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Abstract. For a given graph G and integer k, the Coloring problem is
that of testing whether G has a k-coloring, that is, whether there exists
a vertex mapping c : V → {1, 2, . . .} such that c(u) 6= c(v) for every
edge uv ∈ E. We survey known results on the computational complexity
of Coloring for graph classes that are hereditary or for which some
graph parameter is bounded. We also consider coloring variants, such as
precoloring extensions and list colorings and give some open problems in
the area of on-line coloring.

1 Introduction

Graph coloring is a central topic in Computer Science due to a high number of
theoretical and practical applications. Within both structural and algorithmic
graph theory, many graph coloring variants and generalizations have been stud-
ied. Besides the well-known text-book of Toft and Jensen [65], several survey
papers appeared over the years. For instance, the survey of Tuza [70] considered
the graph coloring problem and variants of it, in which local restrictions are im-
posed on the coloring (e.g. precoloring extensions and list colorings) whereas the
survey of Randerath and Schiermeyer [61] considered structural and complexity
aspects of graph colorings for hereditary graph classes.

As graph coloring and many of its variants are computationally hard on
general graphs, it is natural to restrict the input graph to some special graph
class. This topic has been extensively studied in the literature. A recent survey
of Golovach, Johnson, Paulusma and Song [27] updated several parts of the two
aforementioned survey papers [61, 70] and the survey of Chudnovsky [13] by
primarily focussing on computational complexity aspects of graph coloring for
graph classes characterized by one or two forbidden induced subgraphs. As noted
by Golovach et al. [27], the task to collect complexity results for graph coloring
restricted to other graph classes might be beyond the scope of a single paper.
Our aim is therefore to discuss a number of such results and open problems not
mentioned in [27]. In particular we will identify a number of gaps in existing
complexity results.
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The survey is organized as follows. In Section 2 we state some terminology.
Then, in Section 3, we consider the (classical) complexity of graph coloring, pre-
coloring extension and list colorings for a number of graph classes characterized
by more than two forbidden induced subgraphs and also for some graph classes
for which some graph parameter is bounded. We discuss parameterized coloring
problems in Section 4 and on-line coloring problems in Section 5. We briefly
consider graph homomorphisms in Section 6.
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`-List Colouring

List `-Colouring

List Colouring

k-List Colouring

List k-Colouring

k-Precolouring Extension

k-Colouring

Precolouring Extension

Figure 1. Relationships between Coloring and its variants as shown in [27]. An arrow
from one problem to another indicates that the latter is a special case of the former; k
and ` are any two integers for which ` ≥ k.

2 Preliminaries

A coloring of a graph G = (V,E) is a vertex mapping c : V → {1, 2, . . .} with the
additional condition that c(u) 6= c(v) whenever uv ∈ E. We call c(u) the color
of u. If 1 ≤ c(u) ≤ k for all u ∈ V then c is also called a k-coloring of G. We say
that G is k-colorable if a k-coloring of G exists. The chromatic number χ(G) of G
is the smallest integer k for which G is k-colorable. The Coloring problem is
that of deciding whether a graph G is k-colorable for some given integer k. If k
is fixed (that is, not part of the input) we obtain the k-Coloring problem.

A k-precoloring of a graph G = (V,E) is a mapping cW : W → {1, 2, . . . k}
for some subset W ⊆ V . We say that a k-coloring c of G is an extension of a
k-precoloring cW of G if c(v) = cW (v) for each v ∈ W . For a given graph G, a
positive integer k and a k-precoloring cW of G, the Precoloring Extension
problem asks whether cW can be extended to a k-coloring of G. If k is fixed we
denote this problem as the k-Precoloring Extension problem.

A list assignment of a graph G = (V,E) is a function L with domain V such
that for each vertex u ∈ V , L(u) is a subset of {1, 2, . . . }. This set is called the
list of admissible colors for u. If L(u) ⊆ {1, . . . , k} for each u ∈ V then L is also
called a k-list assignment. The size of a list assignment L is the maximum list
size |L(u)| over all vertices u ∈ V . A coloring c respects L if c(u) ∈ L(u) for



all u ∈ V . This leads to the following three problems. Given a graph G with a
list assignment L, the List Coloring problem is that of testing whether G has
a coloring that respects L. If inputs are restricted to pairs (G,L) where L has
size at most ` then we obtain the `-List Coloring problem, and if each L is a
k-list assignment, we obtain the List k-Coloring problem. See Figure 1 for a
display of the relationships between the seven problems defined above.

