
Predicting Performance in an Introductory Programming Course              
by Logging and Analyzing Student Programming Behavior

Christopher Watson, Frederick W.B. Li and Jamie L. Godwin 
School of Engineering and Computing Sciences 

University of Durham 
Durham, United Kingdom 

{christopher.watson, frederick.li, j.l.godwin}@durham.ac.uk

Abstract— The high failure rates of many programming 
courses means there is a need to identify struggling students as 
early as possible. Prior research has focused upon using a set of 
tests to assess the use of a student’s demographic, psychological 
and cognitive traits as predictors of performance. But these 
traits are static in nature, and therefore fail to encapsulate 
changes in a student’s learning progress over the duration of a 
course. In this paper we present a new approach for predicting 
a student’s performance in a programming course, based upon 
analyzing directly logged data, describing various aspects of 
their ordinary programming behavior. An evaluation using 
data logged from a sample of 45 programming students at our 
University, showed that our approach was an excellent early 
predictor of performance, explaining 42.49% of the variance in 
coursework marks – double the explanatory power when 
compared to the closest related technique in the literature. 
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I. INTRODUCTION

Due to a reputation for high failure rates [1], predicting a 
student’s performance in a first programming course is a 
well studied problem, and over the past fifty years, various 
predictors have been proposed. Early work mainly used 
standardized aptitude tests to predict performance [2]. As 
programming became more widespread, researchers (1980-
90) began to explore a greater range of cognitive [3],
psychological [4], and demographic [5] predictors. 
Researchers over the past two decades (1990-2010) extended 
prior work by exploring similar factors [6][7] and the 
predictive potential of new innovations in pedagogy [8][9].  

However a limitation of studies to date is their tendency 
to use lengthy tests that often yield inconsistent results. 
Given potentially high enrollment numbers, the use of tests 
to gather predictive data can take a considerable amount of 
time for an instructor to process. Even if a test was indicative 
of performance, by the time it was processed, it may be too 
late for students to withdraw, or for instructors to intervene 
to prevent students from failing [7]. The criteria used for 
prediction is the main limitation of prior studies. Whilst 
cognitive, psychological, behavioral, or demographic traits 
may be indicative of performance, they are not directly 
related to the regular programming behavior of a student, or 
the programming tasks which they are required to perform. 
Because of these reasons, the indirect criteria used by prior 
studies fails to reflect changes in the learning progress and/or 
the learning behavior of a student over time. 

There is a need to explore new predictors of performance, 
which are not based upon indirect criteria, but are instead 
based upon criteria which can be automatically measured, 
and directly reflect changes in a student’s learning progress.
As well as being able to identify weaker students, such 
predictors could be used to drive an expert system [10][11] –
providing weaker students with appropriate pedagogical 
interventions when required. A suitable measure could be 
based upon profiling a student by logging data describing 
various aspects of their ordinary programming behavior. 
Whilst recent research has provided visualizations of such 
data to instructors so that a manual intervention could be 
made [12], only [13] has attempted to collectively quantify 
several aspects of programming behavior into a predictor of 
performance. Jadud [13] proposes an algorithm called the 
Error Quotient (EQ) (revised in [14]). The algorithm uses a 
scoring function based upon the amount of errors a student 
encountered and how successive compilation failures in a 
session compare in terms of error message, location, and edit 
location. An overall score (range 0-1) for a student's 
performance during a session is computed by averaging the 
score of a set of successive compilation events. Higher EQ is 
indicative of weaker students. Although previously used by 
several studies [11][15][16], the EQ was shown to be a weak 
predictor of performance. This could be due to several 
methodological flaws concerning the incompleteness and 
inaccuracy of the approach, which we attempt to address and 
expand upon in our work (Sec. V). Our contributions include 
� A unique approach for predicting performance based 

upon how a student responds to different types of error 
compared to their peers (proposing time as a predictor). 

� A substantial improvement in terms of explanatory 
power and predictive accuracy by addressing the 
shortcomings of the main related approach [13][14]. 

II. ABOUT THE DATASET USED IN THIS STUDY

To explore possible predictors of achievement, we used a 
sample of students who studied the 2012/2013 Introduction 
to Programming (IP) course at our university. Programming 
behavior was directly logged by using an extension for the 
BlueJ IDE. Each time a student compiled their code on a 
university PC the extension would log a snapshot of their 
program source code along with the event type (success or 
fail), timestamp, error message reported and line number if 
applicable. Similar data was collected for invocations. As 
the use of final exams has been criticized as a means to 



accurately measure programming ability [9], we use a 
student's overall coursework mark as the reference criterion 
of this study. This consisted of a weighting of their marks 
on a mid-term exam (25%), project (25%), practical exam 
(40%), and weekly lab exercises (10%).  

