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Abstract—In smart grids, dynamic pricing (e.g., time-of-use
pricing (ToU), real-time pricing (RTP)) has recently attracted
enormous interests from both academia and industry. Although
differential pricing has been widely used in retail sectors such as
broadband and mobile phone services to offer ‘right prices’ to
‘right’ customers, existing research in smart grid retail pricing
mainly focus on an uniform dynamic pricing (i.e. all customers
are offered at the same prices). In this paper, we take the
first step towards an optimal differential pricing for smart grid
retail pricing based on customer segmentation. A differential
pricing framework is firstly presented which consists of customer
segmentation analysis, and a two-level optimal differential pricing
problem between the retailer and each customer group. At the
upper level, a pricing optimization problem is formulated for
the retailer while at the lower-level, an optimal tariff selection
problem is formulated for each customer group (e.g., price sensi-
tive, price insensitive) to minimize their bills. By comparing with
a benchmarked uniform ToU, simulation results confirmed the
feasibility and effectiveness of our proposed optimal differential
pricing strategy.

I. INTRODUCTION

With the smart meter roll-out [1], dynamic pricing (e.g, real-
time pricing (RTP) and time of use pricing (ToU)), which
could incentivise customers to shift their peak-time usages
(e.g., in the evening) to off-peak time (e.g., night), have
attracted growing interests from both academia and industry
[2][3][4]. For instance, [3][4] propose a two-level model for
optimal real-time pricing by assuming customers’ responses
to prices are prefect information. An optimal dynamic pricing
scheme is introduced in [5] where customers’ responses are
unknown to the retailer and need to be identified from smart
meter data using machine learning techniques. It is worth men-
tioning that all the above optimal dynamic pricing approaches
provide the same prices to all the customers. As different
customers have different energy consumption profiles and
behaviours when facing even the same dynamic price signals,
conventional uniform dynamic pricing approaches might not
be able to take into account all customers’ characteristics.
For instance, an uniform dynamic price signal might be not
sufficient to incentivise price sensitive customers to shift their

peak-time usages to off-peak time periods (i.e. price not
high enough in peak time or low enough in off-peak time).
However, the same price signal might be too overwhelming
for price insensitive customers (i.e. the peak time price is too
high to them and would increase their financial burdens). As
a result, a differential pricing framework based on customer
segmentation being able to offer different tariffs to different
types of customers seems to be very promising to address the
above matters existing in uniform ToU pricing.

Although differential pricing has been used in retail sectors
such as broadband and mobile phone services to offer ‘right’
prices to ‘right’ customers [6] and to enhance retailers’ prof-
itability and improve customer satisfaction, it has not received
deserved attention from the smart grid research community.
[2] proposes an approach to designing multiple ToU tariffs
for multi-types of users (e.g., residential, commercial and
industrial users) where each type of users can only access
to the tariff plan designed to them. However, the differential
pricing problem considered in this paper is fundamentally
different from [2] where we consider customer segments in the
residential sector and different groups of customers are given
the same access to all the available tariff plans. In addition,
each customer group will make their best choice among those
offered tariffs, e.g., to minimize their energy bills. That is,
if the tariffs are not designed right, most customers may not
choose the tariffs targeted to them and the goal (e.g., peak
demand reduction, profit maximization) of retailer will not
be achieved. As a result, it is important to know customers’
energy usage patterns and how customers will make their tariff
choices when designing the differential pricing strategy.

With the penetration of smart meters and growing smart
grid pilot projects, high resolution smart metering data be-
come available[7]. Inspired by the above development, energy
customer segmentation has attracted much attention from
researchers in recent years. For instance, [8] [9] adopt machine
learning based techniques (clustering) to implement customer
segmentation based on customers’ history load profiles. With
relevant data becoming available, price sensitivity of customers



Fig. 1: Differential pricing framework

can be obtained using methods such as [5] and then be used
as a attribute in customer segmentation.

Following the above analysis, in this paper, we propose
a differential pricing framework for the retailer based on
customer segmentation, which is illustrated in Figure 1. Firstly,
the retailer implement customer segmentation and categorize
customers based on their sensitivities to price signals (ToU
in this paper) into different groups (e.g., price sensitive, price
mid-sensitive, and price insensitive customers). Further, the
optimal differential pricing problem is formulated as two-
level optimization problem between the retailer and different
groups of customers. At the upper level, a pricing optimization
problem is formulated for the retailer to maximize its profit,
and minimize the mismatch between targeted tariff plans (by
the retailer) and actually selected tariff plans (by customers).
At the lower-level, an optimal tariff selection problem is
formulated for each customer group to minimize their bills.