Let G be a graph and {H1, . . . ,Hp} be a set of graphs. Then G is said to
be (H1, . . . ,Hp)-free if G has no induced subgraph isomorphic to a graph in
{H1, . . . ,Hp}. If p = 1, we may write that G is H1-free. The disjoint union
(V (G)∪ V (H), E(G)∪E(H)) of two vertex-disjoint graphs G and H is denoted
by G+H and the disjoint union of r copies of a graph G is denoted by rG. The
complement G of a graph G has vertex set V (G) = V (G) and an edge between
two distinct vertices u and v if and only if u and v are not adjacent in G. We
denote the path and cycle on n vertices by Pn and Cn, respectively.

Let G be a connected graph. The distance d(u, v) between two vertices u and
v in G is the number of edges in a shortest path from u to v in G. The diameter
of G is the maximum of maxv d(u, v) over all vertices u in G. The radius of G is
the minimum of maxv d(u, v) over all vertices u in G.

Let p be a graph parameter and let G be a graph class. We say that G has
bounded p if there exists a constant c such that p(G) ≤ c for all G ∈ G.

3 Classical Complexity

The problems k-Coloring, k-Precoloring Extension, List k-Coloring
and k-List Coloring are polynomial-time solvable for general graphs if k ≤ 2
and NP-complete if k ≥ 3 [52, 67]. As mentioned, we refer to the recent survey [27]
for an overview of known results for these problems when restricted to H-free
graphs and (H1, H2)-free graphs. In this section we consider a number of other
graph classes.

Cycle-free Graphs. A hole is a cycle of on at least four vertices. An antihole
is the complement of a hole. A cycle, hole or antihole is even if it contains an
even number of vertices; otherwise it is odd. An (anti)hole is long if it has at
least five vertices. A graph is odd-hole-free or odd-antihole-free if it contains
no induced odd holes or no induced odd antiholes, respectively. In a similar way
we define (even-)hole-free, (even-)antihole-free, long-hole-free, long-antihole-free,
odd-cycle-free and (odd-)anticycle-free graphs.

Grötschel, Lovász, and Schrijver, [30] proved that Coloring is polynomial-
time solvable for perfect graphs, or equivalently (due to the Strong Perfect Graph
Theorem [14]) for graphs that are odd-hole-free and odd-antihole-free. Note that
hole-free graphs and antihole-free graphs are perfect. Hence Coloring is also
polynomial-time solvable for hole-free graphs and antihole-free graphs, and thus
for cycle-free graphs (forests) and anticycle-free graphs (coforests).

Král’, Kratochv́ıl, Tuza and Woeginger [49] proved that Coloring is NP-
complete for (2P2, C5)-free graphs and also for (C3, C4, C5)-free graphs. Conse-
quently, Coloring is NP-complete for long-hole-free graphs and long-antihole-



free graphs, and thus for odd-hole-free graphs and odd-antihole free graphs. In
contrast, Coloring is polynomial-time solvable for odd-cycle-free graphs (bi-
partite graphs) and odd-anticycle-free graphs (cobipartite graphs). If we change
the parity of the forbidden cycles from odd to even, then we obtain two long-
standing open problems; we refer to the survey of Vušković [68] for more on
even-cycle-free graphs (even-hole-free graphs).

Open Problem 1 Determine the complexity of Coloring for even-cycle-free
graphs and even-anticycle-free graphs.

k-Precoloring Ext. List k-Coloring

r k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6

t ≤ 6 P P P P P P P P
t = 7 ? ? ? ? ? ? ? ?
t = 8 ? ? ? ? ? NP-c NP-c NP-c
t = 9 ? ? ? ? ? NP-c NP-c NP-c
t ≥ 10 ? NP-c NP-c NP-c ? NP-c NP-c NP-c

Table 1. The complexity of k-Precoloring Extension and List k-Coloring on
Pt-free bipartite graphs for fixed k and t.

