
Predicting Performance in an Introductory Programming Course
by Logging and Analyzing Student Programming Behavior

Christopher Watson, Frederick W.B. Li and Jamie L. Godwin
School of Engineering and Computing Sciences

University of Durham
Durham, United Kingdom

{christopher.watson, frederick.li, j.l.godwin}@durham.ac.uk

Abstract— The high failure rates of many programming
courses means there is a need to identify struggling students as
early as possible. Prior research has focused upon using a set of
tests to assess the use of a student’s demographic, psychological
and cognitive traits as predictors of performance. But these
traits are static in nature, and therefore fail to encapsulate
changes in a student’s learning progress over the duration of a
course. In this paper we present a new approach for predicting
a student’s performance in a programming course, based upon
analyzing directly logged data, describing various aspects of
their ordinary programming behavior. An evaluation using
data logged from a sample of 45 programming students at our
University, showed that our approach was an excellent early
predictor of performance, explaining 42.49% of the variance in
coursework marks – double the explanatory power when
compared to the closest related technique in the literature.

Keywords- Learning Analytics, Prediction, CS1, Behavior.

I. INTRODUCTION

Due to a reputation for high failure rates [1], predicting a
student’s performance in a first programming course is a
well studied problem, and over the past fifty years, various
predictors have been proposed. Early work mainly used
standardized aptitude tests to predict performance [2]. As
programming became more widespread, researchers (1980-
90) began to explore a greater range of cognitive [3],
psychological [4], and demographic [5] predictors.
Researchers over the past two decades (1990-2010) extended
prior work by exploring similar factors [6][7] and the
predictive potential of new innovations in pedagogy [8][9].

However a limitation of studies to date is their tendency
to use lengthy tests that often yield inconsistent results.
Given potentially high enrollment numbers, the use of tests
to gather predictive data can take a considerable amount of
time for an instructor to process. Even if a test was indicative
of performance, by the time it was processed, it may be too
late for students to withdraw, or for instructors to intervene
to prevent students from failing [7]. The criteria used for
prediction is the main limitation of prior studies. Whilst
cognitive, psychological, behavioral, or demographic traits
may be indicative of performance, they are not directly
related to the regular programming behavior of a student, or
the programming tasks which they are required to perform.
Because of these reasons, the indirect criteria used by prior
studies fails to reflect changes in the learning progress and/or
the learning behavior of a student over time.

There is a need to explore new predictors of performance,
which are not based upon indirect criteria, but are instead
based upon criteria which can be automatically measured,
and directly reflect changes in a student’s learning progress.
As well as being able to identify weaker students, such
predictors could be used to drive an expert system [10][11] –
providing weaker students with appropriate pedagogical
interventions when required. A suitable measure could be
based upon profiling a student by logging data describing
various aspects of their ordinary programming behavior.
Whilst recent research has provided visualizations of such
data to instructors so that a manual intervention could be
made [12], only [13] has attempted to collectively quantify
several aspects of programming behavior into a predictor of
performance. Jadud [13] proposes an algorithm called the
Error Quotient (EQ) (revised in [14]). The algorithm uses a
scoring function based upon the amount of errors a student
encountered and how successive compilation failures in a
session compare in terms of error message, location, and edit
location. An overall score (range 0-1) for a student's
performance during a session is computed by averaging the
score of a set of successive compilation events. Higher EQ is
indicative of weaker students. Although previously used by
several studies [11][15][16], the EQ was shown to be a weak
predictor of performance. This could be due to several
methodological flaws concerning the incompleteness and
inaccuracy of the approach, which we attempt to address and
expand upon in our work (Sec. V). Our contributions include
� A unique approach for predicting performance based

upon how a student responds to different types of error
compared to their peers (proposing time as a predictor).

� A substantial improvement in terms of explanatory
power and predictive accuracy by addressing the
shortcomings of the main related approach [13][14].