A total of 45 students (42 male) provided us with 
consent to use their logged data. 7 students indicated they 
had prior programming experience, but the majority 
indicated that the longest program they had written prior to 
course commencement was a medium length program 
(<2000 lines). Although data was logged over the duration 
of the course, due to the nature of student assignment work 
which involved intentionally propagating errors into source 
code, we restrict our analysis to the data gathered from 14 
sessions (Term 1: weeks 3-9, Term 2: weeks 12-18). 

III. THE WATWIN ALGORITHM

The uniqueness of our algorithm is to incorporate a scoring 
approach, where a student is relatively penalized based upon 
the amount of time that they take to resolve a specific type 
of error, compared to the resolve times of their peers. In the 
first stage of our algorithm, logged programming behavior 
is used to construct a set of successive compilation-event 
pairings, so that a student’s responses to different errors can 
be analyzed. This requires constructing consecutive pairings 
for each file that a student has attempted to compile, and 
estimating the amount of time a student has spent working 
on an error. In the second stage, each pairing is scored by 
assigning penalties based upon aspects of behavior which 
previous and our own research has identified as indicative of 
weaker performing students. Our algorithm is outlined as: 

Input: A set of student programming logs (compilation and 
invocation) for all files a student compiled during a session.

1. Prepare a set of compilation parings using the process
presented in Sec. III (A).

2. Quantify Programming Behavior
-  Score each compilation pairing produced from (1) 

by using the scoring algorithm (Fig. 1). 
- Normalize each score by dividing by 35 (the

maximum possible score for each pairing). 
- Average the normalized scores of all pairings. 

Output: The mean average of all pairings (in the range 0-1), 
which is taken as the student’s Watwin score for the session. 
A score of 0 indicates that the student encounters no errors 
over a session. A score of 1 indicates that every compilation 
ended in an error, and that the student spent substantially 
longer than their peer’s between successive compilation 
events. The closer the score is to 0, the stronger the student. 

A. Preparing a Set of Compilation Pairings 
1) Pair Construction. For each file that a student attempted
to compile during a session first construct a tuple of pairings 
{{e1, e2}, {e2, e3},...,{en-1, en}}, using the compilation events 
associated with a file, ordered by timestamp. A naïve way to 
construct pairings would be to use the natural order that 
events occurred during a session. But this would fail to take 

into account the possibility of a student working on multiple 
files simultaneously, and can lead to an inaccurate 
representation of their programming behavior. For example,
in a pairing {ef, et} where ef and et represent compilations of 
two distinct files, if the event type of ef was ‘fail’ and the 
type of et was ‘success’, then the pairing {ef, et} would 
incorrectly convey the student resolved the error of ef.  

2) Pair Pruning. Identify and remove all pairings {ef, et}
where the code snapshots of ef and et are identical. These 
cases can be caused by a ‘compile project’ feature of 
development software, and can artificially inflate the total 
number of compilation pairings. To take into account 
superficial changes which may have been made between 
compilations, such as adding comments or modifying 
layout, we first remove comments from the snapshots of ef
and et by using a regex expression. A standardized layout is
then applied to the snapshots and compared for a match. If 
the snapshots are identical then {ef, et} is removed. Also 
remove pairings where the event type of ef was ‘success’.

3) Filtering Commented and Deletion Fixes. Whilst
deleting and commenting code blocks can yield compliable 
files, these strategies provide little evidence of a student’s
understanding of how to repair the actual fault. These 
actions can also be performed quickly; therefore the time 
taken to resolve an error in this manner may not be 
representative of the time taken to resolve using an actual 
fix. Deletion fixes are detected by computing the diff ratio 
between the snapshots of ef and et. If the count of insertions 
and changes = 0, and deletes > 0, then the pair is removed. 
Commented fixes are detected and removed by extracting 
the region of code surrounding the error location of ef, and 
using a regex expression to determine if the same fragment 
has only become commented in the snapshot of et. 

4) Error Message Generalization. Error messages within
each compilation event pairing {ef, et} are generalized by
removing all identifier information. This allows us to build a 
profile for different classes of error, rather than for single 
specific messages. For example, “unknown class - Pet” 
becomes generalized to “unknown class”.