Bipartite and Chordal Bipartite Graphs. A graph is chordal bipartite if it is bi-
partite and every induced cycle has exactly four vertices. Hujter and Tuza [41]
proved that Precoloring Extension is linear-time solvable on P5-free bipar-
tite graphs (which are chordal bipartite) and NP-complete for P6-free chordal
bipartite graphs. Kratochv́ıl [50] answered two of their open problems [40] by
proving that 3-Precoloring Extension is NP-complete for planar bipartite
graphs and that 5-Precoloring Extension is NP-complete for P14-free bi-
partite graphs. The latter result was strengthened by Huang et al. [39], who
proved that, for all k ≥ 4, k-Precoloring Extension is NP-complete for
P10-free chordal bipartite graphs. The same authors [39] also proved that List
4-Coloring is NP-complete for P8-free chordal bipartite graphs.

Brandstädt, Klembt and Mahfud [5] proved that the class of (C3, P6)-free
graphs has bounded clique-width. By combining their result with results of
Kobler and Rotics [48] and Oum and Seymour [62] we find that, for all k ≥ 1,
List k-Coloring is polynomial-time solvable on (C3, P6)-free graphs (see also
e.g. [39]). Table 1 summarizes the above results for Pt-free bipartite graphs.

Open Problem 2 Determine the complexity of the problems k-Precoloring
Extension and List k-Coloring for the missing cases in Table 1.

Huang et al. [39] posed the following two open problems.

Open Problem 3 Determine the complexity of the problems List 3-Coloring
and 3-Precoloring Extension for the class of chordal bipartite graphs.



Planar Graphs and Graphs of Bounded Vertex Degree. To recall two classic
results, Garey, Johnson and Stockmeyer [26] proved that 3-Coloring is NP-
complete even for planar graphs of maximum degree 4, whereas every planar
graph is 4-colorable by the Four Color Theorem [2]. Chleb́ık and Chleb́ıková [12]
strengthened the aforementioned result of Kratochv́ıl [50] for planar bipartite
graphs by proving that 3-Precoloring Extension is NP-complete even for
planar bipartite graphs of maximum degree 4. The same authors [12] also showed
that List 3-Coloring is NP-complete for 3-regular planar bipartite graphs but
that Precoloring Extension is polynomial-time solvable for arbitrary graphs
of maximum degree at most 3.

Demange and de Werra [17] proved that 3-Precoloring Extension is
NP-complete for subgrids (which are induced subgraphs of grids and hence have
maximum degree at most 4) and that List 3-Coloring is NP-complete even
for subgrids of maximum degree at most 3, whereas Kratochv́ıl and Tuza [51]
showed that List Coloring is polynomial-time solvable for graphs of maximum
degree 2. Demange and de Werra [17] also proved that List 4-Coloring is NP-
complete for grids, and they posed the following open problem.

Open Problem 4 Determine the complexity of Precoloring Extension for
grids.

When consider graphs of bounded degree that are not necessarily planar a
full complexity classification is known (see [16]) for Coloring, List Color-
ing and Precoloring Extension and also for k-List Coloring, List k-
Coloring and k-Precoloring Extension. However, no dichotomy is known
for k-Coloring restricted to graphs of maximum degree at most d, but some
partial results have been obtained. Molloy and Reed [60] classified the com-
plexity for all pairs (k, d) for sufficiently large d, whereas Emden-Weinert et
al. [19] showed that k-Coloring is NP-complete for graphs of maximum degree
at most k+ d

√
ke− 1. By combining the latter result with Brooks’ Theorem [8],

we find that the smallest open case is the following problem.

Open Problem 5 Determine the complexity of 5-Coloring for graphs of max-
imum degree 6.

