
Linking Object-Z with Spec#

Shengchao Qin and Guanhua He
Department of Computer Science, Durham University

{shengchao.qin, guanhua.he}@durham.ac.uk

Abstract

Formal specifications have been a focus of software en-
gineering research for many years and have been applied in
a wide variety of settings. Their use in software engineering
not only promotes high-level verification via theorem prov-
ing or model checking, but also inspires the “correct-by-
construction” approach to software development via formal
refinement. Although this correct-by-construction method
proves to work well for small software systems, it is still a
utopia in the development of large and complex software
systems. This paper moves one step forward in this direc-
tion by designing and implementing a sound linkage be-
tween the high level specification language Object-Z and
the object-oriented specification language Spec#. Such a
linkage would allow system requirements to be specified
in a high-level formal language but validated and used
in program language level. This linking process can be
readily integrated with an automated program refinement
procedure to achieve correctness-by-construction. In case
no such procedures are applicable, the obtained contract-
based specification can guide programmers to manually
generate program code, which can then be verified against
the obtained specification using any available program ver-
ifiers.
Keywords Formal specification, Object-Z, Spec#, verifi-
cation, pre/post conditions.

1 Introduction

Software correctness has become one major concern in
software development [22]. Formal methods are expected to
play a significant role in ensuring this. On one side, formal
methods are adopted to help with existing software prod-
ucts. For instance, formal analysis/verification techniques
are used to prove/check that existing programs meet certain
desired properties (or to find counterexamples otherwise).
On the other hand, formal methods are also expected to ful-
fill the so-called correct-by-construction approach to soft-
ware development [29, 1]. This utopia suggests us to make

use of a high level formal specification language to specify
system requirement and then construct an executable pro-
gram via a correctness-provable refinement procedure. Al-
though this approach proves to work well for small exam-
ples, it seems still a long way to go before we can make use
of it to help automate the development of complex software
systems.

A realistic solution would be to adopt the correct-by-
construction approach in part in the current software de-
velopment process. If the entire system can be developed
solely via the correct-by-construction approach, then it is
done. If certain stages (or certain components) can be de-
rived via the correct-by-construction approach (while others
cannot), developers only have to deal with the remaining
stages (or components). Afterwards we can employ appro-
priate formal verification tools to ensure the correctness of
the remaining part and thus that of the whole system. Con-
ceived by this general idea, we propose in this paper a de-
velopment framework which supports the automatic transla-
tion from high level specifications to program-level specifi-
cations. In the subsequent implementation stage, the frame-
work would offer a choice for the developers, which, for
example, can be a pure correct-by-construction approach
(refinement), or an approach based on manual coding, or a
combination of these two. For programmer-generated code,
appropriate verification tools are then employed to check
that the implementation does fulfill the specification.

To set the scene, let us make the framework more con-
crete by fixing the high-level and the low-level specification
languages. A well-known rigorous high level language is
the model-based language Z [34]. To allow object-oriented
design to be introduced as early as possible, we would
choose Object-Z [33] as our high level specification lan-
guage. We then choose the Spec# as the low-level speci-
fication language. As an extension to the new but popular
.Net C# language, Spec# aims at a more cost-effective way
to develop and maintain high-quality software [4]. To the
best of our knowledge, there is no link between Object-Z
and Spec# available yet. Moreover, given the large amount
of research effort involved in the Spec# project, we believe
soon there will be very good tool support for specifications

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

written in Spec#. At the current stage, the Boogie static
program verifier [3] can be used to check the consistency
between the implemented program and its specification.

The main contribution of this paper is an automated map-
ping from high-level Object-Z specifications to program-
level Spec# specifications which forms the first stage of
the above-advocated formal development framework. In
the subsequent implementation stage, our framework allows
any new or existing formal refinement algorithm to be opted
in. In case that such correct-by-construction algorithms are
not available and manual implementation has to be adopted,
the framework would allow the developers to invoke appro-
priate verification tools (e.g. Boogie) to formally verify the
manually generated code.

The remainder of the paper is organised as follows. Sec 2
briefly introduces both the Object-Z and Spec# specification
languages. Sec 3 presents the structural mapping algorithm
from Object-Z to Spec#. Sec 4 is devoted to the tool devel-
opment. Related work is presented in Sec 5. Conclusion
and future work follow afterwards.

2 A Brief Overview of Object-Z and Spec#

In this section, we give a preliminary introduction to
both the high level specification language Object-Z and the
program-level specification language Spec#.

2.1 The Object-Z Language

Object-Z [33] is an object-oriented extension of the
model-based specification language Z. An object-oriented
specification describes a system as a collection of interact-
ing objects, each of which has a pre-described structure
and behaviour [14]. The object-oriented approach to cre-
ating a system is currently the popular approach as it is ar-
guable truer to the real world and therefore easier to un-
derstand than procedural and functional programming lan-
guages. This extension to Z eases the integration of speci-
fication with other common software engineering methods
such as UML, as exemplified in e.g. [23, 27]. The modu-
larity that Object-Z introduces does improve the clarity of a
specification.

