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Abstract. Variant parametric types represent the successful irtiegraf sub-
type and parametric polymorphism to support a more flexibleyping for Java-
like languages. A key feature that helps strengthen thégnation is the use-site
variance. Depending on how the fields are used, each vartem®es a covari-
ant, a contravariant, an invariant or a bivariant subtypBygannotating variance
properties on each type argument to a parametric class;gmogers can choose
various desirable variance properties for each use of thenpetric class. Al-
though Java library classes have been successfully re¢acto use variant para-
metric types, these mechanisms are often criticized, dtfeetdifficulty of choos-
ing appropriate variance annotations. Several algorithave been proposed for
automatically refactoring legacy Java code to use genibrarles, but none can
support the full flexibility of the use-site variance-basetityping. This paper ad-
dresses this difficulty by proposing a novel interval-baapfroach to inferring
both the variance annotations and the type arguments. Ea@mt parametric
type is regarded as an interval type with two type boundsweddound for
writing and an upper bound for reading. We propose a comstbaised inference
algorithm that works on a per method basis, as a summarnydizasdysis.

1 Introduction

Recently, several mainstream object-oriented languageh,as Java and C#, have suc-
cessfully integrated traditionalibtype polymorphisendparametric polymorphisrto
support better type-safe reusable code with significantatoh of runtime cast oper-
ations. Subtype polymorphism is a nominal relation, based given class hierarchy.
Parametric polymorphism allows a data or a function to bapaterized by types and
supports structural subtyping [1]. In handling objectswnitutable fields, a crucial fea-
ture that helps strengthen the integration of subtype ananpetric polymorphism is
the adoption ofrariance Variance annotations predict the flow of values for fieldd an
provide a richer subtyping hierarchy. Depending on how thlgl$i are being accessed,
each variance denotes a covariant, a contravariant, ananvar a bivariant subtyping.
Generics types of Java 5 (also called Wildcard Types) [2312Jare based on the vari-
ant parametric types (or VPTS) [14]. VPTs is basedise-site variancevhereby each
use of a class type is marked with suitable variances thatatelhow the fields are to
be accessed.
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Variant Parametric Types. Consider a variant parametric classir with two fields
which are captured as type parameters:
class Pair(A,B) { A fst; B snd; ---
Assume three methods to retrieve the first field, to set thergkfield and to swap the
two fields for apair object. In these methods, the parameteis is thepair object
whose variant parametric type must be provided with siatairiances. The type of
thethis parameter is specified prior to delimitér(as in [4]):
Pair(@®A, ®) | C getFst(A,C)() where A<:C { return this.fst;}
Pair(®, ©B) | void setSnd(B, C)(C y) where C<:B { this.snd=y;}
Pair(®A, ®A) | void swap(A)(){A y=this.fst; this.fst=this.snd; this.snd=y; }
As can be seen, four kinds of variance annotations (dengtejldre possible: (i} = ®
captures dlow-outfrom the field to support covariant subtyping; @i)= © captures a
flow-into the field to support contravariant subtyping; (iii)= ® captures botlflow-in
andflow-outto support invariant subtyping; and (i%)= ® capturesno accesgor the
field to support bivariant subtyping. For simplicityt can be abbreviated as More
generally, given an object with variant parametric typé;t:), we may pass it to a
location with typec,(a»t,), in accordance with the following subsumption relations:
ci<ico arti<iagty  (1<:@) ti=t2
C1<a1t1><:C2 <a2t2> a1t1<:Ot2 a1t <:®t2

(1 <: @ Ati<ita) Via=0bject (au<:O Ata<it1)Via=Ll
a1t <:Bta a1t1<:6t2

The bottom of the class hierarchy isdenoting the type ofiu11 value, while the top
of the class hierarchy isbject. For simplicity, the first rule assumes that each class
constructor has only a single inheritable type parametss. above rules use nominal
subtypinge: <:c, from traditional class hierarchy and also a reflexive anuofitéve vari-
ance subtyping with a simple hierarchy<: ¢ <: ® © <: © <:®. The<: operator
is overloaded to handle variance subtyping, nominal clalst/ping and two VPT sub-
typings fort andat, respectively. The above subsumption relations form treéshaf
the VPT system to provide a richer subtyping system. Two igosvhighlighted in the
above rules for parametric fields are (i) to allow each sudd feebe retrievable as an
Object, and (ii) a null value (ofL type) to be written into any such field, regardless of

its variant annotation. Typesobject ando L are essentially equivalent tot.
Motivation. Although VPT mechanisms have now been validated in thesitdle im-