Graphs of Bounded Diameter. By using a reduction from 3-Coloring via adding
dominating vertices one can easily show that k-Coloring is NP-complete for
graphs of diameter d for all pairs (k, d) with k ≥ 3 and d ≥ 2 except for two
notorious cases, namely (k, d) ∈ {(3, 2), (3, 3)}. Mertzios and Spirakis [57] settled
the case (k, d) = (3, 3). They proved that, for every 0 ≤ ε < 1, 3-Coloring is
NP-complete even for classes of triangle-free graphs G = (V,E) of diameter 3,
radius 2 and minimum degree δ = Θ(|V |ε).

We note that, for every k ≥ 1 and p ≥ 1, the problems k-Coloring and
k-Precoloring Extension are polynomially equivalent on the class of graphs
of diameter at most p. This can be seen as follows. Firstly, k-Coloring is a
special case of k-Precoloring Extension. Secondly, if we are given a graph G
of diameter at most p with a k-precoloring cW for some W ⊆ V (G), then we



identify any two vertices of W that are colored alike. Afterwards all precolored
vertices have a distinct color and we add an edge between any two of them
that are not adjacent already. This results in a graph G′ of diameter p and a
k-precoloring c′W ′ defined on some subset W ′ ⊆ V (G′), such that c′W ′ can be
extended to a k-coloring ofG′ if and only if cW can be extended to a k-precoloring
of G. Moreover, the set W ′ forms a clique of size at most k in G′ meaning that
we may just as well uncolor these vertices, that is, c′W ′ can be extended to a
k-coloring of G′ if and only if G′ is k-colorable. Hence we only need to consider:

Open Problem 6 Determine the complexity of the problems 3-Coloring and
List 3-Coloring for graphs of diameter 2.

Graphs of Bounded Asteroidal Number. An asteroidal triple in a graph is a set
of three mutually non-adjacent vertices such that each two of them are joined
by a path that avoids the neighborhood of the third. An asteroidal set in a
graph G is an independent set S ⊆ V (G), such that every set of three vertices
of S forms an asteroidal triple. The asteroidal number is the size of a largest
asteroidal set in G. Note that graphs with asteroidal number at most 2 have
no asteroidal triple. These graphs are also known as AT-free graphs. Stacho [63]
proved that 3-Coloring is polynomial-time solvable on AT-free graphs. Later,
Kratsch and Müller [53] extended this result by showing that even List k-
Coloring is polynomial-time solvable on these graphs for every fixed integer
k ≥ 1. Marx [56] proved that Precoloring Extension is NP-complete for
proper interval graphs, which form a subclass of AT-free graphs. It follows from
a result of Jansen [42] (see [28]) that `-List Coloring (` ≥ 3) is NP-complete
for 3P1-free graphs, and thus for AT-free graphs. However, the following problem,
posed by Broersma et al. [7] in 1999, is still open.

Open Problem 7 Determine the complexity of Coloring for AT-free graphs.

Král’ et al. [49] proved that Coloring is NP-complete for 4P1-free graphs and
thus for graphs with asteroidal number at most 3.

Open Problem 8 Determine, for every k ≥ 3 and p ≥ 3, the complexity of
k-Coloring, k-Precoloring Extension and List k-Coloring on graphs
with asteroidal number at most p.

4 Parameterized Coloring Problems

A problem is called fixed-parameter tractable (FPT) if every instance (I, p) of it
can be solved in time f(p)|I|O(1) where f is a computable function that only
depends on p. If k-Coloring is polynomial-time solvable for some graph class G
for every integer k (and Coloring is not known to be polynomial-time solvable
for G) then k is a natural parameter to consider. We refer to [27] for a survey
on parameterized complexity results (and open problems) with this parameter
for classes of graphs characterized by one or two forbidden induced subgraphs.
Here, we only mention the following open problem of Kratsch and Müller [53].



Open Problem 9 Is Coloring fixed-parameter tractable for AT-free graphs
when parameterized by k?

Because 3-Coloring is NP-complete in general, other parameters have been
considered. For instance, Marx [55] proved that PreColoring Extension pa-
rameterized by the number of precolored vertices is W[1]-hard for interval graphs.
We survey a number of other results below (see also Table 2).

Arnborg and Proskurowski [3] proved that Coloring is FPT when param-
eterized by the treewidth of the input graph. Fellows et al. [21] showed that
Precoloring Extension and List Coloring are W[1]-hard with this pa-
rameter. On the positive side, List Coloring is polynomial-time solvable for
any graph class of bounded treewidth, as shown by Jansen and Scheffler [44].

