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Abstract: For the problem of testing for zero–modification in Poisson regression,
a simple and intuitive test can be constructed by computing directly confidence
intervals for the number of 0’s under the Poisson assumption. This requires the
ability of estimating the mean function accurately even if the data are in fact
zero–inflated or deflated. A novel hybrid estimator is introduced for this purpose,
which is of interest beyond the scope of the motivating test problem.
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1 Introduction

Commonly used tests for zero–inflation/modification are likelihood ratio,
score and Wald tests. Whilst these tests are all viable, they are not readily
understood by non–statisticians, they do not distinguish between zero–
inflation and zero–deflation (at least, not without adjustments), and they
rely upon asymptotic results. Wilson and Einbeck (2015) proposed a new
family of tests to test zero–modification in count data regression. Con-
sider data (yi,x

T
i ), i = 1, . . . , n, where yi are discrete counts and xi ∈ Rd

a predictor vector. Let pi = P (yi = 0). In the special case of (possibly
zero–modified) Poisson regression, this test can be summarized as follows.
For given significance level α: (i) fit the Poisson regression model, yielding
Poisson means µ̂i= Ê[yi|xi]; (ii) for each each yi estimate p̂i = exp(−µ̂i);
(iii) use a Poisson–Binomial distribution with parameters (n, p̂1, . . . , p̂n) to
determine a 1–α confidence interval for the number of 0’s.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).
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FIGURE 1. Left: Estimation from the zero-truncated and whole sample; right:
Function γ∗100(n0, 1) (thick curve) withMSE(T |n0) contours. In both plots, µ = 1
and n = 100.
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The challenging part in this procedure is the estimation of the Poisson
means µi = E[yi|xi] in the absence of the knowledge whether the Poisson
assumption is correct. This problem has attracted attention earlier; Di-
etz and Böhning (2001) observed that ML estimation of the zero–modified
Poisson model can be obtained by ML estimation of the zero–truncated
Poisson (ZTP) model. For additional insight, consider Figure 1 (left), which
shows the estimates of the Poisson means obtained when n = 100 obser-
vations are sampled from a Pois(1) distribution. The black circles indicate
whole sample mean (Poisson) estimates µ̂P , and the grey crosses the means
µ̂T obtained from the positive observations. The horizontal axis gives the
number of zeros, n0, with the expected number of zeros under the Poisson
model, 100e−1 ≈ 37, highlighted by a dotted line. It is clear that the Pois-
son estimator has smaller variance but is possibly biased if the observed
number of zeros is far from their expected number. On the other hand, the
ZTP–derived mean estimator does not demonstrate a noticeable bias, at
the expense of a large variance.

2 A hybrid mean estimator

The illustrated bias–variance trade–off motivates the definition of the hy-
brid estimator

T = γµ̂P + (1− γ)µ̂T (1)

which is a weighted sum of the usual Poisson mean estimator µ̂P and an
estimator of the zero–truncated mean, µ̂T . The latter is based on the mean
of the zero–truncated data only, to which we refer from now on as ζ. Note
that the mean µ of a Poisson distribution and the mean ζ of the ZTP
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distribution are related by ζ = µeµ

eµ−1 ≡ h(µ). The MLE of µ under the ZTP

assumption is then given by the inverse mapping µ̂T = h−1(ζ̂). Of course,
all terms used in this section can be equipped with the index i to account
for the case of covariates as laid out in Section 1.

3 Selection of the hybrid parameter

For the choice of γ, we have initially carried out a detailed theoretical study.
To give some idea of this, we provide here the result that, in the covariate–
free case, and only assuming a ZTP distribution for the non–zero part, the
MSE(T |n0) is minimized at

γ∗n(n0, µ) =
n

n−n0
− h′(µ)

1
n
µ(n−n0eµ)2h′(µ)2

eµ(eµ−1−µ) + h′(µ)2
(
1− n0

n

)
+ 2h′(µ) + n

n−n0

(2)

Figure 1 (right) shows the curve γ∗ for fixed n = 100 and µ = 1. It is,
firstly, interesting to note that in a small range close to the expected value
(≈ 37) under the Poisson model, the optimal γ is in fact > 1. However,
for the majority of values of n0 the curve is between 0 and 1, and falls
very quickly below 1 when deviating from the expected value. While this
kind of result could motivate an iterative procedure, in which T and γ are
updated in turns via (1) and (2), we found this approach practically less
useful since the increased variance incurred by the iterative estimation of γ
contravenes the purpose of the hybrid estimator. We therefore considered
two considerably simpler schemes:

(i) a single fixed rule–of–thumb value; where we have chosen γ = 2/3.

