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Abstract. Feedback is regarded as one of the most important influences on stu-

dent learning and motivation. But standard compiler feedback is designed for 

experts - not novice programming students, who can find it difficult to interpret 

and understand. In this paper we present BlueFix, an online tool currently inte-

grated into the BlueJ IDE which is designed to assist programming students 

with error diagnosis and repair. Unlike existing approaches, BlueFix proposes a 

feedback algorithm based upon frameworks combined from the HCI and Peda-

gogical domains, which can provide different students with dynamic levels of 

support based upon their compilation behaviour. An evaluation revealed that 

students‟ viewed our tool positively and that our methodology could identify 

appropriate fixes for uncompilable source code with a significantly higher rate 

of speed and precision over related techniques in the literature. 
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1 Introduction 

Feedback is regarded as one of the most important influences on learning and motiva-

tion [2][3]. To satisfy learning outcomes in an introductory programming course, a 

student has to develop a range of programming knowledge: syntactic, semantic, 

schematic, and strategic [18]. When learning to program students‟ are guided on the 

correctness of their syntax by compiler feedback. However standard compiler feed-

back is designed for experts - not novices, and often fails to match their current level 

of conceptual knowledge, making it difficult to understand. [9] considers the effect 

poor quality compiler feedback can have on programmers from a HCI perspective. 

They conclude that although programmers can often encounter cryptic messages 

which are difficult to resolve, most related disciplines have not paid much attention to 

this aspect, because it is felt that programmers should adapt to compilers. In contrast 

most pedagogical theory places a strong emphasis on adaption to the individual to 

make instruction most effective. Clarity and elaboration are fundamental principles of 

good feedback from both a HCI [9] and pedagogical perspective [2][3], yet most 

standard compiler messages fail to adhere to this [10]. Additionally due to parsing 

limitations, compilers often present the same feedback for a range of distinct errors 

[8][9][10]. This ambiguity poses a problem considering that novice programmers lack 



the experience and expertise to identify the actual fault in their syntax [8]. Unsurpris-

ingly it is not uncommon to observe novices applying almost random strategies to 

resolve compiler feedback which they struggle to comprehend [11], possibly blindly 

acting on the feedback provided with the belief that the computer is always right [9]. 

In this paper we present BlueFix, an online tool currently integrated into the BlueJ 

IDE which is designed to assist programming students with error diagnosis and repair. 

Our contributions include: 

 Unlike [10][17], BlueFix proposes a feedback algorithm based upon frameworks 

combined from the HCI and Pedagogical domains, which can provide different 

students with dynamic levels of support based upon their compilation behaviour. 

 Unlike standard compilers, BlueFix also provides combined feedback measures, 

supporting a learner with appropriate levels of elaborative feedback, rather than 

simply assuming a one size fits all approach. 

 Also unlike standard compilers, BlueFix places an emphasis on teaching pro-

gramming students how to resolve errors by example, and therefore suggests 

methods to resolve syntax errors using a database of crowd-sourced error fixes. 

 BlueFix also shows a substantial improvement in performance of existing solu-

tions, both in terms of the time taken to identify appropriate feedback and code 

fixes [10] and precision [17].  

The remainder of this paper is organised as follows. Section 2 discusses related work. 

Section 3 presents the BlueFix architecture. Section 4 discusses initial findings on 

novice compilation behaviour and further motivations for the work in this paper. Sec-

tion 5 presents an evaluation of BlueFix. Finally, Section 6 concludes the paper. 

2 Related Work 

Prior research has demonstrated that poor quality compiler feedback can have a nega-

tive effect on learning performance. [1] propose an algorithm to quantify the extent to 

which a student struggles to resolve syntax errors during a programming session. 

Using compiler data gathered from students taking an introductory Java course, [1] 

identified a significant relation between a student‟s mean error quotient and their 

overall course mark. Implying that students who struggle to resolve syntax errors 

perform worse on assessments than those who do not. In a related study [7] found that 

programming students experienced syntax issues regardless of their ability. However, 

the students who performed less well on a programming course were more likely to 

have been unable to produce syntactically correct code for programming exercises.  

