
An Interval-based Inference of Variant Parametric
Types⋆

Florin Craciun1, Wei-Ngan Chin2, Guanhua He1, and Shengchao Qin1

1 Department of Computer Science, Durham University, UK
2 Department of Computer Science, National University of Singapore, Singapore

Abstract. Variant parametric types represent the successful integration of sub-
type and parametric polymorphism to support a more flexible subtyping for Java-
like languages. A key feature that helps strengthen this integration is the use-site
variance. Depending on how the fields are used, each variancedenotes a covari-
ant, a contravariant, an invariant or a bivariant subtyping. By annotating variance
properties on each type argument to a parametric class, programmers can choose
various desirable variance properties for each use of the parametric class. Al-
though Java library classes have been successfully refactored to use variant para-
metric types, these mechanisms are often criticized, due tothe difficulty of choos-
ing appropriate variance annotations. Several algorithmshave been proposed for
automatically refactoring legacy Java code to use generic libraries, but none can
support the full flexibility of the use-site variance-basedsubtyping. This paper ad-
dresses this difficulty by proposing a novel interval-basedapproach to inferring
both the variance annotations and the type arguments. Each variant parametric
type is regarded as an interval type with two type bounds, a lower bound for
writing and an upper bound for reading. We propose a constraint-based inference
algorithm that works on a per method basis, as a summary-based analysis.

1 Introduction

Recently, several mainstream object-oriented languages,such as Java and C#, have suc-
cessfully integrated traditionalsubtype polymorphismandparametric polymorphismto
support better type-safe reusable code with significant reduction of runtime cast oper-
ations. Subtype polymorphism is a nominal relation, based on a given class hierarchy.
Parametric polymorphism allows a data or a function to be parameterized by types and
supports structural subtyping [1]. In handling objects with mutable fields, a crucial fea-
ture that helps strengthen the integration of subtype and parametric polymorphism is
the adoption ofvariance. Variance annotations predict the flow of values for fields and
provide a richer subtyping hierarchy. Depending on how the fields are being accessed,
each variance denotes a covariant, a contravariant, an invariant or a bivariant subtyping.
Generics types of Java 5 (also called Wildcard Types) [23, 24, 12] are based on the vari-
ant parametric types (or VPTs) [14]. VPTs is based onuse-site variancewhereby each
use of a class type is marked with suitable variances that indicate how the fields are to
be accessed.

⋆ The work is supported in part by the EPSRC project EP/E021948/1.

Variant Parametric Types. Consider a variant parametric classPair with two fields
which are captured as type parameters:

class Pair〈A, B〉 { A fst; B snd; · · · }
Assume three methods to retrieve the first field, to set the second field and to swap the
two fields for aPair object. In these methods, the parameterthis is thePair object
whose variant parametric type must be provided with suitable variances. The type of
thethis parameter is specified prior to delimiter′|′ (as in [4]):

Pair〈⊕A,⊛〉 | C getFst〈A, C〉() where A<:C { return this.fst; }
Pair〈⊛,⊖B〉 | void setSnd〈B, C〉(C y) where C<:B { this.snd=y; }
Pair〈⊙A,⊙A〉 | void swap〈A〉(){A y=this.fst; this.fst=this.snd; this.snd=y; }

As can be seen, four kinds of variance annotations (denoted by α) are possible: (i)α = ⊕

captures aflow-outfrom the field to support covariant subtyping; (ii)α = ⊖ captures a
flow-in to the field to support contravariant subtyping; (iii)α = ⊙ captures bothflow-in
andflow-outto support invariant subtyping; and (iv)α = ⊛ capturesno accessfor the
field to support bivariant subtyping. For simplicity,⊛t can be abbreviated as⊛. More
generally, given an object with variant parametric typec1〈α1t1〉, we may pass it to a
location with typec2〈α2t2〉, in accordance with the following subsumption relations:

c1<:c2 α1t1<:α2t2
c1〈α1t1〉<:c2〈α2t2〉

(α1<:⊙) t1=t2
α1t1<:⊙t2 α1t1<:⊛t2

(α1<: ⊕ ∧ t1<:t2) ∨ t2=Object

α1t1<:⊕t2

(α1<: ⊖ ∧ t2<:t1) ∨ t2=⊥

α1t1<:⊖t2

The bottom of the class hierarchy is⊥ denoting the type ofnull value, while the top
of the class hierarchy isObject. For simplicity, the first rule assumes that each class
constructor has only a single inheritable type parameter. The above rules use nominal
subtypingc1<:c2 from traditional class hierarchy and also a reflexive and transitive vari-
ance subtyping with a simple hierarchy:⊙<: ⊕ <: ⊛ ⊙ <: ⊖ <: ⊛ . The<: operator
is overloaded to handle variance subtyping, nominal class subtyping and two VPT sub-
typings fort andαt, respectively. The above subsumption relations form the basis of
the VPT system to provide a richer subtyping system. Two provisos highlighted in the
above rules for parametric fields are (i) to allow each such field to be retrievable as an
Object, and (ii) a null value (of⊥ type) to be written into any such field, regardless of
its variant annotation. Types⊕Object and⊖⊥ are essentially equivalent to⊛t.
Motivation. Although VPT mechanisms have now been validated in the full-scale im-
plementation of Java 5 [12] and Java library classes have been successfully refactored to
use variant parametric types, these mechanisms are often criticized, due to the difficulty
of choosing appropriate variance annotations. By annotating variance properties on each
type argument to a parametric class, programmers can choosevarious desirable variance
properties for each use of the parametric class. For example, the typesPair〈⊕A,⊕B〉 or
Pair〈⊙A,⊙B〉 are still correct types for the receiver of the above methodgetFst. How-
ever the best generic type isPair〈⊕A,⊛〉, since the first field is read and the second
field is not accessed. In order to establish the most flexible correct variance annotations
(those which do not restrict the code genericity) for a type declaration, the program-
mer has to analyse all the places where that type declarationis used in the program.
Although several algorithms have been proposed for refactoring legacy Java code [9, 8,
7, 11], they are restricted either to parametric types [1] orto variant parametric types
with known variance annotations. No one can support the fullflexibility of the use-site
variance-based subtyping. Moreover these algorithms require global analysis.