(ii) a parametric expression γ =f(µ̂P ) =

{
0.7
(
0.85µ̂P

)
µ̂P <

log(5/7)
log(17/20)

1
2 otherwise

The rationale of (ii) is to improve the attainment rate of the test by dereas-
ing the weighting of the Poisson mean in the mixture for larger values of this

estimator. The threshold log(5/7)
log(17/20) ≈ 2.07 is chosen so that f is continuous.

Figure 2 (left) compares settings (i) and (ii) graphically. Consider in this
context the four crosses, from left to right in Figure 1 (right), which corre-
spond to the optimal γ under zero–inflation parameter 0, 0.1, 0.2 and 0.5,
respectively. We see that in the middle two cases (moderate zero–inflation)
one has γ∗ ∈ [0.4, 0.8], so that we consider our suggested choices to be in
harmony with our theoretical considerations.

4 Simulation

For the two–sided zero–modification test, Figure 2 (right) demonstrates,
for a covariate–free simulation from Poisson data of varying µ, that (i) and
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FIGURE 2. Left: choices (i) and (ii) for the selection of γ; right: attainment rate
under mixture estimator (Two sided test of zero-modification)
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(ii) both work well in terms of the nominal level attainment, with slight
advantages for (ii). Focusing now on (ii), Figure 3 gives an impression of
power as compared to the score test, as a function of sample size n. One
sees that the powers are strong and very competitive to the score test,
especially for smaller sample sizes. Note that here, and throughout this
paper, the p-values reported for the proposed test are the mid p-values
1
2P0[T ≥ t+ 1] + 1

2P0[T ≥ t] of Franck (1986).

FIGURE 3. Power under mixture estimator (Covariate–free Model, Two sided
test of zero–modification)
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Figure 4 shows that the power and nominal attainment level of the proposed
test also compares strongly to that of the score test in the presence of
covariates. Here x1 and x2 are uniformly distributed on the interval (0, 0.5),
and w1 is uniformly distributed on the interval (1, 2). The adaptive mixing
parameter is used, but the results remain similar for the constant estimator.
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FIGURE 4. Power under mixture estimator (Covariate Model, Two sided test of
zero–modification)
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5 Examples

5.1 Biodosimetry Data

We consider four biodosimetry datasets consisting of chromosome aberra-
tion counts occuring after whole body exposure to ionising radiation. These
datasets have previously been studied by Oliveira et al. (2016), detailed de-
scriptions of the datasets are available in this paper.
Table 1 summarises the results obtained when the proposed test and a score
test are used to test for zero-inflation relative to a quadratic Poisson model
with log-link. We see that both tests fail to reject the Poisson model for
the A3 data, but do not do so for the other datasets considered. For all the
instances where the Poisson model was rejected we see that the observed
number of zeros is greater than the upper limit of the 95% confidence
interval, indicating that the data is zero-inflated.

TABLE 1. Analyses of Biodosimetry Data
Proposed Test Score Test

Data Obs. Zeros 95%CI p-value Statistic p-value

A1 14, 430 (14204, 14329) < 10−9 16.85 4.03× 10−5

A3 2, 747 (2719, 2823) 0.368 1.01 0.317
B1 7, 280 (6707, 6829) < 10−9 87.16 < 10−9

C1 6, 786 (5031, 5164) < 10−9 1, 996.10 < 10−9

5.2 Unwanted Pursuit Behaviour Data

Loeys et al. (2012) analysed data which concerns “separation trajectories”.
Participants in a survey were assigned a score that theoretically ranges from
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0 to 112, the maximum observed score was 34. This score is a measure of
the participants experience of behaviour by their partner that contributed
towards the breakup of a relationship. Two covariates were included in
the model: a binary variable “education level” (0 = lower than bachelors
degree, 1 = at least bachelors degree), and a continuous measurement for
the level of anxious attachment in the former partner relationship. There
are n = 387 data of which 246 are zeros. The proposed test shows that a
95% confidence interval for the number of observed zeros under the Poisson
model is (45, 72), and hence we may reject the Poisson model. Analysis of
the data by a score test returns a statistic of 591.8, also indicating rejection
of the Poisson model. Both tests return p-values < 10−9.

6 Conclusion

The proposed test for zero-modification has power and attainment rates
that compare very strongly to the score test. In addition to this it distin-
guishes between zero-inflation and zero-deflation and is a highly intuitive
test that, unlike existing tests, is readily explainable to non-statistical spe-
cialists. The technique may be extended to compare any two count regres-
sion models, and may be used as the basis of a diagnostic plot for assessing
model fit. See Einbeck and Wilson (2016).
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