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Abstract—Evolution-in-materio is a form of unconventional
computing combining materials’ training and evolutionary search
algorithms. In previous work, a mixture of single-walled-carbon-
nanotubes (SWCNTs) dispersed in a liquid crystal (LC) was
trained so that its morphology and electrical properties were
gradually changed to perform a computational task. Material-
based computation is treated as an optimisation problem with a
hybrid search space consisting of the voltages used for creating
the electrical field and the material’s infinitely possible SWCNT
arrangements in LC. In this paper, we study solutions using
synthetic data with a non-linear separating boundary. In addition,
results for two real life datasets with partly merged classes are
presented. The training process is based on a differential evolu-
tion (DE) algorithm, which subjects the SWCNT/LC material to
repeated electrical charging, leading to progressive morphological
and electric conductivity modifications. It is shown that the
material configuration the DE algorithm converges to form a
non-negligible part of the solution. Furthermore, the problem’s
complexity is relevant to the properties of the resulting physical
solver. The material structures created when training for a
problem allow the retraining for a less complex one. The result is
a doubly-trained material that keeps the memory of the original
more complex problem. This is not the case for doubly-trained
materials where initial training is for the less complex problem.
The optimal electric field found by the DE algorithm is also a
necessary solution component for the material’s output to be
interpreted as a computation.

I. INTRODUCTION

Within the broader framework of unconventional computing
methods, Evolution-in-Materio (EiM) is an approach based on
the idea of exploiting one or more of the physical properties
of a piece of material for performing a computation task.
The selected physical properties must be manipulable in the
sense that it should be possible to adapt and mould them
using a set of well defined external stimuli. By embedding the
material within an evolutionary search algorithm, consisting of
both hardware and software, the selected physical properties
are evolved towards a computation inducing state. There are
five elements in an EiM based computation: (a) the material
properties used; (b) the hardware interfacing with the material
for applying inputs to the appropriate material to be shaped
and for reading responses that can be interpreted as a compu-
tation; (c) the interpretation scheme used for transforming the
material’s response to a computation; (d) the algorithm used
for configuring the material and evolving it; and finally (e) the
computation problem itself. For a review of EiM see [13].

Depending on the material used and the physical properties
to be exploited, different EiM computing devices can be

developed. Liquid Crystals (LCs) from a display screen have
been used as the material part of EiM for evolving robot
controllers [5], a tone discrimination device [3] and logic
gates [4]. In [9], [11], and [17] a dry mix of Single-Walled
Carbon Nanotubes (SWCNT) with a polymer were used as
the computational material and its electrical conductance was
used as the manipulated property for solving the problem of
calculating Boolean functions using a threshold interpretation
scheme; the same material is used in [14] and [15] for
solving optimisation problems. In [12], [22], [21] and [20]
the material used is a solution of SWCNT with LC in liquid
rather than in dry solid state. The physical property used for
evolving the material is its electrical conductivity and the
ability of the SWCNT to form percolation paths within the LC.
The problems addressed are variations of binary classification
problems using artificially created datasets. This paper’s first
contribution is to follow the same approach but instead of
artificial datasets to use real life medical data.

The amorphous state of the SWCNT/LC liquid solution
does not allow for a deterministic input/output model. Hence,
the material system is treated as a black box and the binary
classification problems are solved by following a supervised
learning approach. The learning problem is formulated as
an optimisation problem splitting the available dataset into
training and verification sets. Hence, there is no explicit
algorithm for solving the classification problem, but rather
the training of the material for the specific computation task.
Before training, the material is not able to produce a response
that can be translated into a computation. A statement declar-
ing the class a particular datum belongs to is available post
training, after having created the conductive network structures
of SWCNT within the material during the process of evolution.
It is in this sense that the material is trained, i.e. it has its
morphology changed, for solving a particular problem and
not by being able to execute a number of discrete algorithmic
steps towards providing an answer to the problem. This is
different from the classical computation approach, which can
be implemented by digital or analogue devices. Although the
computation can be considered as analogue in nature, it is
the macro-behaviour of the emerging material properties that
is used. The alignment and formation of percolation paths
of SWCNT within the LC host is enforced by the iterative
nature of the evolutionary search conducted, until a notion of
computation error is minimised or becomes zero. Just as in
the analogue computing case, there is a persistent issue with
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the computation’s accuracy. This is a problem which can be
addressed by improving the quality of the hardware used and
the efficiency of the training algorithm.