Although we formulate the differential pricing problem from
one retailer perspective and behaviours of other retailers are
not explicitly modelled in this paper, it is worth mentioning
that we are actually considering a competitive (but imperfect)
retail market where the retailers are regulated by a govern-
ment regulator (e.g., Ofgem in the UK). The retail market
competitions from other retailers will be taken into account
and reflected in the price/revenue constraints in the problem
formulation of our considered retailer.

Finally, the rest of this paper is organized as follows. Cus-
tomer segmentation is discussed in Section II. A benchmarked
uniform ToU is presented in Section III. Further, an optimal
differential pricing is proposed in Section IV. Numerical
results are presented in Section V and this paper is concluded
in Section VI.

II. CUSTOMER SEGMENTATION

There are emerging research on energy customers segmen-
tation based on real consumption profiles and price elasticity

analysis [5] [8] [9] . It is well understood that machine
learning techniques and data-driven framework need to be
adopted to implement the customer segmentation. Due to
the space limitation and main focus of this paper, we make
the assumption that customer segmentation has already been
completed and given as a prior in our differential pricing
problem. Furthermore, we consider setting ToU prices for two
critical time periods 1: peak-demand period (5.30PM -9.30PM)
and off-peak demand period (12AM - 6AM). For the simplicity
of demonstration, we assume that there are three categorized
groups of customers following customer segmentation: price-
sensitive, price mid-sensitive and price insensitive customers.
Although there could be different number of customer seg-
ments in real world implementations, the following presented
optimal differential pricing approach can be generalized to any
number of customer segments.

Following the above, by denoting the prices for peak
demand period and off-peak demand period as p+ and p−

respectively, the difference between prices in both time periods
is therefore defined as pD = p+ − p−. In this study, the
price sensitivity of customers is defined as the amount of
peak time consumption (in percentage) that customers are
willing to shift from high price period to low price period.
We model the price sensitivities of different customer groups
(sse, smid, sin representing the sensitivity of price sensitive,
price mid-sensitive, and price insensitive customers) as Eq
(1) following a preliminary trial and error analysis of a real
world smart meter data set [10], where pDse, p

D
mid, p

D
in represent

the price difference of peak and off-peak time periods for
each customer group respectively. Note that a more dedicated
price sensitivity model could be achieved via machine learning

1The choice is motivated by the project report of [7] that evening and
midnight are two critical time periods. In the future work, we will generalize
the current problem setting by considering more time periods covering 24
hours to reflect complete shifting behaviours of customers.



techniques (e.g., multiple linear regression [11], Bayesian
learning [5]), which is part of our future work.

sse = 0.0225× pDse − 0.075,
smid = 0.0225

2 × pDmid − 0.075
2 ,

sin = 0.001× pDin.
(1)

III. A BENCHMARKED UNIFORM TOU PRICING

In this section, we formulate the uniform optimal
time-of-use pricing problem as a benchmark for com-
parison purposes. Firstly, we denote the original energy
consumption (e.g., under flat pricing) for each group
of customers in peak-time period and off-peak period
as DE+

se0, DE−se0, DE+
mid0, DE−mid0, DE+

in0, DE−in0 respec-
tively whereas the resulting energy consumptions in peak-time
period and off-peak period under the uniform ToU are denoted
as DE+

seu, DE−seu, DE+
midu, DE−midu, DE+

inu, DE−inu respec-
tively. We make the following assumption that original energy
consumptions under flat pricing have been forecast via ma-
chine learning algorithms from history data and given as a
prior. The optimal time-of-use pricing problem is modelled
for the retailer to maximize its profit under relevant realistic
market constraints. Furthermore, the prices for peak demand
period and off-peak demand period considered in this uniform
ToU problem is denoted as p+u and p−u respectively. As a
result, the price sensitivity of each customer group (denoted as
sseu, smidu, sinu respectively) can be calculated following Eq
(1) and thereafter the energy consumption of each customer
group in peak/off-peak time period is obtained. Take the
price sensitive customer group for example, the resulting
energy consumptions in peak time period and off-peak period
can be obtained as DE+

seu = DE+
se0 − DE+

se0 × sseu and
DE−seu = DE−se0 + DE+

se0 × sseu respectively.
In the following, firstly we adopt a linear cost function

to represent the energy procurement cost of the retailer.
Furthermore, we denote the average unit cost of energy in peak
time period as c+ and that in off-peak time period as c−. As a
result, the procurement cost (denoted as CO) is given below.