II. ABOUT THE DATASET USED IN THIS STUDY

To explore possible predictors of achievement, we used a
sample of students who studied the 2012/2013 Introduction
to Programming (IP) course at our university. Programming
behavior was directly logged by using an extension for the
BlueJ IDE. Each time a student compiled their code on a
university PC the extension would log a snapshot of their
program source code along with the event type (success or
fail), timestamp, error message reported and line number if
applicable. Similar data was collected for invocations. As
the use of final exams has been criticized as a means to

accurately measure programming ability [9], we use a
student's overall coursework mark as the reference criterion
of this study. This consisted of a weighting of their marks
on a mid-term exam (25%), project (25%), practical exam
(40%), and weekly lab exercises (10%).

A total of 45 students (42 male) provided us with
consent to use their logged data. 7 students indicated they
had prior programming experience, but the majority
indicated that the longest program they had written prior to
course commencement was a medium length program
(<2000 lines). Although data was logged over the duration
of the course, due to the nature of student assignment work
which involved intentionally propagating errors into source
code, we restrict our analysis to the data gathered from 14
sessions (Term 1: weeks 3-9, Term 2: weeks 12-18).

III. THE WATWIN ALGORITHM

The uniqueness of our algorithm is to incorporate a scoring
approach, where a student is relatively penalized based upon
the amount of time that they take to resolve a specific type
of error, compared to the resolve times of their peers. In the
first stage of our algorithm, logged programming behavior
is used to construct a set of successive compilation-event
pairings, so that a student’s responses to different errors can
be analyzed. This requires constructing consecutive pairings
for each file that a student has attempted to compile, and
estimating the amount of time a student has spent working
on an error. In the second stage, each pairing is scored by
assigning penalties based upon aspects of behavior which
previous and our own research has identified as indicative of
weaker performing students. Our algorithm is outlined as:

Input: A set of student programming logs (compilation and
invocation) for all files a student compiled during a session.

1. Prepare a set of compilation parings using the process
presented in Sec. III (A).

2. Quantify Programming Behavior
- Score each compilation pairing produced from (1)

by using the scoring algorithm (Fig. 1).
- Normalize each score by dividing by 35 (the

maximum possible score for each pairing).
- Average the normalized scores of all pairings.

Output: The mean average of all pairings (in the range 0-1),
which is taken as the student’s Watwin score for the session.
A score of 0 indicates that the student encounters no errors
over a session. A score of 1 indicates that every compilation
ended in an error, and that the student spent substantially
longer than their peer’s between successive compilation
events. The closer the score is to 0, the stronger the student.

A. Preparing a Set of Compilation Pairings
1) Pair Construction. For each file that a student attempted
to compile during a session first construct a tuple of pairings
{{e1, e2}, {e2, e3},...,{en-1, en}}, using the compilation events
associated with a file, ordered by timestamp. A naïve way to
construct pairings would be to use the natural order that
events occurred during a session. But this would fail to take

into account the possibility of a student working on multiple
files simultaneously, and can lead to an inaccurate
representation of their programming behavior. For example,
in a pairing {ef, et} where ef and et represent compilations of
two distinct files, if the event type of ef was ‘fail’ and the
type of et was ‘success’, then the pairing {ef, et} would
incorrectly convey the student resolved the error of ef.

2) Pair Pruning. Identify and remove all pairings {ef, et}
where the code snapshots of ef and et are identical. These
cases can be caused by a ‘compile project’ feature of
development software, and can artificially inflate the total
number of compilation pairings. To take into account
superficial changes which may have been made between
compilations, such as adding comments or modifying
layout, we first remove comments from the snapshots of ef
and et by using a regex expression. A standardized layout is
then applied to the snapshots and compared for a match. If
the snapshots are identical then {ef, et} is removed. Also
remove pairings where the event type of ef was ‘success’.

3) Filtering Commented and Deletion Fixes. Whilst
deleting and commenting code blocks can yield compliable
files, these strategies provide little evidence of a student’s
understanding of how to repair the actual fault. These
actions can also be performed quickly; therefore the time
taken to resolve an error in this manner may not be
representative of the time taken to resolve using an actual
fix. Deletion fixes are detected by computing the diff ratio
between the snapshots of ef and et. If the count of insertions
and changes = 0, and deletes > 0, then the pair is removed.
Commented fixes are detected and removed by extracting
the region of code surrounding the error location of ef, and
using a regex expression to determine if the same fragment
has only become commented in the snapshot of et.