It is known [15] that the clique-width of a graph G is at most 2tw(G)−1, where
tw(G) denotes the treewidth of G. Moreover, by combining results of Kobler and
Rotics [48] and Oum and Seymour [62], one finds that Coloring is polynomial-
time solvable for any graph class of bounded clique-width. Hence, it is natural to
research whether one can improve the FPT result for Coloring from treewidth
to clique-width. However, Fomin et al. [24] showed that Coloring is W[1]-hard
when parameterized by the clique-width of the input graph. We also note that
Precoloring Extension is NP-complete for distance-hereditary graphs [4],
which have clique-width at most 3 [29].

The vertex cover number of a graph G is the size of a smallest subset U ⊆
V (G), such that G − U is edgeless. Fiala, Golovach and Kratochv́ıl [23] proved
that, with this parameter, Precoloring Extension is FPT and List Color-
ing is W[1]-hard even for split graphs. It can be observed [23] that the treewidth
of a graph is at most its vertex cover number. Hence, the aforementioned result
of Jansen and Scheffler [44] implies that List Coloring is polynomial-time
solvable for any graph class of bounded vertex cover number.

The twin cover number of a graph G is the size of a smallest subset U ⊆ V (G),
such that every two adjacent vertices in G − U have the same closed neighbor-
hood in G; note that G−U is a disjoint union of cliques. Ganian [25] proved that
Precoloring Extension is FPT when parameterized by the twin cover num-
ber of the input graph. As the twin cover number of a graph is at most its vertex
cover number (by definition), this result strengthens the aforementioned result
of Fiala, Golovach and Kratochv́ıl [23]. For the same reason, List Coloring is
W[1]-hard when parameterized by the twin cover number.

The cluster vertex deletion number of a graph G is the size of a smallest
subset U ⊆ V (G), such that G− U is a disjoint union of cliques. Note that the
cluster vertex deletion number of a graph G is at most its twin cover number.
However, in contrast to the aforementioned FPT result of Ganian [25], Doucha
and Kratochv́ıl [18] proved that Precoloring Extension is W[1]-hard when
parameterized by the cluster vertex deletion number of the input graph. The
same authors [18] also showed that Coloring is FPT with this parameter. It
is easily seen that List Coloring is polynomial-time solvable for any graph
class G of bounded cluster vertex deletion number. We guess a coloring of the
set U of a graph G ∈ G that respects the given list of each vertex of U . We then



remove all vertices of U from G after adjusting the lists of the vertices in G−U
accordingly. As G−U is a disjoint union of cliques we can solve List Coloring
in polynomial time (see e.g. [9]). Since |U | is bounded, the maximum number of
colorings of U that we need to guess is polynomial. Hence, the result follows.

For an integer c ≥ 1, the c-bounded cluster vertex deletion number of a
graph G is the size of a smallest subset U ⊆ V (G), such that G−U is a disjoint
union of cliques of size at most c. Doucha and Kratochv́ıl [18] proved that, for
every fixed integer c ≥ 1, Precoloring Extension is FPT when parameterized
by the c-bounded cluster vertex deletion number of the input graph.

Coloring Precoloring Ext. List Col.

clique-width W[1]-hard para-NP-c para-NP-c

treewidth FPT W[1]-hard W[1]-hard

cluster vertex deletion number FPT W[1]-hard W[1]-hard

c-bounded cluster vertex deletion number FPT FPT W[1]-hard

twin cover number FPT FPT W[1]-hard

vertex cover number FPT FPT W[1]-hard

Table 2. The complexity of Coloring, Precoloring Extension and List Color-
ing for various graph parameters. All problems are in XP for each parameter except
when para-NP-complete. The relationships, as given in [18], between rows 1-6 are:
1 ≤ 2 ≤ 4 ≤ 6 and 1 ≤ 3 ≤ 5 ≤ 6 and 3 ≤ 4, where x ≤ y means that parameter x is
bounded by (some function of) parameter y. Hence, membership in FPT or XP for a
problem with parameter x carries over to y, and W[1]-hardness for y carries over to x.