COu = c+ × (DE+
seu + DE+

midu + DE+
inu)+

c− × (DE−seu + DE−midu + DE−inu)
(2)

Secondly, we denote the minimum and maximum price
that the retailer can offer at peak time period as pmin+

u

and pmax+
u . Similarly, the minimum and maximum price that

the retailer can offer at off-peak time period are denoted
as pmin−

u and pmax−
u respectively. The retailer will consider

market competitions from other retailers (e.g., by predicting
their retail prices) in determining its own upper and lower
price bounds. As a result, we have the following constraints:

pmin+
u ≤ p+u ≤ pmax+

u ,
pmin−
u ≤ p−u ≤ pmax−

u .
(3)

Further, there might be additional responsibilities imposed
on the retailer in context of smart grids such as demand re-
sponse targets. In this paper, we assume there is a preallocated
target for the retailer to meet in peak demand reduction, which
is defined as an small interval [savg, s̄avg]. In other words,

the peak demand reduction (in percentage) achieved by the
retailer, denoted as savg must fall within the above interval.
As a result, the following constraint must be met.

savg≤
sseu×DE+

se0+smidu×DE+
mid0+sinu×DE+

in0

DE+
se0+DE+

mid0+DE+
in0

≤ s̄avg. (4)

Due to the retail market regulation (e.g., Ofgem in the
UK), some revenue constraints must be enforced to avoid
unreasonable prices are offered to customers and thus to
improve the acceptability of retailer’s pricing strategies. To this
end, in this paper, we set a revenue cap, denoted as REmax,
for the retailer. As a result, we have the following constraint:

REu = p+u × (DE+
seu + DE+

midu + DE+
inu)+

p−u × (DE−seu + DE−midu + DE−inu) ≤ REmax (5)

Finally, the optimal uniform time-of-use pricing problem to
maximize the retailer’s profit under relevant market constraints
is modelled as below.

max
p−
u ,p+

u

REu − COu

subject to constraints (3), (4) and (5).
(6)

The above optimal uniform ToU pricing problem is essen-
tially a quadratically constrained quadratic program (QCQP)
(the quadratic constraint is the revenue constraint Eq (5)).
In this paper, we use Matlab nonlinear programming solver
fmincon with interior point methods (IPM) as the algorithm in
our implementations.

IV. OPTIMAL DIFFERENTIAL PRICING

In this section, we formulated the differential pricing prob-
lem between the retailer and different groups of customers as a
two-level optimization problem. At the upper-level, we design
the optimal differential pricing for the retailer to maximize
its profit, and minimize the mismatch between targeted tariff
plans (e.g., the retailer designs a specific tariff plan targeting
to a particular customer group, and expects such customers
to select that tariff plan) and the actually selected tariff plans
by each customer group. The retailer should consider how
customers respond to the offered price plans and feed such
responses back into the differential pricing design. In other
words, the proposed optimal differential pricing should carry
the capability of offering ‘right’ prices to the ‘right’ customers.
At the lower-level, we formulate the customer-side problem as
an optimal tariff selection problem. That is, given all the tariff
plans available, each customer aims to choose a tariff that is
most beneficial (e.g., lowest bill payment) to them. The above
described two-level model captures the strong interactions
between the retailer and different groups of customers in the
price determination process. Recall that we assume there are
three customer groups (i.e. price sensitive, price mid-sensitive
and price insensitive customers) in this paper. As a result,
there are in total three tariff plans offered by the retailer that
are available to each customer group.

Denote the tariff plan targeted to each customer group n ∈
{1, 2, 3} as a price vector pm = (p+m, p−m) m = 1, 2, 3 where
n represent the index of price sensitive, price mid-sensitive



and price insensitive customer group respectively whereas m
represent the index of tariff plan targeted to price sensitive,
price mid-sensitive and price insensitive customer group. In
addition, p+m and p−m represent peak time price and off-peak
price of tariff plan m. Finally, the problem formulations for
the retailer and its customers are given below.

A. Optimal Tariff Selection for Customers
Given the tariff plans offered by the retailer, i.e. pm, m =

1, 2, 3, the aim of each customer group n ∈ {1, 2, 3} is to
select a tariff from the above tariff plans to minimize his/her
payment bill. Note that from the perspective of customers, they
do not know which tariff plans are targeted to them. Therefore,
this constitute a optimal tariff selection problem for them.

