographical location or system configura-
tion (Grier et al., 2012; Kotov and Massacci, 2013). Similar settings are considered in the extant
literature on attacker decision making and target selection (Mitra and Ransbotham, 2015), which
our work extends by further characterizing the attack deployment process in terms of vulnerability
and temporal properties.

This can in turn inform the debate on regulatory intervention to devise regulatory models that,
on average, will increase the development costs for the attacker or incentivize the deployment of
defensive measures. For example, recent developments presented in Zhao et al. (2017) go in the
direction of evaluating policies for reward mechanisms in vulnerability finding (e.g. in so-called
‘bug bounty programs’); following our work, these may be extended to account for the periodicity
of vulnerability exploitation, and optimize incentives for vulnerabilities of higher relevance for the
attacker accordingly. Even targeted attacks require fixed costs, but it is still unclear whether such
attacks could be captured by variation in the work aversion (e.g. by making reward a function of
costs such as reconnaissance (Verizon, 2011; Bilge and Dumitras, 2012)) and whether these costs
may affect the dominant strategies on the defender side (van Dijk et al., 2013).

6.4 Implications For Information Security Management and Policy

Our findings suggest that the rationale behind vulnerability exploitation could be leveraged by
defenders to deploy more cost-effective security countermeasures. For example, it is well known
that software updates correspond to an increased risk of service disruption (e.g. for incompatibility
problems or updated/deprecated libraries). However, if most of the risk for a particular software
version comes from a specific vulnerability, than countermeasures other than patching may be
more cost-effective. For example, maintaining network IDS signatures might be a better option
than updating the software, because one IDS signature eliminate the majority of risks faced be
that system; a software patch may ‘overdo-it’ by fixing more vulnerabilities than necessary.

Further, this view on the attacker has repercussions on the impact of vulnerability disclosure
in terms of security of the user or organization. Work in this direction explored both the economic
incentives for sharing information security (Gal-Or and Ghose, 2005; Ransbotham et al., 2012)
and the impact of vulnerability disclosure on attacks and firm value (Arora et al., 2008; Telang
and Wattal, 2007). Some of this discussion resulted in recent open debates regarding policies for
vulnerability disclosure, and the drafting of ISO standards to guide vulnerability communication
to the vendor and to the public (e.g. ISO/IEC 29147:2014). For example, the United States
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Department of Commerce NTIA forum for vendors, industry players, and security researchers
to discuss procedures and timings of the vulnerability disclosure process.11 This discussion is not
currently guided by a theoretical framework that can act as a supporting tool for the decision maker.
For example, this may be applied to the case of vulnerability disclosure to estimate the effect in
terms of the effective increase in risk of attacks that follows the disclosure, extending previous work
in this same direction by Mitra and Ransbotham (2015). Our findings would indicate that there is
a limited risk in additional disclosures for the same software version.

Finally, a more precise and data-grounded understanding of the attacker poses a strategic
advantage for the defender. Extending Dey et al. (2015), parameters on attacker decisions and
timings can be considered when choosing or evaluating a patching policy. Our findings contribute
in this direction by defining a production model of attacks at scale that can be integrated in current
evaluations; importantly, our empirical validation can serve as input for the parametrization of
these models, guiding simulation scenarios and risk profile estimations to make better defensive
decisions. For example, following Kannan et al. (2016), when an exogenous strategy is ‘imposed’
on an attacker (e.g. as defined by the release of malware in the underground markets), a non-
uniform patch releases may be preferable from a vendor’s perspective. Our results may contribute
in the definition of efficient policies whereby a desirable level of security is achieved (e.g. as defined
by a social planner), while only marginally decreasing the profits for the vendor, by identifying
which vulnerabilities can be ‘safely’ left unpatched on certain systems (e.g. with pirated software
(Kannan et al., 2016; Terrence August, 2008)). Our results also suggest that the time dimension
may be relevant to evaluate from a policy perspective, for example by asynchronously releasing
patches to users. Similarly, by diversifying software (Chen et al., 2011; Homescu et al., 2013) the
defender can effectively decreases the number of systems the attacker can compromise with one
exploit, effectively making the existence conditions for Eq. (8) harder to satisfy than by means of
a patch release strategy employed by vendors. Following this, software vendors may randomize the
distribution of vulnerability patches to their users, to minimize the attacker’s chances of matching
their exploits with the vulnerabilities actually present on the system. A random distribution of
patches would simply decrease the fraction of attackable systems regardless of the attacker’s choice
in which vulnerability to exploit. Moreover, diversifying defenses may be in fact less onerous than
re-compiling code bases (when possible) or maintaining extremely diverse operational environments.
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7 Appendix: Proofs of Propositions

7.1 Proof of Proposition 1

The objective of the Proposition is to demonstrate the solution condition for the optimal set of action times
{T ∗1 , . . . , T ∗n}, which is given by the recursive derivative where T0 = 0, Tn+1 =∞, δ, λ > 0.

