
Using Machine Learning in Trace-driven Energy-Aware
Simulations of High-Throughput Computing Systems

A.Stephen McGough,
Noura Al Moubayed

School of Engineering and Computing Sciences
Durham University

Durham, UK
stephen.mcgough@durham.ac.uk

noura.al-moubayed@durham.ac.uk

Matthew Forshaw
School of Computing Science

Newcastle University
Newcastle, UK

matthew.forshaw@newcastle.ac.uk

ABSTRACT
When performing a trace-driven simulation of a High Through-
put Computing system we are limited to the knowledge
which should be available to the system at the current point
within the simulation. However, the trace-log contains in-
formation we would not be privy to during the simulation.
Through the use of Machine Learning we can extract the la-
tent patterns within the trace-log allowing us to accurately
predict characteristics of tasks based only on the informa-
tion we would know. These characteristics will allow us to
make better decisions within simulations allowing us to de-
rive better policies for saving energy.

We demonstrate that we can accurately predict (up-to
99% accuracy), using oversampling and deep learning, those
tasks which will complete while at the same time provide
accurate predictions for the task execution time and memory
footprint using Random Forest Regression.

Keywords
Trace-Driven; Simulation; Machine Learning

1. INTRODUCTION
Computer simulation is a powerful tool for understanding

how systems in the real world interact, and the impact that
changes to these systems may have. As we become more
aware, and concerned, about energy consumption of these
systems simulation can aid understanding and help in the
identification of better systems and their management.

High-Throughput computing, where thousands of tasks
can be executed over a distributed collection of computers,
expends significant energy through code execution. Through
efficient management of these systems we can significantly
reduce the overall energy consumption. Management changes
could include selecting more energy-efficient computers when
working in a heterogeneous environment [28], selection of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’17 Companion, April 22 - 26, 2017, L’Aquila, Italy
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4899-7/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3053600.3053612

computers least susceptible to preemption by their primary
users [20], or removing tasks which are failing to complete
(due to misconfiguration or broken code) [22].

When performing such simulations we require an input
stream of tasks which represent the users’ interaction with
the system. One approach here is to capture the real stream
of events which are produced from the live system – this is
often referred to as a trace-log and leads to a trace-driven
simulation. This, however, has a number of drawbacks. The
system being simulated may not exist yet; there may be a
desire to modify the characteristics of the input as one of the
changes you make with the simulation; or the time required
to capture the trace-log from the real system may be too
long. This leads to trace-logs having significant value among
researchers. However, exchanging such trace-logs may not
be easy as they can contain confidential information.

Alternatively, a synthetic trace-log may be produced from
probability models. These models may be derived from sta-
tistical analysis of real input streams or probability models
chosen for their similarity to known usage patterns. If no
existing system exists then the latter case is the only choice.
In either case such probability models normally lack the fi-
delity exhibited within real trace-logs. In prior work [19]
we have generated synthetic trace-logs derived from statisti-
cal analysis of the HTCondor users at Newcastle University
in order to upscale the system load. Although this gener-
ated data which matched the statistical characteristics of the
original trace-log the newly generated data failed to exhibit
the finer-grained characteristics of the original trace data.

In this work we propose a different approach in which
we exploit the ability for Machine Learning techniques to
over-sample the original trace-logs in order to generate ad-
ditional data. Using this approach, we can both extend the
timeframe covered by our original trace-log but also increase
(or decrease) the number of system users. As the Machine
Learning approach builds up a fine-grain model from the
initial trace-log this has the potential to capture the fidelity
apparent within the original trace-log but lost when a prob-
ability model is used. This approach has two clear advan-
tages, new synthetic data can be generated for an arbitrar-
ily length of time (and density) while capturing the same
fidelity as the original trace-log but also as the data is still
synthetically generated it can be safely exchanged with other
researchers without fear of breaking confidentiality.