The key feature of Object-Z, as always with the object-
oriented approach, is its focus on classes. They are rep-
resented by use of class schemas, an example of which is
shown in Figure 1 (taken from [13]). The example includes
many of the basic Object-Z features. The first line of the
class schema forms a visibility list: a list of all the opera-
tion specifications and variables that are visible to outside of
the class. If no visibility list is present then all variables and
operations are visible by default. Axiomatic definitions are
used when a variable to be known throughout a specifica-
tion, i.e. a global variable, is to be declared along with some

constraints on the variable in the form of predicates, an ex-
ample of which is the definition of the variable limit. A
predicate can consist of any first-order logic or standard set
theory expression. Therefore, the = symbol indicates equal-
ity rather than assignment. A state schema uses its declara-
tions to introduce variables and its predicates to introduce
object invariants, as shown in the anonymous schema in-
troducing variable balance. If the predicates that make up
the initial schema, INIT, and all the object invariants hold
then the model is said to be in its initial configuration. The
remaining schemas within the class schema in the example
are all operational schemas. Operational schemas consist of
declarations to introduce required variables, e.g. amount?
in the withdraw operation, and predicates defining a method
contract, e.g. the two predicates given in withdraw opera-
tion. If the method contract results in a change in a primary
variable’s value then that variable must be included in the
operational schema’s delta list, and the primary variable’s
name within the predicate must end with the ′(primed) sym-
bol, e.g. balance′. Other naming conventions within oper-
ational schemas are that a variable name ending in the ?
symbol, e.g. amount?, indicates an input variable, while a
variable name ending in the ! symbol, e.g. funds!, indicates
an output variable. The expression used to define the with-
drawConfirm operation is a composite operation. This is an
operation defined in terms of a combination of other oper-
ations that can be combined in several different ways. For
details of the different combination methods and further de-
tails of more advanced features of Object-Z specifications,
such as inheritance, object containment and polymorphism,
see [33, 13].

2.2 The Spec# Language

Spec# [4] is an extension of Microsoft’s .NET frame-
work programming language C#, and the development en-
vironment currently offering support for the Spec# pro-
gramming system is Microsoft Visual Studio. Spec# is a
programming system incorporating specification concepts,
rather than a formal specification language. Features the
Spec# system has introduced into C# include object invari-
ants [2], non-null types [16], and method contracts. Object
invariants are “specifications that constrain the value space
of the implementation’s data” [4], i.e. conditions that must
always hold on all objects of that class, and are declared
with the invariant keyword. In some cases it is possible that
a series of statements in a method will break an invariant. To
be able to handle such a situation, Spec# has introduced the
block statement identified by the expose keyword. Within
an expose statement invariants can be broken, as long as all
invariants hold again by the end of the statement. The con-
cept of non-null types allows programmers to discriminate
between expressions that may evaluate to null and those that

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

CreditCard
� (limit, balance; INIT, withdraw, deposit, withdrawAvail, withdrawConfirm)

limit : N

limit ∈ {1000, 2000, 5000}

balance : Z

balance + limit ≥ 0

INIT

balance = 0

withdraw
Δ(balance)
amount? : N

amount? ≤ balance + limit
balance′ = balance− amount?

withdrawAvail
Δ(balance)
amount! : N

amount! = balance + limit
balance′ = −limit

deposit
Δ(balance)
amount? : N

balance′ = balance + amount?

fundsAvail
funds! : N

funds! = balance + limit

withdrawConfirm =̂ withdraw o
9 fundsAvail

Figure 1. The CreditCard Class in Object-Z

are sure not to [4].

Method contracts consist of a series of conditions known
as pre-conditions, post-conditions and frame conditions.
Pre-conditions, preceded by the requires keyword, define
the state in which the system must be to be able to call
the method, while post-conditions, preceded by the ensures
keyword, describe the state in which the method is allowed
to return. Frame conditions restrict which pieces of the pro-
gram state a method implementation is allowed to modify
and are preceded by the modifies keyword. A full intro-
duction of features of the Spec# programming system and
resulting complexities are detailed in [4].

In addition to extending the C# programming language,
Spec# also introduces the Boogie verification tool. Boogie
operates by verifying the object code rather than the source
code, thereby allowing code written in languages other than
Spec# to be verified. It can perform both static verifica-
tion and run-time checks. Static verification is where Boo-
gie uses automated theorem proving to verify a source pro-
gram. For example, Boogie can verify methods according
to specified post-conditions and can ascertain whether the
post-conditions are required or not, i.e. if the verification
is successful then the run-time checks are excessive since
they would never fail. The run-time checks are performed
on any pre- or post-conditions, which are turned into inline
code that is identifiable as method contract, to ensure that

they hold.

3 The Mapping from Object-Z to Spec#

This section is devoted to the mapping process from
Object-Z to Spec#. We will present the formal mapping via
a few definitions and then state the soundness properties.

To present the design of the mapping, we shall focus on a
core subset of Object-Z specification language. The abstract
syntax of this core subset is given in Figure 2. The actual
concrete syntax that we have implemented subsumes this
abstract syntax.