∂Π(Ti,Ti−1)
∂Ti

e−δTi−1 − δ(Π(Ti+1, Ti)− Ci)e−δTi + ∂Π(Ti+1,Ti)
∂Ti

e−δTi = 0 (16)

Proof. Proof of Proposition 1. We solve Eq. (3) in expectations and replace Eq. (4) and ci(t) ≈ 0 in Eq. (3)
with the abbreviations θ−1 ≡ 0, θ0 ≡ θV , and θi ≡ θV ∪{v1...vi}. Hence, we obtain

{T ∗1 , . . . , T ∗n} ≈ arg max
{T1,...,Tn}

n∑
i=0

−Cie−δTi +

∫ Ti+1

Ti

rN
(
θi−1e

−λt + (θi − θi−1)e−λ(t−Ti)
)
e−δtdt (17)

We can now solve the integral by replacing t→ z + Ti∫ Ti+1−Ti

0

rN
(
θi−1e

−λ(z+Ti) + (θi − θi−1)e−λ(z)
)
e−δ(z+Ti)dz = . . .

= rNe−δTi
(
θi + θi−1e

−λTi − θi−1

) ∫ Ti+1−Ti

0

e−(δ+λ)zdz

= rN
δ+λe

−δTi
(
θi − θi−1 + θi−1e

−λTi
) (

1− e−(δ+λ)(Ti+1−Ti)
)

(18)

Hence we finally obtain the following result which can be rewritten as (5)

{T ∗1 , . . . , T ∗n} = arg max
{T1,...,Tn}

n∑
i=0

e−δTi

(
−Ci + rN

λ+δ

(
θi − θi−1 + θi−1e

−λTi
) (

1− e−(λ+δ)(Ti+1−Ti)
))

(19)

To identify the optimal Ti we take the usual first order condition and obtain for i = 1 . . . n

∂Π
∂Ti

= ∂
∂Ti

(. . .+ (Π(Ti−1+1, Ti−1)− Ci−1)e−δTi−1 + (Π(Ti+1, Ti)− Ci)e−δTi

+ (Π(Ti+1+1, Ti+1)− Ci+1)e−δTi+1 + . . .)

= . . .+ ∂
∂Ti

(
(Π(Ti, Ti−1)− Ci−1)e−δTi−1 + (Π(Ti+1, Ti)− Ci)e−δTi

)
+ . . .

=∂Π(Ti,Ti−1)
∂Ti

e−δTi−1 − δ(Π(Ti+1, Ti)− Ci)e−δTi + ∂Π(Ti+1,Ti)
∂Ti

e−δTi (20)

7.2 Proof of Corollary 1

Corollary 1 outlines the solution space when the attacker presumes the residual income after T ∗1 is fixed in
time t expectations, hence the attacker is myopic to action time T ∗1 .

Proof. Proof of Corollary 1 For n = 1 Eq. (7) can be simplified by substituting T0 = 0 and Tn+1 = ∞ and
Tn = T .

∂Π(T,0)
∂T − δ(Π(∞, T )− Cv|V )e−δT + ∂Π(∞,T )

∂T e−δT = 0 (21)

To determine the three components of the equation above we now decompose each of the individual terms
of Eq. (6) as follows:

Π(T, 0) = rN
λ+δ θV

(
1− e−(λ+δ)T

)
and Π(∞, T ) = rN

λ+δ

(
θV ∪{v} − θV + θV e

−λT ) (22)
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we can now derive the partial derivatives

∂Π(T,0)
∂T = rNθV e

−(λ+δ)T and ∂Π(∞,T )
∂T = −rN λ

λ+δ θV e
−λT (23)

We then replace the corresponding value in the Eq. (21) above:

∂Π
∂T = rNθV e

−(λ+δ)T − δ( rNλ+δ

(
θV ∪{v} − θV + θV e

−λT )− C(v|V ))e−δT − rN λ
λ+δ θV e

−λT e−δT (24)