2

Contributions. We propose a novel approach to automatically inferring the variance
annotations and the type variables for the variant parametric types of method parameters
(including receiver), method result and method body’s local variables. In addition, the
expected value flow that may arise from the method body is captured as a precondition.
The inference is designed asa summary-based analysisthat works on a per method
basis: the variant parametric types of a method are inferredonly based on how they are
used in the method body, while each call site is a specific instance of the method’s type
declaration. Our inference is guided by a dependency graph such that all the methods
which are called by the current method have been already analyzed. Our inference also
assumes that the generic class hierarchy is known. In order to support the full flexibility
of the subtyping based on the use-site variance, our inference algorithm starts with un-
known variance annotations. Each variant parametric type is represented as aninterval
type[2], namely two type bounds that allow us to distinguish aread flowfrom awrite
flowfor each object’s field. Based on a flow-based approach for VPTs [4], we reduce the
problem of inferring variance annotations and type arguments to the problem of solv-
ing specializedflow constraints. To the best of our knowledge this isthe first algorithm
that decouples variance inference from the type inference itself. In order to allow more
generic types for the method parameters we introducedual typesto supportunknown
variance flow. Dual types make a distinction between flow via an object,object flow
and the flow via the object’s fields,field flow. We also useintersection and union types
to capture thedivergent flowandconvergent flow, respectively. A safe yet precise ap-
proximation is used to avoid disjunctive constraints. We also provide special solutions
to handle runtime cast operations and method overriding.
Related Work. The task of introducing generics to an existing Java code [9,8, 7, 11,
16] consists of two distinct problems, parameterization and instantiation. Class param-
eterization selects the class fields that can be promoted as class type parameters. Since
class parameterization decisions may be quite hard to automate due to trade-offs in
the possible design outcomes, our solution is to let programmers focus on high-level
design decisions for parameterization, while leaving the more tedious annotations on
value flows of methods to be automatically inferred. Previous algorithms for instantia-
tion have been restricted to parametric types based on invariant subtyping [9, 8, 7, 11].
Although the most recent Java refactoring paper [16] claimsbeing able to infer wildcard
types, it conservatively assumes invariant subtyping evenwith wildcard types.

At each call site, Java compiler [12] performs a local inference of the method’s
type parameters. The algorithm follows the local type inference designed for parametric
types [17] . Recently, a significant revision of Java local inference has been proposed
in [21]. The new proposal has introduced two bounds for a typevariable similar to
our interval types. However it does not perform variance inference since the variance
annotations are known. Our approach is more general and subsuming the local type
inference.

Our variant parametric type inference algorithm produces subtyping (flow) con-
straints. To solve them, we work on a closed constraint graphemploying techniques
from [25, 18, 22, 10]. It seems also possible to formalize ourconstraint solver on a pre-
transitive graph [13] to have a more scalable implementation. In general the constraint
solving techniques assume that the polarities of term constructors are known. How-
ever the inference of variant parametric types may generateterm constructors with un-

3

known polarities (variances). Therefore our approach usesan interval type (a contravari-
ant lower bound and a covariant upper bound) to represent each unknown polarity of
a term constructor. The idea of using interval types for updatable values has already
been applied to reference type [20, 19] and also in the context of object calculi [2]. An
open problem (discussed in [2]) is whether the interval types can be used to infer types
with variance information from non-annotated terms. Our variance inference provides
a constraint-based solution to this open problem.
Outline. The following section presents our interval-based view of VPTs. Section 3 in-
troduces the key features of our approach. Section 4 formalizes our inference algorithm.
Section 5 solves the method overriding problem. A brief conclusion is then given.

2 Variant Parametric Types as Interval Types
The underlying idea behind our solution is to view each variant parametric typeαX as
an interval (of types) with a low-boundX.L and a high-boundX.H such thatX.L<:X.H.
The low-bound variable captures each value of typet1 that mayflow intoαX using the
constraintt1<:X.L, while the high-bound variable captures each value of typet2 that
mayflow outof αX usingX.H<:t2. By default, it is always safe for each low-boundX.L

to be bounded by⊥ <:X.L and each high-bound can be bounded byX.H<:Object. For
example, given a variant parametric typec〈αX〉 (whereX is a type variable) denoting a
class with a field of typeαX, it can always be translated into an interval type as follows:

X=X.H

c〈⊕X〉⇐⇒c〈[⊥, X.H]〉

X=X.L

c〈⊖X〉⇐⇒c〈[X.L,Object]〉 c〈⊙X〉⇐⇒c〈[X, X]〉

c〈⊛〉⇐⇒c〈[⊥,Object]〉
X.L=fresh() X.H=fresh()

c〈αX〉=⇒c〈[X.L,X.H]〉
Translation rules are bidirectional where the variance is known. The last rule is a key
rule for variance inference, as it splits a type variable with an unknown variance into
two type variables. Thus, field selection (reading) uses thetypeX.H, while field updating
(writing) is based on typeX.L.

Theinterval type subtypingsubsumes VPT subtyping and is defined as a contravari-
ant subtyping on low-bounds and a covariant subtyping on high-bounds, as follows:

c1<:c2 t2.L<:t1.L t1.H<:t2.H

c1〈[t1.L, t1.H]〉<:c2〈[t2.L, t2.H]〉

The annotations.L and.H make a flow-based distinction among the types, such that:
– X.L denotes a type that expects awrite flow(flow in),
– X.H denotes a type that expects aread flow(flow out),
– X (without annotation) denotes a type that expects bothreadandwrite flows.

Using the flow expectations, we identified a special group of flow constraints that we
calledclosed flow constraints. They denote a matching of a flow-out with a flow-in,
namely a consumption of a read flow by a write flow.

Definition 1 (Closed Flow Constraint).A closed flow constraint is a flow constraint
that has one of the following forms:X1.H<:X2.L, X1.H<:X2, X1<:X2.L, andX1<:X2, where
X1, X2, are different fromObjectand⊥.

Proposition 1 (Variance Inference Rule-1).If a low-bound type variableX.L does not
occur in any closed flow constraint, it is resolved to be⊥. If a high-bound type variable
X.H does not occur in any closed flow constraint, it is resolved tobeObject.

