

Program Comprehension for Web Services

Nicolas Gold1 and Keith Bennett2

1Department of Computation
UMIST

Manchester, M60 1QD, UK.
N.E.Gold@co.umist.ac.uk

2Department of Computer Science,

University of Durham,
Durham, DH1 3LE, UK.

Keith.Bennett@durham.ac.uk

Keywords: Program Comprehension, Web Services, Software Maintenance, Service-Based Software

Abstract
Web services provide programmatic interaction

between organisations within large heterogeneous
distributed systems. Using recent experiences of
constructing and enhancing a data integration system for
the health domain, based on web services, we draw
conclusions about new problems for program
comprehension. These derive from the fundamentally
dynamic and distributed nature of the environment. We
suggest several key research topics for program
comprehension, arguing that these are crucial if software
constructed from web services is to be supportable over a
long period. Finally, we briefly summarise some wider
conclusions about understanding web services at the
application domain level.

1. Introduction

It is well established, through an extensive series of
surveys, that software maintenance is the dominant cost in
the overall lifecycle for much software, and of that
maintenance, software engineers spend a very large
proportion of the time in trying to understand existing
software, either to fix bugs, or more significantly, to
enhance functionality. This primary activity is termed
program comprehension, and refers to the application of
techniques and processes that facilitate the understanding
of software [8]. One of the aims of much program
comprehension work is to understand models of
comprehension that link the program and application
domains (e.g. [5, 10]) and provide tool support for this
process (e.g. [9]).

Application software constructed using web services
adds new attributes which need to be understood by the
maintainer who is planning to modify that software. The
software underlying each web service will itself undergo

maintenance during its lifetime, and we shall assume that
this will be undertaken by conventional comprehension
methods. At a higher level of abstraction, software may
be constructed by integration services that will use lower
level or atomic services to provide functionality. It is this
integration level (e.g. in the form of a broker) on which
we concentrate in this paper. Of course, a web service
itself may be composed of sub-services, so the approach
can be applied recursively. The aim of the paper is to
define new research problems that are posed by a web
services application architecture.

Using recent experiences of constructing a prototype
data integration system with web services, we identify
and amplify issues that pose problems for program
comprehension of web services based software. Building
and experimenting with this system has provided us with
the insights to consider the implications and consequences
for program comprehension.

The paper is organized as follows. We begin by
describing web services. We then provide a summary of
the prototype system; more details can be found in [3, 12,
13], and further contextual information is available in [1,
2, 4], and at www.service-oriented.com. Having
presented this background material, we identify and
explore program comprehension issues for software
constructed using web services. Finally, we summarise
these issues into areas for future work.

2. Web Services

Shirky [11] suggests that web services (WS) address
application program inter-operability. The most general
form involves binding or composing complex programs
together from components anywhere in the world.
General inter-operability has been tried before, but with
partial success, for example DCOM, Corba, and RMI.

With these systems, both the client and server have to
load the system; with web services, the idea is to know
nothing about the “other end” other than such information
as can be communicated via standard protocols. Web
Services Description Language (WSDL) allows the
description of a web service so that a call for it can be
assembled and invoked from elsewhere. In order to
communicate data in a system-independent way, XML is
used. A Universal Description, Discovery, and
Identification (UDDI) registry (or registries) allows
service vendors to publish and offer services, and users to
locate and call them using WSDL descriptions published
along with service identification information.

Software has previously been developed, delivered and
maintained as a product. The internet is stimulating
interest in software which is instead delivered and used
on demand (in so-called “internet time”), because (for
example) this potentially allows faster and more flexible
evolution to meet changing business needs. With a
service-based approach, there is a much looser coupling
between business requirements and software solutions.
However, actually implementing this is far more complex
than technical considerations alone would suggest. For
example, services need to be identified, selected, and
procured. This may well require negotiation within a
market [7]. The consumer application will need to have
confidence that the service performs as described, and if
not, that means of redress are available. Fundamentally,
the service model will fail if there is a lack of trust
between vendors and users. The overall research of the
Pennine Research group of which we are members is
therefore directly concerned with these wider problems
[2].