= rN
λ+δ e

−δT
(

(λ+ δ)θV e
−λT − δ

((
θV ∪{v} − θV + θV e

−λT )− (λ+ δ)C(v|V )
rN

)
− λθV e−λT

)
(25)

which finally yields

∂Π/∂T = rNe−δT
(
C(v|V )
rN − δ

λ+δ (θV ∪{v} − θV )
)

(26)

Now observe that if C(v|V )
rN > δ

λ+δ (θV ∪{v} − θV ) then the derivative is positive decreasing and it is it is
convenient to postpone the update which is eventually reached for T ∗ →∞. This is particularly true when
θV ∪{v} − θV = 0 and namely there is no change in the number of infected systems by adding one more

vulnerability. If C(v|V )
rN ≤ δ

λ+δ (θV ∪{v} − θV ) the derivative is negative so any update would decrease the

marginal return. Only if C(v|V )
rN = δ

λ+δ (θV ∪{v} − θV ) then the derivative is identically zero and the attacker
is indifferent to the time of deployment.

7.3 Proof of Proposition 2

The final theoretical result provides an explicit solution to the myopic version of the dynamic programming
problem and proceeds as follows:

Proof. We impose the stopping condition to the f.o. derivative of the profit of the attacker in Eq. (26)

∂Π/∂T = rNe−δT
(
C(v|V )
rN − δ

λ+δ (θV ∪{v} − θV )
)

= r(0,NV (0),V )
NV (0) = r (27)

N
(
C(v|V )
rN − δ

λ+δ (θV ∪{v} − θV )
)

= eδT (28)

Tr = 1
δ log

(
C(v|V )

r − δ
λ+δ (θV ∪{v} − θV )N

)
(29)

As the exploit weaponization has to happen for Tr ≥ 0 we must have C(v|V )
r − δ

λ+δ (θV ∪{v} − θV )N ≥ 1 and

therefore C(v|V ) ≥ r + δ
λ+δ (θV ∪{v} − θV )rN .

7.4 Proof of Claim 1

The transformation of the model prediction to the number of attacks against θV ∪{v}N systems received T
days after receiving an attack against a different vulnerability is as follows.

Proof. Setting the number of attacks on the first vulnerability at time t−T as U(θv, t−T ) = Nθve
−λ(t−T )

and the attacks received on the second vulnerability at time t as U(θV ∪{v}, t) = NθV ∪{v}e
−λ(t−T?), we obtain

that the expected attacks received T days after the first attack are as follows:

U(θV ∪{v}, t, T ) =

∫ +∞

max(T ,T?)

min
(
NθV e

−λ(t−T ), NθV ∪{v}e
−λ(t−T?)

)
dt

= min(NθV e
λT , NθV ∪{v}e

λT?

)

∫ +∞

max(T ,T?)

e−λtdt

= 1
λ min(NθV e

λT , NθV ∪{v}e
λT?

)e−λ(max(T ,T?)) (30)

logU(θV ∪{v}, t, T ) = log 1
λ + min(logNθV + λT , logNθV ∪{v} + λT ?)− λ(max(T , T ?)) (31)
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Figure 8: β1 estimations for increasing values of T .

Solve for the case T ? > T . As NθV ≤ NθV ∪{v}, we have that min(logNθV +λT , logNθV ∪{v}+λT ?) =
logNθV + λT , and we obtain:

T ? > T , logU = log N
λ + log θV + λT − λT ? (32)

Solve for the case T ? ≤ T . Sub case 1. For logNθV + λT ≤ logNθV ∪{v} + λT ? we obtain:

{T ? ≤ T ≤ 1
λ log

θV∪{v}
θv

+ T ?, logU = log NθV
λ } (33)

which indicates that, within a small timeframe after the introduction of the exploit at time T ?, the number
of received attacks only depends on the number of vulnerable systems in the wild. This result appears to
explain the observation noted in Mitra and Ransbotham (2015).
Sub case 2. For logNθV + λT > logNθV ∪{v} + λT ? we obtain:

{T > 1
λ log

θV∪{v}
θV

+ T ?, logU = log N
λ + log θV + log θV ∪{v} − log θV + λT ? − λT } (34)

By comparing (32) with (34) it is apparent that the impact of T on logU should change in sign wrt T .