5) Time Estimation. The final step involves estimating the
amount of time that a student has spent working on each 
compilation pairing {ef, et}. The simplest approach would 
be to directly compute the difference between timestamps of 
ef and et. But as our pairings are constructed on a per-file 
basis, this would fail to take into account whether a student 
has spent time working on other files between ef and et. We 
therefore first construct a combined sequence of invocation 
and compilation events {h1, h2, .., hk-1, hk} for all files in a 
session, ordered by timestamp. For every {ef, et}, if there 
exists an hi, such that the timestamp of ef > hi > et, we 
estimate the time spent on {ef, et} as the difference between 
the timestamps of et and hi. The assumption is that a student 
has stopped working on the source of ef, and has instead 
only worked on the source code associated with hi. 
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B. Quantifying Ordinary Programming Behavior 

1) Identifying Appropriate Predictors. Before developing a
mechanism to meaningfully quantify a student’s behavior, 
we first had to determine which aspects could indicate they 
were struggling to produce syntactically valid code. Prior 
research by [13] suggests that behavior exhibited by weaker 
students includes producing compilation pairings where 
both events result in compilation failures, have the same 
generalized message, and have the same error location. [15] 
found significant correlations between types of compilation 
pairings and performance where both events resulted in 
compilation failure and marginal correlations for pairings 
with the same message. Using our dataset we performed 
similar studies by correlating the average number of specific 
types of pairings which a student produced during a session, 
with performance. Significant correlations were found the 
average number of pairings whose both event types were 
compilation failures (r(45)= -.43, p<.01), the average 
number of pairings where the generalized error message was 
the same (r(45)=-.47, p<.01) and the average number of 
pairings where the generalized error messages were 
different (r(45)= -.39, p<.01). Correlations were also found 
between average number of pairings with the same error 
location (r(45)= -.26, p<.01). Our findings are consistent 
with [13] and [15], indicating that stronger programmers are
associated with making less repeated errors, and will usually 
succeed in resolving an error in the next compilation.  

A predictor which previous research [2-9][13-16] has 
not explored is the amount of time which a student takes to 
resolve an error. Research by [17] showed that the resolve 
times of certain types of errors vary based upon student 
ability; however, they did not use this variable to predict 
performance. We also hypothesized that in addition to 
having a higher frequency of errors; weaker students would 
also take longer to resolve errors than stronger students. 
After first removing outliers using the 2MADe rule [18], we 
found a strong significant correlation between a student’s 
mean resolve time and performance (r(45)= -.53, p<.01), 
which would seem to confirm our hypothesis. Because of 
this, we have incorporated resolve time as a predictor in our 
scoring model. However, different types of error can be 
more difficult for a student to resolve than others. Grouping 
the resolve times into 7 distinct classes of error (syntax, 
computation, identifiers, scope, exceptions, inheritance, 
abstraction) [11], a non-parametric Kruskal-Wallis test [18] 
confirmed that resolve times were significantly different 
between different classes of error (χ2(6)=1512.88, p<.01).  

2) Scoring Programming Behavior. Based upon these
findings, instead of considering the amount of time that a 
student takes to resolve any error, we consider the time they 
take to resolve a generalized type (Sec. III A(4)) of error, in 
comparison to a distribution of resolve times of their peers. 
As these distributions are generally positively skewed, we 
use the robust 2MADe approach [18] to remove outliers, and 
apply a penalty based upon where a student’s resolve time 

lies in the distribution. If their resolve time is more than one 
deviation below the mean, then they have resolved an error 
much faster than their peers - so we apply a low penalty. If a 
student's resolve time is more than one deviation above the 
mean, then they have resolved an error much slower than 
their peers - apply a higher penalty. Otherwise, apply a mid-
range penalty. The main advantage of scoring students in 
this manner is that we can implicitly take into account the 
relative difficulty of different types of error. For instance,
suppose a student resolved a GUI error in 30 seconds. 
Compared to their peers, this may be a good time, and the 
student would incur a low penalty. However, if they took 30 
seconds to resolve a ';' expected error, then compared to 
their peers, this may be a bad time, and the student would 
incur a higher penalty. After scoring all pairings using the 
scoring algorithm (Fig. 1), the scores of all pairings are 
normalized and averaged to produce a Watwin score.  