Note that an Object-Z specification is formed by a se-
quence of class declarations. A class declaration includes a
visibility list, an (optional) superclass, some (optional) ax-
iomatic (local) definitions, a state schema, an initial schema,
and some state operations. An example of a class declara-
tion is given earlier in Figure 1.

One significant incompatibility between Object-Z and
Spec# is that Object-Z supports multiple inheritance while
Spec# does not. To simplify the design, we constrain the
subset of Object-Z to adopt only single inheritance. This
simplification was also adopted by [18, 28].

The translation from Object-Z to Spec# is conducted in a
structural manner, i.e., every class declaration in an Object-
Z specification is mapped to a class definition in the corre-

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

OZSpecification ::= CDecl∗

CDecl ::=� VisibList; InheritC; Local∗; State; INIT; Op∗

VisibList ::= VisibAttr; VisibOp
VisibAttr ::= AttrName∗

VisibOp ::= OpName∗

InheritC ::= Inherits CName
Local ::= VarDecl∗ [• Predicate]
State ::= VarDecl∗ [Δ VarDecl∗] [• Predicate]
VarDecl ::= v : T
Op ::= OpName :: OpExp | v.OpName

| [v.]OpName o
9 [v.]OpName

| [v.]OpName ∧ [v.]OpName
| [v.]OpName [] [v.]OpName
| [v.]OpName ‖ [v.]OpName

OpExp ::= Δ(AttrName∗), VarDecl∗ • Predicate

Figure 2. The Syntax of Object-Z

sponding Spec# program. We present this structural map-
ping L in the following definitions:

Definition 1 (The Structural Mapping L: Spec) For a
given Object-Z specification

ozs =̂ OZC1; . . . ; OZCn

the mapping algorithmL generates in Spec# a specification

sss = L(ozs) = SSC1; . . . ; SSCn

where each Object-Z class declaration OZCi is mapped to
a Spec# class SSCi, i.e., L(OZCi) = SSCi, for i = 1, .., n.
(See Definition 2.) �

Definition 2 (The Structural Mapping L: Class) For a
given Object-Z class

OZC =̂�vl; inherits ̂OZC; ldef; state; init; opm
j=1

where predicate(ldef) = pred1, and predicate(state) =
pred2, predicate(init) = pred3, 1 the mapping algorithm
L generates the corresponding Spec# class declaration
SSC = L(OZC) using the following rules:

1. SSC has L(̂OZC) as its immediate superclass.

2. All variables declared in ldef and state become in-
stance variables newly declared in SSC. Constants de-
clared in ldef become constants newly declared in SSC.

3. SSC has pred1 ∧ pred2 as its object invariant. That is,
the clause

invariant pred1 ∧ pred2;

appears in SSC (following the instance variables).

1The function predicate(...) is to extract the predicate out of a local
axiomatic definition, a state schema or an initial schema.

4. A default constructor method (contract) is generated
with pred3 as its postcondition. 2

5. For j = 1, .., m, the operation opj is mapped to an in-
stance method methj = L(OZC.opj) of the class SSC.
(See Definition 3.)

6. If the visibility list vl is empty, all instance variables
and operations are made public. Otherwise, only those
mentioned in vl are made public while others are made
private. �

Definition 3 (The Structural Mapping L: Operations)
Each operation op from an Object-Z class OZC is mapped
to a method meth = L(OZC.op) (with an empty method
body) in the corresponding Spec# class L(OZC) according
to the following rules:

1. Case (basic) op =̂ mn :: Δ(r), u?:S, v!:T • Pred.
Suppose sa denotes the set of secondary variables de-
clared in class OZC. The method L(OZC.op) gener-
ated by the mapping algorithm will be

void mn (S u, out T v) requires pre; ensures post;
modifies r ∪ sa {}3

Note that the conditions pre and post are generated
from Pred in a way similar to what Diller used in [11]:

pre =̂ ∃ a′, v! · Pred[u/u?][this.a/a]
post =̂ Pred[old(this.a)/a][this.a/a′][v/v!]

Where a denote all state variables that may be changed
by op, which include the primary variables r and
all secondary variables declared in the current class.
Note also that, due to different notations required in
the source and target languages, we rename every a to
old(this.a) and then every a′ to this.a for the postcon-
dition. 4 We also eliminate the ? (resp. !) associated
with all input (resp. output) variables as Spec# does
not use it.

2. Case (o9) op =̂ op1
o
9 op2. Suppose

L(OZC.op1) =̂ void mn1(T1 u, out T2 v)
requires pre1; ensures post1; modifies r1 {}

L(OZC.op2) =̂ void mn2(T2 v, out T3 w)
requires pre2; ensures post2; modifies r2 {}

2Note that object invariant is not added into the postcondition explicitly
but is enforced implicitly in Spec#.

3This provides one possible solution. An alternative solution we used
in our prototype implementation is to map one of the output variables, say
the first one (if there are more than one), to the result which will be returned
by the method.