To test the group’s research findings and to scope the
requirements for an integration layer in the web services
stack, we have undertaken a prototype implementation of
web services, addressing a real life problem. We chose,
as the prototype application domain, the issue of
integrated health care data. This was a highly appropriate
case study because it combines the need for flexible
software (functionality) with issues of independent,
heterogeneous data sources (data) which similarly need
the type of ultra-late binding required by the system’s
functionality. We wished to explore the extent to which
these could be met by a web services solution, and our
prototypes have enabled us to determine issues of
program comprehension.

3. The Experimental System

3.1. Problem

Let us consider a case in an accident and emergency

department in UK Health Care. Mr Smith collapsed when

he travelled from Manchester to Durham and has been
admitted in an unconscious state. He had previously lived
in Leeds, Newcastle and London before moving to
Manchester. Therefore, his treatment history data are
stored in different systems at different sites using
different technology. To treat him properly, the doctor in
Emergency needs to know as much information as
possible about Mr. Smith (for example, any drugs he is
currently taking, so that drugs needed now can be chosen
safely). He needs to acquire an integrated view of the data
from autonomous, heterogonous and distributed data
sources and these data sources may change. As one small
example, there are 56 different types of mental health
service alone in the UK; each geographical area will
typically have several (or many) of such services [16].

We have completed the first prototype in the EPSRC-
funded IBHIS (Integration Broker for Heterogeneous
Information Sources) project. This project uses the UK’s
National Health Service as an example of a large complex
service-based environment. Current web services
technology has been used extensively and largely
successfully in this distributed prototype system. In order
to gain a good understanding and model of the domain,
extensive activities have been undertaken involving
health service professionals; these are not reported here.

3.2. Architecture

In order to provide the end-user (e.g. the doctor) with a
unified view of data on demand from autonomous
heterogeneous data sources, we use a Service-Oriented
Data Integration Architecture (). Further details
can be found in [12, 15].

Figure 1

We assume that all the elements such as medical
content (vocabulary), constants (postcode etc), datatypes
and intent are defined or described with an ontology-
based approach by the NHS authority within the NHS
domain. This ensures that all data elements are
semantically correct and can be interpreted correctly by
service requesters and providers. Service providers
(including data service providers) implement services and
describe them using service description languages such as
WSDL [17] and DAML-S [18]. All web services may be
implemented using different languages on different
platforms; they must of course use agreed protocols.
Service providers publish the service description into a
service registry, such as UDDI, and map the local data
elements to the standard terms defined by NHS authority.

Services are then located using the service registry and
the service implementation is invoked via SOAP. When
an end user wants to acquire integrated data they look for
the UDDI registry and finds a suitable Integration Broker
Service (IBS) that satisfies the requirements. When the
IBS is invoked, it dynamically finds the sub services (data

and functional services), and then binds to them
appropriately.

The discovery service is used to discover and bind to
service implementations at run time. When there is more
than one service providing the same function, it can be
used to choose one service based on the user’s
requirements.

The ontology service is used to provide semantic
transformation for different data items. The security
service is used to authenticate the user and control the
data items a given user can access.

The Integration Broker Service (IBS) is a composed
service, which integrates different data access services
(DASs) and functional services such as the Discovery
Service (DS), security service, and the ontology service in
order to provide the end-user with an integrated uniform
view of the data. The backbone is the workflow service,
which manages the business logic, for example, how
different data services work together to provide integrated
data. It combines the business process and data
integration. The IBS could also compose a negotiation
service to perform negotiation with the available data
sources.

A Data access service (DAS) is a variation on the
typical (Web) service as it is more data intensive and is
designed to expose data as a service. Data service
providers implement the DAS, which may query multiple,
heterogeneous data sources. Alternatively, different DASs
may query the same data source but produce different
data outputs. The data service providers in the NHS
domain must describe the data input, output and data
format, the methods to acquire the data, the security
requirements to use this service, and data service version.

When data service providers publish the DAS
description file into the registry, they publish the DAS
metadata and ontology.

For change management, DAS providers may provide
users with different versions of the DAS. The service
consumer can decide which one better meets their
requirements, or choose to bind to the latest version by
default.

There is no integrated schema; data is integrated on the
fly.