4) Error Message Generalization. Error messages within
each compilation event pairing {ef, et} are generalized by
removing all identifier information. This allows us to build a
profile for different classes of error, rather than for single
specific messages. For example, “unknown class - Pet”
becomes generalized to “unknown class”.

5) Time Estimation. The final step involves estimating the
amount of time that a student has spent working on each
compilation pairing {ef, et}. The simplest approach would
be to directly compute the difference between timestamps of
ef and et. But as our pairings are constructed on a per-file
basis, this would fail to take into account whether a student
has spent time working on other files between ef and et. We
therefore first construct a combined sequence of invocation
and compilation events {h1, h2, .., hk-1, hk} for all files in a
session, ordered by timestamp. For every {ef, et}, if there
exists an hi, such that the timestamp of ef > hi > et, we
estimate the time spent on {ef, et} as the difference between
the timestamps of et and hi. The assumption is that a student
has stopped working on the source of ef, and has instead
only worked on the source code associated with hi.

320320320320

B. Quantifying Ordinary Programming Behavior

1) Identifying Appropriate Predictors. Before developing a
mechanism to meaningfully quantify a student’s behavior,
we first had to determine which aspects could indicate they
were struggling to produce syntactically valid code. Prior
research by [13] suggests that behavior exhibited by weaker
students includes producing compilation pairings where
both events result in compilation failures, have the same
generalized message, and have the same error location. [15]
found significant correlations between types of compilation
pairings and performance where both events resulted in
compilation failure and marginal correlations for pairings
with the same message. Using our dataset we performed
similar studies by correlating the average number of specific
types of pairings which a student produced during a session,
with performance. Significant correlations were found the
average number of pairings whose both event types were
compilation failures (r(45)= -.43, p<.01), the average
number of pairings where the generalized error message was
the same (r(45)=-.47, p<.01) and the average number of
pairings where the generalized error messages were
different (r(45)= -.39, p<.01). Correlations were also found
between average number of pairings with the same error
location (r(45)= -.26, p<.01). Our findings are consistent
with [13] and [15], indicating that stronger programmers are
associated with making less repeated errors, and will usually
succeed in resolving an error in the next compilation.

A predictor which previous research [2-9][13-16] has
not explored is the amount of time which a student takes to
resolve an error. Research by [17] showed that the resolve
times of certain types of errors vary based upon student
ability; however, they did not use this variable to predict
performance. We also hypothesized that in addition to
having a higher frequency of errors; weaker students would
also take longer to resolve errors than stronger students.
After first removing outliers using the 2MADe rule [18], we
found a strong significant correlation between a student’s
mean resolve time and performance (r(45)= -.53, p<.01),
which would seem to confirm our hypothesis. Because of
this, we have incorporated resolve time as a predictor in our
scoring model. However, different types of error can be
more difficult for a student to resolve than others. Grouping
the resolve times into 7 distinct classes of error (syntax,
computation, identifiers, scope, exceptions, inheritance,
abstraction) [11], a non-parametric Kruskal-Wallis test [18]
confirmed that resolve times were significantly different
between different classes of error (χ2(6)=1512.88, p<.01).

2) Scoring Programming Behavior. Based upon these
findings, instead of considering the amount of time that a
student takes to resolve any error, we consider the time they
take to resolve a generalized type (Sec. III A(4)) of error, in
comparison to a distribution of resolve times of their peers.
As these distributions are generally positively skewed, we
use the robust 2MADe approach [18] to remove outliers, and
apply a penalty based upon where a student’s resolve time

lies in the distribution. If their resolve time is more than one
deviation below the mean, then they have resolved an error
much faster than their peers - so we apply a low penalty. If a
student's resolve time is more than one deviation above the
mean, then they have resolved an error much slower than
their peers - apply a higher penalty. Otherwise, apply a mid-
range penalty. The main advantage of scoring students in
this manner is that we can implicitly take into account the
relative difficulty of different types of error. For instance,
suppose a student resolved a GUI error in 30 seconds.
Compared to their peers, this may be a good time, and the
student would incur a low penalty. However, if they took 30
seconds to resolve a ';' expected error, then compared to
their peers, this may be a bad time, and the student would
incur a higher penalty. After scoring all pairings using the
scoring algorithm (Fig. 1), the scores of all pairings are
normalized and averaged to produce a Watwin score.