4Here we attach ‘this’ to every instance variable to simplify the presen-
tation in a later case. This is optional in our implementation.

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

The method generated for op is as follows:

L(OZC.op) =̂ void mn(T1 u, out T3 w)
requires pre; ensures post; modifies r

{T2 v; mn1(u, out v); mn2(v, out w); }

where pre =̂ pre1 ∧ ∃ v · (post1 ⇒ pre2), and post =̂
∃ v·((post1∧noχ(r2−r1))◦(post2∧noχ(r1−r2))), and
r =̂ r1 ∪ r2. The predicate noχ(V) indicates that all
variables in V remain unchanged. It is defined as fol-
lows:

noχ({}) =̂ true
noχ({v}∪V) =̂ (v=old(v)) ∧ noχ(V)

This auxiliary predicate is vital here for the generation
of the correct postcondition for the composite opera-
tion, as the modifies frame for the composite operation
can be larger than that of its constituent operations.
Given two predicates P1(old(v), v) and P2(old(v), v),
the sequential composition of them is defined as fol-
lows (as in [21]):

P1 ◦ P2 =̂ ∃ v0 · P1(old(v), v0) ∧ P2(v0, v)

3. Case (∧) op =̂ op1 ∧ op2. Suppose

L(OZC.op1) =̂ void mn1(Ti
1 u1, out To

1 v1)
requires pre1; ensures post1; modifies r1 {}

L(OZC.op2) =̂ void mn2(Ti
2 u2, out To

2 v2)
requires pre2; ensures post2; modifies r2 {}

For simplicity, let us assume the parameter lists are
disjoint, i.e., {u1, v1} ∩ {u2, v2} = ∅. Let {Ti u} de-
note {Ti

1 u1} ∪ {Ti
2 u2}, and {To v} denote {To

1 v1} ∪
{To

2 v2}. The method generated for op is as follows:

L(OZC.op) =̂ void mn(Ti u, out To v)
requires pre; ensures post; modifies r {}

where r =̂ r1 ∪ r2, pre =̂ pre1 ∧ pre2, and post =̂
post1 ∧ post2.

4. Case ([]) op =̂ op1[]op2. Suppose

L(OZC.op1) =̂ void mn1(Ti u, out To v)
requires pre1; ensures post1; modifies r1 {}

L(OZC.op2) =̂ void mn2(Ti u, out To v)
requires pre2; ensures post2; modifies r2 {}

Note that it is required that both constituent methods
have the same set of parameters. The method gener-
ated for op is as follows:

L(OZC.op) =̂ void mn(Ti u, out To v)
requires pre; ensures post; modifies r {}

where r =̂ r1 ∪ r2, pre =̂ pre1 ∨ pre2, and post =̂
old(pre1)∧ post1 ∨ old(pre2)∧ post2. The postcondi-
tion states that if a particular branch is chosen for ac-
tual execution, then the corresponding postcondition
should be guaranteed in the post-state.

5. Case (‖) op =̂ op1 ‖ op2. Suppose

L(OZC.op1) =̂
void mn1(T1 u1, S1 w1, out S2 w2, out T3 v1)
requires pre1; ensures post1; modifies r1 {}

L(OZC.op2) =̂
void mn2(T2 u2, S2 w2, out S1 w1, out T4 v2)
requires pre2; ensures post2; modifies r2 {}

According to the semantic definition of parallel com-
position in Object-Z, the parallel composition will
identify some input variables from either operation
to be equated with some output variables (with same
basenames) in another operation. In the above, the in-
put variables w1 out of L(op1) will be equated with
the output variables w1 in L(op2) and be hidden from
the final result. Similar for the variables w2. Thus, the
method generated for op is as follows:

L(OZC.op) =̂
void mn(T1 u1, T2 u2, out T3 v1, out T4 v2)
requires pre; ensures post; modifies r {}

where pre =̂ ∃w1, w2 · pre1 ∧ pre2, post =̂ ∃w1, w2 ·
post1 ∧ post2, and r =̂ r1 ∪ r2.

6. Case (Aggregation) op =̂ x.op1. Suppose x :: ↓X,
and

L(X.op1) =̂ void mn(T1 u, out T2 v)
requires pre1; ensures post1; modifies r1 {}

The method generated for op is as follows:

L(OZC.op) =̂ void mn(T1 u, out T2 v)
requires pre; ensures post; modifies r

{v.op1(u, out v); }

where pre =̂ pre1[x/this], and post =̂ post1[x/this]. If
this ∈ r1 then r = {x} else r = ∅. 5

Remark: Object-Z does not impose behavioural sub-
typing in inheritance hierarchies; instead, it allows
even arbitrary redefinition of operations in subclasses.
The above mapping rule for aggregation works under
the assumption that behavioural subtyping has been

5The generation of frame conditions can be very tricky. In Spec#, an
ownership based method is proposed to deal with frame conditions when
aggregate objects are involved [2] . For simplicity, here we do not take into
account the permission to modify fields of aggregate objects.