The price sensitivity of each customer group n under each
of the above tariff plans can be derived based on Eq (1) and
denoted as snm, n = 1, 2, 3; m = 1, 2, 3 where snm repre-
sents the price sensitivity of customer group n under tariff plan
pm. Same as in Section III, by denoting the original energy
consumptions (e.g., under flat pricing) of each customer group
in peak-time period and off-peak period as DE+0

n and DE−0n ,
the energy consumption of each customer group under each
of the above three offered tariff plans in both peak-time and
off-peak periods can be derived in the same way as in Section
III and are denoted as DE+

nm, n = 1, 2, 3; m = 1, 2, 3 and
DE−nm, n = 1, 2, 3; m = 1, 2, 3 respectively2.

As a result, the optimal tariff selection problem of each
customer group n ∈ {1, 2, 3} is formulated below.

sp∗n = arg min
spn∈{pm,∀m=1,2,3}

(sp+n ×DE+
nm

+ sp−n ×DE−nm), n = 1, 2, 3.
(7)

In the above, spn = (sp+n , sp
−
n ) are the vector of decision

variables which represent the tariff plans available to customer
group n. Finally, the optimal tariff plan can be found for each
customer group n and is denoted as sp∗n = (sp+∗n , sp−∗n ). The
corresponding price sensitivity as well as energy consumption
of customer group n in peak and off-peak period under optimal
selected tariff plan can then be obtained and denoted as s∗n,
DE+∗

n and DE−∗n respectively.

B. Optimal Tariff Design for the Retailer
In this subsection, an optimal differential pricing problem

is formulated for the retailer to maximize its profit and also
minimize the mismatch between the targeted tariff plans (of-
fered by the retailer to each customer group) and the actually
chosen tariff plans by each customer group.

A linear cost function is adopted to represent the energy
procurement cost of the retailer. Furthermore, we denote the
average unit cost of energy in peak time period as c+ and that
in off-peak time period as c−. Therefore, the procurement cost
(denoted as COd) is given below.

COd =
∑3

n=1(c+ ×DE+∗
n + c− ×DE−∗n ) (8)

2In real implementations, interactive service platforms such as price
comparison service website (e.g., https://www.uswitch.com/ in the UK) are
required to be in place to derive price sensibilities and select optimal tariffs
on behalf of customers.

Secondly, we denote the minimum price and maximum
price that the retailer can offer to each customer group in
peak and off-peak time period as pmin+

m , pmax+
m and pmin−

m ,
pmax−
m ,m = 1, 2, 3 respectively. As a result, we have the

following constraints:

pmin+
m ≤ p+m ≤ pmax+

m ,
pmin−
m ≤ p−m ≤ pmax−

m . ∀m = 1, 2, 3
(9)

Same as in Section III, it is assumed that there is a
predefined target in terms of the percentage of peak demand
reduction imposed on retailer. As a result, the following
inequality must be satisfied.

savg ≤
∑3

n=1 s∗n×DE+∗
n∑3

n=1 DE+0
n

≤ s̄avg. (10)

Further, due to the retail market regulation, we add a revenue
constraint to ensure that reasonable prices are offered and thus
to improve the acceptability of retailer’s pricing strategies.
That is, there exists a total revenue cap, denoted as REmax

for the retailer. Thus, we have the following constraint:

REd =
∑3

n=1(sp+∗n ×DE+∗
n + sp−∗n ×DE−∗n ) ≤ REmax

(11)
To minimize the mismatch between the targeted tariff plans

and the actually chosen tariff plans by each customer group,
a penalty term is added to the objective function to penalize
the mismatch and therefore guide the optimal prices search
direction. We design the penalty function as Eq (12) where
Km is a penalty constant dependent on each customer group.

Jm(pm) =

{
0 if pm = sp∗n
Km otherwise

(12)

Finally, the optimal differential pricing problem for the
retailer is formulated as below.

max
pm,∀m=1,2,3

REd − COd − Jm

subject to constraints (9), (10), (11).
(13)

C. Solution Algorithms

Due to the proposed bilevel model has integer decision
variables in the lower-level problem Eq (7) and the conditional
expressions Eq (12) in the upper level problem, it is extremely
difficult to use conventional nonlinear programming methods
to solve the problem. Metaheuristic algorithms such as genetic
algorithms are computationally simple and powerful and are
very good tools for non-convex optimization problems since
they have more chances to find the global optimal solu-
tions. Furthermore, metaheuristic algorithms are often the only
method available for some ill-defined optimization problem
such as those involving with non-differentiable, discontinuous,
or non-analytically definable functions, and the optimization
problem of our proposed bilevel model is one of such cases.