Once we are able to produce synthetic trace-logs of high
enough fidelity there are still a number of problems which

need to be overcome. Solving these problems for the simula-
tion would also allow us to solve the corresponding problem
in the real-world and are often the focus of the investiga-
tions which lead us to developing simulations in the first
place. These problems include:

1) Estimation of task execution time: In order to
identify the best computer to run a task on, or indeed whether
to run the task in the first place, we need an estimation of
task execution time. Although the actual execution time is
held within the trace-log this is not information we are privy
to at the time of task submission. Prior work [5, 24, 26] has
widely criticised the quality of user provided estimates. In-
stead we propose the use of Machine Learning techniques to
estimate these times more accurately based on a model of
both the individual user and other similar users.

2) Identification of Miscreant tasks: In prior work [22]
we have explored the problem of miscreant tasks – tasks
which in a shared use system, where task can be evicted
from resources due to higher priority interactive users log-
ging in, are repeatedly started on computers just to lose
control of that computer. A miscreant task may be one
where the code will never complete due to bugs or miscon-
figuration. Alternatively it could be a task which has been
unlucky in its selection of computers to run on. We see this
as a classification exercise where we can attempt to identify
those tasks which are bad thus removing them quickly from
the system so that they waste less energy.

3) Identification of computers which are unlikely
have interactive users logging in during the time-scale
of a task’s execution: If we can select a computer where
no interactive user will log in before the task completes then
we remove the need for the task to be evicted and thence
restarted on another computer – thus wasting significant en-
ergy. We have previously demonstrated that Reinforcement
Learning can be used to increase the chance of a task being
deployed to an appropriate computer [20]. Here we seek to
go further by building a model for when interactive users log
in and log out. Through this model we can better predict
the most appropriate computer to deploy tasks to.

4) Estimation of task memory footprint: Although
users can specify memory requirements for their tasks these
estimates are often missing or significantly greater than that
required. Instead we can develop a regression approach to
better estimate this value allowing for better selection of
computers on which to run the task.

We discuss related work in Section 2 before performing
an analysis of the data from a HTC system in Section 3.
We justify our approach of how using Machine Learning can
be applied to a HTC system through preliminary results in
Section 4. Finally we conclude the paper in Section 5.

2. RELATED WORK
Machine learning techniques have been applied to the op-

erational management of High-Throughput and High- Per-
formance computing systems. These approaches incorporate
prior knowledge of system behaviours to optimise policy de-
cisions made within the system – e.g. resource allocation,
scheduling, migration, and power management – and have
been shown to be able to adapt to temporal variations in re-
source availability and performance, and offered workload.

A number of approaches consider infrastructure-level man-
agement. Gao [12] apply an ensemble of deep neural net-
works using DeepMind, to model the operation of Google

data centres and predict Power Usage Effectiveness (PUE),
yielding an error rate of 0.4% for a typical PUE of 1.1. Ma-
chine Learning approaches receive further attention in fail-
ure modelling within HPC systems; e.g. in the prediction of
memory issues [3] and hard disk failure [13].

Berral et al. [8] use machine learning to predict energy
consumption of virtual machines, using these predictions to
inform resource provisioning and scheduling decisions in-
cluding migration and consolidation. Further, these ap-
proaches have been applied in the context of systems com-
prising multiple, geographically distributed datacentres [7].

Curtis-Maury et al. [11] use artificial neural networks (ANN)
to determine target levels of concurrency on multicore pro-
cessors optimising performance and energy consumption.

ML approaches have been applied to predict the charac-
teristics of tasks. Matsunaga [18] explore the spatiotempo-
ral utilisation of resources by mainstream HPC applications,
including BLAST. Rodrigues et al [25] evaluate the appli-
cation of a number of machine learning techniques to pre-
dict task memory requirements in an HPC setting. Insights
gained through these approaches are used to inform deci-
sions made by the LSF scheduler. Techniques include Sup-
port Vector Machines (SVMs), Random Forests, Multilayer
Perceptrons (MLPs) and k Nearest Neighbours (KNN).

Barrett et al [6] consider a Q-learning approach to the
auto-scaling of cloud applications deployment. Seeking to
address the dimensionality issues associated with Reinforce-
ment Learning approaches by adopting a hybrid approach.