4

3 Inference of Variant Parametric Types

3.1 Main Algorithm

This section illustrates the main steps of our inference algorithm using the following
method of a non-genericPair class:

Pair | Object move(Pair a) { Object y=a.getFst(); this.setSnd(y); return y; }

Our goal is to infer its generic version that corresponds to the variant parametric class
Pair〈A, B〉. Internally, our algorithm works with interval types to generate and solve the
flow constraints. Therefore, we use the following interval type based specifications of
the methodsgetFst andsetSnd of the variant parametric classPair〈A, B〉:

Pair〈[⊥, A.H], [⊥,Object]〉 | C getFst〈A.H, C〉() where A.H<:C {..}
Pair〈[⊥,Object], [B.L,Object]〉 | void setSnd〈B.L, C〉(C y) where C<:B.L {..}

Step 0. Decoration with Fresh Interval Types. This is a pre-processing step. It con-
sists of the annotation with fresh type variables of the non-generic types and non-
generic methods. We use the following naming conventions: the lettersVi for the global
type variables (visible outside the method), the letterY for the method result, the letters
Ni for the arguments of new expressions, and the lettersTi for other annotations:

Pair〈[V1.L, V1.H],[V2.L, V2.H]〉 | Y move(Pair〈[V3.L, V3.H],[V4.L, V4.H]〉 a)
{T0 y=a.getFst〈T1.H, T2〉(); this.setSnd〈T3.L, T4〉(y); return y; }

Step 1. Collect Flow Constraints. This step gathers the constraints from the method
body using the type inference rules given in Section 4.1, as follows:

Pair〈[V3.L, V3.H], [V4.L, V4.H]〉<:Pair〈[⊥, T1.H], [⊥,Object]〉∧T1.H<:T2 ∧ T2<:T0 ∧ T0<:T4∧
T4<:T3.L ∧ Pair〈[V1.L, V1.H], [V2.L, V2.H]〉<:Pair〈[⊥,Object], [T3.L,Object]〉 ∧ T0<:Y

Step 2. Simplify Flow Constraints. This is a closure algorithm that iteratively decom-
poses the constraints into their elementary components. Itprimarily applies the interval
subtyping rules with transitivity. The closure algorithm is invoked each time a new con-
straint is added to the set. For brevity, in the following examples, we omit the transitivity
and the default constraints like⊥<:X, X<:Object, andX.L<:X.H. The result of this step is
the following:

V3.H<:T1.H ∧ T1.H<:T2 ∧ T2<:T0 ∧ T0<:T4∧T4<:T3.L ∧ T3.L<:V2.L ∧ T0<:Y

Step 3. Variance Inference.This step generates a set of closed flow constraints and
then applies the variance inference rule from Section 2. SinceV1.L, V1.H, V4.L, V4.H, V2.H,
V3.L do not occur in any closed flow constraint, they are accordingly solved as follows:

V1.L=⊥ ∧ V1.H=Object ∧ V4.L=⊥ ∧ V4.H=Object ∧ V2.H=Object ∧ V3.L=⊥

Step 4. Type Variables Inference.This step solves the type variablesTi, Ni, andY
in term of the global type variablesVi and ground types (which are types without type
variables). It consists of three substeps:
1. Cycle elimination: This causes all type variables of a cycle to be equal. Note that

there isn’t a cycle in the current example.
2. Ordering: The type variables are ordered based on the number of constraints in

which they appear as an upper bound.
3. Unification: Following the order defined before, the type variables are solved by

equating to their low bounds. Type variables occuring in fewer constraints have a
higher priority.

5

For our example, the result of the unification is summarized by the last column of the
following table. The first column contains the constraints in which the type variables
from the second column occur as upper bounds. Multiple type variables in the second
column denotes type variables having the same priority.

Constraints TVars Result

V3.H<:T1.H {T1.H} T1.H=V3.H
V3.H<:T2∧T1.H<:T2 {T2} T2=V3.H

V3.H<:T0∧T1.H<:T0∧T2<:T0 {T0} T0=V3.H
V3.H<:T4∧V3.H<:Y∧T1.H<:T4∧T1.H<:Y∧T2<:T4∧T2<:Y∧T0<:T4∧T0<:Y {T4, Y} Y=T4=V3.H

V3.H<:T1.H<:T2<:T0<:T4<:T3.L {T3.L} T3.L=V3.H

Step 5. Result Refining.This step simplifies the inferred types of the method. The goal
is to reduce the number of the global type variables using theresidual flow constraint
(namely the remaining flow constraints among the global typevariables). The residual
flow constraint of the current example is:V3.H<:V2.L. These type variables can be unified
to a fresh type variableV, such thatV=V3.H=V2.L. SinceV stands for both low-bound and
high-bound, it is not marked with either. The result of our inference (including the above
refinements) is the following:

Pair〈[⊥,Object],[V,Object]〉 | V move〈V〉(Pair〈[⊥, V],[⊥,Object]〉 a)
{V y=a.getFst〈V, V〉(); this.setSnd〈V, V〉(y); return y; }

Step 6. VPT Result. This step translates the inferred interval types into VPTs:
Pair〈⊛,⊖V〉 | V move〈V〉(Pair〈⊕V,⊛〉 a)

{V y=a.getFst〈V, V〉(); this.setSnd〈V, V〉(y); return y; }

3.2 Interval Types versus Variant Parametric Types
The interval types are more expressive than variant parametric types, since they can
support two different non-default bounds. A variant parametric type can only support
two equal non-default bounds in the case of invariant subtyping⊙. Note that the default
low-bound is⊥, while the default high-bound isObject. Considering the following code
fragment, we like to infer the interval type ofobj:
class Cell〈A〉 { A fst; · · ·

Cell〈⊕A〉 | A get〈A〉(){..}
Cell〈⊖A〉 | void set〈A〉(A y){..}..}

class Integer extends Number{..}
class MyInt extends Integer{..}

. . .
Cell〈[T.L, T.H]〉 obj = new Cell〈Integer〉(new Integer(1)); // T.L<:Integer<:T.H
Number n = obj.get〈T1〉(); // T.H<:T1<:Number
MyInt m = new MyInt(2); obj.set〈T2〉(m); // MyInt<:T2<:T.L

Our algorithm can infer the interval typeCell〈[MyInt, Number]〉 for obj. However this
interval type cannot be translated into a variant parametric type, since it consists of two
different bounds. In order to keep the equivalence between interval types and variant
parametric types, we add one more rule to the variance inference:

Proposition 2 (Variance Inference Rule-2).If both boundsX.L andX.H of an interval
type occur in the closed flow constraints, then the default constraint of an interval type
X.L<:X.H is strengthened to the equalityX.L=X.H.

In our example, addingT.L=T.H to the above set of constraints will generate a cycle
such thatT.L<:Integer<:T.H ∧ T.L=T.H. Cycle elimination generatesT.L=Integer=T.H.
Thus new inference result is the interval typeCell〈[Integer, Integer]〉, that can be
directly translated into the variant parametric typeCell〈⊙Integer〉.