plementation of Java 5 [12] and Java library classes havesezessfully refactored to
use variant parametric types, these mechanisms are oitieized, due to the difficulty
of choosing appropriate variance annotations. By anmgatiriance properties on each
type argument to a parametric class, programmers can chiansas desirable variance
properties for each use of the parametric class. For exatheléypePair(®A, ®B) or
Pair(®A, ®B) are still correct types for the receiver of the above meigwdst. How-
ever the best generic type bair($A, ®), since the first field is read and the second
field is not accessed. In order to establish the most flexileect variance annotations
(those which do not restrict the code genericity) for a typelaration, the program-
mer has to analyse all the places where that type declaratiosed in the program.
Although several algorithms have been proposed for refagdegacy Java code [9, 8,
7,11], they are restricted either to parametric types [1ffoovariant parametric types
with known variance annotations. No one can support thelaxibility of the use-site
variance-based subtyping. Moreover these algorithmaneglobal analysis.
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Contributions. We propose a novel approach to automatically inferring tugawnce
annotations and the type variables for the variant paracitgpres of method parameters
(including receiver), method result and method body’s lleesiables. In addition, the
expected value flow that may arise from the method body isucagtas a precondition.
The inference is designed assummary-based analydisat works on a per method
basis: the variant parametric types of a method are infemédbased on how they are
used in the method body, while each call site is a specifiairtst of the method’s type
declaration. Our inference is guided by a dependency gragh that all the methods
which are called by the current method have been alreadyzsthlOur inference also
assumes that the generic class hierarchy is known. In acvdertport the full flexibility
of the subtyping based on the use-site variance, our inéeralgyorithm starts with un-
known variance annotations. Each variant parametric typegresented as amterval
type[2], namely two type bounds that allow us to distinguistead flowfrom awrite
flowfor each object’s field. Based on a flow-based approach forsBTwe reduce the
problem of inferring variance annotations and type argumenthe problem of solv-
ing specializedlow constraintsTo the best of our knowledge thistise first algorithm
that decouples variance inference from the type inferetised.iIn order to allow more
generic types for the method parameters we introdluzd typeso supportunknown
variance flow Dual types make a distinction between flow via an objebject flow
and the flow via the object’s fieldeld flow We also uséntersection and union types
to capture thalivergent flonandconvergent flowrespectively. A safe yet precise ap-
proximation is used to avoid disjunctive constraints. W alrovide special solutions
to handle runtime cast operations and method overriding.

Related Work. The task of introducing generics to an existing Java cod&, [B,11,
16] consists of two distinct problems, parameterizatiod iastantiation. Class param-
eterization selects the class fields that can be promoteldsstype parameters. Since
class parameterization decisions may be quite hard to aiéodue to trade-offs in
the possible design outcomes, our solution is to let program focus on high-level
design decisions for parameterization, while leaving tlgentedious annotations on
value flows of methods to be automatically inferred. Presialgorithms for instantia-
tion have been restricted to parametric types based oniamiaubtyping [9, 8, 7, 11].
Although the most recent Java refactoring paper [16] cldigisg able to infer wildcard
types, it conservatively assumes invariant subtyping eviémwildcard types.

At each call site, Java compiler [12] performs a local infee of the method’s
type parameters. The algorithm follows the local type iefee designed for parametric
types [17] . Recently, a significant revision of Java locétiance has been proposed
in [21]. The new proposal has introduced two bounds for a tygréable similar to
our interval types. However it does not perform variancerience since the variance
annotations are known. Our approach is more general andisithg the local type
inference.

Our variant parametric type inference algorithm produadstyping (flow) con-
straints. To solve them, we work on a closed constraint gepploying techniques
from [25, 18, 22, 10]. It seems also possible to formalizeamunstraint solver on a pre-
transitive graph [13] to have a more scalable implememntatiogeneral the constraint
solving techniques assume that the polarities of term coctstrs are known. How-
ever the inference of variant parametric types may gené&ateconstructors with un-



known polarities (variances). Therefore our approach asésterval type (a contravari-
ant lower bound and a covariant upper bound) to represeht@amown polarity of
a term constructor. The idea of using interval types for tgplle values has already
been applied to reference type [20, 19] and also in the confeobject calculi [2]. An
open problem (discussed in [2]) is whether the interval $ygen be used to infer types
with variance information from non-annotated terms. Ourarece inference provides

a constraint-based solution to this open problem.
Outline. The following section presents our interval-based view Bg. Section 3 in-

troduces the key features of our approach. Section 4 foremtiur inference algorithm.
Section 5 solves the method overriding problem. A brief ¢dasion is then given.

2 \Variant Parametric Types as Interval Types

The underlying idea behind our solution is to view each vdrgarametric typex as

an interval (of types) with a low-bourdr. and a high-bound.H such thatx.L<:X.H.
The low-bound variable captures each value of typthat mayflow intoax using the
constraintt; <:x.L, while the high-bound variable captures each value of typinat
may flow outof oX usingx.H<:t,. By default, it is always safe for each low-bound

to be bounded by. <:x.L and each high-bound can be boundedzlsx:Object For
example, given a variant parametric typ@x) (wherex is a type variable) denoting a
class with a field of typex, it can always be translated into an interval type as follows

X=X.H X=X.L
c(@®X)<=—c([L,XH]) c(6X)<=c([X.L,Object) c(OX)<=c(X, X])
X.L=fresh() X.H=fresh()
c(®)<=c([L,Object) c{aX)=c([X.L,X.H])
Translation rules are bidirectional where the varianceniewn. The last rule is a key
rule for variance inference, as it splits a type variablehveibh unknown variance into
two type variables. Thus, field selection (reading) usesytbex .1, while field updating
(writing) is based on typ&.L.
Theinterval type subtypingubsumes VPT subtyping and is defined as a contravari-
ant subtyping on low-bounds and a covariant subtyping oh-bigunds, as follows:
c1<:cy to.L<:iti L ti H<:tp.H
c1([t:.L, t1.H])<:ca([t2.L, t2.H])
The annotations. and.H make a flow-based distinction among the types, such that:
— X.L denotes a type that expectwvdte flow(flow in),
— X.H denotes a type that expectsead flow(flow out),
— X (without annotation) denotes a type that expects bedld andwrite flows.
Using the flow expectations, we identified a special groupaf tonstraints that we
called closed flow constraintsThey denote a matching of a flow-out with a flow-in,
namely a consumption of a read flow by a write flow.

Definition 1 (Closed Flow Constraint).A closed flow constraint is a flow constraint
that has one of the following forms; .H<:X,.L, X; .H<:X», X1 <:X».L, andX; <:X,, where
X;, Xo, are different fromObjectand L.