In general, two main approaches can be used to make compiler feedback more ap-

propriate for novices [9]. The first approach consists of enhancing and/or rewriting 

standard feedback in laymans terms, and/or adding additional elaborations to clarify 

the feedback provided [3]. [6] developed a pre-compiler for Java based upon this 

approach. Although the system was not formally tested, instructors reported they were 

spending less time explaining compiler feedback to students over the duration of a 

course. A similar approach was used by [14]. However, elaborative feedback was 

only provided after a student had made the same error multiple times - thereby reduc-



ing the likelihood they would become reliant on the support and fail to develop a "feel 

for syntax" [9]. In contrast, [4] found additional elaborations did not necessarily help 

novices to resolve errors more quickly or correctly. However the authors question the 

validity of their own study, as it used students who had programming experience. The 

weakness of these techniques is that they do not address the possible inaccuracy of the 

reported error message. Even with additional elaborations, it is possible that a student 

will fail to understand the feedback provided, as it fails to align with their current 

level of programming knowledge [9]. Also the elaboration provided is usually ge-

neric, which is substantially less effective than response-contingent feedback [3].  

The second approach involves directly tailoring the feedback provided based upon 

a static analysis of a student‟s uncompilable source code. Approaches such as 

[12][13] provide implicit feedback [3][10] to students, by spell-checking identifiers. 

Whilst this technique can provide Knowledge of Correct Response (KCR) feedback 

[2], it can only be applied on a limited subset of error types. An alternative approach, 

which has been gaining momentum in recent years, builds upon the observation that 

novices will often seek debugging help from online forums. However, standard search 

algorithms are based upon string literals rather than code semantics - making it more 

difficult for novices to identify relevant error fixes. A solution to this problem is to 

identify and provide a student with examples of how other programmers have re-

solved similar errors in the past [15]. By comparing the similarity of a student‟s code 

against a database of crowd-sourced error fixes [10][16][17], standard compiler feed-

back could be substantially enhanced with elaborative feedback [5] - effectively dem-

onstrating to a student how to fix an error. This technique also addresses the issue of 

possible message inaccuracy - as even if the compiler feedback was inaccurate, fix 

suggestions could demonstrate how to transform damaged code into compliable code. 

3 BlueFix: Methodology and Implementation 

BlueFix is aimed at supporting a programming student in acquiring fundamental syn-

tactic and semantic [18] Java knowledge, by demonstrating how syntactic errors can 

be corrected through two forms of elaborative feedback: enhanced error messages and 

crowd-sourced example error fixes. Unlike prior work [10][17], the BlueFix approach 

(Fig. 1) has been developed by combining sound feedback principles from both a HCI 

[9] and pedagogical perspective [3] (Table. 1). The originality of BlueFix is to com-

bine these frameworks by proposing a set of techniques which provide a student with 

a progressively increasing level of elaborative compiler feedback, based upon the 

extent to which they struggle to resolve a particular error. In contrast, prior solutions 

[10][17] simply provide the student with all available elaborative feedback simultane-

ously - which is unlikely to be processed effectively by a novice and risks cognitive 

overload [3]. Instead the approach of BlueFix is to first encourage a student to resolve 

an error themselves, and then to dynamically adjust the level and type of elaborative 

feedback provided if they fail to do so. We believe this approach will support stu-

dents‟ in developing debugging expertise - therefore allowing them to focus upon 

program logic and developing schematic knowledge [18] rather than syntax issues.  



 

Fig. 1. Flow chart of the BlueFix process. Interventions are based on a student‟s error state.  