3) Deriving Fair Penalties. The penalties assigned in the
scoring algorithm (Fig. 1) were not determined through
random guesswork. We first experimented by weighting the
penalties of each component based upon the strengths of
their correlations with performance. But, this produced a
narrow range of Watwin scores, and we felt that a better
spread of individuals was required. We therefore carried out
a brute-force search of the space surrounding the parameters
we had originally chosen. The regression models generated
were ranked based upon their explanatory power, and
penalties were then determined by repeated random sub-
sampling of the strongest 100,000 results. Although not
yielding the strongest possible explanatory model for our
dataset, the derived parameters had the advantage of
spreading the Watwin scores whilst simultaneously reducing
the deviation between a student’s session scores. Along with
the cross-validation we performed (Sec. IV), this supports
the generalizability of our approach to independent datasets.

Figure 1. Watwin Scoring Algorithm. Neither the components included
nor penalties assigned were the result of random guesswork, but were

based upon previous, and our own research. Sec. III B(1) and Sec. III B(3).

321321321321

IV. RESULTS AND EVALUATION

To evaluate the effectiveness of our algorithm as a predictor
of a student’s programming performance, we performed a
linear regression, using a student’s Watwin score as the
independent variable, and their overall coursework mark as
the dependent variable. We also considered the ability of
Watwin as a classifier of student performance, based upon
undergraduate degree boundaries set at our university (first
>=70%, second 50-69%, third 40-49%, and fail: <40%).

An inspection of the scatter graph showed a linear
relation existed between a student’s Watwin scores and
performance, and that there were no significant outliers
present. Residual independence was confirmed by the
Durbin-Watson statistic (2.11), and the normality of residual
distribution confirmed by an inspection of a histogram and
P-P plot. We found that a linear regression based upon a
student’s Watwin score could significantly predict
performance, F(1, 43)= 31.77, p<.01, explaining 42.49% of
the variance in coursework marks (a strong effect [19]). The
final RMSE of the model was low at 6.91% and the final
accuracy of the predictive classifier was 75%. Further
validation of our model using leave-one-out cross validation
yielded a mean R2 of .4204 (SD=.013), RMSE of 7.09%
(SD=.12), and classification accuracy of 75% (SD=1.30),
indicating a good level of consistency with the full model.

However, it is important to consider how our algorithm
performs, in terms of accuracy and explanatory power over
the duration of a course. Interestingly, previous work [2-9]
[13-16], used all available data to drive their predictive
models. But predicting a student’s failure at the end of a
course leaves little time for an instructor intervention.
Therefore for each session in both datasets, we computed a
regression and the classification accuracy, using only the
data which had been logged up to, or during the session.

We found that after 4 sessions, accuracy had risen into
the 60’s range, and after 5 sessions accuracy leveled off and
stayed in the 70’s range consistently over the duration of the
course. However, measures of accuracy are reliant upon the
underlying classification used. A more interesting analysis
is to compare how the explanatory power of the regression
changes over time. As can be seen from Fig. 2, by the end of
the first term (week 9), a substantial percentage of the
variance in coursework marks could be explained by our
algorithm (30%), which rose to over 40% by the end of the
second term. The average explanatory power of the
algorithm was high, explaining 30.05% (SD=15.97) of the
variance in performance. This confirms that our approach is
data driven, and performs less well when data is scarce.

TABLE I. RESULTS FOR WATWIN AND JADUD PREDICTION MODELS

Data Sample
Point

Watwin Jadud
R2 RMSE Acc. R2 RMSE Acc.