The initial prototype broker (F) was completed
in the Summer of 2003, and a second prototype is now
under way, to exploit the lessons learned. In particular,
the first prototype provided a thorough test-bed of the
technology (which was mainly IBM’s websphere and
Java J2EE) but it was essentially static. The second
prototype is employing dynamic binding far more
extensively.

igure 2

3.3. Results from the Prototype

The following represent the main results from the
prototype which are of particular relevance to program
comprehension:

1. Dynamic web services: even in our (largely static)

prototype, it is clear that a “program” may only be
defined at run time, when it is executed As a simple
example, we have found that a remote procedure call
mechanism for service invocation is far too restrictive,
and that a document style of call is essential. The
timescales which are available to comprehend service
based software may be very much reduced; changes
may be demanded very quickly.

2. Web service description: the WSDL description of a
service plays a crucial part in locating, binding, and
understanding. Currently, WSDL is mainly aimed at
end-point identification, to allow calling. Much more
work is needed on extending WSDL for applications,
for stateful services and for non-functional attributes.
We found that ontology services will be essential in
large organisations such as the health services (where
there is no standardisation of terms); there is unlikely
to be a single ontology (requiring mappings), and both
single and multiple ontologies evolve over time.

3. Security: there are many new issues of privacy,
security and access control (see for example [14]). In
general, these are not discussed further here.

Figure 1: Service-Oriented Data Integration Architecture

Figure 2: Conceptual Architecture of Prototype Version 1

4. Research Problems and Directions

In this section, we present a range of issues affecting
software comprehension in the context of web services.
We begin by examining the nature of the artefacts with
which we are concerned i.e. the software itself. Our
analysis then broadens to account for the environment in
which this software operates. Finally, we examine the
impact of these issues on existing approaches, identify
some new requirements and lay out areas for future work.
We approach our examination of the issues from the
viewpoint of a software maintainer attempting to
comprehend a program that uses web services. This
approach is useful because in the event that we are
maintaining a web service itself, the comprehension
problem is really no different to that for traditional
software. The novel problems arise when we are using
web services rather than defining them.

4.1. The Problem Space

4.1.1 The Nature of Web-Service Based Software

Software constructed partly or wholly from web

services has a somewhat different character to the
traditional source code we are used to working with.
Although many aspects are similar on the surface (e.g.
meaningful names for subroutines to convey meaning
about their purpose, remote procedure calls for
distributing applications), deeper analysis shows how
software that uses web services requires a different
approach to understanding.

Rather than comprehending a file (or files) of source
code where procedure calls carry as much meaning as can
be fitted into the name, a WS-based application has
access to a much richer description of the software
embodied in the services it uses. Ideally, this information
should be contained in the WSDL comprising the UDDI
entry for the service and can thus provide a maintainer
with a detailed description of that part of their program
(although at present, UDDI does not have the descriptive
power necessary to achieve the full potential of this
approach, and an important role for the program
comprehension community is to influence the
development of web service descriptions). This is
essentially documentation on a fine-grained level and may
suffer from the usual problems of being out of date or
inaccurate. However, in a service-oriented context, there
is a greater motivation for it to be accurate and up to date
because it is likely that service usage is being sold by the
service developer and it is therefore in their interest both
to attract and to retain clients through good quality
information. The consequence of a fine-grained
documentation-driven approach to comprehension is that

the timescale of understanding should be reduced and
consequently evolution of the software system should
take place more quickly.

Program comprehension occurs in various parts of the
maintenance lifecycle e.g. impact analysis, prior to
making changes, and debugging. For those activities
where comprehension is needed to determine what is
taking place in a system (e.g. comprehension prior to
changing), the timescales should be reduced (assuming a
sufficient level of detail is available). In addition, a web
services architecture may force a better separation of
issues and encapsulation (because the web services
market may force this). However, in situations where the
maintainer needs to understand why something is
happening (e.g. debugging), it may be that the timescales
are increased because the lack of detailed information
about the internal operation of the software.