From a HCI perspective, [9] suggests that in order to be most effective, compiler 

feedback should be divided into three increasing levels of elaboration: 

1. Provide the programmer with a short message of the problem.  

2. Provide brief explanations or generic examples. 

3. Provide a further level of support based upon potential corrective actions. 

These principles along with pedagogical feedback principles [3] (Table. 1) are tightly 

integrated into the BlueFix approach (Fig. 1). BlueFix initially provides a student with 

the standard compiler error - even though it may be inaccurate. This is an intentional 

choice; so that a student can develop a “feel for syntax” [9] and recognise errors in 

different environments without BlueFix support. If the student is unable to resolve an 

error on the second attempt (where resolve is defined as obtain either a different mes-

sage or compiled code), then in line with [3][9] the level of elaborative feedback is 

increased to either implicit KCR [2] feedback or additional elaborations based upon 

the type of error message. If the error still persists on a third successive compilation, 

then the student is supplied with concept notes and crowd-sourced error fixes to dem-

onstrate how others have resolved a similar syntactic problem in the past.  

Table 1.  Selection of pedagogical feedback principles [3] applied in BlueFix  

# Principle BlueFix Application 

1 Provide elaborated feedback to 

enhance learning. 

BlueFix provides elaborated feedback in the form of 

error message explanations and fix suggestions. 

2 Present elaborated feedback in 

manageable units. 

BlueFix increases the amount of feedback supplied 

gradually responding to a sequence of student errors. 

3 Keep feedback as simple as possi-

ble, but no simpler 

Students are supplied with increasing levels of feed-

back abstraction when they fail to resolve errors. 

4 Provide feedback after students 

have attempted a solution. 

BlueFix provides feedback each time the student at-

tempts compilation. 

5 For difficult tasks, use immediate 

feedback. 

As programming is a higher order cognitive task, Blue-

Fix provides feedback immediately on compilation. 

6 For low-achieving students, use 

correct response and elaboration. 

Supplies the student with more elaborations to aid 

understanding in response to increasing compile fails. 



An initial database of fixes was constructed using the compiler logs gathered (see 

Section 4) from students on the Introduction to Programming course at our university. 

BlueFix also allows additional fixes to be collected and added to its database during a 

lab session, by using additional classes which we have integrated into the BlueJ IDE. 

If BlueFix determines that the student requires an error fix, a list of fixes are queried 

and retrieved from an online MySQL database based upon a generalised error mes-

sage (no identifiers), ranked, and presented to the student within a JFrame (Fig. 2).  

 

Fig. 2. BlueFix interface, showing a sample fix and student-demonstrator discussion. 

Unlike [10], BlueFix also includes social media aspects. Students can rate fixes using 

„like‟ buttons, allowing the better fixes to be more prominently ranked and displayed. 

Additionally, students are able to engage in anonymous discussions about particular 

error fixes with their peers and instructors - providing students who are usually reluc-

tant to ask for assistance an opportunity to clarify issues and collaborate [5] (Fig. 2). 

3.1 BlueFix Process: Determining relevant feedbacks at each stage. 

In this sub-section, we outline the process and techniques BlueFix uses to determine 

the most appropriate feedback mechanisms at each stage of execution (Fig. 1). 

 

Stage: Supply Implicit Feedback. The most likely cause of a “cannot find symbol” 

error is the misspelling of a variable, method, class, or package identifier. For this 

type of error, suggesting a fix which has been applied in the past is not appropriate. 

User defined types and naming within the Java language mean that although two 

classes or methods may share the same name, they may not share the same semantics. 

It is worth noting that in the case of our current dataset, these techniques can be ap-

plied to a substantial percentage of errors recorded (27%). Unlike [17] we therefore 

have constructed special handlers for the following unknowns. 

1. Unknown class. This error is usually caused by either misspelling a class name or 

failing to import a required class from the API or a local package. BlueFix contains 

a Map of all Java SE6 and Java SE7 packages indexed on the class name. When 



this error is reported, BlueFix first recursively scans the students BlueJ project and 

extracts the packages and classes within. The unrecognised class name is extracted 

from the compiler message, and compared against each of the names classes in the 

project, along with API classes. This comparison is performed using String match-

ing techniques (Jaro-Winkler algorithm [19]). If a match is found (score >0.90), 

then it is added to an internal list of possible matches. The list is then sorted on 

score, and the closest match returned. If an import statement is missing from the 

project, this is also returned to the student. An example is shown in (Fig. 3). 