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

imposed in the inheritance hierarchies in the Object-
Z specifications.6 This is a proof obligation imposed
on the specifier. For those specifications where behav-
ioural subtyping does not hold, the above rule will not
work. However, it is possible to develop a more gen-
eral way to handle this issue (thanks to Graeme Smith)
but we will not elaborate it in this paper.

7. Case (Composition with Aggregation) In case that
a composition is made of aggregate operations, i.e.,
op =̂ x.op1 ⊕ y.op2, where x and y are state variables
of OZC, and ⊕ is from {o

9, [],∧, ‖}. This can be han-
dled in a way similar to case 2-5 above. The pre/post
conditions for the resulting method can be generated
in the same way as in case 2-5, except that we need
to rename ‘this’ in pre/post of op1 to ‘x’, and ‘this’ in
pre/post of op2 to ‘y’. We generate the modifies clause
in a way similar to case 6. �

Note that the mapping algorithm has not filled in the
method bodies in this stage. They are left to the next de-
velopment stage either by formal refinement or by manual
coding. It is worth mentioning that in the case (o9) and the
aggregation case, the code for the composite method can be
generated automatically by invoking the constituent meth-
ods, though in the aggregation case, the actual method to
be called will be determined dynamically due to polymor-
phism. In other cases, we have to generate the code for the
composite method directly.

We now state the soundness properties of our mapping
process L. We will make use of a refinement relation anal-
ogous to that defined in [19].

Informally speaking, the Spec# specification generated
by the mapping process is better than (or at least as good
as) its source Object-Z specification. To formally state this,
we will need to go to the meta level (semantic level). How-
ever, in order to focus better on the soundness and keep this
part short, we will not present the formal semantics for the
source/target languages here. Instead, we assume they are
already available for use. Intuitively, the semantics of a
specification is the set of programs (i.e. implementations)
that satisfy the specification.

We will make use of the following definitions in the
soundness theorem.

Definition 4 We say a Spec# method meth (with contract
(pre, post)) refines (or implements) an Object-Z operation
op, denoted as op �com meth, if every implementation of the
method contract is also an implementation of the operation.
That is,

∀ com · � {pre} com {post} ⇒ ρ com ∈ [[op[]

6Suppose class Y inherits class X, and operation op is defined in
X but redefined in Y . Behavioural subtyping requires the following:
pre(X.op) ⇒ pre(Y.op), and post(Y.op) ⇒ post(X.op).

Note that for simplicity, we assume the (in and out) parame-
ters in meth and the variables declared in op have the same
set of base names. The mapping ρ is to map every input
variable u to u?, and every output variable v to v!. �

Definition 5 We say a Spec# class SSC refines (or imple-
ments) an Object-Z class OZC, denoted as OZC �class SSC,
if (1) the superclass of SSC refines the superclass of OZC;
(2) the instance variables defined in SSC are identical to
those variables defined in OZC; (3) for every operation op
in OZC, there is a method meth in SSC such that op �com

meth. �

Definition 6 Given an Object-Z specification ozs =̂
OZC1; . . . ; OZCn, and a Spec# specification sss =
L(ozs) = SSC1; . . . ; SSCn, we say sss refines (or imple-
ments) ozs, denoted as ozs � sss, if OZCi �class SSCi, for
i = 1, .., n. �

The following theorem states the soundness of the map-
ping algorithm.

Theorem 1 (Soundness) The mapping algorithm L (de-
fined in Definition 1,2,3) is sound. That is, for a given
Object-Z specification ozs and its corresponding Spec#
specification sss = L(ozs), we have ozs � sss. �

4 The Tool Development

In this section we discuss the development of the proto-
type tool.

4.1 Overview of the Implementation

The graphical representation for Object-Z is good for vi-
sualisation but does not seem to be a favorable input format
for the tool to implement. So we decide to go for a plain-text
based representation. Instead of using XML-based repre-
sentation (e.g. as did in [18]), we take the LATEX representa-
tion for Object-Z as the input syntax for our system. Thanks
to the LATEX package for Object-Z [24], we can easily ob-
tain the graphical representation from the LATEX format.

We have chosen the functional language Haskell [31] to
be our implementation language as Haskell is a very good
language for fast prototyping and it has a parser combina-
tor library, called Parsec [25] which can be used to build
the parser very quickly. The implemented tool is composed
of three components, namely, a parser, a mapper, and a
printer, which are built as three Haskell functions, parsing,
mapping, and printing, respectively. The function parsing
parses the input Object-Z LATEX file to an Object-Z syntax
tree, the function mapping transforms the Object-Z syntax
tree into a Spec# syntax tree, while the function printing is
a pretty printer which converts the Spec# syntax tree to a

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

Figure 3. Oz2Spec#: Linking Object-Z with Spec#

Spec# program. In a nutshell, the system can be viewed as
a composition of the above three functions:

OZ2SSp = printing ◦ mapping ◦ parsing

We have also built a graphical user interface (GUI) in
Microsoft .Net Framework. A snapshot of the GUI is shown
in Figure 3.