Proposition 1 (Variance Inference Rule-1)If a low-bound type variablg.L does not
occur in any closed flow constraint, it is resolved to.bdf a high-bound type variable
X.H does not occur in any closed flow constraint, it is resolvebldObject



3 Inference of Variant Parametric Types

3.1 Main Algorithm

This section illustrates the main steps of our inferencerilgm using the following
method of a non-generiair class:
Pair | Object move(Pair a) { Object y=a.getFst(); this.setSnd(y); returny;}

Our goal is to infer its generic version that correspondfiéovariant parametric class
Pair(4,B). Internally, our algorithm works with interval types to ggate and solve the
flow constraints. Therefore, we use the following interyglet based specifications of
the methodgetFst andsetSnd of the variant parametric classir(a, B):

Pair([L, A.H],[L, Object) | C getFst(A.H, C)() where AH<:C {..}

Pair([L, Object, [B.L, Object) | void setSnd(B.L,C)(C y) where C<:B.L {..}
Step 0. Decoration with Fresh Interval Types. This is a pre-processing step. It con-
sists of the annotation with fresh type variables of the generic types and non-
generic methods. We use the following naming conventidmestetterss; for the global
type variables (visible outside the method), the letttar the method result, the letters
N; for the arguments of new expressions, and the lettefsr other annotations:

Pair([V;.L,Vi.H],[V2.L, V2. H]) | Y move(Pair([Vs.L, V3.H],[Va.L, V4.H]) a)

{To y=a.getFst(T1.H, T2)(); this.setSnd(Ts.L, Ts)(y); returny;}

Step 1. Collect Flow Constraints. This step gathers the constraints from the method
body using the type inference rules given in Section 4.1obk@fs:
Pair([Vs.L, Vs.H]|, [V4.L, V4. H])<:Pair([L, T;.H], [L, Object) AT; .H<:T2 A T2<:To A To<:TzA
T4<:T3.L A Pair([Vy.L, Vi .H], [V2.L, V2. H])<:Pair([ L, Object, [Ts.L, Objeci) A To<:Y
Step 2. Simplify Flow Constraints. This is a closure algorithm that iteratively decom-
poses the constraints into their elementary componemgsniirily applies the interval
subtyping rules with transitivity. The closure algorithsrimvoked each time a new con-
straint is added to the set. For brevity, in the followingmydes, we omit the transitivity
and the default constraints like<:x, X<:Object andx.L<:X.H. The result of this step is
the following:

V3. H<:T1.HA T1.H<:To A To<:To A To<:TgATa<:T3.L A T3.L<:Vo.L A To<:Y

Step 3. Variance Inference. This step generates a set of closed flow constraints and

then applies the variance inference rule from Section Z€e3inL, V;.H, V4.L, V4 .H, V. H,

v3.L do not occur in any closed flow constraint, they are accoidisgjved as follows:
Vi.L=1 A Vi.H=Object A Vs.L=1 A Vs.H=Object A V,.H=0Object A Vz.L=_1

Step 4. Type Variables Inference. This step solves the type variables v;, andy
in term of the global type variables and ground types (which are types without type

variables). It consists of three substeps:
1. Cycle elimination: This causes all type variables of de&yo be equal. Note that

there isn’t a cycle in the current example.

2. Ordering: The type variables are ordered based on the euaoflconstraints in
which they appear as an upper bound.

3. Unification: Following the order defined before, the typeiables are solved by
equating to their low bounds. Type variables occuring indfeeonstraints have a
higher priority.



For our example, the result of the unification is summarizgthle last column of the
following table. The first column contains the constraimsvhich the type variables
from the second column occur as upper bounds. Multiple tgrables in the second
column denotes type variables having the same priority.

Constraints TVars| Result

Vs H<:T:.H {Tl.H} T;.H=V3.H

V3.H<IT2/\T1.H<IT2 {TQ} T2:V3.H

V3. H<:ToAT1 . H<:ToAT2<:To {To} | To=Vs.H
V3 . H<: T4 AV H<YAT1 H< Ta AT H<YATo <'TaATo<:YATo<:TaATo<:Y {T4, Y} Y=T4=V3.H
V3 H<:T1 . H<:T2<:Tp<:Ta<:T3.L {T3.L} T3.L=V3.H

Step 5. Result Refining.This step simplifies the inferred types of the method. The goa
is to reduce the number of the global type variables usingehielual flow constraint
(namely the remaining flow constraints among the global iigy@bles). The residual
flow constraint of the current example ¥s:H<:V,.L. These type variables can be unified
to a fresh type variable, such that=v;.H=V,.L. Sincev stands for both low-bound and
high-bound, it is not marked with either. The result of odenence (including the above
refinements) is the following:
Pair([L, Object,[V, Object) | Vmove(V)(Pair([ L, V],[L, Object) a)
{V y=a.getFst(V,V)(); this.setSnd(V,V)(y); returny;}
Step 6. VPT Result. This step translates the inferred interval types into VPTSs:
Pair(®,0V) | Vmove(V)(Pair(®V,®) a)
{Vy=a.getFst(V,V)(); this.setSnd(V,V)(y); returny;}

3.2 Interval Types versus Variant Parametric Types

The interval types are more expressive than variant parantgpes, since they can
support two different non-default bounds. A variant paraiméype can only support
two equal non-default bounds in the case of invariant subtyp. Note that the default
low-bound isL, while the default high-bound iBbject Considering the following code
fragment, we like to infer the interval type ot :
class Cell(A) { A fst; --- class Integer extends Number{..}
Cell(@A) | Aget(8)(){..} class MyInt extends Integer{..}
Cell(SA) | void set(A)(Ay){..}..}

Cell([T.L, T.H]) obj = new Cell({Integer)(new Integer(1)); // T.L<:Integer<:T.H

Number n = obj.get(T1)(); // T.H<:T;<:Number

MyInt m = new MyInt(2);obj.set(Tz)(m); // MyInt<:To<:T.L
Our algorithm can infer the interval type11([MyInt, Number]) for obj. However this
interval type cannot be translated into a variant paramstpe, since it consists of two
different bounds. In order to keep the equivalence betwetamal types and variant
parametric types, we add one more rule to the variance inéere

Proposition 2 (Variance Inference Rule-2)If both bounds.L andx.1 of an interval
type occur in the closed flow constraints, then the defaulstraint of an interval type
X.L<:X.H is strengthened to the equality.=X.H.

