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Abstract

We explore how imprecise continuous time Markov
chains can improve traditional reliability models
based on precise continuous time Markov chains.
Specifically, we analyse the reliability of power net-
works under very weak statistical assumptions, ex-
plicitly accounting for non-stationary failure and re-
pair rates and the limited accuracy by which common
cause failure rates can be estimated. Bounds on typ-
ical quantities of interest are derived, namely the ex-
pected time spent in system failure state, as well as
the expected number of transitions to that state. A
worked numerical example demonstrates the theoret-
ical techniques described. Interestingly, the number
of iterations required for convergence is observed to
be much lower than current theoretical bounds.

1 Introduction

This paper is an initial exploration to apply recent
advances in imprecise continuous time Markov chains
to the reliability analysis of power networks.

A typical power network consists of multiple redun-
dant power lines, and works as long as at least one
of the power lines is working. A problem of interest
occurs when single events can lead to the failure of
multiple power lines, such as for instance a landslide
causing collapse of a pylon carrying two power lines.
Such events are called common cause failures. In this
case, faults in different lines are not statistically in-
dependent, and require special care in modelling, es-
timation, and validation. In practice, a majority of
power outages are due to common cause failure, and
therefore modelling this type of failure is vital.

Because common cause failures are very hard to quan-
tify statistically [|4], methods from imprecise proba-
bility theory have been introduced that allow accu-
rate yet robust prediction of behaviour under rela-
tively weak statistical assumptions [7,9)10]. We model

the power networks using imprecise continuous time
Markov chains [5,/6], which have not previously re-
ceived much attention in the literature. We are par-
ticularly interested in the amount of time spent in the
state where all power lines have failed, as well as the
number of visits to this state. Whereas [7] considered
immediate repair only, here we explicitly model repair
as well.

Modelling repair requires much more sophisticated
mathematical methods which have been only very re-
cently developed, namely imprecise continuous time
Markov chains [6]. Following [6], we will discretize our
imprecise continuous time Markov chain and use lower
and upper transition operators [2]. In this framework,
practical calculations such as calculating lower and
upper long run probabilities can be done via linear
programming [6]. Throughout, we exploit the fact
that repair times of power lines are much shorter than
failure times. We use this fact to get a reasonable ap-
proximation for the expected number of times that
the system visits the totally failed state, as well as
the expected amount of time that it spends there, in
a given time period. For the imprecise case, we derive
simple bounds on these quantities.

The structure of the paper is as follows. Section
looks at how we can use continuous time Markov
chains to model a power network with two compo-
nents, accounting for common cause failure and non-
immediate repair. Section [3|generalises this setting to
imprecise continuous time Markov chains, and works
through a detailed example. Section [] concludes the

paper.

2 Continuous Time Markov Chains

2.1 Definition

We start with reviewing the basic definition and prop-
erties of continuous time Markov chains.



Definition 1 A continuous time Markov chain is a
family (X;)ier of random variables taking values in a
finite state space S, such that for all s <t and jt > 0,
Xirse @s independent of X conditionally on X, and

P(Xt+5t =7 | X = Z) = Iij + 0t Qij + Oij(ét) (1)

where limg;—,04 0;;(6t) /0t = 0, I is the identity ma-
triz, and @ is called the rate matrix.

In particular, the above process is stationary, that is,
the transition probabilities P(X;y5: = j | Xy = 4) do
not depend on t. For i # j, the values ();; are non-
negative and describe the rate at which the process
switches from state i to state j. The rows of Q must
sum to zero because, by Eq. (1)),
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which tends to zero as §t — 0, so all diagonal elements
Q;; will be non-positive.

The above definition implies that for any fixed time ¢
there is a transition matrix T; such that

P(Xert =J ‘ Xs = Z) = (Tt)w (3)

The transition matrix is a function of ¢ and satisfies
Kolmogorov’s forward and backward equations:

d

97— 1q (4)
and

d

%Tt =QT; (5)

respectively, with the initial condition Ty = I. Tt is
well known that in the stationary case, i.e. when Q is
constant in time, the solution of the above equations
is

T = etQa (6)

where €'? is the matriz exponential of Q.