Although the maintainer thus has a potentially rich
source of information about the services used, detailed
construction of a mental model of the services and their
interaction may be hampered by the fact that dependency
information cannot be easily exploited in the way that it
might be normally i.e. a maintainer cannot “drill-down”
into the code embodied by the services in order to fully
(or at least, sufficiently) understand the behaviour of that
code. The descriptions are all they have to work with. It
is possible to envisage a situation where an entire
application is constructed from calls to web services with
minimal or no intermediate processing at all. This would
leave a fairly simple program to understand at a high level
since it would only contain sufficient data structures to
transfer the state of the data being processed from one
service call to another. In a sense, this is an attractive
model for programming since the program could be
constructed solely from descriptions of its components;
the level of programming abstraction thus being raised
substantially. The issue of whether such descriptions are
trustworthy remains however. In addition, it is
questionable whether it is possible to form the kind of
mental model required to understand and reason about
software for change, solely from high-level, abstract
descriptions.

Web services move away from a remote procedure call
(RPC) approach to distributed applications (although they
can support this architecture) and towards document-style
interaction between parts of the software. RPC tends to
have fixed numbers of parameters with fixed types and is
often language-dependent. This differs markedly from
the loose, flexible approach of web services (so-called
document style interface) where interfaces are defined by
their WSDL descriptions which can be changed easily
and without reference to the implementation platforms
and languages at either end of a connection. This
approach gives us greater visibility (and perhaps

description) of the interaction between services but less
long-term and local control over the mechanism. In
comprehension terms, this means that we have additional
artefacts (the interface descriptions) to retrieve and
understand. It has been claimed [6] that the delayed
binding and dynamic nature of WSDL interfaces will
allow calling programs to adjust for changes in the
services they use and eliminate the need for revalidating
the whole system after changes are made. We disagree
with this view. As we are not in control of the interface,
it could change at any point in the future and do so
without reference to us. When we come to understand
software built on web services, we are thus required to
take extra steps in order to determine the current interface
to be used (e.g. by re-reading the WSDL file describing
the service end-point). Changes by the service supplier to
the interface could render our software useless until it is
modified to match the new calling parameters (contrary to
the view expressed in [6]). Alternatively, we must build
sufficient flexibility into our code to cope with minor
interface changes (although it is not clear how this might
be achieved). Either way, complexity has been added,
either to the understanding process or the artefact itself.

Although this complexity is a disadvantage, the greater
visibility afforded by the readability and traceability of
SOAP messages may partly compensate. Since we have
access to the interaction between services, we can build a
picture of the data flow between service and caller in
terms of the actual data transmitted. Even if we cannot
gain information about the internal operation of a
particular service, we may be able to infer sufficient detail
of its operation (from the transformation of data it

performs) to effect our change. Such visibility is only
available in the event that SOAP messages between caller
and callee are not encrypted. If steps are taken to secure
the information in transmission then we will need a way
to decrypt it quickly to understand the operation of the
program concerned.

In all of the discussion above, it is assumed that web
services can simply be integrated (and consequently
replaced) without difficulty. However, it is not clear how
one would comprehend or characterise the level of
abstraction at which services are offered and thus how
their compatibility might be assessed. When
understanding WS-based software, the actual size and
complexity of a software system might be obscured
behind calls to web services. For example, if we are
attempting to understand a program containing 25 calls to
web services, it is hard to determine whether this
corresponds to 25 lines of code or 25000000 lines of code
(and thus determine the internal and external complexity
that might go with such sizes of program). Also, one
cannot determine whether calls are made by these services
to other web services to form an extensive network of
services operating together. One might attempt to guess
the complexity based on the description of a service (and
thus its corresponding level of abstraction) but this is not
a basis for good software engineering. These issues also
make the estimation of maintenance effort required
difficult.

A summary of the issues raised in this section is shown
in Table 1.

Table 1: Comparison of Traditional and Service-Based Software

Characteristic Traditional Systems WS-Based Systems
Program-Level Semantics Strong Weak

Coupling Tight Loose, dynamic
Extent of Analysis Available Comprehensive Partial

Amenability for Static Analysis High Low
Visibility of Component Interaction Low High

Domain Semantics Embedded in Source Code Embedded in Descriptions
Assessment of Complexity Easier Harder

Interface flexibility Low High
Interface dynamism Static Dynamic

Ontology Not used Key component
Interface definition Static, with explicit

parameters and types
Document style

4.1.2. Context of Web-Service Based Software

The open and distributed nature of software based on
web services requires us to consider the environment in
which such services can be obtained and used as this is
likely to have a greater impact on the software than in
more traditional systems.