In our example, adding.L=T.H to the above set of constraints will generate a cycle
such thatr.L<:Integer<:T.H A T.L=T.H. Cycle elimination generat@dS.=Integer=T.H.
Thus new inference result is the interval typel1{[Integer, Integer]), that can be
directly translated into the variant parametric tyje@1(®Integer).
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3.3 Main Flow and Conditional Flow

Cast operations give rise tonditional flow constraintéor dynamic subtype constraints
in [9]). These constraints are conditional in the sensettiegt are only required to hold
if the corresponding dynamic downcasts succeed at run@aeanalysis separates the
main flowgathered from the method body without the cast operatiodslacondi-
tional flowcorresponding to the cast operations. Conditional coimésrase a different
subtyping notation<:.). One benefit of our analysis is that it can guarantee thaesom
of the cast operations are redundant, and therefore thepeaafely eliminated at
compile time. The number of the eliminated casts is used acanracy measure of
generic type systems [8, 11, 4, 16]. The following examplsitates how our inference
algorithm handles the cast operations:

Original code Inference Result

Cell | void £i11(Cell a) Cell(®V)| void £111(Cell(BCell(SV)) a)
{Cell b = (Cell)a.fst;b.fst = this.fst;} {Cell(OV)b = a.fst;b.fst = this.fst;}
Code annotated with Fresh Interval Types

Cel1([V;.L,V1.H]) | void £i11(Cell([V,.L, V2.H]) a)

{ Cell([T:.L, T1.H]) b = (Cell([T».L, T>.H]))a.fst; b.fst = this.fst; }

1. Collect Cell([T2.L, To.H])<:Cell([Ti.L, T H|) AV, H<:T;.L
Constraints V2 .H<:cCell([T,.L, T,.H])
2. Simplify Vi H<:T; L<:T,.L<:To.H<:T{.H V.H<:.Cell([T5.L, To.H])
3. Infer V1L:VQL:J_/\T1H:T2H:ObJeCt/\V1H<T1L<T2L

Variance Vo.H<:.Cell([T.L, Object)

4. Infer {T.L} T.L=V,H

Type Vars {T,.L} T,.L=V:.H

5. Solve Conditional|Vo.H<:.Cell([V,.H, Object) = V,.H<:Cell([V:.H, Object)
6. Refine Results [V=fresh() V;.H=V A V,.H=Cell([V,Object)

Thoughthe conditional flow is kept separately, it is stikd®y the variance inferencein
Step 3. If Step 3 ignores the conditional flow, it infers the incorrect resuli=0bject
A new step §tep 5) is added to the main algorithm. This step combines togetieer
conditional flow and the (already solved) main flow in ordefitid a common solution.
In our example, adding the conditional constraint to themilw does not generate
any contradiction as the type variablesi andv,.H are unconstrained in the main flow.
However it is not always possible to find a common solutiontfa main and condi-
tional flow, as illustrated by the following example:

V3 £002(Cell([Vs.L, V4. H]) obj) {

if(...) {... return (Integer)obj.fst;} else{... return (Float)obj.fst;}}

//Integer<:VsAFloat<:Vs ViH<: IntegerAVs.H<:Float
In this example the conditional constraints can be addeldgartethod precondition to
be checked at each call site where the casts could be selgativminated (with the
help of a polyvariant program specializer):

Number foo2(Cell([L,Vs.H]) obj) where V4.H<: IntegerAVs.H<:Float

3.4 Convergent Flow and Divergent Flow

Multiple low bounds denote aonvergent flowwhile multiple high bounds denote a
divergent flowOur analysis uses union types for multiple low bounds atetsection
types for multiple high bounds. An union typelt, represents the least upper bound



of t; andt,, while an intersection type; &t, is the greatest lower bound ef andt..
Some of their subtyping rules may generate disjunctionerdier to keep our analysis
simple, we propose a safe yet precise approximation thadsteose disjunctions:

AND rules OR rules Our OR rules

ti|ta<it t<:ti|ts t<:ti|ty Ti=fresh()
ti1<it A ta<:it t<it; V t<ito T<<T1 ANt1<!T1 A ta<<iTy

t<iti&ety t1&ta<it t1&ta<:t  Tp=fresh()
t<its A t<ity t1<it V ta<it To<iti A Ta<ity ATo<:t

whereT; andT, are fresh type variables. Another solution to avoid disfioms is the
tautologyt:&t.<:ti|to, but sometimes this approximation may lead to no solutions.
One benefit of using union and intersection types is that #reymore expressive so
that more casts can be directly eliminated as the followixengple (from [8, 4]) can
illustrate:

class Bl extends A implements I {..}; class B2 extends A implements I {..};

Original code Code annotated with Fresh Interval Types
void foo(Boolean b){ void foo(Boolean b){