 

 

Fig. 3. BlueFix correcting an identifier misspelling and providing the required import line. 

2. Unknown package. Essentially the same approach as unknown class, however at-

tempts to suggest a package path using the last word on the import line as the class. 

3. Unknown method. The internal parse tree of BlueJ is used to first determine the 

type of object calling a method and the class containing the method call. Through 

the internal debugger and reflection, lists of method signatures for the object type 

(and its super-classes) are retrieved and each name is compared against the name 

of the unknown method. As with unknown class handler, Jaro-Winkler is used and 

the closest match suggested to the student as a possible fix. 

4. Unknown variable. The internal parse tree is used to extract the names of all identi-

fiers within a class between the error line location and the closest method signature 

before it. Field names of the class are then added to a list of identifiers and Jaro-

Winkler similarity computed.  

 

Stage: Supply Elaborated Error Message. If either the initial error type was not an 

unknown identifier, or if BlueFix was unable to determine suitable implicit feedback, 

then the next level of elaborative feedback is generated. Although prior solutions 

[6][14] have supplied elaborative feedbacks in the form of supplementary error expla-

nations, these explanations lacked grounding in pedagogical or HCI principles - there-

fore increasing the risk that a student would still not be able to comprehend the cause 

of an error from the feedback provided. Another criticism of this approach is that it 

fails to address the lack of locality or specificity of standard messages, thereby sup-

plying the student with additional feedback regardless as to whether the underlying 

message (or feedback) is correct or not. The resulting student confusion from inaccu-

rate elaborations can clearly have a negative effect on the learning process [2][3]. To 

address this issue, [9] presented a set of eight principles of effective compiler message 

design: clarity, specificity, context-insensitivity, locality, proper phrasing, consis-

tency, suitable visual design, and extensible help. To enhance the effectiveness of 

standard compiler feedback, BlueFix contains a database of 92 distinct compiler error 



messages and rewritten versions that conform to the sub-principles of clarity and 

proper phrasing: using positive tone, providing constructive guidance and reducing 

jargon. Future enhancements will attempt to address the specificity, context-

insensitivity and locality principles by performing additional parsing checks to tailor 

the feedback supplied based directly to the student‟s damaged source code. 

 

Stage: Supply Concept Notes and Fix Suggestion. If the elaborated error messages 

fail to assist a student in resolving an error, then BlueFix will attempt to locate and 

present a code fix. This is a stored piece of code which is similar to the student‟s un-

compilable source code (and the same error message). A fix is defined as the changes 

made on the stored uncompilable code, to transform it into the stored fixed code. 

Construction of a Database of Fixes. The compiler events in our dataset (Section 4) 

were processed on a per-week, per-student, and per-filename basis. For each week, 

the successive n compiler events that a student performed, were classified into a set of 

tuples {{c1, c2},.., {cn-1, cn}}, so that the errors the student fixed during a session 

could be identified. Unlike existing solutions [10][17] which consider all tuples to be 

a valid fix if the compile success status of {ci, cj}, i = false, and j = true, we only con-

sider such events to be a possible fix. In our solution, we first assess the quality of a 

possible fix before adding it to our database. We believe this will help to improve the 

quality of available fixes. For example, a student could resolve an error by simply 

deleting or commenting out blocks of code. Although this can transform the code into 

a compliable state, it is unlikely to resolve the underlying error. Therefore unlikely to 

show a student how to resolve an error which they are struggling with. To detect dele-

tion fixes we compute the diff ratio (ignoring whitespace) between the source code of 

each ci and cj. If the number of insertions and changes = 0, and the deletes > 0, we 

classify the fix as a deletion fix. Commented fixes are detected by using a regex ex-

pression on the error line. However we are currently experimenting with performing 

additional comment checks by using the patches (text differences between the two 

files) generated by a diff algorithm. Analysis on the precise metrics is still required. 