We have already raised the need for developers to
trust the description of services provided by those who
operate them. The issue is somewhat more complex than
trust because developers need also to understand that
description. This implies that such descriptions need to
be accurate, complete, precise and so on; they must reflect
the traditional “ideal” qualities for requirements
statements since service procurement in this context is
effectively a developer matching their requirements to the
descriptions of available services. This is not a trivial
problem. In a global market there may be many natural
languages used to describe services. Within these, the
most frequently used approach to description is to employ
an ontology in order that terms are commonly understood
(for example, in our health domain, the term “child” has
very many interpretations, depending on which
organisation is involved). However, the marketplace for
web services is likely to be so large that multiple
ontologies (which themselves evolve) are likely to exist.
There will thus be a translation problem to be solved to
map terms from one ontology to another (assuming
similar terms are available in both). This issue was
highlighted by the IBHIS project which is planning to use
the US-based SNOMED ontology [19].

The complexity of service procurement and
management thus adds overhead to the comprehension
burden (as well as substantially changing the artefacts to
be comprehended). Technological standards may also
dictate the structure and content of service descriptions
and these may not be immediately compatible. Assuming
developers understand and trust the intent of the
descriptions provided, they must also trust that services
will perform as described i.e. they need to know the
typical operation of a particular service. This may carry
financial implications in terms of the paying for service
usage.

So, in addition to the purely functional and
technological view, one must also consider the economic
implications of web service use. Simply knowing what a
service is supposed to do (functionally) and trusting that it
will do it, is sufficient only if the service is provided by
the developer’s organisation. In most cases, we envisage
the advantages of WS technology arising from the
purchase of service usage from other organisations. This
implies the existence of contracts between the
organisations for service supply and consumption.
Consequently, in understanding programs that adopt web

services, one must be aware not only of the functional
characteristics, but also of the contractual terms that
govern their use. This may affect when a service can be
invoked, the behaviour or performance of that service at
particular times of day, or possibly the process to be
followed in the event of service failure. These aspects
further complicate the comprehension burden for the
software maintainer. As an example, an IBHIS data
access service must be rigorously secured against
accidental or malicious damage. A contract of use will
have to specify which users may access the service and
under what conditions.

In all of the above discussion we have not considered
in detail the relationship of data to the source code that
operates on it. Data may pose a less complicated problem
for service-based software (or at least, can be reduced to
the same set of problems as described above). If data is
stored “locally” i.e. it is the responsibility of the local
program, then the understanding problem is no more
complex than it is currently. If stored using a service,
access to data may be undertaken in a similar manner to
accessing an object or black-box component: the actual
representation and data structure does not matter to the
user as long as the interface is clear. Thus data access
becomes a functional query service which is subject to the
difficulties of description and trust described earlier.

A related issue is thus whether the web services we
are using are stateful or not. The above discussion
assumes stateless services (i.e. execution simply takes
place and results are returned) but it is entirely possible
that services may retain state between invocations. This
adds another comprehension burden because it is now
important that the software maintainer using such web
services has the ability to interrogate and describe the
state of the services at various points during execution.
This requires that a greater number of interfaces are
offered by a service to support these additional queries
(and consequently the maintainer has a more complex
environment within which to work). The IBHIS project
uses both stateless and stateful services (the obvious
example of the latter is a patient database). This raises
additional problems of how stateful services should be
described; in IBHIS, meta database solutions are being
explored [15].

Thus far we have raised a number of issues that
complicate program comprehension when web services
are used. The style of software produced in a web
services context is different and, although potentially
easier to understand at the highest level, requires great
trust to be placed in the providers of supporting services.
The environment in which the system operates thus
assumes greater importance and software developers will
need to take greater account of both the technological and

economic aspects of the environment that relate to their
software.

4.2. The Solution Space

The previous sections have raised a number of problem

issues for software comprehension. In this part of the
paper, we describe some specific solutions to parts of
these problems and distil our ideas into areas for future
research

In general terms, we perceive much existing
comprehension research to be focussed (rightly) on the
static analysis of systems. In a service-oriented world,
dynamic aspects of system behaviour become much more
important. Indeed, it might be argued that with the very
late binding characteristics of service-based software, the
actual execution of the software is the only firm
representation of the software solution that exists.
Therefore, we need to adapt and refocus our research on
understanding both static aspects and dynamic behaviour
together. In particular, we need to provide software
engineers with a full set of behavioural information about
the services and software on which they are working as
early as possible in the understanding process.