Cell c1 = new Cell(new B1()); Cell([T;.L, T1.H]) c1 = new Cell(N;)(new B1());
Cell c2 = new Cell(new B2()); Cell([T>.L, To.H]) c2 = new Cell(N,)(new B2());
Cell c =b7cl: c2; Cell([Ts.L, T3.H]) c = b7cl : c2;

Aa = (B) c.get(); Aa = (B) c.get(Ta)();

Ii = (I)c.get(); Ii = (I)c.get(Ts)();

Blibl = (B1) cl.get(); Blibl = (B1) cl.get(Te)();

B2b2 = (B2) c2.get(); } B2b2 = (B2) c2.get(T7)(); }

The following table contains the inference steps for thevalmmde with interval types.
At the step4.4, T;.H is resolved as to the union tye|B2 due to two distinct flows
converging to itB1<:Ts.H A B2<:T3.H. The solutions of the main flow can prove that all
conditional constraints succeed, and therefore all castde eliminated.

1. Collect [B1<:N;ACell([Ny,N;])<:Cell([T;.L, T1.H])A
Constraints |[B2<:NpACell([Ns, No])<:Cell([T2.L, To.H|)A
Cell([T:.L, Ti.H])<:Cell([Ts.L, Ts.H])ACell([T>.L, T».H])<:Cell([Ts.L, T5.H])
AT3.H<:T4AT3 H<:Ts AT1 . H<:Te AT2.H<:T7
Ta<:cAATs<:cIATs<::BINT7;<:.B2
2. 8implify [B1<:NiAT;.L<:N;<:T1.HAB2<:NpAT2.L<:N><:T5.HAT3.L<:T;.LAT;.H<:T3.H
AT3.L<:T2.LAT2 H<:T3.HAT3 . H<:T4 AT3.H<:Ts AT1 H<:TgAT2.H<:T¢
Ta<:cAATs<:cIATs<::BINT7;<:.B2
3. Infer T;.L=T2.L=Ts.L=_1 A B1<:N; <:T1.HAB2<:Np<:T2.HA

Variance |T;.H<:T3.HAT2.H<:T3.HAT3.H<:T4AT3.H<:TsAT1.H<:TeAT2.H<:T7
Ts<:cAATs<:cINTe<::B1AT;<::B2
4. Infer {Ny, N2} N;=B1AN,=B2

Type Vars {T;.H, To.H} T:.H=B1AT,.H=B2
{T6,T7} = Te=B1AT,=B2

{Ts.H} T3.H=B1|B2
{Ts,Ts}  Ts=Ta=B1|B2
5. Solve Bi[B2<:cA By|Ba<:cI

Conditional|B1<:.B1 B2<:.B2




3.5 Field Flow and Object Flow

A key feature of our approach is the distinction between thw flia an object, called
object flowand the flow via the fields of that object, callfeld flow We introduce a
special type notation, that we calleldial typeto support these two views: (1) object
as a black box, and (2) object as a glass box. For example | &yeasfor apair is of
the formx=Pair([V;.L, Vi.H|, [V..L, V>.H]), where the type variabte (calledobject par}
is used for the flow of the entire object, whiteir([v,.L, v, .H], [V,.L, V,.H]) (calledfield
part) caters to the flow via its fields. This dualism can improve dgleeericity of our
inference results. Specifically, given the following metlaap (from [4, 14]):
Pair dup(Pair a) { Pair p = new Pair(a,a); return p; }
Without using the dual types, our inference can get the\fioilg types:
Pair(®,®) dup(Pair(®,®) a){
Pair(®,®) p=new Pair(Pair(®, ®),Pair(®,®))(a, a); return p; }
The type of the method result is too imprecise, but still ecras fields are not accessed
(bivariant®) in the method body. Using dual types our approach can get mi@cise
types by inferring an intersection type for the method paat@m, namely:
Pair(©®X;, ©X1) dup(X;) (X1 &Pair(®, ®) a) {
Pair(®Xi, ®X1) p = new Pair(X;,X:)(a, a); returnp; }
The type variabl&; plays an important role, it allows the unknown variance taflo
unchanged, such that the variance annotations of the pseaaields are preserved in
the type of the method result. As can be seen below, the typablax, comes from
the object part of the dual type:
Y dup(X;=Pair([V;.L, Vi.H], [V2.L, V2. H]) a) {
Xo=Pair([T;.L, T1.H|, [T2.L, T>.H]) p = new Pair(N;,N.)(a,a); returnp; }

1. Collect |X;=Pair([V;.L,Vi.H]|,[V2.L,Vo.H])<:NiAXi=Pair([Vi.L,Vi.H],[V2.L,Vo.H|) <:Ny
Constraints|APair([Ny,N],[Nz, No|) <:Xo=Pair([T;.L,T;.H]|,[T2.L,T2.H])
AXo=Pair([Ti.L, T1.H], [T2.L, To.H])<:Y
2. Simplify |X1<:NiAX; <:NoAPair([Ni, Ni], [N2, No])<:Xa
Dual Types |APair([Ni, Ni], [No, No|)<:Pair([Ti.L, T1.H], [T2.L, T2.H])AX2<:Y
3.8implify |X;<:NiAX;<:NaAPair([Ni,Ni], [No, Np])<:Xo<:Y
AT1.L<:N; <:T1 HAT2.L<:No<:T2.H
4. Infer V1L:VQL:T1L:TQL:J_/\VlH:VQH:T1H:TQH:ObJeCt
Variance |Xi<:NiAX;<:NoAPair([Ni,Ni],[Na, No])<:Xp<:Y
5. Infer {Nl,NQ} N1:X1/\N2:X1
Type Vars {X2} Xo=Pair([Xy, Xi], [X1, X1])
{Y} YzPair([X1, )(1]7 [X1, X1]>
6. Refine X;=Pair([L, Object, [ L, Object)=-X:&Pair([ L, Object, [ L, Object)
Results Pair([X1,Xl],[Xl,X1]>iPair<[J_,ObjeCL[J_,Objeci>:>Pair<[X1,Xl],[X1,X1]>

A new step $tep 2) is added to the main algorithm in order to simplify the dyglds.