6

3.3 Main Flow and Conditional Flow

Cast operations give rise toconditional flow constraints(or dynamic subtype constraints
in [9]). These constraints are conditional in the sense thatthey are only required to hold
if the corresponding dynamic downcasts succeed at runtime.Our analysis separates the
main flowgathered from the method body without the cast operations and thecondi-
tional flowcorresponding to the cast operations. Conditional constraints use a different
subtyping notation (<:c). One benefit of our analysis is that it can guarantee that some
of the cast operations are redundant, and therefore they canbe safely eliminated at
compile time. The number of the eliminated casts is used as anaccuracy measure of
generic type systems [8, 11, 4, 16]. The following example illustrates how our inference
algorithm handles the cast operations:
Original code

Cell | void fill(Cell a)
{Cell b = (Cell)a.fst;b.fst = this.fst; }

Inference Result

Cell〈⊕V〉| void fill(Cell〈⊕Cell〈⊖V〉〉 a)
{Cell〈⊖V〉 b = a.fst;b.fst = this.fst; }

Code annotated with Fresh Interval Types

Cell〈[V1.L, V1.H]〉 | void fill(Cell〈[V2.L, V2.H]〉 a)
{ Cell〈[T1.L, T1.H]〉 b = (Cell〈[T2.L, T2.H]〉)a.fst; b.fst = this.fst; }

1 . Collect Cell〈[T2.L, T2.H]〉<:Cell〈[T1.L, T1.H]〉∧V1.H<:T1.L
Constraints V2.H<:cCell〈[T2.L, T2.H]〉

2. Simplify V1.H<:T1.L<:T2.L<:T2.H<:T1.H V2.H<:cCell〈[T2.L, T2.H]〉

3 . Infer V1.L=V2.L=⊥∧T1.H=T2.H=Object∧V1.H<:T1.L<:T2.L
Variance V2.H<:cCell〈[T2.L,Object]〉

4. Infer {T1.L} T1.L=V1.H
Type Vars {T2.L} T2.L=V1.H

5 . Solve Conditional V2.H<:cCell〈[V1.H,Object]〉 ⇒ V2.H<:Cell〈[V1.H,Object]〉
6. Refine Results V=fresh() V1.H=V ∧ V2.H=Cell〈[V,Object]〉

Though the conditional flow is kept separately, it is still used by the variance inference in
Step 3. If Step 3 ignores the conditional flow, it infers the incorrect resultV2.H=Object.
A new step (Step 5) is added to the main algorithm. This step combines togetherthe
conditional flow and the (already solved) main flow in order tofind a common solution.
In our example, adding the conditional constraint to the main flow does not generate
any contradiction as the type variablesV2.H andV1.H are unconstrained in the main flow.
However it is not always possible to find a common solution forthe main and condi-
tional flow, as illustrated by the following example:

V3 foo2(Cell〈[V4.L, V4.H]〉 obj) {
if(...) {... return (Integer)obj.fst; } else{... return (Float)obj.fst; }}
//Integer<:V3∧Float<:V3 V4.H<:cInteger∧V4.H<:cFloat

In this example the conditional constraints can be added to the method precondition to
be checked at each call site where the casts could be selectively eliminated (with the
help of a polyvariant program specializer):

Number foo2(Cell〈[⊥, V4.H]〉 obj) where V4.H<:cInteger∧V4.H<:cFloat

3.4 Convergent Flow and Divergent Flow

Multiple low bounds denote aconvergent flow, while multiple high bounds denote a
divergent flow. Our analysis uses union types for multiple low bounds and intersection
types for multiple high bounds. An union typet1|t2 represents the least upper bound

7

of t1 andt2, while an intersection typet1&t2 is the greatest lower bound oft1 andt2.
Some of their subtyping rules may generate disjunctions. Inorder to keep our analysis
simple, we propose a safe yet precise approximation that avoids those disjunctions:

AND rules OR rules

t1|t2<:t

t1<:t ∧ t2<:t

t<:t1|t2
t<:t1 ∨ t<:t2

t<:t1&t2

t<:t1 ∧ t<:t2

t1&t2<:t

t1<:t ∨ t2<:t

Our OR rules

t<:t1|t2 T1=fresh()

t<:T1 ∧ t1<:T1 ∧ t2<:T1
t1&t2<:t T2=fresh()

T2<:t1 ∧ T2<:t2 ∧ T2<:t

whereT1 andT2 are fresh type variables. Another solution to avoid disjunctions is the
tautologyt1&t2<:t1|t2, but sometimes this approximation may lead to no solutions.
One benefit of using union and intersection types is that theyare more expressive so
that more casts can be directly eliminated as the following example (from [8, 4]) can
illustrate:

class B1 extends A implements I {..}; class B2 extends A implements I {..};
Original code

void foo(Boolean b){
Cell c1 = new Cell(new B1());
Cell c2 = new Cell(new B2());
Cell c = b?c1 : c2;
A a = (A) c.get();
I i = (I) c.get();
B1 b1 = (B1) c1.get();
B2 b2 = (B2) c2.get(); }

Code annotated with Fresh Interval Types

void foo(Boolean b){
Cell〈[T1.L, T1.H]〉 c1 = new Cell〈N1〉(new B1());
Cell〈[T2.L, T2.H]〉 c2 = new Cell〈N2〉(new B2());
Cell〈[T3.L, T3.H]〉 c = b?c1 : c2;
A a = (A) c.get〈T4〉();
I i = (I) c.get〈T5〉();
B1 b1 = (B1) c1.get〈T6〉();
B2 b2 = (B2) c2.get〈T7〉(); }

The following table contains the inference steps for the above code with interval types.
At the step4.4, T3.H is resolved as to the union typeB1|B2 due to two distinct flows
converging to it,B1<:T3.H ∧ B2<:T3.H. The solutions of the main flow can prove that all
conditional constraints succeed, and therefore all casts can be eliminated.

1. Collect B1<:N1∧Cell〈[N1, N1]〉<:Cell〈[T1.L, T1.H]〉∧
Constraints B2<:N2∧Cell〈[N2, N2]〉<:Cell〈[T2.L, T2.H]〉∧

Cell〈[T1.L, T1.H]〉<:Cell〈[T3.L, T3.H]〉∧Cell〈[T2.L, T2.H]〉<:Cell〈[T3.L, T3.H]〉
∧T3.H<:T4∧T3.H<:T5∧T1.H<:T6∧T2.H<:T7
T4<:cA∧T5<:cI∧T6<:cB1∧T7<:cB2

2. Simplify B1<:N1∧T1.L<:N1<:T1.H∧B2<:N2∧T2.L<:N2<:T2.H∧T3.L<:T1.L∧T1.H<:T3.H
∧T3.L<:T2.L∧T2.H<:T3.H∧T3.H<:T4∧T3.H<:T5∧T1.H<:T6∧T2.H<:T7
T4<:cA∧T5<:cI∧T6<:cB1∧T7<:cB2

3. Infer T1.L=T2.L=T3.L=⊥ ∧ B1<:N1<:T1.H∧B2<:N2<:T2.H∧
Variance T1.H<:T3.H∧T2.H<:T3.H∧T3.H<:T4∧T3.H<:T5∧T1.H<:T6∧T2.H<:T7