In our proposed genetic algorithms, binary encoding and
deterministic tournament selection without replacement is
adopted [12]. For the crossover and mutation operations, we
employ uniform crossover and bit flip mutation respectively

https://www.uswitch.com/


Algorithm 1 GA based pricing optimization algorithm to (13)
executed by the retailer

1: Population Initialization, i.e. generating a population of
PN chromosomes randomly; each chromosome repre-
sents a strategy (i.e., a group of tariff plans) of the retailer.

2: for i=1 to PN do
3: The retailer announces strategy i to customers.
4: Each customer group solves the optimization problem

Eq (7). Therefore, the retailer obtains the responsive
demand and optimally selected tariff plan from each
customer group.

5: Fitness evaluation and constraint handling [15] to sat-
isfy constraints (9 - 11).

6: end for
7: A new generation of chromosomes are created by using

deterministic tournament selection without replacement,
uniform crossover and bit flip mutation [12] [13] [14].

8: Steps 2-7 are repeated until the stopping condition is
reached.

9: The retailer announces final tariff plans to all customer
groups.

[13] [14]. The constraints are handled by the approach pro-
posed in [15]. Readers are referred to [16] for more details on
our adopted GAs.

Finally, the GAs based optimization algorithm is given in
Algorithm 1. At the end, the most profitable and best accepted
differential tariff plans are found for the retailer.

V. SIMULATION RESULTS

A. Simulation Set-up

In this section, we conduct simulations to evaluate the
proposed optimal differential ToU and the benchmark pricing
(uniform ToU) on a day-to-day basis 3. We consider a pool of
300 customers where three types of customers are assumed to
have been identified based on customer segmentation and are
evenly distributed (i.e. 100 price sensitive customers, 100 price
mid-sensitive customers and 100 price insensitive customers).
Firstly, we select c− and c+ in Eqs. (2) and (8) as 3 and 15
cents for both uniform pricing and differential pricing prob-
lems. In addition, pmin+

u and pmax+
u in the uniform pricing

problem are set to 25 and 35 cents respectively while pmin−
u

and pmax−
u are set to 5 and 15 cents. For differential pricing,

we set pmin+
m , pmax+

m , pmin−
m , pmax−

m , ∀m ∈ {1, 2, 3} as
follows:

pmin+
1 = 32, pmax+

1 = 35,

pmin−
1 = 5, pmax−

1 = 8;

pmin+
2 = 28, pmax+

2 = 31,

pmin−
2 = 9, pmax−

2 = 12;

pmin+
3 = 25, pmax+

3 = 27,

pmin−
3 = 13, pmax−

3 = 15.

3Although the current ToU practice (e.g., Economy 7 in the UK) fixes the
prices for a longer period (e.g., a season), in this paper we consider the ToU
pricing on a daily basis in the smart grid environment.

TABLE I: Disaggregated results under Uniform ToU Pricing
Customer Group Revenue Cost Profit Peak shifting
Price sensitive 188.69 83.32 105.37 0.4446
Price mid-sensitive 229.75 104.66 125.09 0.2223
Price insensitive 266.56 123.78 142.78 0.0231
Overall 685.00 311.76 373.24 0.230

We set savg and s̄avg in Eqs. (4) and (10) to 0.15 and
0.23 respectively, i.e. a minimum of 15% of peak demand
are required to be reduced/shifted by using uniform/differential
ToU pricing but the peak demand reduction/shifting should not
be greater than 23% to avoid peak demand rebound effects.
Furthermore, the maximum revenue REmax in Eqs. (5) and
(11) is set to $685. The original energy consumptions of each
customer group under flat pricing in peak time and off-peak
time periods are set to 800 kwh and 200 kwh respectively.
The price sensitivities of each customer group are calculated
based on Eq (1) and the resulting energy consumption of each
customer group under peak time period and off-peak time
period can be obtained in the same way as described in Section
III.

B. Results of Uniform ToU

With the simulations set up, we solve the optimal uniform
ToU pricing problem Eq (6) using solver fmincon in Matlab
R2015a.

The optimal prices for uniform ToU are obtained as p+u =
31.70 cents and p−u = 8.61 cents. The revenue, cost and profit
under the above optimal uniform ToU prices are $685.00, $
311.76, and $373.24 respectively. The peak energy consump-
tion reduction constraint Eq (4) is active, i.e., savg = 0.23.