Essentially, this is a manifestation of the trust problem
described earlier. To increase developers’ belief in
service description and behaviour, one could envisage
“meta-services” appearing in the marketplace whose role
is to determine the typical behaviour of other services by
repeated testing on ranges of values, or using pre and post
conditions to infer the properties of a particular service.
A developer wishing to understand or verify the
behaviour of a service in relation to its description could
query one of these meta-services (at a cost) for the
information. Since repeated execution of a service may
incur repeated charges for its use, testing (either for
understanding or regression testing) becomes an
expensive activity.

The meta-service would gain return on its investment
in testing costs by selling the information to many
developers who wish to use it. The developers can gain
the specific information they require at a fraction of the
cost of determining it for themselves. The implication of
such an approach to service information delivery is that
the tools and environments we develop to support
program comprehension will themselves become service-
based: since we cannot afford to test every service
ourselves, we must incorporate the information provided
by someone else about services of interest into our tool
and process environment. As the software we produce
becomes more reliant on a marketplace of services to
operate, the tools with which we create and maintain that
software also need marketplace support to supply the
information required for their operation. This does not

preclude developers operating tng teii

control mechanisms to protect confidentiality of data
in the repositories. Another major issue in this area
will be to identify what information is truly important
to capture and what can safely be ignored.

3. Architectural style: Although it is early days, it may
well be that certain architectural styles emerge as
particularly favourable for web services applications.
It is possible too, that such styles can be represented in
some form of pattern. Standard (or typical) ways of
implementing services can be of benefit to program
comprehension, but this research will benefit from
active participation by the comprehension community.
The use of document-style interfaces may also benefit
from standard practice.

4. Trust management: The next major research theme
will be in managing trust in service descriptions.
Describing services accurately and completely is very
much an open research problem. Even if the
description problem can be solved, it is still important
that users trust the services they are procuring and
judge them to provide value for money. This is a
relatively new problem brought about by the
automated aspects of these problems (resolving
descriptive misunderstandings between humans is
generally simpler than doing so by machine). There is
a need to develop mechanisms in the marketplace and
for individual maintainers to support those trying to
understand and create software.

5. Recursive web services: We have noted that web
services can very easily call sub-services, and so on
recursively. This forms a supply chain and value chain
structure in the software. Such chains will need
research to understand their formation and evolution
in the context of software services.

6. Stateful web services: We have noted that stateful web
services and data intensive services pose new
problems compared with programs (or databases)
which retain state between uses. In particular, there
are issues of description, access and security which
relate directly to comprehension.

6. Conclusions

In this paper we have described comprehension issues
for service-oriented software. Our views have been
strongly influenced and informed by the experiences of
building a prototype application, using web services, in
the health service domain. We have explored the problem
and solution spaces for programs that use web services
and have extracted six major themes for future research.
These address questions of how to collect comprehension
information (including a representation of the dynamic
behaviour reflecting late binding), to provide sufficient
trust in the information such that it can be used, and how

to analyse the information gained for comprehension.
More generally, web services promise a major change in
the way software systems are implemented, and marketed,
and it is certain that maintenance and support will turn out
to be very important issues in the longevity of such
software. It is thus important that the program
comprehension community engages with web services
and software created with them, and influences the
direction of technical and business applications.

Acknowledgements

The authors would like to thank other members of the
Pennine Research Group for their contributions which
have led to this paper. This includes: Paul Layzell, John
Keane, David Budgen, Pearl Brereton, Jie Xu, Michael
Rigby, Fujun Zhu, Mark Turner, Ioannis Kotsiopoulos,
Michelle Russell, Michael Rigby. This work is partly
supported by the EPSRC-funded IBHIS and CoMoS
projects.

References

[1] K.H. Bennett, N.E. Gold, P.J. Layzell, F. Zhu, O.P.

Brereton, D. Budgen, J. Keane, I. Kotsiopoulos, M.
Turner, J. Xu, O. Almilaji, J.C. Chen, A. Owrak, A
Broker Architecture for Integrating Data using a Web
Services Environment, Proceedings of First International
Conference on Service-Oriented Computing (IC-SOC)
2003, Trento, Italy, December 15 - 18, 2003.