T4<:cA∧T5<:cI∧T6<:cB1∧T7<:cB2

4 . Infer {N1, N2} N1=B1∧N2=B2

Type Vars {T1.H, T2.H} T1.H=B1∧T2.H=B2

{T6, T7} T6=B1∧T7=B2

{T3.H} T3.H=B1|B2
{T4, T5} T5=T4=B1|B2

5. Solve B1|B2<:cA B1|B2<:cI
Conditional B1<:cB1 B2<:cB2

8

3.5 Field Flow and Object Flow
A key feature of our approach is the distinction between the flow via an object, called
object flowand the flow via the fields of that object, calledfield flow. We introduce a
special type notation, that we calleddual typeto support these two views: (1) object
as a black box, and (2) object as a glass box. For example, a dual type for aPair is of
the formX

.
=Pair〈[V1.L, V1.H], [V2.L, V2.H]〉, where the type variableX (calledobject part)

is used for the flow of the entire object, whilePair〈[V1.L, V1.H], [V2.L, V2.H]〉 (calledfield
part) caters to the flow via its fields. This dualism can improve thegenericity of our
inference results. Specifically, given the following method dup (from [4, 14]):

Pair dup(Pair a) { Pair p = new Pair(a, a); return p; }

Without using the dual types, our inference can get the following types:
Pair〈⊛,⊛〉 dup(Pair〈⊛,⊛〉 a){

Pair〈⊛,⊛〉 p=new Pair〈Pair〈⊛,⊛〉,Pair〈⊛,⊛〉〉(a, a); return p; }

The type of the method result is too imprecise, but still correct as fields are not accessed
(bivariant⊛) in the method body. Using dual types our approach can get more precise
types by inferring an intersection type for the method parametera, namely:

Pair〈⊙X1,⊙X1〉 dup〈X1〉(X1&Pair〈⊛,⊛〉 a) {
Pair〈⊙X1,⊙X1〉 p = new Pair〈X1, X1〉(a, a); return p; }

The type variableX1 plays an important role, it allows the unknown variance to flow
unchanged, such that the variance annotations of the parametera fields are preserved in
the type of the method result. As can be seen below, the type variableX1 comes from
the object part of the dual type:
Y dup(X1

.
=Pair〈[V1.L, V1.H], [V2.L, V2.H]〉 a) {

X2
.
=Pair〈[T1.L, T1.H], [T2.L, T2.H]〉 p = new Pair〈N1, N2〉(a, a); return p; }

1. Collect X1
.
=Pair〈[V1.L,V1.H],[V2.L,V2.H]〉<:N1∧X1

.
=Pair〈[V1.L,V1.H],[V2.L,V2.H]〉<:N2

Constraints ∧Pair〈[N1,N1],[N2, N2]〉<:X2
.
=Pair〈[T1.L,T1.H],[T2.L,T2.H]〉

∧X2
.
=Pair〈[T1.L, T1.H], [T2.L, T2.H]〉<:Y

2 . Simplify X1<:N1∧X1<:N2∧Pair〈[N1, N1], [N2, N2]〉<:X2
Dual Types ∧Pair〈[N1, N1], [N2, N2]〉<:Pair〈[T1.L, T1.H], [T2.L, T2.H]〉∧X2<:Y

3. Simplify X1<:N1∧X1<:N2∧Pair〈[N1, N1], [N2, N2]〉<:X2<:Y
∧T1.L<:N1<:T1.H∧T2.L<:N2<:T2.H

4. Infer V1.L=V2.L=T1.L=T2.L=⊥∧V1.H=V2.H=T1.H=T2.H=Object
Variance X1<:N1∧X1<:N2∧Pair〈[N1, N1], [N2, N2]〉<:X2<:Y

5. Infer {N1, N2} N1=X1∧N2=X1

Type Vars {X2} X2=Pair〈[X1, X1], [X1, X1]〉
{Y} Y=Pair〈[X1, X1], [X1, X1]〉

6 . Refine X1
.
=Pair〈[⊥,Object], [⊥,Object]〉⇒X1&Pair〈[⊥,Object], [⊥,Object]〉

Results Pair〈[X1,X1],[X1,X1]〉
.
=Pair〈[⊥,Object],[⊥,Object]〉⇒Pair〈[X1,X1],[X1,X1]〉

A new step (Step 2) is added to the main algorithm in order to simplify the dual types.
The simplification rules always prefer the object flow over the field flow (e.g. first con-
straint ofStep 1 is reduced toX1<:N1). However, when the type variables of the field
part are used by the other constraints, both flows are generated (e.g. the third constraint
of Step 1 is decomposed into two constraints). The last step is adapted to refine the dual
types. A dual type can be refined to an intersection type (e.g.first line ofStep 6). Since
an intersection type is the greatest lower bound of its parts, it could be further simplified
(e.g. the second line ofStep 6).

9

4 Inference Algorithm

Program

P ::= def∗

def ::= class c〈K∗〉 extends c1〈π11
,..,π1k

〉
... cn〈πn1

, .., πnk
〉 {(π f)∗ mth∗}

mth ::= κ | κ mn〈V ∗〉((κ v)∗) where ψ {e}
e ::= null | v | v.f | v = e | v.f = e

| {κ v = e1 ; e2} | e1 ; e2 | (κ)v
| new c〈κ∗〉(v∗) | if v then e1 else e2
| while v do e | v0.mn〈κ∗〉(v∗)

Variant Parametric Type

(VPT)

π ::= ακ | K
κ ::= V | c〈π1, .., πn〉 | c

| κ&κ | κ|κ | ⊥
α ::= ⊙ | ⊕ | ⊖ | ⊛

VPT Subtyping Constraint

ψ ::= κ1<:κ2 | κ1<:cκ2

| ψ∧ψ | true

Fig. 1. SYNTAX OF VARIANT CORE-JAVA

We design our inference algorithm as asummary-based analysis, on a per method basis
guided by a global method call graph. Our approach is flow-insensitive within each
method, but context-sensitive across the methods. The algorithm takes as input a well-
typed non-generic program and the VPT class hierarchy, before it outputs a program
that uses VPTs.

We use two assumptions to avoid recursive constraints: (1) no F-bounded quantifi-
cation over the VPT class hierarchy, and (2) no polymorphic recursion for the classes
and the methods. Techniques for avoiding recursive constraints are presented in [4, 5].
Nevertheless, our algorithm can cope with F-bounds, as longas we use constraint solv-
ing techniques that support recursive constraints and inductive simplification (from [25,
18]). Our current approach can infer generic types for mutually-recursive methods un-
der the monomorphic recursion assumption.