In our system, the parser component parses an Object-
Z source file into a list of Object-Z class declaration trees,
which are then converted to a list of Spec# class declaration
trees by the mapper component. Finally, they are pretty-
printed into one source file which is the Spec# program. We
will elaborate a bit more on the mapping function.

4.2 Mapping

The mapping function from Object-Z to Spec# forms the
core part of our implementation. It takes as a list of Object-
Z syntax trees and generates as output a list of Spec# syntax
trees. As we described in section 3, the mapping function is
conducted in a structural manner, i.e., it maps an Object-Z
class declaration to a corresponding Spec# class declaration
where all the constituents from the source and the target
have the similar correspondence.
The mapper component mainly consists of the following
functions:

• A function predicate is used to extract predicates out of
local definitions, the state schema, or the INIT schema.
While a function variable is to extract variables out of
local definitions and the state schema. The visibility
property (public or private) for instance variables in
Spec# classes is decided in accordance with the visi-
bility list given in the source Object-Z specification.

• A function mapConstructor maps the INIT schema to
a Constructor method. It also transfers all the predi-
cates in INIT to the post-condition for the constructor
method.

• A function mapMethods maps Object-Z operations to
Spec# methods using the algorithm given in section 3.

Our system maintains the information about class depen-
dencies (mainly for inheritance and aggregation) as such in-
formation is required during the mapping. For instance, if
a class B has an instance variable v of type A, where A is
another class declared in the specification, then class B de-
pends on class A. In such a scenario an operation of class B
may be defined in terms of an operation of class A via the
variable v:

A

op1
· · ·

B

v : A

op2 =̂ v.op1

The class dependency information is stored in a class ta-
ble in our implementation. During mapping, when an op-
eration refers to another operation in another class, we can
search through the class table to find that class from which
we can obtain the required method contracts in order to gen-
erate the contract for the method in the depending class. As
mentioned earlier, one way to support polymorphism (e.g.

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

in the above class B, v might be defined as v : ↓A) is to
impose a proof obligation on the specifier such that behav-
ioural subtyping holds in inheritance hierarchies.

Part of the Spec# specification generated from the Cred-
itCard example in Figure 1 are shown in Figure 4. Another
example is given in the appendix.

public class CreditCard
{

public int limit;
public int balance;

invariant ...;
invariant balance + limit >= 0;

public CreditCard()
ensures balance == 0;

{}

public void withdraw(int amount)
requires amount >= 0;
requires amount <= balance + limit;
ensures balance == old(balance) - amount;
modifies balance;

{}

private int fundsAvail()
ensures result == balance + limit;

{}

public int withdrawConfirm(int amount)
requires amount >= 0;
requires amount <= balance + limit;
ensures balance == old(balance)-amount;
ensures result == old(balance)-amount+limit;
modifies balance;

{}
...

}

Figure 4. Part of the Spec# Code generated
for the CreditCard Example

5 Related Work

As an object-oriented extension to the state-based spec-
ification language Z [34], Object-Z [14, 33, 13] has been
a well-studied high level formal specification language. It
has also been used in many applications, e.g., the modelling
of Java concurrency [15], agent modelling [20]. There
are also limited tool support available for Object-Z, e.g.
[35]. Object-Z has also been extended to support mod-
elling of different complex systems, e.g., integrating with
CSP [32, 17], relating with Pi-calculus [36], blending with
Timed CSP [26], coupling with Timed Automata [12].

Compared to Object-Z, Spec# [4] is a rather new speci-
fication language. It extends also new but already very pop-
ular .Net programming language C# with various specifica-
tion mechanisms, including method contracts, object invari-
ants [2], assertions, non-null types [16] etc. The Boogie tool
[3] is proposed to statically verify specifications written in
Spec#. Apart from static verification, Spec# also has good

support for runtime assertion checking. JML [6] is a similar
program specification language which is based on Java.

A closely related work is the Object-Z to JML parser by
Giles [18], where an implementation for a mapping from
Object-Z to JML is reported. Similar to ours, their mapping
also ignores multiple inheritance in Object-Z. While they
require Object-Z input files to be given in XML format and
generate JML programs, we take as input the latex format
of Object-Z specifications which can be easily compiled to
graphical representation. In [18], the design of the mapping
is presented informally, while in this paper, we give a formal
definition of the mapping algorithm, correctness of which is
provable. One feature of Object-Z is that it allows multiple
output variables in its operations. This becomes a problem
in the translation from Object-Z to JML [18], in which they
have to use wrapper classes or translate the multiple output
variables into a single vector output. However, it is not a
problem in our translation from Object-Z to Spec#, thanks
to the feature that C# (hence Spec#) supports output para-
meters which can be used to represent multiple outputs.

The work in [28] investigated the linking between CSP-
OZ and UML/Java. Their aim is to generate part of the CSP-
OZ specifications from an initially developed UML model,
and then transform the CSP-OZ specification to Java, with
CSP-OZ playing an intermediate role and serving to veri-
fying correctness of the UML model. Although they have
presented their approach via a large case study, no gen-
eral transformation algorithm is reported. Cavalcanti and
Sampaio [7] reported another approach to combining CSP-
OZ with Java, where CSP-OZ specifications are translated
into CTJ, an extension of Java with CSP-like processes and
channels, using a number of refinement rules.