 

Identifying Appropriate Fixes. The first step used to determine fixes for the student‟s 

uncompilable source code is to retrieve all possible fix tuples from the database, 

which have the same generalised error message (no identifiers) as the student has.  

However not all of these retrieved fixes can be applied to the student‟s code. We 

therefore need a measure of similarity between a student‟s uncompilable source code 

and the uncompilable source code in a fix tuple. That way we can determine the 

changes that were performed on a similar piece of code, to make it compliable. Previ-

ous work [10] proposed using a structure-based similarity technique, where the parse 

tree of a student‟s uncompilable source code was generated, then compared against 

the parse trees of possible fixes. Whilst this approach benefits from high precision, 

performing node-by-node comparison of multiple parse trees incurs a substantial time 

cost; making the technique unfeasible for larger databases or longer code fragments. 

As with [17] we therefore chose to compute similarity by using a string matching 

algorithm. These methods in general have the advantage of a low time cost. A range 



of measures were considered: Levenshtein, Dice Coefficient and Needleman-Wunsch. 

However, we found the best performance in terms of balancing speed and accuracy 

came from calculating the Jaro-Winkler distance [19] between the source files. 

The problem is that edit distance algorithms can over penalise for different method, 

variable, or class identifiers. We therefore use the BlueJ lexical analyser to first token-

ize both the students uncompilable source code, and the uncompilable source code of 

each of the fix tuples retrieved so far. As with [17] we then compute the line similar-

ity between the error line of the student‟s uncompilable code against the error line of 

each fix tuples uncompilable code. However unlike [17] and due to our preliminary 

findings on location inaccuracy (Section 4), we also incorporate region similarity into 

an overall appropriateness measure. This is calculated in the same was as line similar-

ity, but includes lines up to 4 lines behind the reported error location and 4 lines after.  

As BlueFix allows a student to rate fixes using a simple like/dislike system we also 

include student ranking in our appropriateness measure, to allow more „stable‟ or 

„popular‟ fixes to be higher ranked than fixes have not been successful in the past. 

BlueFix takes all this information into account in its scoring function. The appropri-

ateness of each fix is scored as: 

 Fix Appropriateness = (5L + 2R + 1T) / 8 (1) 

where L is the Jaro-Winkler similarity between the tokenized error line in the stu-

dent‟s code against the error line in the candidate fix; R is the Jaro-Winkler similarity 

between the tokenized error region of the student‟s code and candidate fix; T is the % 

of student „likes‟ of a fix. The exact coefficients have been derived through trial and 

error. We wanted to place a greater emphasis on an individual line match rather than 

region, as a region may contain many irrelevant lines. The possible fixes are then 

ranked using a Comparator based upon fix score and the fixes with a score higher than 

a threshold (currently set at 0.8) are presented to the student. Future work will include 

reassessing the coefficients and threshold, as the size of the fix database increases. 

 

Substituting Fixes. Before presenting a fix to a student, as with [17][10] we apply a 

token-based substitution of variable names and values in the selected fix for those in 

the student‟s original code. This ensures that the elaborative feedback in the form of a 

fix suggestion is tailored to the student‟s coding context, thereby increasing the likeli-

hood of understanding [2][3]. The student can directly request BlueFix to apply the 

fix to their code by using the „apply fix‟ button. After this, BlueFix will invoke the 

java compiler to determine whether or not the fix has resulted in compliable code or 

not, and update a successful substitution counter in the database accordingly. This 

function is currently restricted to single line fixes.  

4 Further Motivations For Work 

To explore aspects of novice compilation behaviour we used a sample of students 

who studied the 2011/2012 Introduction to Programming course at our university. The 

course was designed to teach Java to student‟s of varying abilities and assumed no 



prior programming experience. Lectures were supported by a weekly practical session 

where students would practice programming problems using the BlueJ IDE. We de-

cided to directly gather information on student compilation behaviour by creating an 

extension to BlueJ. Each time the student compiled their code on a university PC, the 

extension would log a snapshot of their program source code along with information 

on the result, timestamp, error message and line number. A total of 39 students‟ pro-

vided us written consent to use their logged data. In terms of prior programming ex-

perience, we note that 10 students indicated they had prior experience; however when 

asked the size of the largest program they had written, the majority indicated a small 

program (<1000 lines). 6 of these students indicated they had previously used Java, 

but on average had less than a year‟s experience. Although we collected logs for 15 

practical sessions (teaching weeks 4-19), we restrict our analysis to only 11 of these 

sessions due to student examination and assignment work.  