End of Course .4249 6.91 75.56 .1922 8.19 60.00

Average .3005 7.60 68.83 .1407 8.44 55.82

Figure 2. Explanatory Power of Watwin and Jadud During The Course

V. COMPARISON TO JADUD’S ERROR QUOTIENT

A. Addressing the Methodological Weaknesses
The major methodological flaw of Jadud's Error Quotient
[13] concerns the method used to construct a set of pairings.
In Jadud's work, a set of consecutive compilation pairings
are created by using events in the order that they occurred
during a session. As previously discussed, this approach is
flawed, as it assumes that either students only work on a
single source file, or work on multiple files in a linear
manner. However, we have found that students do not work
in this way, and switching between files is common. Using
our dataset we built 45,001 compilation pairings using
Jadud's method. We found that 13,490 pairings (29.98%)
were based upon compilation events from two different
files. This has serious implications for the validity of the
approach. For instance, when examining pairings having
event types in the form {fail, success}, we found that 2,138
(24.13%) were based upon events from two different files.
Almost 25% of the cases indicated that a student had
resolved an error, whereas in reality, they had simply
compiled a different file. We addressed this shortcoming by
constructing pairings on a per-filename basis, allowing us to
more accurately profile student behavior based upon the
evolution of code across distinct files.

Also, by constructing compilation pairings on a per-
session basis, it is possible for the source code similarity to
be calculated using the source of two distinct files meaning
that extra compilation pairings will be included in the
filtered set. There are no measures taken to check superficial
changes made to source code can be incorrectly flagged as
semantic changes. The flaws of the preparation and filtering
methods have implications for the validity of the scoring
algorithm used. In Jadud’s approach, pairings having event
types in the form {fail, success} will score 0. But, it is
possible that a large percentage of these pairings are invalid
(30% in our dataset). As a student’s error quotient is
averaged using the sum of every pair from a session, having
a large amount of invalid 0 scoring pairings can lower a
student’s EQ, and inaccurately reflect their performance.

Finally, there are the fundamental differences between
the Watwin and Jadud approaches to consider. Whilst we
found that a student’s mean error resolve time strongly

322322322322

correlated with performance (r(45)= -.53), Jadud’s approach
does not incorporate any scoring of behavior based upon
this dimension. It also fails to take the type of error into
account, and scores all errors equally. Very recent research
[17] and this paper have both shown that students will find
different types of error more difficult to resolve than others.
Our uniqueness is to take these factors into account by
relatively penalizing students based upon the amount of
time they took to resolve an error, in comparison to a
distribution of normal behavior defined by their peers.

B. Evaluation of Performance
We applied Jadud’s algorithm to our datasets. Consistent
with previous findings [13-17], we found Jadud’s EQ to be
a weak predictor of performance, and that a student’s error
quotient could explain less than half of the variance in
performance, compared to their Watwin scores (Table 1).
As can be seen from Fig 2 whilst the explanatory power of
the EQ improves over time, it eventually levels off and
remains a consistently weak predictor, only explaining
between 15%-20% of the variance in performance over the
final weeks of the course. This is also confirmed by the low
standard deviations of average R2 values of the EQ values
(Table 1). In contrast, the explanatory power of the Watwin
scores consistently increases over the duration of the course,
and is a strong early predictor, explaining almost 30% of the
variance in performance after 5-6 sessions of data has been
collected. To explore the effect of the previously outlined
methodological weaknesses of Jadud’s algorithm, we ran
Jadud’s algorithm using pairings built using the Watwin
algorithm. We found an increase in the explanatory power
of Jadud’s model (R2= .26 (+.07)), suggesting that whilst an
appropriate preparation technique can improve explanatory
power, alone, it is not enough to match the performance of
our scoring approach where students are relatively penalized
based upon their resolve times and programming behavior.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented Watwin, a dynamic algorithm
designed to predict student performance in a programming
course. Unlike prior work [2-9] which mainly used indirect
criteria to predict performance, our approach is based upon
analyzing directly logged, quantitative data describing
aspects of a student’s ordinary programming behavior. This
allows prediction of performance to evolve over time –
reflecting changes in the student’s learning progress without
the need to use multiple tests that often yield inconsistent
results. The originality of our algorithm is to incorporate a
method, where a student is relatively penalized based upon
the amount of time they took to resolve an error, in
comparison to a distribution of normal behavior defined by
the resolve times of their peers. We addressed the
methodological weaknesses of the closest related approach
[13-14], and an evaluation has shown that our approach is a
good predictor of performance, even early in a course.
Future work will aim to further validate our approach using

data gathered from an independent sample of students, to
identify more characteristics of programming behavior that
are indicative of weaker students through the use of
multivariate statistical [20] and data mining techniques [21],
and to apply our algorithm within an expert system to select
and supply appropriate compiler feedback to students [11].