2.2 Inference
We briefly review the details of doing inference on
precise continuous time Markov chains.

Typically, we are interested in the expectation of some
function of the state at time ¢, conditional on some
initial state at time 0. It follows from Eq. @ that for
any f: S >R

E(f(Xy) | Xo =1)
=Y P(X;=j|Xo=4)f@) =[] (7)

jes

where f is interpreted as a column vector in the last
expression.

Equation @ lies at the basis of all practical calcu-
lations with continuous time Markov chains in this
paper. For example,

P(X;=j| Xo=1) = E(I;(X;) | Xo=1) (8)
= [1)], = [¢"] 9)

i ij’
where I; denotes the indicator function interpreted as
a column vector:

1 ifk=j
L: (k) = 10
5(k) {O otherwise (10)

A wide variety of methods is available for calculating
the matrix exponential; see [3] for a review and dis-
cussion. For small dimensions, the following method
is slow but simple and sufficiently effective for the
purpose of this paper. Equation suggests that a
continuous time Markov chain is a limit of discrete
time Markov chains. Specifically,

T, =1+6tQ (11)

maps the rate matrix @ to a discrete time Markov
chain transition matrix T},, provided that ét is small
enough so that none of the diagonal entries of T}, are
negative. It can then be shown that

@ = lim (T),)" 12)
For practical calculations, we can take n to be a power
of 2, so (T} /n)” can be evaluated by repeated squar-
ing, requiring only log, n matrix multiplications [12].
Although this method is conceptually and computa-
tionally simple, it may produce numerically unstable
results. An improvement is to use Padé approxima-
tion, which also allows for error analysis |3 pp. 9-10].
Essentially, we calculate

et@ ~ [Rym (tQ/1)]™ (13)

where R, is a known polynomial, and again we take
n to be a power of 2 so we can use repeated squaring.
Suitable values for m and n, as a function of the 2-
norm of tQ, can be found in [3| p. 11, Table 1].

Concerning the limit behaviour for ¢ — oo, the fol-
lowing definition and theorem are of importance.

Definition 2 A probability mass function m on S is a
stationary distribution for a continuous time Markov
chain if

Q@ = 0. (14)



Theorem 3 If there is a unique stationary distribu-
tion w for a continuous time Markov chain, then

lim [e"?], = m;. (15)

t—00 z

In words, the limit behaviour does not depend on the
initial state when 7@) = 0 has a unique solution for 7.
In that case, m describes that unique limit behaviour.

For analysis and design of power systems, we are typ-
ically interested in the following quantities:

(i) the expected amount of time spent in a particular
state 7 during a time period of length 7; it is easily
shown that this expectation is simply equal to

;=TT (16)

(ii) the expected number of transitions to state i dur-
ing a time period of length 7; this can be shown
to be equal to

Bi = —7mi Q. (17)
2.3 Example

Although the methods described in this paper apply
in principle to arbitrary power networks, for demon-
strating the ideas of the paper, following [7], we will
consider a simple network consisting of just two power
lines, called A and B. We can set up a continuous time
Markov chain to model this system as follows |1]. The
state space is S = {AB, A, B,0}, where the labels
of the states denote the non-faulty components (i.e.
both A and B are non-faulty in AB, whereas both are
faulty in @). Using the basic parameter model [4}[10],
we can model common cause failures by assigning all
failures to any one of the following three events:

e A;: independent failure of A.
e B;: independent failure of B.
e (C'y4p: common cause failure of both A and B.

Using standard notation from the literature on com-
mon cause failure modelling, denote by ¢{* the rate
of A7, ¢P the rate of By and ¢o the rate of Cap.
Similarly, let r4 be the repair rate of A and rp the
repair rate of B—for simplicity we exclude simulta-
neous repair; extending the analysis to allow for this
possibility is trivial. The rate matrix is then

—ai'—af —q2 a at a2
Q= TB —qit'—q2—7p 0 ai' +az
TA 0 -4 —aq2—ra qr+a2
0 A B —ra—rp
(18)

The corresponding digraph of the continuous time
Markov chain is depicted in Fig. [I]

To estimate the rate parameters qf‘, qlB , @2, We assume
that the chain spends most of its time in state AB,

qf af + ¢

at + @

Figure 1: Markov chain for failure with non-instant
repair. The nodes show non-faulty power lines.