The training algorithm searches a hybrid space of solutions,
which consists of a normal subspace spanned by the config-
uration inputs or stimuli that make the material change its
morphology, and of the formed network of SWCNT within
the body of the material. The space of possible network
configurations and associated percolation paths is infinitely
dimensional. The search algorithm has only implicit access to
it through the configuration inputs. The repetitive application
of such inputs together with the computation inputs is expected
to create a suitable internal structure. Hence, a solution is
described by the optimal configuration inputs and the resulting
evolved conductive network of SWCNT.

The second contribution of this paper, is a preliminary
investigation of the contribution of the two parts of the
solution, i.e. the configuration inputs and the material itself, to
the optimum solution identified by the search algorithm. The
question posed concerns the contribution of the post evolution
material state and the optimal configuration inputs where the
best result was obtained, to the overall computing device.

These two contributions continue the work reported in [12],
[20], [21] and [22]. The hardware platform and material are
discussed in section II. The classification problems are de-
scribed in section III and the optimisation problem formulation
is briefly outlined in section IV. Section V discusses the new
results obtained and section VI concludes this paper with some
future directions of work.

II. HARDWARE IMPLEMENTATION AND MATERIAL

Three main hardware components are used in an EiM
experimental set-up; a computer, an evolvable mother board
(EM) and a material.

During an experiment, Evolutionary Algorithms (EAs) are
run on the computer, producing signals that are transmitted to
an mbed microcontroller fixed on the EM. These signals are
translated into voltage levels by the mbed and the resulting
configuration voltages are sent to the material, along with the
voltages defining the computational problem, through a set
of digital to analogue converters (DACs). Currents flowing
through the material are measured and sent back to the micro-
controller via an analogue to digital converter (ADC). Finally,
the interpretation of the material’s output is transmitted to the
computer and used by the EAs for evaluating the objective
function value and subsequently producing new signals.

The material sample is a 0.05% SWCNT/LC mixture ob-
tained by dispersing SWCNTs in a LC using an ultrasonic
probe. The nanotubes are 1/3 metallic, 2/3 semiconducting
whilst the E7 nematic liquid crystal molecule presents no
comparative conductivity. It was reported in [21] [22] that
using the experimental set-up described, it was not possible
to train a stand-alone LC solution in liquid state to perform a
computation.

The SWCNT/LC blend has a non-linear relationship be-
tween voltage and current which is exploited by the EiM
process. It has been observed in [23] that the nanotubes tend to

Fig. 1. Gold micro-electrode array with 50µm contacts and 100µm pitch,
SWCNT and E7 LC molecule.

Fig. 2. Representation of the hardware implementation of EiM.

bundle and form complex percolation paths between electrodes
under an applied electric field. The LC provides a liquid
medium within which the resulting conductive networks can
be modified [12], adding a level of complexity to the search
space as compared to solid CNT-based samples.

At the start of an experiment, the un-configured SWCNT/LC
mixture is drop-cast within a 2.5 mm washer. The latter is
fixed onto the gold micro-electrode array, itself deposited on
a microscope slide using photolithography. The characteristics
of the array are shown in Figure 1. It is connected to the
hardware and used as a means to transfer voltages and measure
currents to and from the material respectively.

The schematic representation of the experimental set up and
procedure is shown in Figure 2.

III. CLASSIFICATION PROBLEMS

Four binary classification datasets have been used in this
paper. The choice of datasets has been partly directed by
two experimental constraints; the number of input and output
pins on the micro-electrode array, respectively fourteen and
two, and the maximum voltage levels, 8 V olts, allowed in
the hardware components and evolvable material. A dataset
is composed of K instances which are translated into com-
putation inputs, or voltage levels Vin ∈ [0, 8]m (Volts) in the
physical space, where m is the number of class features.

Two out of the four problems are represented by two-
dimensional (m = 2), separable datasets, created artificially.
One is diagonally separable, the V1C dataset, and the other, the
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Fig. 3. Two binary classification problems represented by diagonally and
non-linearly separable classes.

NLC dataset, has two classes separated by a hyperbola. The
complexity of these problems is measured using the Fisher
criterion f1 [7] defined for a binary problem as

f1 =
(µj

1 − µ
j
2)2

(σj
1)2 + (σj

2)2
(1)

where µj
i and σj

i is the mean and the standard deviation of
feature j for classes 1 and 2, respectively. Taking the maximum
f1 over all attributes being, for V1C f1 = 10.078 and for NLC
f1 = 2.097, i.e. V1C is less complex than NLC.