7.5 Sensitivity Analysis

Figure 8 plots the estimated coefficient β1 for the empirical variable T by constraining intervals of 120 days
(four months) for increasing values of T (e.g. 0 < T ≤ 120, 30 < T ≤ 150, 60 < T ≤ 180, ...). It can be
observed that the sign of β1 oscillates above and below zero with increasing amplitude as T increases. This
effect is present regardless of the size of the interval and the relative increment imposed on T .
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A On-line Appendix: Internet Explorer Exploit Code

Here we report the exploit code for CVE1 =CVE-2010-0806 and CVE2 =CVE-2009-3672 both affecting Internet
Explorer version 7. On Exploit-DB12 CVE1 corresponds to exploit 16547 and CVE2 corresponds to exploit
11683.

The exploit code fragments (10+ lines of code out of 260+ for CVE1 and 130+ for CVE2) below illustrates
the difference between the two exploits as scripted for the Metasploit engine. The exploit code for CVE2

is effectively a rearrangement of the exploit code for CVE1, with different variable names (e.g. by replacing
j_memory with var_memory, j_shellcode with var_shellcode, etc.) and repositioned at the appropriate
memory addresses (0x. . . ).

1 func t i on j f u n c t i o n 1 ( ) {
2 . . .
3 j memory = new Array ( ) ;
4 var j s h e l l c o d e = unescape ( . . . ) ;
5 var j s l a c k s p a c e = 0x86000 −( j s h e l l c o d e . l ength ∗2 ) ;
6 while ( j nops . length< j s l a c k s p a c e /2)
7 j nops+=j nops ;
8 for ( j c o u n t e r =0; j counte r <270; j c o u n t e r++) {
9 j memory [ j c o u n t e r ] = j f i l l b l o c k + j f i l l b l o c k + j s h e l l c o d e ; }}

1 func t i on var body ( ){
2 . . .
3 var var memory = new Array ( ) ;
4 var v a r s h e l l c o d e = var unescape ( . . ) ;
5 var v a r s s = 20 + v a r s h e l l c o d e . l ength ;
6 while ( var spray . l ength < v a r s s )
7 var spray+=var spray ;
8 var bk = var spray . s u b s t r i ng ( . . ) ;
9 while ( var bk . l ength+v a r s s < 0x100000 )

10 var bk = var bk + var bk + var fb ;
11 for ( v a r i =0; va r i <1285; v a r i++) {
12 var memory [ v a r i ]= var bk + v a r s h e l l c o d e ; }}

B On-line Appendix: Replication Guide

Here we give the replication guidelines for our study from the tables from WINE. Our data can be reproduced
by utilizing the reference data set WINE-2012-008, archived in the WINE infrastructure.

Basic Tables from WINE

The first table we construct from WINE, LIFE, reports the full history of attacks against distinct users in
WINE. It has the following structure:

LIFE =
UserID AttackSignature Date SystemID IP HASH VolumeAttacks

...
...

...
...

...
...

12See Exploit-DB (http://www.exploit-db.com, last accessed April 12, 2018.)
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where UserID is the unique identifier of a user in the WINE platform, and AttackSignature is the unique ID
identifying the signature that the attempted attack triggered. Date, SystemID, IP HASH report respectively
the day, month and year of the attack; the internal ID of the operating system build; the hash of the IP
address. VolumeAttacks reports how many attacks UserID received on that day.

The attack profile defined in the LIFE table may depend on the interaction between several factors. In
particular, we identify three main factors that may confound our observations: the platform on which the
attacked user operates; his/her geographical location; the user evolution.

The PLATFORM table links a UserID to the type of system installed on the machine. All systems considered
in this study are running on Microsoft Windows.

PLATFORM =
UserID SystemID OperatingSystem Version ServicePack

...
...

...
...

...

In the TARGET PROFILE table we record the volume of attacks that a UserID receives in a day, irrespectively
than the used platform or IP address.

TARGET PROFILE =
UserID VolumeAttacks Day Month Year

...
...

...
...

...

In the STABILITY table we record the different countries from which a specific SystemID connected. This
can also be obtained by aggregating the data in the table LIFE.

STABILITY =
UserID UserID Country SystemID

...
...

...
...

Finally, we aggregate the data in these two tables in a third extracted table USERS, in which we categorise
each user in WINE over three dimensions: User Profile, Frequency, and Peak. The first dimension
records whether the user changes country and/or updates his or her system within the lifetime of WINE. In
Frequency and Peak we record respectively the frequency of received attacks and the maximum volume of
attacks received in a day by the user.

USERS =
UserID User Profile Frequency Peak

...
...

...
...