During the 11 logged practical sessions, our plugin recorded a total of 22,993 

distinct compiler events of which 11,412 (49.6%) were compiler errors. As 2,937 

distinct messages were recorded, we classified errors into a hierarchy based upon 

message abstraction level and type. This yielded eight top level groupings (Table. 2).  

We found that 85% of the errors that students encountered came from three catego-

ries: identifiers (38%), syntax (26%) and computation (24%). 

Table 2.  Classification of Java Compile Time Errors.  

Group Description Example Subgroup 

Syntax Violate the fundamental syntax rules of Java ; expected 

Computation Program logic definition, flow control. illegal operations 

Identifiers Unknown, re-declaring variables / methods unknown method 

Scope Access violations: public, private, packages method is private  

Exceptions Error handling, try-catch keywords try without a catch 

Inheritance Method / variable overriding, super super-type not called 

Abstract Misuse of abstract keyword cannot have body 

Static Relate to use of class and object types cannot be referenced 

Syntax Errors as a Predictor of Student Performance. To analyse a possible link 

between syntax errors and student performance we applied the error quotient algo-

rithm proposed by [1] to our data set. As our students had not yet completed their 

final exam, we compute an interim ability score as a function of five completed as-

sessment components. These are the total marks (%) that the student gained on: (A) 

weekly exercises, (B) fault injection report, (C) multiple choice concepts exam, (D) 

paper based programming exam, (E) computer based programming exam. Each task is 

weighted in terms of the amount of programming involved and the module weighting. 

An ability score is computed as: (1A + 1.5B + 2C + 2.5D + 2.5E), normalized into the 

range 0-100. Applying this function to the 39 participants of our study yielded a nor-

mal distribution of ability scores (Shapiro-Wilk‟s p > .05) ranging from 22.69 to 

84.91. Consistent with the findings of [1], a linear regression revealed that a student‟s 

mean error quotient could statistically significantly predict their ability score, F(1, 37) 



= 8.695, p < .005 and the student‟s mean error quotient accounted for 16.8% of the 

explained variability in ability scores (adjusted r2 = .168) - a medium effect. 

Accuracy of Error Messages and Location.  The fault injection assignment required 

students to inject 30 random faults (change variable, delete line / character) into a 

small Java project (~600 lines) and evaluate the hypothesis: “it is difficult for compil-

ers to identify which programming errors have been made, and the location of the 

problem”. Out of the 39 students who participated in this study, 22 (56%) believed it 

was difficult for a compiler to identify which programming errors had been made, and 

23 (59%) believed it was difficult for the compiler to isolate the location of the error. 

The average distance between reported error location and actual error location was 

4.02 lines (SD = 1.19), however students found this distance varied considerably de-

pending upon the type of error. The average number of reported messages that the 

students thought were inaccurate was higher than anticipated, with a mean of 29.5% 

(SD = 14.83). Concluding opinions by the students were mixed. Some students com-

mented that they had "no issues" with the error messages as they "just get used to 

them". Other students were more critical, stating that "the advice it (the compiler) 

gives often ends up breaking the programs even more. As such, it is best not to rely on 

it too much". Nevertheless these findings indicate that over half of our students were 

not satisfied with the lack of appropriate guidance from standard compiler feedback. 