[2] K.H. Bennett, P.J Layzell, D. Budgen, O.P. Brereton,
L. Macaulay, M. Munro, Service-Based Software: The
Future for Flexible Software, IEEE APSEC2000, The
Asia-Pacific Software Engineering Conference,
Singapore, 5-8 December 2000.

[3] K.H. Bennett, J. Xu, N.E. Gold, M. Munro, Z. Hong,
P.J. Layzell, D. Budgen, O.P. Brereton, An
Architectural Model for Service-Based Flexible
Software, Proceedings of 25th IEEE Computer Software
and Applications Conference (COMPSAC), 8-12 October
2001, Chicago, USA, pp. 137-142.

[4] O.P. Brereton, The Software Customer/Supplier
Relationship, Comm. ACM, Vol. 47, No. 2, pp 77-81.

[5] R. Brooks, "Towards a Theory of the Comprehension of
Computer Programs", International Journal of Man-
Machine Studies, Vol. 18, 1983, pp. 543-554.

[6] E. Castro-Leon, The Web Within the Web, IEEE
Spectrum, February 2004.

[7] A. Elfatatry, P.J. Layzell, Creating a Mass Market for
Software Services, Comm. ACM, to appear.

[8] N.E. Gold, A. Mohan, C. Knight, M. Munro,
“Understanding Service-Oriented Software, IEEE
Software, to appear.

[9] N.E. Gold, K.H. Bennett, “Hypothesis-Based Concept
Assignment in Software Maintenance”, IEE Proceedings
– Software, Vol. 149, No. 4, August 2002, pp 103-110.

[10] A. von Mayrhauser, A.M. Vans, "Program
Comprehension During Software Maintenance and
Evolution", IEEE Computer, Vol. 28, No. 8, August
1995, pp. 44-55.

[11] C. Shirky, Web services and context horizons. IEEE
Computer, September, Vol.35, No. 9 (2002) 98 – 100.

[12] M. Turner, F. Zhu, I. Kotsiopoulos, M. Russell, D.
Budgen, K.H. Bennett, O.P. Brereton, J. Keane, P.J.
Layzell, M. Rigby, “Using Web Services to create an
Information Broker”, Int. Conference on Software
Engineering, Edinburgh, 2004, to appear.

[13] M. Turner, D. Budgen, O.P. Brereton, Turning
Software into a Service, IEEE Computer, Vol. 36, No.
10, October 2003, pp 38-44.

[14] E.Y. Yang, J.Xu and K.H.Bennett, A Fault-tolerant
Approach to Secure Information Retrieval, Proceedings
21st IEEE International Symposium on Reliable
Distributed Systems, Osaka, October 2002.

[15] F. Zhu, M. Turner, I. Kotsiopoulos, M. Russell, D.
Budgen, K.H. Bennett, O.P. Brereton, J. Keane, P.
Layzell and M. Rigby, Dynamic Data Integration using
Web Services, submitted to the Int Conference on Web
Services, San Diego, 2004.

[16] http://www.dur.ac.uk/service.mapping/amh/
[17] http://www.w3.org/TR/wsdl
[18] http://www.daml.org/services/
[19] http://www.snomed.org/

	Program Comprehension for Web Services
	
	
	
	Nicolas Gold1 and Keith Bennett2

	1Department of Computation
	UMIST
	Manchester, M60 1QD, UK.
	N.E.Gold@co.umist.ac.uk
	2Department of Computer Science,
	University of Durham,
	Durham, DH1 3LE, UK.
	Keith.Bennett@durham.ac.uk
	Keywords: Program Comprehension, Web Services, Software Maintenance, Service-Based Software

	1. Introduction
	2. Web Services
	3. The Experimental System
	3.1. Problem
	3.2. Architecture
	3.3. Results from the Prototype

	4. Research Problems and Directions
	4.1. The Problem Space
	4.1.1 The Nature of Web-Service Based Software
	4.1.2. Context of Web-Service Based Software

	4.2. The Solution Space

	5. Key Research Themes
	6. Conclusions
	Acknowledgements
	References