Figure 2: Markov chain for failure with instant repair.

which is reasonable, as repair times are much shorter
than failure times. Therefore, from the point of view
of AB, we can assume instant repair (see Fig. |2),
leading us precisely to the situation discussed in [7].
We know from the theory of continuous time Markov
chains that the number of transitions from each state
are Poisson distributed. If we then make the simplify-
ing assumption that all failures occur from AB, then
the process reduces to three independent Poisson pro-
cesses, each generating one of the events Ay, By and
Cap.

Let n4 be the number of single failures of A, ng the
number of single failures of B, and n 4p the number of
double failures. Similarly, let T4 p denote the amount
of time spent in state AB. We will use the data from
the example in 7] where two circuits, A and B, have
been observed for 12 years. A experienced 7 failures
in this time, and B 4 failures, with 3 of these failures
being double failures. So, using our notation, and un-
der the approximate assumption of immediate repair,
we have:

np = 1, nap = 3, (19)
Tap =12, (20)

TLA=4,



leading to the following maximum likelihood esti-
mates:

~A na

i =g =1 (21)
i = 7= =1/12 (22)
AB
- n
B =L =1/4 (23)
Tap

We have no repair time data, but a mean time to
repair of 12 hours is not entirely unrealistic, so we
take r4 = rg = 730. The rate matrix is then:

_2 L 1 1
3 12 . 3 %
730 730 - 0 =
Q= 1 T (2
730 0 730-1 1
0 730 730 1460

The unique stationary distribution is

9.989 x 107!
2.851 x 10~4
T= 16.271 x 104 (25)

1.713 x 1074

The expected amount of time spent in the state @) in
a period of 10 years, is

ap = 10 years x 1.713 x 107* = 0.625 days.  (26)

and the expected number of visits to @ in a 10 year
period is

5@ =—10 x W@Q@@ =2.501 (27)

3 Continuous time imprecise Markov
chains

3.1 Motivation

The example of the previous section suffers from a
number of issues:

e the Markov assumption of X;s; being indepen-
dent of X for s < t conditionally on X; may not
be realistic, particularly for repair;

e the transition rates may not be constant in time,
but are usually affected by a variety of factors;
and

e estimation of the rates themselves is difficult, due
to the lack of data, as extensively discussed in
[7,/10].

Specifically, under constant transition rates, repair
times are exponentially distributed, and are indepen-
dent of the history of the system. But this is usually
not the case. In some cases the repair may be vir-
tually immediate, as a minor failure in a power line

may be detected by a computer and then corrected
immediately, but in other cases there may be need for
an engineer to go out and work on the line, which
obviously takes time. So, repairs times will often fol-
low a bimodal distribution rather than an exponential
distribution.

Similarly, failure rates often follow a so-called bathtub
curve due to burn-in and wear-out effects, and can be
affected in quite complex ways by the repair history of
the system. A full modelling of these details requires
a lot of data and expert knowledge.

It seems therefore convenient to consider our tran-
sition rates as not being fixed, but instead being
bounded by an interval, to cover a range of distri-
butions that is more likely to occur in reality, without
having to be too precise about the details of this dis-
tribution, or on how this distribution depends on the
history of the system.

As already mentioned, another source of severe uncer-
tainty concerns the common cause failures, which are
very hard to quantify. We will follow [7,/10] and use
a robust Bayesian approach to bound our estimates,
allowing robust prediction of behaviour under rela-
tively weak statistical assumptions. Eventually, this
leaves us with a set of rate matrices @ bounded by
linear constraints. How can we interpret such a set as
a statistical process?