5 Evaluation of BlueFix  

5.1 Student Feedback 

We have conducted an evaluation of a prototype system using a focus group of 11 

students from the Introduction to Programming Course at our university. Students 

were provided with a demonstration and discussion of prototype BlueFix functional-

ity, and asked to complete a short questionnaire. All students viewed the enhanced 

error messages and fix suggestion capabilities of BlueFix as a useful aid to help with 

error resolution. 63% viewed fix suggestions as the most useful form of support, and 

37% viewed enhanced error messages as the most useful. 81% of the students per-

ceived value of including a social aspect which would allow them to discuss particular 

fixes with peers and instructors. The interesting finding of our evaluation is that 72% 

of the students believed that error fixes should be tailored to their broken code; how-

ever the fixes should not be able to be directly applied, for example, by clicking “ap-

ply this fix”. This is possibly due to the opinion that applying a fix may damage the 

code further, or transform it to the point where the student no longer comprehends it.  

5.2 BlueFix Precision Compared to HelpMeOut 

To evaluate the precision of our approach, we chose to run BlueFix on 20 test cases 

for each of the error groups in Table 2. Faults such as renaming a variable, deleting a 

random line, switching parameters, and removing a random character were performed 



on a small Java project consisting of 7 Java classes and approximately 6,000 lines of 

code. The project was not part of the BlueFix database of fixes. At the time of run-

ning, BlueFix contained 7,645 distinct error fixes, covering 842 distinct error types. 

To compare BlueFix to related work, we have implemented the methodology pre-

sented in [17]. Fixes were returned to an expert programmer who would determine 

whether or not they provided an example of how to repair the mutation. Findings on 

the precision and recall of both techniques are shown in Table 3. 

Table 3.  Comparing BlueFix precision, recall and F1 to HelpMeOut [17]  

  BlueFix HelpMeOut 

Error Group Cases Precision Recall F1 Precision Recall F1 

Syntax 20 51.98 25.49 27.67 34.60 31.36 28.33 

Computation 20 47.37 10.25 13.51 35.42 13.57 13.99 

Identifiers 20 86.84 0.70 1.38 5.21 22.18 2.67 

Scope 20 46.93 45.20 34.00 36.67 50.86 31.93 

Exceptions 20 38.52 36.38 19.60 27.92 24.39 17.86 

Inheritance 20 32.46 36.36 24.88 28.21 42.63 26.04 

Abstract 20 40.35 27.81 23.73 28.75 33.25 20.85 

Static 20 40.70 84.21 51.64 32.22 88.33 41.60 

Overall M 48.14 33.34 24.55 28.62 39.32 22.91 

Overall SD 16.77 25.18 14.72 10.06 23.35 11.88 

 

A Wilcoxon Signed-Rank test was performed to determine if there were any differ-

ences in the precision of fixes suggested by BlueFix and HelpMeOut [17]. We found 

a statistically significant difference in the precision rate of BlueFix (Mdn = 50.0) 

compared to HelpMeOut (Mdn = 33.4), z = 6.29, p < .0005. Out of 160 test cases, 

BlueFix had a higher precision on 82 cases (51.3%), a worse precision rate on 11 

cases (6.8%) and no difference on 67 cases (41.9%).  

6 Conclusion & Future Work 

In this paper we have presented BlueFix: an online tool integrated into the BlueJ IDE 

which is designed to assist programming students with error diagnosis and repair. The 

original contribution of BlueFix is to propose an algorithm and methodology to sup-

ply individual students with dynamic levels of feedback support, based upon combin-

ing feedback frameworks taken from both the HCI and Pedagogical domains. We 

have also added to the growing body of knowledge on novice compilation behaviour 

by presenting preliminary findings from analysing quantitative compiler data gathered 

over a one year Java programming course. We have conducted an evaluation of Blue-

Fix, which revealed that students viewed the tool positively, and an initial evaluation 

of BlueFix precision suggests an improvement of 19.52% over a previous technique 

[17]. Future work will consist of evaluating BlueFix accuracy on a larger data set, and 

possibly expanding the tool to provide advice on runtime errors through analysing 



stack traces. Additionally we plan to evaluate the effectiveness of BlueFix by deploy-

ing it during the 2012/2013 academic year and comparing its effects on learning and 

compilation behaviour [1] to the 2011/2012 cohort. 
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