The simplific

ation rules always prefer the object flow ovex tield flow (e.g. first con-

straint ofstep 1 is reduced tx; <:N;). However, when the type variables of the field
part are used by the other constraints, both flows are gek@g. the third constraint
of Step 1 is decomposed into two constraints). The last step is adaptefine the dual

types. A dua

| type can be refined to an intersection type fiesgline of step 6). Since

an intersection type is the greatest lower bound of its piadeuld be further simplified
(e.g. the second line Gftep 6).



4 Inference Algorithm

Program Variant Parametric Type
P = def (VPT)
def ::= class ¢(K™) extends Ci (71, ,..,71,) mo=ak | K
e Co Ty oy Ty ) {( )" mth*} K=V | c{m,.,m) | ¢

mth::= x| Kk MV *)((k v)*) where ¢ {e} | K&k | Kklk| L
e uw=mnull|v|ovf|v=e|vf=e€ ax=0|®| 0| ®

| {kv=e1 ;ea} | e1;ea| (K)v VPT Subtyping Constraint

| new ¢(k")(v*) | if v then e; else e2 o= k1<ike | K1<ick2

| while vdoe | vo.mn(x")(v") | YAY | true

Fig. 1. SYNTAX OF VARIANT CORE-JAVA

We design our inference algorithm asammary-based analysisn a per method basis
guided by a global method call graph. Our approach is flow+isgive within each
method, but context-sensitive across the methods. Theithigotakes as input a well-
typed non-generic program and the VPT class hierarchyrédf@utputs a program
that uses VPTs.

We use two assumptions to avoid recursive constraints:d F-hounded quantifi-
cation over the VPT class hierarchy, and (2) no polymorpédursion for the classes
and the methods. Techniques for avoiding recursive cangdrare presented in [4, 5].
Nevertheless, our algorithm can cope with F-bounds, asdsnge use constraint solv-
ing techniques that support recursive constraints anccingusimplification (from [25,
18]). Our current approach can infer generic types for milytracursive methods un-
der the monomorphic recursion assumption.

We formalize the algorithm on Variant Core-Java (Fig. 1)peecalculus for Java-
like languages. Both input and output programs are encad&wbie-Java since VPTs
can subsume non-generic types. For ease of presentatiofgatures related to static
methods, exception handling, inner classes and overlgadamomitted. Multiple inter-
face inheritance is supported as in Java [12], each classewtapd from a single su-
perclass but may implement multiple interfaces. VPT's ayri$ also shown in Fig. 1.
There are two kinds of type variablesdenoting a variance and a type together, and
v denoting only a type. For simplicity, primitive types (ebgol, void) are represented
by their corresponding classes (suctsasl, void). Specifically, for each method our
analysis can be divided into two main steps: (1) gatheriedltw constraints based on
the type inference rules (Section 4.1), and (2) solving the flonstraints (Section 4.2).

4.1 Type Inference Rules

The inference process is driven by the following main rulegach method:
GFci =dorti G; {(vitti)j—o, thisiti } F e = €'it, o
Y =fresh() Qi=UJ;_ fv(t:) Gt poAt<:Y;Q1 = solver p;Q;0
otiloY mQ)((ot; vi);=,) where  {oe'} Svptr1|k MA(Q') (ki vi)i=,) where 1 {”}

G+ cileo mn((c; vi)izs) {e} = ki|re mMN(Q")((k; vi)j—s)) where 1) {e"}
that takes a non-generic method and the VPT class hieraraihgcorates the method
parameters=$ 4) with fresh interval types, collects the flow constraints.] from the
method body, and then passes the constraints to the canisbier & sover). The solver
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Interval Type Flow Constraint

T ou=t| ¢tL| t.H pu=T1<iTe | 1<ieT2 | @A@ | true
t ==X |d| ([re, ], -, [TaL, Tor]) Substitution
c| ti&ty | ti|tz | L | Object ou=X=7| X.L=7| X.H=7| d=t
X:=V|T|N|Y Closed Flow Constraint
Dual Type ¢ =t H<:ito.L| t1<:to.L | t1.H<:ta
d = X=c([rir,T1H], -, [TnL, TnH]) | ti.H<:cto.L| ti<icto.L | t1.H<:cta

Fig. 2. INFERENCETYPES AND FLOW CONSTRAINTS

(Section 4.2) returns the list of method type parameatensd a substitutioa. The sub-
stitution maps the type variables (introduced by the dd@mrpeither to ground types
or to the type variables from Interval types (and dual types), their flow constraints and
the substitutions are detailed in Fig. 2. The final step.,: translates the interval types
inferred for the method into VPTs. We summarize below therpadgments employed
by this phase of our analysis (a complete description is]n [5

— GFc =4t denotes the decoration with fresh type variables of a noegeclass
with respect to its parameterized version from VPT classahihyc. The result
is either a dual type, or the clasgwhenc is not parameterized), or a type variable.

— pFK= .4t and pF7= .7 denote the translation of a VPT into an interval type with
respect to a substitutign A substitutiony, maps a type variable (denoting a type
and a variance) into two boun@ls, 74].