3.2 Definitions

Consider a non-stationary non-Markovian continuous
time process whose generator

Qlj (ta tn; Tny .- - 7t07 xO) = 5tli>n(}+
P(Xt+5t:j‘Xt:’L', th;tl‘n7 . ,Xt0:$0> — Ii’ (28)

(where t > t, > .-+ > tg) is an arbitrary function
of time and history which is only required to satisfy
Qtytn, Tn,y ... to,x0) € Q for all t, n, t,, zp, ..., to,
and xg. Here, Q is a set of transition rate matrices—
note that the set Q itself does not depend on time
or history. A simple way to do our inference, which
imposes very few assumptions about the additional
structure of the process, is then to perform a sensitiv-
ity analysis over all these continuous time processes.
Specifically, we are interested in the lower expectation
of a function of the state at time ¢ for a given initial
state at time 0:

Definition 4 Lett > 0. The lower transition opera-
tor T,: RS — R? is defined by

[T, f]; = E(f(X¢t) | Xo =1) (29)



The upper transition operator is defined through con-
jugacy: Tirf = =T, (—f).

A clever way of calculating T, goes via the so-called
lower rate operator, provided that the set Q of rate
matrices has a particular structure:

Definition 5 We say that Q has separately specified
rows if

Ql*
Q= Q2+ | . Qix € Qi (30)

where Qi = {Qix: Q € Q}, and Q;« denotes the ith
row of Q.

In other words, Q has separately specified rows if the
set of matrices attained by forming matrices with any
combination of rows from matrices in Q (where the
first row can be chosen from any of the first rows of
matrices in @ and so on) is again Q. For example,

o[

does not have separately specified rows, but

Q= {[_‘g _ﬂ ta,be o, 1]} (32)

has separately specified rows.

Z] ca €0, 1]} (31)

Definition 6 An interval rate matrix is a compact
and convex set of rate matrices with separately speci-
fied rows.

Definition 7 Let Q be an interval rate matrixz. The

corresponding lower rate operator Q: RS — RS is
defined by

[Qr];: [Qf); = min Q.f  (33)

= min
QeQ Qix€Qix
for any function f: S — R on the state space S.

The upper rate operator @ is defined through conju-
gacy: Qf = —Q(—f). The properties of lower and
upper rate operators are studied extensively in [6].

Clearly, it holds that

Qf]: < [Qf]: < [Qf]i (34)

for every i € S, f: S - R, and Q € Q. But we
can make an even stronger statement. Because Q
has separately specified rows, for any specific f, these
bounds can be attained for the same Q) independently
of i € S. Specifically, for every f, there is a Q € Q
such that for all i € S we have that [Qf]; = [Qf];-

A similarly result holds for the upper bound. This
property substantially simplifies calculations.

What makes @ so important is that it entirely de-
termines T',, through the following generalisation of
Kolmogorov’s backward equation [6]:

d

%It = er (35)
Calculating T, amounts to solving this non-linear dif-
ferential equation with initial condition T, = I. For
a specific vector f, if we denote T, f by f " then we
must simply solve the differential equation

d
&it =Qf, (36)

subject to the initial condition f = f. This equation
has been extensively studied in [6], where the exis-
tence of the solution is proved [6, Corollary 2] and
numerical algorithms are proposed [6, Section 4].

Unfortunately, those algorithms provide no direct way
to determine the limit distribution for ¢ — oo, which
is the main interest of this paper. In particular, the
error bounds provided in |6] become too conservative
in the long term limit.

Practical calculations of the solutions of Eq. are
done by approximations using some kind of discreti-
sation. The simplest method is uniform grid dis-
cretisation, which approximates T, by 1"} /n» Where
T, : RS — RS is defined by

[T5.f], = [T +6tQ) f],. (37)

It can now be shown that [5]:

{ LL — lim [1’;% fL . (38)

n—oo

which generalises Eq. .

3.3 Inference

Equation allows us, in principle, to calculate the
limit behaviour for ¢ — oo.

Definition 8 The lower and upper stationary proba-
bility mass functions are defined by

m; = lim P(X, =i | Xo =) (39)
t—o00

T = tlim P(X;=1i| Xo=7) (40)
—00

provided that the right hand side does not depend on j.

Clearly, we have that

fAY)
t—o0o n—o0

7, = lim lim [I’?/RIZ-L (41)



with a similar equality for 7;. Obviously, it would
be much nicer to have a generalisation of the equality
7() = 0 for imprecise continuous time Markov chains;
this is under investigation.