Recently, Aboulker et al. [1] considered the number pk of vertices of degree
at least k+1 of the graph G in an instance (G, k) of Coloring. This parameter
is motivated by Brooks’ theorem [8]: if pk(G) = 0 then G is k-colorable unless G
is a complete graph or an odd cycle. They showed that Coloring is FPT when
parameterized by pk.

We now discuss some graph classes that fall under the “distance from trivi-
ality” framework, introduced by Guo, Hüffner and Niedermeier [31]. For a graph
class F and an integer p we define four classes of “almost F” graphs, i.e. graphs
that are, in some sense, “distance” p apart from F , namely the classes F + pe,
F − pe, F + pv and F − pv, which consist of all graphs that can be modified
into a graph of F by deleting at most p edges, adding at most p edges, deleting
at most p vertices and adding at most p vertices, respectively. As Grötschel,
Lovász, and Schrijver, [30] proved that Coloring is polynomial-time solvable
on perfect graphs, Coloring was studied from a parameterized point of view
for various subclasses F of perfect graphs. We survey a number of these results
below. For every result mentioned, p is the chosen parameter (see also Table 3
for an overview). In this context a modulator of a graph is a set of at most p
edges or vertices whose removal or addition makes the graph a member of F .



+pe −pe +pv −pv
Bipartite para-NP-c P para-NP-c P

Chordal FPT FPT W[1]-hard P

Interval FPT FPT W[1]-hard P

Split FPT FPT W[1]-hard P

Comparability para-NP-c ? ? P

Complete P FPT FPT P

Table 3. The complexity of Coloring, when parameterized by p, for classes close
to some subclass F of perfect graphs. The polynomial and FPT cases hold even if a
modulator is not part of the input.

Cai [9] proved that Coloring is FPT on split+pe graphs and W[1]-hard for
split+pv graphs. The same author [9] also proved that whenever Coloring is
polynomial-time solvable on a graph class F that is closed under edge contraction
and a modulator is given, then Coloring is FPT on F−pe. As a result, Color-
ing is FPT for split−pe graphs, and also for interval−pe graphs1 and chordal−pe
graphs. Note that we obtain polynomial-time solvability for F − pv whenever
F is a class of perfect graphs closed under vertex deletion (as in that case it
holds that F − pv = F). Cai [9] also proved that Coloring is NP-complete
for bipartite+2v graphs and for bipartite+3e graphs but linear-time solvable
on bipartite+1v and bipartite+2e graphs. Marx [55] showed that Coloring is
FPT2 on interval+pe graphs and also on chordal+pe graphs but W[1]-hard for
interval+pv graphs and for chordal+pv graphs.

An (undirected) graph is a comparability graph if there exists an assign-
ment of exactly one direction to each of its edges such that (u,w) is a directed
edge whenever (u, v) and (v, w) are directed edges. Takenaga and Higashide [64]
proved that Coloring, restricted to comparability+pe graphs, is polynomial-
time solvable for p = 1 and NP-complete for p ≥ 2. They also proved that
Coloring is polynomial-time solvable on comparability−1e graphs.

Open Problem 10 Determine the complexity of Coloring for the classes of
comparability−pe graphs and comparability+pv graphs when parameterized by p.

We now consider the class of complete graphs. It is known that List Color-
ing is FPT for complete−pe graphs [28]. We observe that List Coloring is
polynomial-time solvable on complete+pe graphs and complete−pv graphs (be-
cause such graphs are complete and List Coloring is polynomial-time solvable
even on block graphs [4]). In contrast to the aforementioned W[1]-hardness re-
sults of Coloring for split+pv, interval+pv and chordal+pv graphs, it holds
that Coloring is FPT for complete+pv graphs, as shown by Cai [9]. Golovach
et al. [28] posed the following open problem.

1 Villager et al. [66] proved afterward that a modulator can be computed in FPT time.
2 For the two FPT results it was proven later, namely by Cao [10] and Marx [54],

respectively, that a modulator does not have to be part of the input (but can be
computed in FPT time as well).