During an experiment, the datasets are separated into train-
ing and verification subsets of size Kt = 800 and Kv = 4000,
respectively. Figure 3 shows the distribution of training data
in the 2D feature space.

The other two problems relate to the Bupa liver disorder
(BPC) and mammographic mass (MMC) datasets, with param-
eters given in Table I. These are real-life problems retrieved
from the UCI repository [10]. They are spread across more
than two dimensions, with both non-linear boundaries and
overlapping areas, as seen in Figure 4. A metric related to
the overlap of classes along given features is given by

f2 =
m∏

j=1

min {U1,j , U2,j} −max {L1,j , L2,j}
max {U1,j , U2,j} −min {L1,j , L2,j}

(2)

where
U1,j = max

{
Vj : Vin ∈ C1

}
, U2,j = max

{
Vj : Vin ∈ C2

}
L1,j = min

{
Vj : Vin ∈ C1

}
, L2,j = min

{
Vj : Vin ∈ C2

}
.

From the two criteria, we can rank the different problems
according to their complexity, with V1C being the simplest and
BPC the most complex. The Fisher criterion over all attributes,
as well as the measure of overlap defined in eqn. 2 are reported
in Table I.

A number of papers using the BPC dataset, such as [1, 8],
split it into Kt = 276 and Kv = 69, which are the values taken
in our experiments. The MMC dataset on the other hand has
been split arbitrarily into Kt = 200 and Kv = 630. In each
case, prior to implementation, the datasets were normalised to
fit the maximum voltage constraint.

Fig. 4. Representation of the bupa liver disorder dataset top and mammo-
graphic mass dataset (bottom) with their attributes (photo taken from [6] and
[19] respectively).

TABLE I
V1C, NLC, BPC AND MMC PROBLEMS’ PARAMETERS.

Name number of number of Fisher volume of
attributes instances criterion overlap (%)

V1C 2 4800 10.078 0
NLC 2 4800 2.097 0
MMC 4 831 0.809 1.4
BPC 6 347 0.081 4.4

IV. PROBLEM FORMULATION AND ALGORITHMS

The process of evolving a piece of material into a computing
device is formulated as an optimisation problem. There are
sixteen connections on the micro-electrode array, twelve of
which are used. Two of those are used for sending computation
inputs as voltage pulses of amplitude Vin = (V in

1 , V in
2 ) and

eight are used for sending configuration voltages as pulses
within the range Vj ∈ [Vmin, Vmax], j = 1, . . . , 8. The
remaining two connections are reserved for measuring output
currents I = (I1, I2) (A) when the material has been sent Vin

and is under charge of the Vj’s.
The possible locations where the two components of Vin

are applied is considered as a decision variable. Using a simple
increasing index scheme for assigning configuration voltages
(e.g. if V in

1 is assigned to electrode 3 and V in
2 is assigned to

5, then the following assignment for the configuration inputs
takes place: V1 → 1, V2 → 2, V3 → 4 V4 → 6, V5 → 7,
V6 → 8, V7 → 9 V8 → 10) then there are 10P2 = 90 possible
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connection assignments. A continuous variable p ∈ [1, 90] is
defined and updated by the EA used rounded to the nearest
integer during the iterations.

The optimisation problem’s vector of decision variables,
spread over a total of D = 10 dimensions, is defined as

x = [V1 . . . V8 R p]
T (3)

where R is continuous over [Rmin, Rmax]. For a specific elec-
trode assignment p and set of configuration voltages Vj , the
material’s response to an input Vin is recorded. The response
is the pair of direct current, I = (I1, I2) (A), measured at the
two output terminals. It is the basis of a comparison scheme
using R for deciding the class Vin belongs to.

Let I(k) denote the pair of direct current measurements
taken when input data Vin(k) from class Ci, i = 1 or i = 2,
are applied while the material is subjected to configuration
voltages Vj . Vin(k) and Vj are applied according to electrode
assignment number p and scaling factor R is used. Also, let
C(Vin(k)) denote Vin(k)’s real class and CM (Vin(k),x)
the material’s assessment.

Different mapping schemes may be used for the calculation
of CM . A functional form of CM

(
Vin,x

)
must be specified

for each problem before the training process and, since the
material acts as a computing device, every

(
Vin,x

)
must be

mapped to one of the two possible classes. The mapping is
performed by the interpretation scheme ansatz, which con-
siders the computational inputs, the corresponding induced
material responses and the continuous decision variable R used
as threshold;

CM (Vin(k),x) =

{
C1 if I1(k)V in

1 (k) + I2(k)V in
2 (k) ≤ R

C2 if I1(k)V in
1 (k) + I2(k)V in

2 (k) > R
(4)

For every training data point Vin(k), k = 1, . . . ,Kt the
error from translating the material response according to rules
(4) is

εx(k) =

{
0 if CM (Vin(k),x) = C(Vin(k))
1 otherwise.