3. ANALYSIS OF A HTC SYSTEM
A High Throughput Computing (HTC) system comprises

of a large collection of computers, which may not be owned
by the manager of the HTC system. Often these comput-
ers are provided on a voluntary basis in which the com-
puter owners expect the HTC system to relinquish use at
any time when the owner wishes to use their computer(s) –
often referred to as task eviction. Evicted tasks are normally
restarted a different computer. Two commonly used HTC
systems are BOINC [4] and HTCondor [27].

High Throughput Computing systems collect and main-
tain meta-data about the tasks which have been submitted
for execution. For HTCondor this is in the form of a ClassAd
which can be inspected through condor history or Quill [16].
The set of elements stored within this ClassAd are described
within the HTCondor manual [29]. All absolute times are
stored in seconds relative to the UNIX epoch.

The stored meta-data contains such information as when
the task was submitted, which resource the task is running
on and when the task completed. Some of this meta-data is
known as the task is submitted (name of executable, time of
submission, command line arguments, etc...) whilst further
meta-data is only known while the task is within the system
(current execution time, number of invocations of the task
due to prior evictions, etc...) with the last meta-data only
available on task completion (execution time, size of data
files returned, etc...). This can result in a large number of
artefacts held in the meta-data – e.g. the HTCondor system
at Newcastle University contains 102 different artefacts.

In general we wish to be able to predict those artefacts
which will only become known when a task completes from
the other artefacts which we can see before task completion.

Artefact Name Description
ClusterID A “Cluster” is a group of tasks
ProcID The ID of a Task within a Cluster
QDate Submission time (secs since Unix epoch)
Owner person submitting the task
User equivalent to Owner
Command Command/executable run for the task
Args arguments passed to the executable

Table 1: Artefacts available before task execution

3.1 Newcastle HTCondor Data
Our analysis here is based on the HTCondor set-up at

Newcastle University which was deployed in October 2005
and replaced in 2011; this gives us an archive of five years.
The vast majority computers were in open access clusters
around the university providing ∼2000 computers running
Windows XP. There is a fair degree of heterogeneity between
clusters. A number of staff added their own computers and
a small number (∼ 100) of Linux computers were available.
The HTCondor system has one central manager and one
main submission machine though some projects had their
own submission machine. In the rest of this section we anal-
yse the history logs from the main submission machine and
use this as motivation for the subsequent work.

Out of the 102 artefacts within the Newcastle HTCondor
logs we can identify seven artefacts which are both available
when the task is submitted and of relevance to the work
here. These are depicted in Table 1.

After the task completion there are four artefacts which
are added containing information which would be relevant
for running a simulation. These are depicted in Table 2.
In order to perform simulations we require the task dura-
tion which is not clearly defined within the set of artefacts.
However, it can be derived from the four artefacts as:

Duration = EnteredCurrentStatus

−JobCurrentStartDate (1)

if the task was successful (JobStatus=4). This may be an
overestimate of the actual execution time if HTCondor placed
the task into a suspend state at some point. However,
suspensions are rare and normally followed by an eviction,
which would prevent this from being a successful execution.
This does not work when check pointing and migration is
used. If however, the task failed to complete and was ter-
minated (JobStatus=3) then we can only assume that the
task would run for at least as long as it was in the system:

Duration = EnteredCurrentStatus−QDate.

We can also compute how much time a successful task
wasted in the system due to incomplete executions:

Successful task = RemoteWallClockT ime

wasted time −Successfulexecutiontime.

There were a total of 642,298 task submissions between
the 17th October 2005 and the 31st December 2010. The
breakdown of these tasks is show in Table 3. These figures
seem promising for energy efficient use of the HTCondor
system until we look at the total times for these tasks.

The total compute time consumed by HTCondor was 1,
610, 913, 772 seconds (just over 51 years, 29 days) this is
shown in Table 4. However, the time consumed by tasks that

Artefact Name Description
JobCurrentStartDate Time the task started execut-

ing (measured in Seconds since
Unix epoch). If a task has run
multiple times, this is the mea-
surement for the latest run.