— Gkt, fn=qq[7.,7) returns the low-bound and high-boupd, ] of a field £n with
respect to an interval typeand the VPT class hierarcley

— GFt, mn=memth returns the interfaceth (with fresh interval types) of a methas
with respect to a receiverand the VPT class hierarclay

— G;TFe=.e':t, p denotes the type inference for the expressiovith respect to the
type environment and the VPT class hierarcley The inference result consists of
the expressior’ annotated with interval types, its interval typend the derived
flow constraintp. The type environmert consists of the interval types generated
by = der-

4.2 Constraint Solver

The constraint solver takes as input a flow constraint set of visible type variables
Qo, @ VPT class hierarchyand performs the following sequence of steps:
F4,00358100 FCo=4Ch GFCI%simplifbe FC23duaICSSD GFCSEsimplifyCﬁ
|_C4;Q03variancecvs§Q1§Ul }_Os;QUStypvalCG;Q%O? Gl_cfjécondcf7
GFC7;D;Q2;02001= 1efineCs;Q;0  =Cs= enjip
G}_SDO;QOSSOWGI(P;Q;O—
The goal is first to simplify the constraints to atomic constraints among type variables
and ground types and then to solve the type variables in tétmeoground type and
the visible type variableg. The result consists of a residual constrairhmong the
visible type variables, a reduced set of type variahlasd the solution itself given as
a substitutiory. Since our solver internally works with a set of constramnisstead of
a conjunctionp, the judgmentss s.; and= ¢, make the corresponding translations. We
summarize below the main steps of our solver (a completeigéisn is in [5]).
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Transitive Closure ( =). The constraint set is always closed by transitivity such tha
this step is performed each time a new constraint is addeel treinsitivity takes into
account the conditional constraints, it generates a ciomdit constraint from a condi-
tional constraint and non-conditional constraint. VPTtgpng (and also interval type
subtyping) is transitive since the VPT class declaratioasxell-formed as in [15].
Simplification (= simpiy). It consists of a constraint decompositien followed by a
transitive closure: GFCy=.C' FC'=4C

Gl_c()ésimplifycf
Constraint decompositios ; is performed with respect to the class subtyping given by
the VPT class hierarchg, the interval subtyping rule and the subtyping rules for in-
tersection and union types. Using the mechanism preserfedezhe intersection and
union types constraints always decompose into conjuntidrconditional constraint
is decomposed into new conditional constraints. The st@eiformed until the con-
straint set remains unchanged. In the solver, the first ¢al oy Step decomposes
the outermost intersection and union types to reduce th@lexity of the step= qua.
Dual Types Simplification(= qua). It decomposes all the dual types from the input con-
straint set,. The result consists of a new constraintsand the list of the decomposed
dual type:

FCo=aD;C1 FC1=4Cf DFC{=wCe FO2=2C
FCo= quaC; D
The process is performed in two stages. In the first stagg, @ll the flow constraints
with dual types are decomposed. When it needs to chepserefers the flow through
the object part of a dual type rather than that through the fiatt. In the second stage
(=), the flow through the field part is selectively added to thest@int set when it is
required by the other constraints.
Variance Inference & varance). It cOmputes the high-bound type variables and the low-
bound type variables that do not occur in the closed flow caimgs, and resolves them
to their default values by the substitutionsandoy, respectively.
Ly={V.H |V.H<:V1.LeCy vV V.H<:VoeCo V V.H<:.V3.LeCy V V.H<: . VaeCy
L={V.L | Vi.H<:V.LeCy V Va<:V.LeCy V V3.H<:.V.LECy V Vi<:cV.LECH}
ou=[[V.H—Object | V.Hefv(Co) NV.HZ L]
or=[[V.L— 1] | V.LE£v(Co) A V.LZL1)]
our=|[V.L—V,V.H—V] | V.HeLy A V.LEL.]
Q=QoUran(oxr)\(dom(or)Udom(om)Udom(orr)) C=cmooroourCo
FCO;QOEvarianceC’;QQU'HOU'LOO'HL
The substitutionr, implements the second variance inference rule, makingleqea
bounds of an interval when both of them occur in the closed domstraints. The initial
list of the visible type variableg can be affected by the variance inference. This step
works on all constraints, either from conditional flow orrfranain flow.
Type Variables Inference & ypar). This step solves the non-visible type variables in
terms of the visible type variabl@s:
FC()SQO%C)/CI@CI§Ql§0'1 F01§Ql§orderl/ FL§C’13unifyc§0'2 Q:Ql UfV(C)
FCO;QO31ypvz:1|€1§Q§0'200'1
First substep=.,ce) makes equal all the type variables of a cycle. This processatso
affect the visible type variables, resulting in a newgeWe use techniques from [10]
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to eliminate the cycles. The non-visible type variablestaen solved £ niy) in an
order given by the number of their low bounds 4qer). The substeps ower iteratively
computes the order taking into account the situations wherlaw bounds are class
type parameterized with type variables. The substepr, unifies the type variables
with their low-bounds producing a substitutien. Multiple low-bounds are combined
together as an union type. Non-visible type variables ofl fioastraint set are pro-
moted as visible im. Though this step works only on the main flow constraints, its

computed substitutions are also applied on the constrafitite conditional flow.
Solving conditional constraints &cng). This step translates the conditional con-

straints into non-conditional constraints if the non-ctindal constraints hold. Since
it is always safe to add more constraints on the method axterfype variables and
the constraint set is transitively closed, this step onlgatds () the conditional con-
straints with the ground types with respect to the classahidyc. First check is for
ground constraints, while the last two are to verify if areisection and an union type

can exist ine. If the checks do not hold, the conditional constraints artetranslated.
B:{C1<:c02 | Cl<ICCQGCO} GrH2B