(5)
The mean error Φe(x) evaluated over the training data set for
a particular solution x is

Φe(x) =
1

Kt

Kt∑
k=1

εx(k). (6)

A penalty term H(x) is added to (6), given by

H(x) =

∑8
j=1 V

2
j

8V 2
max

. (7)

The rationale behind this penalisation is that incremental and
generally low levels of configuration voltages are preferable.
Solutions where high Vj are applied can destroy material struc-
tures formed during evolution that contribute to the solution.

Hence, the total objective function Φs(x) for an arbitrary
individual of the EA’s population s is given by

Φs(x) = Φe(x) +H(x) (8)

The optimisation training problem to be solved is that of
minimising (8) for a population of size S, subject to voltage
bound constraints Vj ∈ [Vmin, Vmax], R ∈ [Rmin, Rmax],
electrode assignment p and classification rule (4). Vmin = 0
Volts, Vmax = 4 Volts, Rmin = 0.05 and Rmax = 15 .

Derivative-free, stochastic, population-base optimisation al-
gorithms were considered to solve this problem, due to the
complex and dynamic nature of the search space, as well as
the fact that no analytical or stochastic model of the material’s
behaviour currently exists. Here, differential evolution (DE)
[18], with a population size of S = 10 individuals has been
implemented. The position of each individual over d = 1, ...D
dimensions, defined by the vectors of decision variables x,
is initialised using uniform distribution across the problem
boundaries. It is then updated, dimension by dimension, at
each iteration ι in the following eqn. 9,

xd =

{
xad + F (xbd − xcd) if d = D or rd < CR
xd otherwise. (9)

where the three vectors of decision variables, xa, xb and xc

and randomly drawn from the population, rd ∼ U(0, 1), the
cross-over parameter is CR = 0.7026 and F = 0.814 is the
differential weight. The value of these parameters are based on
suggestions found in [16] and have been modified empirically
for the problem undertaken.

V. RESULTS AND DISCUSSION

A. Medical Datasets

Previous papers reported results for simple, proof-of-
concept datasets [12, 21, 22]. The first part of our investi-
gations focus on the training of un-configured SWCNT/LC
mixture for medical datasets selected from the UCI repository.
In order to assess the solutions currently obtained in materio,
results to BPC and MMC problems, averaged over two tests,
are presented in Table II. They are compared with those
achieved over a range of neural network (NN) implementa-
tions. Results for both BPC and MMC are reported in [1],
where a dentrite morphological NN (DMNN) is trained using
DE. Further BPC solutions obtained with five different types
of NN are reported in Table II. A description of the back
propagation NN (BPNN), general regression NN (GRNN),
radial basis function NN (RBFNN), probabilistic NN (PNN)
and complementary NN (CMTNN) is presented in [8].

Finally, the SWCNT/LC results are compared with those
obtained from a medical survey [2] where human accuracy
on the MMC problem is investigated. Only two extremes are
reported here, results for fellowship trained radiologists who
are very good at distinguishing correctly the classes (12.00%
error), and the other radiologists, who average 17.00% error.
The difference between the two radiologist diagnosis is de-
tailed in paper [2].

It can be seen that despite the problem’s complexity, the
SWCNT/LC material can be brought in a state where it is
able to classify at best 18.85% and on average 20.51% of the
631 instances contained in the MMC verification dataset. This
is less than half the error that would be obtained if the material
was randomly assigning data to one class or another.
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TABLE II
TRAINING AND VERIFICATION ERRORS FOR BUPA LIVER DISORDER AND

MAMMOGRAPHIC MASS PROBLEMS.