We formalize the algorithm on Variant Core-Java (Fig. 1), a core calculus for Java-
like languages. Both input and output programs are encoded in Core-Java since VPTs
can subsume non-generic types. For ease of presentation, the features related to static
methods, exception handling, inner classes and overloading are omitted. Multiple inter-
face inheritance is supported as in Java [12], each class mayextend from a single su-
perclass but may implement multiple interfaces. VPT’s syntax is also shown in Fig. 1.
There are two kinds of type variables:K denoting a variance and a type together, and
V denoting only a type. For simplicity, primitive types (e.g.bool, void) are represented
by their corresponding classes (such asBool, Void). Specifically, for each method our
analysis can be divided into two main steps: (1) gathering the flow constraints based on
the type inference rules (Section 4.1), and (2) solving the flow constraints (Section 4.2).

4.1 Type Inference Rules

The inference process is driven by the following main rule for each method:
G⊢ ci ⇛dcr ti G; {(vi:ti)

n

i=2, this:t1} ⊢ e⇛e e
′:t, ϕ0

Y=fresh() Q1=
⋃

n

i=1
fv(ti) G ⊢ ϕ0∧t<:Y ;Q1 ⇛solverϕ;Q;σ

σt1|σY mn〈Q〉((σti vi)
n

i=2) where ϕ {σe′} ⇛vpt κ1|κ mn〈Q′〉((κi vi)
n

i=2) where ψ {e′′}

G ⊢ c1|c0 mn((ci vi)
n

i=2) {e} ⇛ κ1|κ mn〈Q′〉((κi vi)
n

i=2)) where ψ {e′′}

that takes a non-generic method and the VPT class hierarchyG, decorates the method
parameters (⇛dcr) with fresh interval types, collects the flow constraints (⇛e) from the
method body, and then passes the constraints to the constraint solver (⇛solver). The solver

10

Interval Type

τ ::= t | t.L | t.H
t ::= X | d | c〈[τ1L, τ1H], .., [τnL, τnH]〉
c | t1&t2 | t1|t2 | ⊥ | Object

X ::= V | T | N | Y
Dual Type

d ::= X
.
=c〈[τ1L, τ1H], ..., [τnL, τnH]〉

Flow Constraint

ϕ ::= τ1<:τ2 | τ1<:cτ2 | ϕ∧ϕ | true

Substitution

σ ::= X=τ | X.L=τ | X.H=τ | d=t
Closed Flow Constraint

φ ::= t1.H<:t2.L | t1<:t2.L | t1.H<:t2
| t1.H<:ct2.L | t1<:ct2.L | t1.H<:ct2

Fig. 2. INFERENCETYPES AND FLOW CONSTRAINTS

(Section 4.2) returns the list of method type parametersQ and a substitutionσ. The sub-
stitution maps the type variables (introduced by the decoration) either to ground types
or to the type variables fromQ. Interval types (and dual types), their flow constraints and
the substitutionsσ are detailed in Fig. 2. The final step⇛vpt translates the interval types
inferred for the method into VPTs. We summarize below the main judgments employed
by this phase of our analysis (a complete description is in [5]):

– G⊢c ⇛dcrt denotes the decoration with fresh type variables of a non-generic classc
with respect to its parameterized version from VPT class hierarchyG. The resultt
is either a dual type, or the classc (whenc is not parameterized), or a type variable.

– ρ⊢κ⇛κtt and ρ⊢π⇛πττ denote the translation of a VPT into an interval type with
respect to a substitutionρ. A substitutionρ maps a type variableK (denoting a type
and a variance) into two bounds[τL, τH].

– G⊢t, fn⇛fld[τL,τH] returns the low-bound and high-bound[τL,τH] of a field fn with
respect to an interval typet and the VPT class hierarchyG.

– G⊢t, mn⇛mthmth returns the interfacemth (with fresh interval types) of a methodmn
with respect to a receivert and the VPT class hierarchyG.

– G; Γ⊢e⇛ee
′:t, ϕ denotes the type inference for the expressione with respect to the

type environmentΓ and the VPT class hierarchyG. The inference result consists of
the expressione′ annotated with interval types, its interval typet and the derived
flow constraintϕ. The type environmentΓ consists of the interval types generated
by ⇛dcr.

4.2 Constraint Solver

The constraint solver takes as input a flow constraintϕ0, a set of visible type variables
Q0, a VPT class hierarchyG and performs the following sequence of steps:

⊢ϕ0⇛setC0 ⊢C0⇛trC1 G⊢C1⇛simplifyC2 ⊢C2⇛dualC3;D G⊢C3⇛simplifyC4

⊢C4;Q0⇛varianceC5;Q1;σ1 ⊢C5;Q1;⇛typvarC6;Q2;σ2 G⊢C6⇛condC7

G⊢C7;D;Q2;σ2◦σ1⇛refineC8;Q;σ ⊢C8⇛cnjϕ

G⊢ϕ0;Q0⇛solverϕ;Q;σ

The goal is first to simplify the constraintsϕ0 to atomic constraints among type variables
and ground types and then to solve the type variables in term of the ground type and
the visible type variablesQ. The result consists of a residual constraintϕ among the
visible type variables, a reduced set of type variablesQ and the solution itself given as
a substitutionσ. Since our solver internally works with a set of constraintsC instead of
a conjunctionϕ, the judgments⇛set and⇛cnj make the corresponding translations. We
summarize below the main steps of our solver (a complete description is in [5]).

11

Transitive Closure (⇛tr). The constraint set is always closed by transitivity such that
this step is performed each time a new constraint is added. The transitivity takes into
account the conditional constraints, it generates a conditional constraint from a condi-
tional constraint and non-conditional constraint. VPT subtyping (and also interval type
subtyping) is transitive since the VPT class declarations are well-formed as in [15].
Simplification (⇛simplify). It consists of a constraint decomposition⇛s followed by a
transitive closure: G⊢C0⇛sC

′ ⊢C′
⇛trC

G⊢C0⇛simplifyC
Constraint decomposition⇛s is performed with respect to the class subtyping given by
the VPT class hierarchyG, the interval subtyping rule and the subtyping rules for in-
tersection and union types. Using the mechanism presented before the intersection and
union types constraints always decompose into conjunctions. A conditional constraint
is decomposed into new conditional constraints. The step isperformed until the con-
straint set remains unchanged. In the solver, the first call of ⇛simplify step decomposes
the outermost intersection and union types to reduce the complexity of the step⇛dual.
Dual Types Simplification(⇛dual). It decomposes all the dual types from the input con-
straint setC0. The result consists of a new constraint setC and the list of the decomposed
dual typesD:

⊢C0⇛dD;C1 ⊢C1⇛trC
′
1 D⊢C′

1⇛cdC2 ⊢C2⇛trC

⊢C0⇛dualC;D

The process is performed in two stages. In the first stage (⇛d), all the flow constraints
with dual types are decomposed. When it needs to choose,⇛d prefers the flow through
the object part of a dual type rather than that through the field part. In the second stage
(⇛cd), the flow through the field part is selectively added to the constraint set when it is
required by the other constraints.
Variance Inference (⇛variance). It computes the high-bound type variables and the low-
bound type variables that do not occur in the closed flow constraints, and resolves them
to their default values by the substitutionsσH andσL respectively.