Open Problem 11 Determine the complexity of List Coloring and Pre-
coloring Extension for complete+pv graphs when parameterized by p.

Jansen and Kratsch [43] and de Weijer [69] considered the k-Coloring problem
for various graph classes F + pv in order to obtain polynomial kernels (also
some negative results are shown, for instance, 3-Coloring on path+kv has no
polynomial kernel unless NP⊆ coNP/poly [43]).

5 On-line Coloring

In this section we focus on the on-line setting of graph coloring. On-line coloring
algorithms were introduced by Gyárfás and Lehel [35] to model a rectangle
packing problem related to dynamical storage allocation. In this setting the
graph is presented vertex by vertex according to some externally determined
ordering. An on-line coloring algorithm irrevocably colors the vertices when they
come in by using a strategy that depends only on the subgraph induced by the
revealed vertices and their colors. A well-known example of an on-line coloring
algorithm is First-Fit which assigns, starting from the empty graph, each new
vertex the least color from {1, 2, . . .} that does not appear in its neighborhood.
We refer to the survey of Kierstead [45] for more details.

Non-surprisingly, the number of colors used by an on-line coloring algorithm
for an arbitrary graph G can be much larger than the chromatic number of G.
Below we define three measures for the performance of an on-line algorithm on
graphs of some specified class G after first giving some additional terminology.

Let AOL(G) be the (finite) set of all on-line coloring algorithms for a graphG.
Let Π(G) be the set of all permutations of the vertices of G. For A ∈ AOL(G)
and π ∈ Π(G), let χA(G, π) denote the number of colors used by A when the
vertices of G are presented to A according to π. The A-chromatic number χA(G)
of G is the largest number of colors used by A to color G, that is,

χA(G) = max
π∈Π(G)

χA(G, π).

An algorithm A is an on-line coloring algorithm for some graph class G if
A ∈ AOL(G) for every G ∈ G. We let AOL(G) be the set of on-line coloring
algorithms for G.

A natural performance measure for an on-line coloring algorithm, introduced
by Gyárfás and Lehel [35], is to determine whether the number of colors it uses
on any graph G ∈ G is bounded from above by a function that only depends
on the chromatic number of G. Formally, for a graph class G, we say that an
algorithm A ∈ AOL(G) is competitive if there exists a χ-bounding function f ,
that is, a function f such that

χA(G) ≤ f(χ(G)) for every G ∈ G.

In that case G is said to be on-line χ-bounded. For example, the class of P4-free
graphs is on-line χ-bounded, because First-Fit colors every P4-free graph G



with χ(G) colors [35]. It is also known that First-Fit is competitive for in-
terval graphs with a linear χ-bounding function [46]. Consequently, the class of
interval graphs is on-line χ-bounded as well. Every class of graphs with bounded
independence number [11] is also on-line χ-bounded, just as the class of P5-free
graphs [33]. In fact, Gyárfás and Lehel [33] proved a stronger statement, namely
that the class of P5-free graphs is on-line ω-bounded, that is, there exists an on-
line coloring algorithm A and a function g, called an ω-bounding function, such
that χA(G) ≤ g(ω(G)) for every P5-free graph G. This result has been extended
by Kierstead, Penrice and Trotter [47] who proved that, for every tree T of radius
at most 2, the class of T -free graphs is on-line ω-bounded (with a superexponen-
tial ω-bounding function). As a special case of their result we find that the class
of cocomparability graphs is on-line ω-bounded. More recently, Felsner, Micek
and Ueckerdt [22] gave a cubic ω-bounding function for a subclass of cocompara-
bility graphs, namely for the class of intersection graphs of convex sets spanned
between two lines (their algorithm uses the intersection representation as input).

Despite all the above results there exist many graph classes, such as the class
of trees [35], for which no competitive on-line coloring algorithm exists. These
negative results lead to a natural definition of a weaker form of competitiveness,
namely on-line competitiveness, which is defined as follows. The on-line chro-
matic number χOL(G) of G is the smallest number of colors used by any on-line
coloring algorithm for G, that is,

χOL(G) = min
A∈AOL(G)

χA(G).