6 Conclusion and Future Work

To support the correct-by-construction approach in com-
plex software development, we advocate the use of a for-
mal framework in which a high-level formal language (e.g.
Object-Z) is used for requirement specifications, and a
lower level language (e.g. Spec#) is employed for pro-
gram specifications; in the implementation stage formal re-
finement procedures can be integrated to transform the ob-
tained (more concrete) program specifications to actual pro-
gram code. If such provably-correct refinement procedure
is not applicable or can only be applied in part, the manu-
ally coded part can then be verified by an integrated prover.
We have designed in this paper a formal mapping from the
high level language Object-Z to the program-level language
Spec#, and built a prototype tool to implement the mapping.

Our future work is to complete the above-mentioned
development framework. On one hand, we shall explore
formal refinement calculi that can be used for the refine-
ment from the concrete program specifications (where only

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

method contracts are available) to the actual implementa-
tions (where method bodies are filled up). We should try to
make use of existing refinement tools if possible, or build
our own one. On the other hand, we shall look into appro-
priate program verifiers which can be used to verify the final
program code especially when the method bodies are manu-
ally programmed. A good candidate is the Boogie static ver-
ifier [3] by Microsoft research team. Boogie generates from
a Spec# specification verification conditions (VCs) which
are discharged by an underlying theorem prover. At the
moment, Boogie calls the Simplify theorem prover [10] but
hopefully they will integrate Boogie with their own prover
in the near future. Depending on the properties that may be
involved in the system to develop, more advanced provers
may be integrated into our framework, e.g. the termination
prover [5, 9], the shape and size verifiers [8, 30], etc. On the
other hand, it would be very interesting to investigate how
to extend our mapping algorithm so that it works for a more
powerful specification language like TCOZ [26], which can
be a challenging future work as well.

Acknowledgement

The work is supported in part by the EPSRC funded
project EP/E021948/1. We would like to thank the anony-
mous reviewers for their valuable comments. We thank Gra-
ham Odds for a Java-based prototype implementation in his
final year project which raised many interesting issues and
motivated us to investigate them more deeply. We are also
grateful to Graeme Smith and Jun Sun for helpful discus-
sion on Object-Z.

References

[1] R. J. Back, A. Akademi, and J. Von Wright. Refinement
Calculus: A Systematic Introduction. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1998.

[2] M. Barnet, R. DeLine, M. Fahndrich, K.R.M. Leino, and
W. Schulte. Verification of object-oriented programs with
invariants. Journal of Object Technology. Special issue:
ECOOP 2003 workshop on Formal Techniques for Java-like
Programs, 3(6), June 2004.

[3] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino. Boogie: A Modular Reusable Verifier for Object-
Oriented Programs. In International Symposium on Formal
Methods for Components and Objects (FMCO), 2005.

[4] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# pro-
gramming system: An overview. In Workshop on Construc-
tion and Analysis of Safe, Secure, and Interoperable Smart
Devices, 2004.

[5] J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and
P. O’Hearn. Variance analyses from invariance analyses. In
ACM Symposium on Principles of Programming Languages
(POPL), Nice, France, January 2007.

[6] L. Burdy, Y. Cheon, D. R. Cok, M. Ernst, J. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An Overview of JML
Tools and Applications. International Journal on Software
Tools for Technology Transfer, 7(3):212–232, June 2005.

[7] A. Cavalcanti and A. Sampaio. From CSP-OZ to Java with
Processes. In Workshop on Formal Methods for Parallel
Programming, held in conjunction with International Paral-
lel and Distributed Processing Symposium. IEEE CS Press,
2002.

[8] W.N. Chin, S.C. Khoo, S.C. Qin, C. Popeea, and H.H.
Nguyen. Verifying Safety Policies with Size Properties and
Alias Controls. St. Louis, Missouri, May 2005.

[9] B. Cook, A. Podelski, and A. Rybalchenko. Proving thread
termination. In ACM SIGPLAN Conf. on Programming Lan-
guage Design and Implementation (PLDI), San Diego, June
2007.

[10] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a the-
orem prover for program checking. Journal of the ACM,
52(3):365–473, 2005.

[11] A. Diller. Z and Hoare Logics. In Z User Workshop, 1991.

[12] J. S. Dong, P. Hao, S. C. Qin, J. Sun, and W. Yi. Timed
Patterns: TCOZ to Timed Automata. In Formal Methods
and Software Engineering (ICFEM04), Seattle, WA, USA.

[13] R. Duke and G. Rose. Formal Object Oriented Specifica-
tion Using Object-Z. Cornerstones of Computing. Macmil-
lan, March 2000.

[14] R. Duke, G. Rose, and G. Smith. Object-Z: a Specification
Language Advocated for the Description of Standards. Com-
puter Standards and Interfaces, 17:511–533, 1995.