Aggregated forms of USERS, PLATFORMS, TARGET PROFILE and STABILITY are exfiltrated from WINE to
provide descriptive statistics.

Data merging and aggregation

Our final dataset is obtained by first joining the LIFE table with the control tables PLATFORM, USERS,

TARGET PROFILE, and then by performing a self-join of the obtained table with itself. The goal of the self-
join is to obtain the pairs of subsequent attack signatures triggered by a single user, and the time passed in
between the two attacks. The final disclosed table is of the form:

SIGNATURES =

SID 1 SID 2 T U N Country OS OS V OS SP User Profile Frequency Peak
...

...
...

...
...

...
...

...
...

...
...

...
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Table 10: Number of WINE users in the Hst, Frq, and Pk control groups.

Hst #Users Frq #Users Pk #Users

STABLE 1,446,020 LOW 3,210,465 LOW 2,559,819
ROAM 96589 MEDIUM 311,929 MEDIUM 983,221
UPGRADE 306,856 HIGH 19,683 HIGH 3,783
EVOLVE 1,697,570 VERYHIGH 3,919 VERYHIGH 170

EXTREME 1,039 EXTREME 42

where SID 1=SignatureID and SID 2=SignatureID later identify respectively the attack signature trig-
gered in the first and the second attack received by the user. T reports the days passed in between the
two attacks. U=count(machineID) reports the number of machines affected by SignatureID later T days
after receiving an attack of type SignatureID. Similarly, N=sum(volumes of SignatureID later) counts
how many times these two attacks triggered an alarm T days apart. The difference with the previous
field is that single machines may receive more than one attack of this type, thus we have sum(volumes of

SignatureID later) ≥count(machineID). The remaining fields are obtained with a join with the tables
PLATFORM, USERS, TARGET PROFILE.

Merging WINE with CVEs

SignatureID and SignatureID later are internal codes that identify which attack signature deployed by
Symantec’s product the attack triggered. To identify which vulnerability (if any) the attack attempted to
exploit we map WINE’s SignatureID with the threat description publicly available at Symantec’s Security
Response dataset.13 In the attack description it is provided, when relevant, the vulnerability that the
attack exploits, as referenced by the unique CVE vulnerability identifier.14 The CVE-ID is a standard
reference identifier for software vulnerabilities introduced by the MITRE organization and used by all major
vulnerability databases such as the National Vulnerability Database, NVD.15

To characterize each vulnerability, we match the CVE-ID reported in the SignatureID with the vulner-
ability summary reported in the NVD. The information on NVD comprises the name of the affected software
Sw (e.g. Flash in the example above), the latest vulnerable version Ver of the software (in our example Flash
9.0.115 and 9.0.45), and the disclosure date Day.

Further, additional information describing the technical aspects of the vulnerability are also provided.
This information can be extracted from the Common Vulnerability Scoring System (CVSS) assessment of
the vulnerability. CVSS measures several technical dimensions of a vulnerability to obtain a standardized
assessment that can be used to meaningfully compare software vulnerabilities. However, previous studies
showed that not all measures show, in practice, enough variability to characterize the vulnerabilities Allodi
and Massacci (2014). Of the dimensions considered in CVSS, in this study we are specifically interested in
the Access Complexity and Imp measures. The former gives an assessment on the ‘difficulty’ associated
with engineering a reliable exploit for the vulnerability Mell et al. (2007). For example, a vulnerability
that requires the attacker to win a race condition on the affected system in order to successfully exploit kit
may be deemed as a High complexity vulnerability (because the attacker can not directly control the race
condition, thus exploitation can be only stochastically successful). Similarly, Imp gives an assessment on the
Confidentiality, Integrity and Availability losses that may follow the exploitation of the vulnerability.

Table 10 reports the count distribution of the number of WINE users for each of these factor’s levels. It
is apparent that in the case of Hst users are uniformly distributed among the factor levels, with ROAM users
being the least frequent category. Most of the mass of the Frq and Pk distributions is at the low end of the
scale (i.e. most users receive few attacks per day both as an average and as a maximum). From Table 10 it

13The reference dataset is at https://www.symantec.com/security-center/, last accessed April 12, 2018.
14The classifiers are available at http://cve.mitre.org, last accessed April 12, 2018.
15Full database can be found at http://nvd.nist.gov, last accessed April 12, 2018.
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appears that users characterized by EXTREME or VERYHIGH levels for Frq or Pk are outliers and may therefore
need to be controlled for.
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