LH={V.H | V.H<:V1.L∈C0 ∨ V.H<:V2∈C0 ∨ V.H<:cV3.L∈C0 ∨ V.H<:cV4∈C}

LL={V.L | V1.H<:V.L∈C0 ∨ V2<:V.L∈C0 ∨ V3.H<:cV.L∈C0 ∨ V4<:cV.L∈C0}
σH=[[V.H 7→Object] | V.H∈fv(C0) ∧ V.H 6∈LH]
σL=[[V.L7→ ⊥] | V.L∈fv(C0) ∧ V.L6∈LL]

σHL=[[V.L7→V, V.H 7→V] | V.H∈LH ∧ V.L∈LL]
Q=Q0∪ran(σHL)\(dom(σL)∪dom(σH)∪dom(σHL)) C=σH◦σL◦σHLC0

⊢C0;Q0⇛varianceC;Q;σH◦σL◦σHL

The substitutionσHL implements the second variance inference rule, making equal the
bounds of an interval when both of them occur in the closed flowconstraints. The initial
list of the visible type variablesQ can be affected by the variance inference. This step
works on all constraints, either from conditional flow or from main flow.
Type Variables Inference (⇛typvar). This step solves the non-visible type variables in
terms of the visible type variablesQ0:

⊢C0;Q0⇛cycleC1;Q1;σ1 ⊢C1;Q1⇛orderL ⊢L;C1⇛unifyC;σ2 Q=Q1∪fv(C)

⊢C0;Q0⇛typvarC;Q;σ2◦σ1

First substep (⇛cycle) makes equal all the type variables of a cycle. This process may also
affect the visible type variables, resulting in a new setQ1. We use techniques from [10]

12

to eliminate the cycles. The non-visible type variables arethen solved (⇛unify) in an
order given by the number of their low bounds (⇛order). The substep⇛order iteratively
computes the order taking into account the situations when the low bounds are class
type parameterized with type variables. The substep⇛unify unifies the type variables
with their low-bounds producing a substitutionσ2. Multiple low-bounds are combined
together as an union type. Non-visible type variables of final constraint setC are pro-
moted as visible inQ. Though this step works only on the main flow constraints, its
computed substitutions are also applied on the constraintsof the conditional flow.
Solving conditional constraints (⇛cond). This step translates the conditional con-
straints into non-conditional constraints if the non-conditional constraints hold. Since
it is always safe to add more constraints on the method interface type variables and
the constraint set is transitively closed, this step only checks (⊢?) the conditional con-
straints with the ground types with respect to the class hierarchyG. First check is for
ground constraints, while the last two are to verify if an intersection and an union type
can exist inG. If the checks do not hold, the conditional constraints are not translated.

B={c1<:cc2 | c1<:cc2∈C0} G⊢?B
∀V ∈fv(C0).G⊢?{c | V <:cc∈C0}&{c | V <:c∈C0}
∀V ∈fv(C0).G⊢?{c | c<:cV ∈C0}|{c | c<:V ∈C0}

C′={τ1<:τ2|τ1<:cτ2∈C0} C′
0=C0\{τ1<:cτ2|τ1<:cτ2∈C0}

G⊢C0⇛condC
′∪C′

0

Refining the results (⇛refine). The goal of this step is to reduce the number of visible
type variables of a method interface. The first three substitutions are based on the closed
flow constraints which are inC0. The last two substitutions are for the high bound (low
bound) type variables occurring on low bound (high bound) positions. Dual types are
also translated into intersection types by the substitution σd.
σ1=[V1.H 7→V, V2.L7→V |V1.H<:V2.L∈C0 ∧ V=fresh()] σ2=[V.H 7→t|V.H<:t∈σ1C0]
σ3=[V.L7→t|t<:V.L∈σ2◦σ1C0] σ4=[V 7→t|t<:V ∈σ3◦σ2◦σ1C0 ∨ V <:t∈σ3◦σ2◦σ1C0]

σ′=σ3◦σ2◦σ1◦σt G⊢σ′D⇛refinedualσd

σ′
1=[V.H 7→V |V1.L7→V.H∈σ′ ∧ V=fresh()] σ′

2=[V.L7→V |V1.H 7→V.L∈σ′ ∧ V=fresh()]
σ=σ′

2◦σ
′
1◦σd◦σ

′

G⊢C0;D;Q0;σ0⇛refineσC0;σQ0;σ

5 Method Overriding
Consider the following method overriding example, where the methodboo of the class
Cell is overridden by the subclassPair (note thatclass Pair extends Cell{..}):

Cell | Object boo(Cell a) {this.fst = a.fst; return a.fst; }
Pair | Object boo(Cell a) {a.fst = this.fst; this.snd = a.fst; return a.fst; }

Applying our inference to each method, we obtain the following results:
Cell〈⊖P〉 | P boo(Cell〈⊕P〉 a){..} Pair〈⊕P1,⊖P1〉 | P1 boo(Cell〈⊙P1〉 a){..}

The method overriding is sound only if the overriding methodis a subtype of the over-
ridden method and the overriding method’s receiver is a subtype of the overridden
method’s receiver [3]. As can be seen, this property does nothold for the above in-
ferred methods:

Pair〈⊕P1,⊖P1〉<:Cell〈⊖P〉 Cell〈⊕P〉<:Cell〈⊙P1〉 P1<:P

To ensure this property, we augment our inference algorithmwith the following con-
siderations: (i) we can strengthen the receiver type and theresult type of the overriding
method; (ii) we can strengthen the parameters types and the precondition of the over-
ridden method. Thus the method overriding problem is solvedas follows:

13

1. Infer the overridden method as:Cell〈[P,Object]〉 | P boo(Cell〈[⊥,P]〉 a)
2. Undo the variance of the overridden method parameters by using fresh interval type

variables (P1.H andP1.L) that keep the relation with the other type variables of the
receiver and the result:Cell〈[P,Object]〉 | P boo(Cell〈[P1.L,P1.H]〉 a) where P1.H<:P