[15] R. Duke, L. Wildman, and B. Long. Modelling Java Concur-
rency with Object-Z. In International Conference on Soft-
ware Engineering and Formal Methods (SEFM 2003). IEEE
Computer Society Press, 2003.

[16] M. Fähndrich and K. R. M. Leino. Declaring and checking
non-null types in an object-oriented language. In ACM SIG-
PLAN Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA 2003, pages
302–312, Anaheim, CA, USA, 2003.

[17] C. Fischer. CSP-OZ - a combination of CSP and Object-
Z. In Formal Methods for Open Object-Based Distributed
Systems. Chapman & Hall, 1997.

[18] N. Giles. An Object-Z to JML Parser, 2002. MSc thesis,
Imperial College.

[19] J. He, Z. Liu, X. Li, and S. Qin. A relational model for
object-oriented designs. In Second Asian Symposium on Pro-
gramming Languages and Systems (APLAS’04), pages 415–
436, 2004.

[20] V. Hilaire, O. Simonin, A. Koukam, and J. Ferber. A For-
mal Approach to Design and Reuse Agent and Multiagent
Models. In Agent Oriented Software Engineering (AOSE 04),
Lecture Notes in Computer Science, 2004.

[21] C. A. R. Hoare and J. He. Unifying Theories of Program-
ming. Prentice-Hall, 1998.

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

[22] C.A.R. Hoare and J. Misra. Verified software: Theories,
tools, experiments: Vision of a grand challenge project. In
The VSTTE conference – Verified Software: Theories, Tools,
Experiments, ETH Zurich, October 2005.

[23] S.-K. Kim and D. Carrington. Formalizing the uml class di-
agram using object-z. In Second International Conference
on The Unified Modeling Language: Beyond the Standard
(UML’99), volume 1723 of Lecture Notes in Computer Sci-
ence, pages 83–98, 1999.

[24] P. King. Printing Z and Object-Z LATEX documents. May
1990.

[25] D. Leijen. Parsec, a fast combinator parser. November 2001.

[26] B. Mahony and J. S. Dong. Timed Communicating Object
Z. IEEE Transactions on Software Engineering, 26(2):150–
177, February 2000.

[27] H. Miao, L. Liu, and L. Li. Formalizing UML models with
Object-Z. In Formal Methods and Software Engineering,
volume 2495 of Lecture Notes in Computer Science, pages
523–534, 2002.

[28] M. Möller, E.-R. Olderog, H. Rasch, and H. Wehrheim.
Linking CSP-OZ with UML and Java: A Case Study. In
4th International Conference on Integrated Formal Methods,
(IFM 2004), Canterbury, UK, pages 267–286, April 2004.

[29] C.C. Morgan. Programming from Specifications. Prentice
Hall International, second edition, 1994.

[30] H.H. Nguyen, C. David, S.C. Qin, and W.N. Chin. Auto-
mated Verification of Shape And Size Properties via Separa-
tion Logic. Nice, France, January 2007.

[31] S. Peyton-Jones and et al. Glasgow Haskell Compiler.
http://www.haskell.org/ghc.

[32] G. Smith. A Semantic Integration of Object-Z and CSP for
the Specification of Concurrent Systems. In Formal Methods
Europe (FME’97), volume 1313 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1997.

[33] G. Smith. The Object-Z Specification Language. Advances
in Formal Methods. Kluwer Academic Publishers, 2000.

[34] M. Spivey. The Z Notation: A Reference Manual. Inter-
national Series in Computer Science. Prentice Hall, second
edition, 1992.

[35] J. Sun, J.S. Dong, J. Liu, and H. Wang. Object-Z Web En-
vironment and Projections to UML. In International World
Wide Web Conference (WWW-10). ACM Press, 2001.

[36] K. Taguchi, J.S. Dong, and G. Ciobanu. Relating Pi-calculus
to Object-Z. In IEEE International Conference on Engineer-
ing Complex Computer Systems (ICECCS’04). IEEE Press,
2004.

SortedSequence
� (items, length, insert, remove)

max : N

items : seq Z

Δ
length : N

length ≤ max
∀ x, y : N • 0 ≤ x ≤ y ≤ length−1

⇒ items(x) ≤ items(y)

INIT

items = 〈〉
length = 0

insert
Δ(items)
n? : Z

length < max
n? in items′

∀ x, y : N • 0 ≤ x ≤ y ≤ length′−1
⇒ items′(x) ≤ items′(y)

· · ·

public class SortedSequence {
private int max;
public int[] items;
public int length;

invariant max > 0;
invariant length >=0 && length <= max;
invariant forall {int x; forall {int y;

(0<=x && x<=y && y<=length-1)
==> (items[x]<=items[y])}};

public SortedSequence()
ensures items == null;
ensures length == 0;

{}

public void insert(int n)
requires length < max;
ensures n in items;
ensures forall {int x; forall {int y;

(0<=x && x<=y && y<=length-1)
==> (items[x]<=items[y])}};

modifies items, length;
{}
...

}

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