3) Deriving Fair Penalties. The penalties assigned in the
scoring algorithm (Fig. 1) were not determined through 
random guesswork. We first experimented by weighting the 
penalties of each component based upon the strengths of 
their correlations with performance. But, this produced a 
narrow range of Watwin scores, and we felt that a better 
spread of individuals was required. We therefore carried out 
a brute-force search of the space surrounding the parameters 
we had originally chosen. The regression models generated 
were ranked based upon their explanatory power, and 
penalties were then determined by repeated random sub-
sampling of the strongest 100,000 results. Although not 
yielding the strongest possible explanatory model for our 
dataset, the derived parameters had the advantage of 
spreading the Watwin scores whilst simultaneously reducing 
the deviation between a student’s session scores. Along with 
the cross-validation we performed (Sec. IV), this supports 
the generalizability of our approach to independent datasets.  

Figure 1. Watwin Scoring Algorithm. Neither the components included 
nor penalties assigned were the result of random guesswork, but were 

based upon previous, and our own research. Sec. III B(1) and Sec. III B(3). 
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IV. RESULTS AND EVALUATION

To evaluate the effectiveness of our algorithm as a predictor 
of a student’s programming performance, we performed a
linear regression, using a student’s Watwin score as the 
independent variable, and their overall coursework mark as 
the dependent variable. We also considered the ability of 
Watwin as a classifier of student performance, based upon 
undergraduate degree boundaries set at our university (first 
>=70%, second 50-69%, third 40-49%, and fail: <40%). 

An inspection of the scatter graph showed a linear 
relation existed between a student’s Watwin scores and 
performance, and that there were no significant outliers 
present. Residual independence was confirmed by the 
Durbin-Watson statistic (2.11), and the normality of residual 
distribution confirmed by an inspection of a histogram and 
P-P plot. We found that a linear regression based upon a 
student’s Watwin score could significantly predict 
performance, F(1, 43)= 31.77, p<.01, explaining 42.49% of 
the variance in coursework marks (a strong effect [19]). The 
final RMSE of the model was low at 6.91% and the final 
accuracy of the predictive classifier was 75%. Further 
validation of our model using leave-one-out cross validation 
yielded a mean R2 of .4204 (SD=.013), RMSE of 7.09% 
(SD=.12), and classification accuracy of 75% (SD=1.30), 
indicating a good level of consistency with the full model. 

However, it is important to consider how our algorithm 
performs, in terms of accuracy and explanatory power over 
the duration of a course. Interestingly, previous work [2-9]
[13-16], used all available data to drive their predictive 
models. But predicting a student’s failure at the end of a 
course leaves little time for an instructor intervention. 
Therefore for each session in both datasets, we computed a 
regression and the classification accuracy, using only the 
data which had been logged up to, or during the session. 

We found that after 4 sessions, accuracy had risen into 
the 60’s range, and after 5 sessions accuracy leveled off and 
stayed in the 70’s range consistently over the duration of the 
course. However, measures of accuracy are reliant upon the 
underlying classification used. A more interesting analysis 
is to compare how the explanatory power of the regression 
changes over time. As can be seen from Fig. 2, by the end of 
the first term (week 9), a substantial percentage of the 
variance in coursework marks could be explained by our 
algorithm (30%), which rose to over 40% by the end of the 
second term. The average explanatory power of the 
algorithm was high, explaining 30.05% (SD=15.97) of the 
variance in performance. This confirms that our approach is 
data driven, and performs less well when data is scarce. 

TABLE I. RESULTS FOR WATWIN AND JADUD PREDICTION MODELS

Data Sample 
Point

Watwin Jadud
R2 RMSE Acc. R2 RMSE Acc.

End of Course .4249 6.91 75.56 .1922 8.19 60.00

Average .3005 7.60 68.83 .1407 8.44 55.82

Figure 2. Explanatory Power of Watwin and Jadud During The Course 

V. COMPARISON TO JADUD’S ERROR QUOTIENT

A. Addressing the Methodological Weaknesses 
The major methodological flaw of Jadud's Error Quotient 
[13] concerns the method used to construct a set of pairings. 
In Jadud's work, a set of consecutive compilation pairings 
are created by using events in the order that they occurred 
during a session. As previously discussed, this approach is 
flawed, as it assumes that either students only work on a 
single source file, or work on multiple files in a linear 
manner. However, we have found that students do not work 
in this way, and switching between files is common. Using 
our dataset we built 45,001 compilation pairings using 
Jadud's method. We found that 13,490 pairings (29.98%) 
were based upon compilation events from two different 
files. This has serious implications for the validity of the 
approach. For instance, when examining pairings having 
event types in the form {fail, success}, we found that 2,138 
(24.13%) were based upon events from two different files. 
Almost 25% of the cases indicated that a student had 
resolved an error, whereas in reality, they had simply 
compiled a different file. We addressed this shortcoming by 
constructing pairings on a per-filename basis, allowing us to 
more accurately profile student behavior based upon the 
evolution of code across distinct files. 