Then, for a graph class G, an algorithm A ∈ AOL(G) is said to be on-line
competitive if there exists a function h such that

χA(G) ≤ h(χOL(G)) for every G ∈ G.

In that case G is said to be on-line χOL-bounded. This performance measure was
coined by Gyárfás, Király, and Lehel [32], who proved that the class of graphs
with girth at least 5 is on-line χOL-bounded, but results of this type have been
obtained before the term was formally introduced. For instance, Gyárfás and
Lehel [34] proved that, for any tree T , First-Fit uses χOL(T ) colors.

By combining known and new results, Broersma, Capponi and Paulusma [6]
proved that, for all bipartite graphs H on at most five vertices, the class of H-
free bipartite graphs is on-line χOL-bounded. If H has six or more vertices the
situation is not clear. For instance it is not known whether the class of C6-free
bipartite graphs is on-line χOL-bounded. In fact this is not even known for its
subclass of chordal bipartite graphs.

Open Problem 12 Is the class of chordal bipartite graphs on-line χOL-bounded?

Now consider Pt-free bipartite graphs. Broersma et al. [6] proved that the
class of P7-free bipartite graphs is on-line χOL-bounded. The algorithm behind
their result is based on a certain way of coloring the vertices of of a com-
plete bipartite graph with classes {u1, . . . , um} and {v1, . . . , vm} minus a per-
fect matching {u1v1, u2v2 . . . , umvm}. If the ordering is u1, v1, u2, v2, . . . , um, vm,



then First-Fit assigns colors 1, 1, 2, 2, . . . ,m,m, so m colors in total. However,
assigning colors 1, 1, 2, 3 to the first four vertices u1, v1, u2, v2 in this ordering
requires only three colors in total. The algorithm for P7-free bipartite graphs
expands on this approach and uses two disjoint lists of colors for the biparti-
tion classes of each connected component in the subgraph revealed so far. Then,
whenever two connected components are glued together by an incoming vertex,
it tries to prevent the “mixing” of these color lists as much as possible. Recently,
Micek and Wiechert refined and extended this approach. In this way they could
prove that the classes of P8-free bipartite graphs [58] and even P9-free bipartite
graphs [59] are on-line χOL-bounded. This leads to the following open problem.

Open Problem 13 Is the class of Pk-free bipartite graphs on-line χOL-bounded
for every k ≥ 1?

As P5-free graphs and P6-free bipartite graphs are on-line ω-bounded and on-line
χOL-bounded, respectively, the following problem from [6] is of interest as well.

Open Problem 14 Is the class of (C3, P6)-free graphs on-line χOL-bounded?

Solving Open Problems 12–14 may lead to new on-line χOL-bounded classes of
graphs. Unlike the competitive variant, no negative results are known.

Open Problem 15 Is the class of all graphs on-line χOL-bounded?

6 Conclusions

We surveyed a number of results and open problems for Coloring for restricted
graph classes. We did so both in an off-line and on-line setting and also consid-
ered the more general variants Precoloring Extension and List Coloring.
Another way of generalizing the concept of graph coloring is to consider graph
homomorphisms. A graph homomorphism from a graph G to a graph H is a
mapping f : V (G)→ V (H) such that f(u)f(v) ∈ EH whenever uv ∈ EG. For a
fixed graph H, the problem H-Homomorphism tests whether a given graph G
allows a homomorphism to H. If we choose H to be the complete graph on k
vertices, then this problem is equivalent to k-Coloring. We refer to the survey
of Hell and Nešetřil [37] for more on graph homomorphisms.

The classical result in the area of graph homomorphisms is the Hell-Nešetřil
dichotomy theorem [38] which states thatH-Homomorphism is solvable in poly-
nomial time if H is bipartite, and NP-complete otherwise. It is a natural question
whether tractability results can be obtained for non-bipartite graphs H when
the input is restricted to some graph class. Not so many results are known in this
direction, but to give an example, Enright, Stewart and Tardos [20] proved that,
for every fixed graph H, the list version of H-Homomorphism is polynomial-
time solvable for a superclass of graphs that contains the classes of permutation
graphs and interval graphs.
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37. P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford Univ. Press, 2004.
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