For our power system analysis, we are interested in
bounds on the expected amount of time spent in state
i during a time period of length 7. A simple heuristic
bound is easily shown to be

Q, =Tm; a; =TT (42)
To see this, consider the problem for a discrete time
Markov chain. The lower expected number of steps
spent in state ¢ during N time steps satisfies:

X0=j>

P(Xpnn =1 | Xo=73) (43)

N
E <Z Ixy =i
n=1

Mz

n=1

for large M, where we used the superadditivity of the
lower expectation operator [11, p. 76, §2.6.1(e)] [g].
Now apply this formula for the discretised chain with
M = t/ot and N = 7/0t, note that the duration of
each step is ¢, and that P(Xpr4n =1 | Xo =J) ~ @,
for large M.

Similarly, a simple heuristic bound on the expected
number of transitions to state ¢ during a time period
of length 7 is:

B, = TZL- QL]; B, = Tzﬁj@fi}j (44)
j#i J#i

To see this, again consider the problem for a discrete
time Markov chain. The lower expected number of
transitions to state i during IV time steps satisfies:

N
E E : IXM+n+1:iﬁXM+n75i

Xo = k:) (45)

2

P(Xpons1 =N Xprpn #1 | Xo = k)

1 (46)

3
Il

an

ZB XM+n+1 =1 | Xvgn = ])
j#i
X P(Xpin =71 Xo=4k)  (47)

for large M, where we used the superadditivity |11}
p. 76, §2.6.1(e)] [8] the multiplication rule |11} p. 296,
§6.3.5(14)] [8] of the lower expectation operator, and
the Markov property. Now apply this formula for the
discretised chain with M = ¢/§t and N = 7/4t, and

note that P(Xpryn =J | Xo = k) = m; for large M,
and that

P(Xning1 =1 | Xaryn = J) = 6t [QI]; (48)

for all j # 1.

These discrete time analyses also say something about
the continuous time process because, loosely speaking,
the fraction of time that the continuous time process
spends on jumping is zero, making the error in these
bounds infinitesimally small, provided that 6t is in-
finitesimally small as well.

3.4 Example

We now demonstrate how imprecise continuous time
Markov chains can be used to model our power net-
work. For ¢!, ¢P, and ¢, we use the data and inter-
vals for failure rates derived in the example in [10],
under the approximate assumption of immediate re-
pair, which seems reasonable as the system will spend
most of its time in state AB. In this data, A and B
are two identical distribution lines, and the intervals
for the expected failure rates are:

4 €10.32,0.37] (49)
B €10.32,0.37] (50)
g2 € [0.19,0.24] (51)

expressed as failures per year. In this study, we did
not have repair time data. Through expert elicitation,
we judge repair rates between 6 and 12 hours to be
reasonable:

r4 € [730,1460] (52)
rp € [730, 1460] (53)

expressed as number of repairs per year.

It may be worth noting that we are not assuming that
repairs will happen at a fixed but unknown time be-
tween 6 and 12 hours. We are also not assuming that
repair time has an exponential density

F(t) = Aexp(—t) (54)

with A € [\, A], where A = 730 (rate for a 12 hour
mean repair time) and A = 1460 (rate for a 6 hour
mean repair time). The exponential distribution is
strongly skewed to the left, with a peak at 0. Al-
though the parametric form of the actual distribution
may deviate from the exponential, the feature of hav-
ing a peak at 0 does reflect an important characteristic
of network repairs, as many failures can be fixed re-
motely (such as for instance a circuit breaker tripping
due to a power surge from lightning). Some repairs



may also take much longer than 12 hours. An ex-
ponential shape is judged to be a reasonable approx-
imation for repair in the literature [1]. But in this
paper, we actually allow a much more general class of
distributions for repair, as we allow the rate to vary
in time in an arbitrary way between 6 and 12 hours;
intuitively, the corresponding set of densities is

o =Moo (- [ “As) i) 6

where A(t) is an arbitrary function of time satisfy-
ing A(t) € [\, A], and which may also depend on the
full system history—only the bounds are assumed to
be independent of time and history. Our paramet-
ric assumptions are thus much weaker than what is
usually assumed in the literature, thereby providing
additional confidence in inferences, whilst at the same
time making computations more efficient.