Also, by constructing compilation pairings on a per-
session basis, it is possible for the source code similarity to 
be calculated using the source of two distinct files meaning 
that extra compilation pairings will be included in the 
filtered set. There are no measures taken to check superficial 
changes made to source code can be incorrectly flagged as 
semantic changes. The flaws of the preparation and filtering 
methods have implications for the validity of the scoring 
algorithm used. In Jadud’s approach, pairings having event 
types in the form {fail, success} will score 0. But, it is 
possible that a large percentage of these pairings are invalid 
(30% in our dataset). As a student’s error quotient is 
averaged using the sum of every pair from a session, having 
a large amount of invalid 0 scoring pairings can lower a 
student’s EQ, and inaccurately reflect their performance. 

Finally, there are the fundamental differences between 
the Watwin and Jadud approaches to consider. Whilst we 
found that a student’s mean error resolve time strongly 

322322322322



correlated with performance (r(45)= -.53), Jadud’s approach
does not incorporate any scoring of behavior based upon 
this dimension. It also fails to take the type of error into 
account, and scores all errors equally. Very recent research 
[17] and this paper have both shown that students will find 
different types of error more difficult to resolve than others. 
Our uniqueness is to take these factors into account by 
relatively penalizing students based upon the amount of 
time they took to resolve an error, in comparison to a 
distribution of normal behavior defined by their peers. 

B. Evaluation of Performance 
We applied Jadud’s algorithm to our datasets. Consistent 
with previous findings [13-17], we found Jadud’s EQ to be 
a weak predictor of performance, and that a student’s error 
quotient could explain less than half of the variance in 
performance, compared to their Watwin scores (Table 1). 
As can be seen from Fig 2 whilst the explanatory power of 
the EQ improves over time, it eventually levels off and 
remains a consistently weak predictor, only explaining 
between 15%-20% of the variance in performance over the 
final weeks of the course. This is also confirmed by the low 
standard deviations of average R2 values of the EQ values 
(Table 1). In contrast, the explanatory power of the Watwin 
scores consistently increases over the duration of the course, 
and is a strong early predictor, explaining almost 30% of the 
variance in performance after 5-6 sessions of data has been 
collected. To explore the effect of the previously outlined 
methodological weaknesses of Jadud’s algorithm, we ran 
Jadud’s algorithm using pairings built using the Watwin 
algorithm. We found an increase in the explanatory power 
of Jadud’s model (R2= .26 (+.07)), suggesting that whilst an 
appropriate preparation technique can improve explanatory 
power, alone, it is not enough to match the performance of 
our scoring approach where students are relatively penalized 
based upon their resolve times and programming behavior. 

VI. CONCLUSION AND FUTURE WORK

In this paper we presented Watwin, a dynamic algorithm 
designed to predict student performance in a programming 
course. Unlike prior work [2-9] which mainly used indirect 
criteria to predict performance, our approach is based upon 
analyzing directly logged, quantitative data describing 
aspects of a student’s ordinary programming behavior. This 
allows prediction of performance to evolve over time –
reflecting changes in the student’s learning progress without
the need to use multiple tests that often yield inconsistent 
results. The originality of our algorithm is to incorporate a
method, where a student is relatively penalized based upon 
the amount of time they took to resolve an error, in 
comparison to a distribution of normal behavior defined by 
the resolve times of their peers. We addressed the 
methodological weaknesses of the closest related approach 
[13-14], and an evaluation has shown that our approach is a 
good predictor of performance, even early in a course. 
Future work will aim to further validate our approach using 

data gathered from an independent sample of students, to 
identify more characteristics of programming behavior that 
are indicative of weaker students through the use of 
multivariate statistical [20] and data mining techniques [21], 
and to apply our algorithm within an expert system to select 
and supply appropriate compiler feedback to students [11]. 
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