EnteredCurrentStatus epoch time when the task en-
tered its current status (listed
in JobStatus)

JobStatus 3 is a failed task, 4 is a success-
ful task

ImageSize Memory usage of the task when
it ran

Table 2: Artefacts available after task execution

Number Percentage

Total number of tasks 642,298 100%

- Which completed 469,184 73%

- - Without wasted time 415,807 65%

- - With wasted time 53,377 8%

- Which were removed 173,114 27%

- - Removed before execution 164,059 26%

- - Removed after some execution 9,055 1.4%

Table 3: Breakdown of HTCondor tasks

Total time Seconds Time Percent

used by HTCondor 1610913772 51y 29d 100%

- successful execution 559065399 17y 265 d 35%

Wasted 1051848373 33y 129d 65%

- tasks that completed 228979785 7y 95d 14%

- for removed tasks 822868588 26y 33d 51%

Table 4: Breakdown of time used by HTCondor

were eventually terminated was just over 51%. Only 35% of
time consumed by HTCondor went to successfully complet-
ing tasks the remaining 15% went on executions that were
evicted. In effect for every 1 second of useful execution time
required from HTCondor 2.8 seconds of actual computing
time was needed. Even if we negate tasks removed by the
user this still leaves 1.4 seconds HTCondor time for every
successful second of execution. Clearly not energy efficient.

We now justify the adoption of a ML approach to estimate
a number of the initially unknown artefacts.

1) Task Execution time: Figure 1 shows the profile of
execution times for a single user within the HTCondor log.
It can be seen that this profile does not conform to a sim-
ple statistical model. Prior attempts to apply such models
to this data has yielded poor results [21]. A regression ap-
proach could be applied to this data taking into account
such factors as the time of day that the task was submitted,
the executable run and the user submitting the task.

2) If the task is good: Prior work has shown that moni-
toring a miscreant task allows us to identify bad tasks. How-
ever, this is at the expense of execution runs wasting energy.
If instead we could first classify tasks – even if this were only
to say “high chance of bad task” this would allow us to ter-

6. REFERENCES
[1] N. Al Moubayed, B. Awwad Shiekh Hasan, and A. S.

McGough. Enhanced detection of movement onset in
eeg through deep oversampling. In International Joint
Conference on Neural Networks (IJCNN 2017). IEEE,
2017.

[2] N. Al Moubayed, T. Breckon, P. Matthews, and A. S.
McGough. Sms spam filtering using probabilistic topic
modelling and stacked denoising autoencoder. In
International Conference on Artificial Neural
Networks, pages 423–430. Springer, 2016.

[3] J. Alonso, J. Torres, J. L. Berral, and R. Gavalda.
Adaptive on-line software aging prediction based on
machine learning. In DSN, pages 507–516. IEEE, 2010.

[4] D. P. Anderson. Boinc: A system for public-resource
computing and storage. In Grid Computing, 2004,
pages 4–10. IEEE, 2004.

[5] C. Bailey Lee, Y. Schwartzman, J. Hardy, and
A. Snavely. Are user runtime estimates inherently
inaccurate? In D. Feitelson, L. Rudolph, and
U. Schwiegelshohn, editors, Job Scheduling Strategies
for Parallel Processing, volume 3277 of LNCS, pages
253–263. Springer Berlin Heidelberg, 2005.

[6] E. Barrett, E. Howley, and J. Duggan. Applying
reinforcement learning towards automating resource
allocation and application scalability in the cloud.
CCPE, 25(12):1656–1674, 2013.

[7] J. L. Berral, R. Gavalda, and J. Torres. Power-aware
multi-data center management using machine
learning. In ICPP, pages 858–867. IEEE, 2013.

[8] J. L. Berral, Í. Goiri, R. Nou, F. Julià, J. Guitart,
R. Gavaldà, and J. Torres. Towards energy-aware
scheduling in data centers using machine learning. In
ACM e-Energy, pages 215–224. ACM, 2010.

[9] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer. Smote: synthetic minority over-sampling
technique. Journal of artificial intelligence research,
16:321–357, 2002.

[10] N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial:
special issue on learning from imbalanced data sets.
ACM Sigkdd Explorations Newsletter, 6(1):1–6, 2004.

[11] M. Curtis-Maury, K. Singh, S. A. McKee,
F. Blagojevic, D. S. Nikolopoulos, B. R. De Supinski,
and M. Schulz. Identifying energy-efficient
concurrency levels using machine learning. In Cluster
Computing, 2007 IEEE International Conference on,
pages 488–495. IEEE, 2007.