We let Q be an interval rate matrix defined through
Eq. and the above constraints. Specifically, with

which in turn raises interesting theoretical questions
concerning computation.

In our case, t = 0.02 (which roughly corresponds to
one week) and n = 80 were found to be sufficiently
large. For reference, the second largest eigenvalue of
the transition matrix, for some extreme selections in
Q, was at most 0.817, and 0.817%° = 9.830 x 1078, so
it seems intuitively reasonable to expect convergence
to be of the order 9.830 x 10~8. In any case, taking
say t = 0.04 and n = 320 (this corresponds to a dou-
bling of the time ¢ and a halving of the time step t/n)
leads to no further changes in the following results
up to 4 significant digits, which empirically confirms
convergence. For the stationary distribution, we find:

9.985 x 10~ 1 9.994 x 107!
_|2623x 107 _  [7.252x107* 59
T=19623x10-4| 7= |7252x104| (9

6.513 x 10~° 1.647 x 104

Concerning the time we expect to spend in state 0,

say for a period 7 of 10 years, we immediately find

[ag, @p] = [6.513 x 107%,1.647 x 10~?] years  (60)
= [5.705, 14.427] hours (61)

—0.98  0.32 0.32 0.19 T
| 730 —1460.61 0 0.51
Qr=| 739 0 —1460.61  0.51
0 730 730 —2920
(56)
—0.83  0.37 0.37 0.24 ]
| 1460 —730.51 0 0.61
Qu =1 1460 0 —730.51  0.61
0 1460 1460  —1460]
(57)
we take

Q= [Qr,Qul = {@: Qr <@ < Qu.
vieS$, Y Qy=0} (58

jES

which has separately specified rows, and therefore it
is indeed an interval rate matrix. Note that simply
taking the set of all rate matrices of Eq. for all
parameters in the above mentioned intervals leads to
a set of rate matrices that does not have separately
specified rows.

We can now evaluate the lower and upper stationary
distributions via Eqs. and , where @ and Q
are evaluated through linear programming. To choose
sufficiently large values for ¢ and n, we increased the
values until empirical convergence was observed. An
interesting observation here is that the values required
were much lower than some theoretical bounds de-
rived in the literature (see for example [6]). We sus-
pect that this is due to some additional structure of
our problem (for instance, rows summing to zero),

Similarly, the expected number of visits to () in that

same period is

84> Bo) = [1.900,2.407] (62)

where we used:

[QIy] ,, =019
[QIy] , = 0.51
[QIy] , =051

[QIy] ,, =024 (63)
[QIy] , =0.61 (64)
[QIy] , = 0.61 (65)

4 Conclusions

We have looked at a model for dealing with common
cause failures in power networks with two power lines,
where intervals for the failure and repair rates are used
to allow us to make accurate yet robust prediction of
behaviour under relatively weak statistical assump-
tions. Using imprecise Markov chains allows for the
case where failure and repair rates are not constant
in time, and allows us to properly capture the un-
certainty regarding common cause failures which are
very hard to quantify. For all these reasons, imprecise
continuous time Markov chains have a lot of poten-
tial to improve traditional reliability models based on
precise Markov chains.

We still assumed that the Markov property [1] holds
which, while possibly an unrealistic assumption, is one
that is still prevalent in the standard literature.



One disadvantage of the linear programming approach
[6] for finding the limit behaviour for ¢ — oo is that it
is quite inefficient compared to the standard precise
method of solving a linear system. An interesting
piece of future research would be to see if we could
find new algorithms that work much faster to identify
bounds on the stationary distribution.

Another interesting follow up to this paper could be
extending the model to apply it to a power network
with more than two power lines. Similarly to what
is detailed in [7], there would be difficulties in find-
ing intervals for parameters relating to common cause
events, because multiple failures can occur in many
more ways when three or more power lines are in-
volved.

Finally, we observed empirically that the number of
steps required for convergence is much lower than cur-
rent theoretical bounds. We suspect this is due to the
specific structure of our rate matrices. This raises the
question as to how current theoretical bounds can be
improved for these cases.
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