Furthermore, the disaggregated revenue, profit, cost, and
peak energy consumption reduction under each customer
group are given in Table I. From the above results, we can
easily reach some interesting findings. For instance, under
the obtained uniform ToU, price insensitive customers only
reduce a small fraction (i.e. 2.31%) of their peak usages
whose contribution to the overall peak reduction (i.e. 0.77%)
is negligible compared with other customer groups. However,
due to the high peak time price, price-insensitive customers
would need to pay much more bills than price sensitive/mid-
sensitive customers. This could possibly lead to a low ac-
ceptability of ToU pricing among customers. On the other
hand, price sensitive customers might be willing to reduce
more peak usages if more incentives (e.g., under a tariff
plan with higher peak price/lower off-peak price than the
above uniform ToU prices) are offered. In that case, price
sensitive customers would shift more peak usage, which not
only leads to further reduced bills for themselves but also a
reduced energy procurement cost for the retailer. Based on
the above analysis, we designed an optimal differential pricing
to accommodate the above findings drawn from uniform ToU
where simulation results are given in the following subsection.

C. Results of Differential ToU

We solve the optimal differential pricing problem Eq (13)
using GAs based optimization method (see Algorithm 1). The



TABLE II: Parameter settings of GAs
Parameter Name Symbol Values
Chromosome Length Lg 7
Population Size PN 500
Mutation Probability Pg 0.005
Terminate Generation Tg 500

TABLE III: Results under differential Pricing
Customer Group Revenue Cost Profit Peak shifting
Price sensitive 181.66 76.35 105.31 0.5172
Price mid-sensitive 235.98 111.02 124.96 0.1560
Price insensitive 244.71 124.85 119.86 0.0120
Overall 662.35 312.22 350.13 0.2284

parameters of the proposed genetic algorithm are set as Table
II. The obtained differential pricing targeted to each customer
group are given below.

p+1 = 34.37, p−1 = 7.97 for price sensitive customers
p+2 = 29.12, p−2 = 11.94 for mid-sensitive customers
p+3 = 26.86, p−3 = 14.97 for insensitive customers

Furthermore, the revenue, profit, cost, and peak energy
consumption reduction under the above obtained differential
pricing for each customer group are given in Table III.
Compared with optimal uniform ToU prices, the tariff plan
targeted to price sensitive customers (and actually selected
by them) has higher peak time price (i.e., 34.37 cents) but
lower off-peak time price (i.e., 7.97 cents). As shown in
Table III, price sensitive customers have more incentives under
differential pricing, which results in a lower bill (i.e. $181.66)
for themselves and lower energy procurement cost (i.e. $76.35)
for the retailer. On the other hand, the tariff plan targeted to
price insensitive customers (and actually selected by them)
is 26.86 cents for peak time price and 14.97 cents for off-
peak time price, which results in a lower bill (i.e. $244.1)
for price insensitive customers compared with uniform ToU
pricing. From the above analysis 4, it reveals a great potential
of differential pricing that it could offer ‘personalized’ tariff
plans to each customer group and therefore create a better price
image for the retailer, which will help lead to an improved
acceptability of dynamic pricing among customers and an
increased customer satisfaction.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a differential pricing framework
for the smart grid retail market and formulate the interactions
between the retailer and each customer group in the optimal
differential pricing as a bilevel optimization problem. Firstly,
a pricing optimization problem is formulated for the retailer
to maximize its profit and minimize the mismatch between
targeted tariff plans (by the retailer) and actually selected tariff
plans (by customers). Secondly, an optimal tariff selection
problem is formulated for each customer group to minimize

4We implement a further simulation by setting REmax and s̄avg in the
Uniform ToU problem to 662.35$ and 0.2284 respectively (optimal values
obtained in differential pricing as detailed in Table III). The same conclusion
can be reached from these simulation results but details are omitted here due
to space limitations

their bills. Finally, a genetic algorithms based solution method
is developed to solve the bilevel model with simulation results
confirmed the effectiveness of our proposed differential pricing
strategy. In our future work, firstly we will develop a data-
driven customer segmentation framework based on customers’
load profiles and their price sensitivities. Secondly, we will
integrate such a data-driven framework into the optimal dif-
ferential pricing framework proposed in this paper. Finally,
we will generalize the current differential pricing framework
to accommodate real time pricing.
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