YV etv(Co).Gho{c | V<:icceCot&{c | V<:iceCo}
YV etv(Co).Gro{c | c<:cVEC}{c | e<:VeECH}
C'={n1<:im|m1<:cm2€CH} CH=Co\{m1<icT2|T1<:cT2€Co}
G}_OoécondC’/UCS

Refining the results & reine). The goal of this step is to reduce the number of visible
type variables of a method interface. The first three suliitiis are based on the closed
flow constraints which are io,. The last two substitutions are for the high bound (low
bound) type variables occurring on low bound (high boundjitmmns. Dual types are

also translated into intersection types by the substitutio
o1=[Vi.H—V,Vo. L=V |V1.H<:Va.LECy N V=fresh()] oo=[V.H—t|V.H<:t€c1Cy]
o3=[V.L—t|t<:V.LEo2001Cy] ca=[Vt|t<:VEozooa001Cy V V<:t€ozoozooiCo)
0'/:(7300'200'10015 G"U’Déreﬁnedualad
o1=[V.H—=V|Vi.L—V.Heo' AN V=fresh()] o5=[V.L—~V|Vi.H—V.Leo' A V=fresh()]

o=0ho0 00400’

GFCo;D;Q0;00= refined Co;0 Qo0

5 Method Overriding

Consider the following method overriding example, whererethoboo of the class

Cell is overridden by the subclaBsir (note thatclass Pair extends Cell{..}):
Cell | Object boo(Cell a) {this.fst = a.fst;return a.fst; }
Pair | Object boo(Cell a) {a.fst = this.fst;this.snd = a.fst;return a.fst; }

Applying our inference to each method, we obtain the folloywiesults:
Cell(SP) | P boo(Cell(PP) a){..} Pair(®P;,6P;) | Py boo(Cell(®P:) a){..}

The method overriding is sound only if the overriding metlsd subtype of the over-
ridden method and the overriding method’s receiver is aypeébdf the overridden
method’s receiver [3]. As can be seen, this property doesalat for the above in-
ferred methods:

Pair(@P;,OP:)<:Cell(©P) Cell(®P)<:Cell(®P;1) P:i<:P
To ensure this property, we augment our inference algoritlitim the following con-
siderations: (i) we can strengthen the receiver type andethdt type of the overriding
method; (ii) we can strengthen the parameters types andréitepdition of the over-
ridden method. Thus the method overriding problem is sohsfbllows:
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1. Infer the overridden method a%s11([P,Object) | P boo(Cell([L,P]) a)

2. Undo the variance of the overridden method parametersibg éresh interval type
variables ¢,.H andp,.L) that keep the relation with the other type variables of the
receiver and the resulte11([P,Object) | P boo(Cell([P;.L,P;.H]) a) where P;.H<:P

3. Do inference for the overriding method: The processstaith the sound overrid-
ing assumptions (Step:

Pair([Vy.L,Vi.H]|,[V2.L,V2.H]) | Y boo(Cell([Vs.L,Vs.H]) a)
{a.fst=this.fst;this.snd=a.fst;return a.fst;}
1.0verriding Assumptions|Pair([V;.L,V;.H]|,[V,.L,V2.H])<:Cell([P,Objeci) A\Y<:PA
Cell([P;.L,P;.H])<:Cell([Vs.L,V3.H])AP1.H<:P
2.Collect Constraints Vi1 .H<:V3.LAV3.H<:V,.LAV3.H<:Y

3.Simplify P<:V;.LAY<:PAV3.L<:P; .LAP; .H<:V3.HAP; .H<:P
Vi .H<:V3.LAV3.H<:V,.LAV3.H<:Y

4.Infer Variance V, . H=0bject\V;.L=V; . HAV3.L=V3.HAP;.L=P; .H

5.Infer Type Vars P=P; .H=P;.L=V; H=V;.L=V,.L=V3.H=V3.L

4. Theresult of the previous step is applied on both oveerdthd overriding methods
and we obtain the following sound result:

Cell(SP) | P boo(Cell(®P) a) Pair(®P,SP) | P boo(Cell(®P) a)

6 Conclusion

We have formalized a novel constraint-based algorithmfer wariant parametric types
for non-generic Java code. In contrast to the previous t@fiag algorithms [9, 8, 7,
11, 16] which mainly support invariant subtyping and areiglesd as whole program
analyses, our approach offers full support for use-siteamae based subtyping and it
is designed as a summary-based analysis that works on a pleodrigasis. The main
technical novelty of our approach is a systematic varianterénce based on interval
types. With the full support for use-site variance basedysqibg, our approach can
generate better generic types than those derived by exsgstems. For instance, none
of the previous algorithms can automatically infer the egha®s from Section 3.4 and
Section 3.5.

Although our inference algorithm internally works with $agticated mechanisms,
its output is expressed in terms of variant parametric tygasnded with restricted
forms of intersection/union types as used in [4]. We have@ndhe soundness of our
inference algorithm with respect to our variant parameie system in [4]. However
the completeness requirement is a difficult problem sineedicidability of nominal
subtyping with use-site variance is still an open problemwas discussed in [15].

We have built an inference prototype which works for a coressti of Java. Our
previous VPT checker from [4] is used to validate the inférresults. In our initial
experiments we have tested the quality of our inferenceesysesults on a small set
of non-generic programs by comparing the inferred gengpeg with the best generic
types that one can manually provide. In all the cases, otesys/as able to infer the
same types as those manually provided. The inference tirsdesa than one second
for each test program. Currently we are working to extendesyoeriments to larger
programs by using our translator of Java to a core subset [6].
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