[12] J. Gao. Machine Learning Applications for Data
Center Optimization. Google White Paper, 2014.

[13] G. Hamerly, C. Elkan, et al. Bayesian approaches to
failure prediction for disk drives. In ICML, 2001.

[14] T. K. Ho. Random decision forests. In Document
Analysis and Recognition, 1995., Proceedings of the
Third International Conference on, volume 1, pages
278–282. IEEE, 1995.

[15] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant.
Applied logistic regression, volume 398. John Wiley &
Sons, 2013.

[16] J. Huang, A. Kini, E. Paulson, C. Reilly, E. Robinson,
S. Shankar, L. Shrinivas, D. Dewitt, and J. Naughton.
An overview of Quill: A passive operational data
logging system for Condor.

https://www.cs.wisc.edu/condordb, 2007.

[17] A. J. Izenman. Linear discriminant analysis. In
Modern multivariate statistical techniques, pages
237–280. Springer, 2013.

[18] A. Matsunaga and J. A. Fortes. On the use of machine
learning to predict the time and resources consumed
by applications. In IEEE/ACM CCGRID, 2010.

[19] A. McGough, C. Gerrard, J. Noble, P. Robinson, and
S. Wheater. Analysis of power-saving techniques over
a large multi-use cluster. In Dependable, Autonomic
and Secure Computing (DASC), 2011 IEEE Ninth
International Conference on, pages 364–371, Dec 2011.

[20] A. S. McGough and M. Forshaw. Reduction of wasted
energy in a volunteer computing system through
reinforcement learning. Sustainable Computing:
Informatics and Systems, 4(4):262 – 275, 2014. Special
Issue on Energy Aware Resource Management and
Scheduling (EARMS).

[21] A. S. McGough, M. Forshaw, C. Gerrard, P. Robinson,
and S. Wheater. Analysis of power-saving techniques
over a large multi-use cluster with variable workload.
Concurrency and Computation: Practice and
Experience, 25(18):2501–2522, 2013.

[22] A. S. McGough, M. Forshaw, C. Gerrard, and
S. Wheater. Reducing the number of miscreant tasks
executions in a multi-use cluster. In Cloud and Green
Computing (CGC), 2012 Second International
Conference on, pages 296–303, Nov 2012.

[23] N. J. Nagelkerke. A note on a general definition of the
coefficient of determination. Biometrika,
78(3):691–692, 1991.

[24] S. Niu, J. Zhai, X. Ma, M. Liu, Y. Zhai, W. Chen, and
W. Zheng. Employing checkpoint to improve job
scheduling in large-scale systems. In Job Scheduling
Strategies for Parallel Processing, pages 36–55.
Springer, 2013.

[25] E. R. Rodrigues, R. L. Cunha, M. A. Netto, and
M. Spriggs. Helping HPC users specify job memory
requirements via machine learning. In Proceedings of
the Third International Workshop on HPC User
Support Tools, pages 6–13. IEEE Press, 2016.

[26] S. Srinivasan, R. Kettimuthu, V. Subramani, and
P. Sadayappan. Characterization of backfilling
strategies for parallel job scheduling. In Parallel
Processing Workshops, 2002. Proceedings.
International Conference on, pages 514–519. IEEE,
2002.

[27] T. Tannenbaum, D. Wright, K. Miller, and M. Livny.
Condor: a distributed job scheduler. In Beowulf
cluster computing with Linux, pages 307–350. MIT
press, 2001.

[28] G. Terzopoulos and H. D. Karatza. Power-aware
bag-of-tasks scheduling on heterogeneous platforms.
Cluster Computing, 19(2):615–631, 2016.

[29] The Condor Team. Condor manual.
http://www.cs.wisc.edu/condor/manual/, Oct 2010.
University of Wisconsin.

[30] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and
P.-A. Manzagol. Stacked denoising autoencoders:
Learning useful representations in a deep network
with a local denoising criterion. Journal of Machine
Learning Research, 11(Dec):3371–3408, 2010.