3. Do inference for the overriding method: The process starts with the sound overrid-
ing assumptions (Step1):

Pair〈[V1.L,V1.H],[V2.L,V2.H]〉 | Y boo(Cell〈[V3.L,V3.H]〉 a)
{a.fst=this.fst;this.snd=a.fst;return a.fst;}

1.Overriding Assumptions Pair〈[V1.L,V1.H],[V2.L,V2.H]〉<:Cell〈[P,Object]〉∧Y<:P∧
Cell〈[P1.L,P1.H]〉<:Cell〈[V3.L,V3.H]〉∧P1.H<:P

2.Collect Constraints V1.H<:V3.L∧V3.H<:V2.L∧V3.H<:Y

3.Simplify P<:V1.L∧Y<:P∧V3.L<:P1.L∧P1.H<:V3.H∧P1.H<:P
V1.H<:V3.L∧V3.H<:V2.L∧V3.H<:Y

4.Infer Variance V2.H=Object∧V1.L=V1.H∧V3.L=V3.H∧P1.L=P1.H

5.Infer Type Vars P=P1.H=P1.L=V1.H=V1.L=V2.L=V3.H=V3.L

4. The result of the previous step is applied on both overridden and overriding methods
and we obtain the following sound result:

Cell〈⊖P〉 | P boo(Cell〈⊙P〉 a) Pair〈⊙P,⊖P〉 | P boo(Cell〈⊙P〉 a)

6 Conclusion

We have formalized a novel constraint-based algorithm to infer variant parametric types
for non-generic Java code. In contrast to the previous refactoring algorithms [9, 8, 7,
11, 16] which mainly support invariant subtyping and are designed as whole program
analyses, our approach offers full support for use-site variance based subtyping and it
is designed as a summary-based analysis that works on a per method basis. The main
technical novelty of our approach is a systematic variance inference based on interval
types. With the full support for use-site variance based subtyping, our approach can
generate better generic types than those derived by existing systems. For instance, none
of the previous algorithms can automatically infer the examples from Section 3.4 and
Section 3.5.

Although our inference algorithm internally works with sophisticated mechanisms,
its output is expressed in terms of variant parametric typesextended with restricted
forms of intersection/union types as used in [4]. We have proven the soundness of our
inference algorithm with respect to our variant parametrictype system in [4]. However
the completeness requirement is a difficult problem since the decidability of nominal
subtyping with use-site variance is still an open problem aswas discussed in [15].

We have built an inference prototype which works for a core subset of Java. Our
previous VPT checker from [4] is used to validate the inferred results. In our initial
experiments we have tested the quality of our inference system results on a small set
of non-generic programs by comparing the inferred generic types with the best generic
types that one can manually provide. In all the cases, our system was able to infer the
same types as those manually provided. The inference time was less than one second
for each test program. Currently we are working to extend ourexperiments to larger
programs by using our translator of Java to a core subset [6].

14

References

1. G. Bracha, M. Oderski, D. Stoutamire, and P. Wadler. Making the future safe for the past:
Adding genericity to the Java programming language. InACM OOPSLA, 1998.

2. M. Bugliesi and S. M. P. Geertsen. Type inference for variant object types.Information and
Computation, 177(1), 2002.

3. G. Castagna. Covariance and contravariance: Conflict without a cause.ACM TOPLAS, 17(3),
1995.

4. W. N. Chin, F. Craciun, S.C. Khoo, and C. Popeea. A flow-based approach for variant
parametric types. InACM OOPSLA, 2006.

5. F. Craciun, W. N. Chin, , G. He, and S. Qin. An Interval-based Inference of Variant Para-
metric Types. Technical report, Department of Computer Science, Durham University, UK.,
December 2008. Available at http://www.durham.ac.uk/shengchao.qin/papers/VPTinfer.pdf.

6. F. Craciun, H. Y. Goh, and W. N. Chin. A framework for object-oriented program analyses
via Core-Java. InIEEE Internationl Conference on Intelligent Computer Communication
and Processing, 2006.

7. D. Dincklage and A. Diwan. Converting Java Classes to use Generics. InACM OOPSLA,
2004.

8. A. Donovan, A. Kiezun, M. S. Tschantz, and M.D. Ernst. Converting Java Programs to Use
Generic Libraries. InACM OOPSLA, 2004.

9. D. Duggan. Modular Type-based Reverse Engineering of Parameterized Types in Java Code.
In ACM OOPSLA, 1999.

10. M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken. Partial online cycle elimination in inclusion
constraint graphs. InACM PLDI, 1998.

11. R. Fuhrer, F. Tip, A. Kiezun, J. Dolby, and M. Keller. Efficiently Refactoring Java Applica-
tions to Use Generic Libraries. InECOOP, 2005.

12. J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java Language Specification. Addison-
Wesley, 2005.

13. N. Heintze and O. Tardieu. Ultra-fast aliasing analysisusing cla: A million lines of c code
in a second. InACM PLDI, 2001.

14. A. Igarashi and M. Viroli. Variant parametric types: A flexible subtyping scheme for gener-
ics. ACM TOPLAS, 28(5), 2006.

15. A. Kennedy and B. Pierce. On Decidability of Nominal Subtyping with Variance. In
FOOL/WOOD, 2007.

16. A. Kieżun, M. D. Ernst, F. Tip, and R.M. Fuhrer. Refactoring for parameterizing Java classes.
In ICSE, 2007.

17. M. Odersky. Inferred Type Instantiation for GJ, January2002. Notes, 2002.
18. F. Pottier. Simplifying Subtyping Constraints. InACM ICFP, 1996.
19. F. Pottier.Type inference in the presence of subtyping: from theory to practice. PhD thesis,

Universite Paris 7, 1998.
20. J. C. Reynolds. Preliminary design of the programming language Forsythe. Technical report,

CMU-CS-88-159,Carnegie Mellon, 1988.
21. D. Smith and R. Cartwright. Java type inference is broken: Can we fix it? InACM OOPSLA,

2008.
22. Z. Su, M. Fahndrich, and A. Aiken. Projection merging: Reducing redundancies in inclusion

constraint graphs. InACM POPL, 2000.
23. M. Torgersen, E. Ernst, C. P. Hansen, P. von der Ahe, G. Bracha, and N. Gafter. Adding

Wildcards to the Java Programming Language.JOT, 3(11), 2004.
24. M. Torgersen, E. Ernst, and C.P. Hansen. WildFJ. InFOOL, 2005.
25. V. Trifonov and S. Smith. Subtyping Constrained Types. In SAS, 1996.

15