REFERENCES

[1] J. Bennedsen, and M.E. Caspersen. “Failure rates in introductory
programming.” SIGCSE Bulletin. pp. 32-36. vol. 39, June 2007.

[2] C.K. Capstick, J.D. Gordon and A. Salvadori. “Predicting
Performance by University Students in Introductory Computing
Courses.” SIGCSE Bulletin. pp. 21-29, vol. 7, Sept. 1975.

[3] R.J. Barker and E.J. Unger. “A predictor for success in an
introductory programming class based upon abstract reasoning
development.” SIGCSE Bulletin. pp. 154-158, vol. 15, Feb. 1983.

[4] K.L. Whipkey. “Identifying predictors of programming skill.”
SIGCSE Bulletin. pp. 36-42, vol. 16, Dec. 1984.

[5] V.L. Sauter. “Predicting computer programming skill.” Computers &
Education. pp. 299-302, vol. 10, Sept. 1986.

[6] W.W.F. Lau and A.H.K. Yuen. “Modelling programming
performance: beyond the influence of learner characteristics.”
Computers & Education. pp. 1202-1213, vol. 57, Aug. 2011.

[7] S. Bergin and R. Reilly. “Predicting introductory programming
performance: a multi-institutional, multivariate study”. Computer
Science Education. pp. 303-323, vol. 16, Dec. 2006.

[8] P.R. Ventura, Jr. “Identifying predictors of success for an objects-first
CS1.” Computer Science Education. pp. 223-243, vol. 15, Sept. 2005.

[9] J. Bennedsen and M.E. Caspersen. “Abstraction ability as an indicator
of success for learning object-orientated programming?” SIGCSE
Bulletin. pp. 39-43, vol. 38, June 2006.

[10] C. Watson, F. Li, and R.W.H. Lau. “Learning programming
languages through corrective feedback and concept visualisation.” in
Proc. ICWL, 2011, pp. 11-20, Springer.

[11] C. Watson, F. Li, and J.L. Godwin. “BlueFix: Using Crowd-Sourced
Feedback to Support Programming Students in Error Diagnosis and
Repair” in Proc. ICWL, 2012, pp. 228-239, Springer.

[12] C. Murphy, G. Kaiser, K. Loveland and S. Hasan. “Retina: helping
students and instructors based on observed programming activities.”
SIGCSE Bulletin. pp. 178-182, March 2009.

[13] M.C. Jadud. “Methods and Tools for Exploring Novice Compilation
Behavior”, in Proc. ICER, 2006, pp. 73-84, ACM.

[14] M.M.T. Rodrigo, E. Tabanao, E. M. Lahoz, M.C. Jadud. “Analyzing
Online Protocols to Characterize Novice Java Programmers”,
Philippine Journal of Science, pp. 177-199, vol. 138, Dec. 2009.

[15] M.M.T. Rodrigo et al., “Affective and behavioral predictors of novice
programmer achievement.” SIGCSE Bulletin, pp. 156-160, vol 41,
Sept. 2009.

[16] E.S. Tabanao, M.M.T. Rodrigo, and M.C. Jadud. “Predicting at-risk
Novice Java Programmers through the Analysis of Online Protocols”,
in Proc ICER, 2011, pp. 85-92, ACM.

[17] P. Denny, A. Luxton-Reilly and E. Tempero. “All Syntax Errors are
Not Equal”. in Proc ITiCSE, 2012, pp. 75-80, ACM.

[18] R.R. Wilcox. Fundamentals of Modern Statistical Methods:
Substantially Improving Power and Accuracy. Springer, 2010.

[19] J. Cohen. Statistical Power Analysis for the Behavioral Sciences.
Hillsdale, NJ: Lawrence Erlbaum, 1988.

[20] J.L. Godwin, P. Matthews and C. Watson. “On the use of robust
multivariate statistical methods for the prognosis of wind turbine
pitch faults.” in Proc. COMADEM, 2013, to be published.

[21] J.L. Godwin, P. Matthews and C. Watson. “Classification and
detection of electrical control system faults through SCADA data
analysis.” Chemical Engineering Transactions, 2013, to be published.

323323323323