MMC Φ∗
e (%) Φ∗

e,v(%) Φw
e,v(%) Φe,v (%)

EiM, DE 20.5 18.85 21.39 20.51
DMNN, DE 15.8 N/A N/A 10.40
Human N/A 12.00 N/A 17.00

BPC Φ∗
e (%) Φ∗

e,v(%) Φw
e,v(%) Φe,v (%)

EiM, DE 23.2 27.53 36.23 31.88
DMNN, DE 37.6 N/A N/A 31.10
BPNN N/A 20.29 39.14 30.00
GRNN N/A 28.99 46.38 35.94
RBFNN N/A 27.54 43.48 32.46
PNN N/A 28.99 46.38 35.94
CMTNN N/A 21.74 47.83 29.71

As mentioned in Section III, the MMC dataset was split
into Kt = 200 and Kv = 631. Results for DE-trained
DMNN were obtained using Kt = 664 and Kv = 167. The
ratio of training to verification instances is nearly inverted.
However, the evolved SWCNT/LC blend is able to produce
a training error which is 4.3% higher, whilst the average
verification error is 10.11% superior to the DE-trained DMNN.
The best and average in materio solutions compare better to
radiologists’ opinion (Φe,v), with an error that is respectively
1.85% and 3.51% higher. The fellowship trained radiologists
(Φ∗

e,v), however, are more accurate in their diagnosis than both
their non-fellowship trained counterpart and the SWCNT/LC.

In the case of the BPC problem, the dataset was split
in the same way for all implementations. It can be seen in
the third row of Table II that the evolved carbon nanotube-
based device compares with the different NN implementations.
Optimal training is lower than that obtained using DMNN
and average verification marginally higher, with a 0.78%
difference. Similarly, the average verification error obtained
using BPNN and CMTNN are respectively 1.88% and 2.17%
lower than the in materio result. The trained SWCNT/LC
outperforms the other methods, GRNN, RBFNN and PNN,
with a worst and average verification error that is always lower
by a minimum of 0.58% and a maximum of 4.06%.

Interestingly, when trained for the more complex BPC
problem, the SWCNT/LC blend produces results that are
either better or at least comparable to those obtained with the
different NN implementations. On the other hand, for the less
complex MMC problem, results are less comparable.

B. Double Training Experiments

The second set of results presented have been obtained
using the two artificial datasets, NLC and V1C. It has been
observed in our previous work [21, 22] that an un-configured
SWCNT/LC mixture can be trained to solve these binary clas-
sification problems. Current investigations focus on whether
the SWCNT structures formed in the material during training
are stable, a non-negligible contribution to the solution and
finally if they can be retained, to some extent, when the
material has been retrained for a new problem. The effect of
problem complexity in the multiple material training is also
investigated; does training first for a complex problem make
solving a simpler one easier or is the opposite true ?

An experiment consists of a set of two consecutive training
and verification procedures, using two different datasets, which
are performed on the same material. The unconfigured material
is drop-cast onto the micro-electrode array and subjected to a
varying electric field produced by the DE algorithm until it is
able to solve the first problem.

Following this first training, the evolved material is sent
the corresponding verification data along with the optimum
set of decision variables obtained during training x∗1. We
thereby verify that the solution combining x∗

1 and material state
can generalise. In order to determine if the evolved material
state itself is a non-negligible contribution to the solution, the
sample is left for 300 seconds with no signals. A second
verification test is then performed, where the configuration
voltages are not applied. As seen in Section III, V1C is
less complex than NLC, but the two problems are relatively
similar. Verification data for the second problem is therefore
sent along with x∗1 on the once trained material to determine
if the solution is common to both problems, and if any
further training would be redundant. If it is not the case, the
SWCNT/LC material is subjected to a second set of training
and verifications for the new dataset. The second problem’s
verification data are sent with new optimal set of decision
variables, x∗

2, then are re-sent with no configuration voltages.
Finally, the ability of the doubly trained material to solve the

original problem, with and without configuration voltages is
assessed. It must be noted that each verification test is repeated
ten times, with a 1s delay between each test. Results are
presented in table III. The minimum training error is defined
by Φt and verification error by Φe,v . Values are averaged over
three experiments. Distribution of the ill-classified verification
data for the sequence of tests is presented in Figure 5.

Starting from an un-configured state, the DE algorithm is
able, on average, to bring the SWCNT/LC mixture into a state
where it is able to correctly assign 100% of V 1C training
data and 98% of verification using the same set of decision
variables, x∗

V 1C . There is no photographic evidence that the
SWCNT structures have been retained after the first verifica-
tion test. However, when Vj is set to zero and the verification
data are sent to the trained material, the error increases by
only 0.36%. From this difference, it can be observed on one
hand that the contribution of the evolved material state is not
negligible, and on the other, that the percolation paths have
not relaxed to the original un-configured condition.

The result presented in the first row, fourth column, of
Table III shows that a combination of material state and x∗V 1C

does not generalise to the NLC verification dataset. The error
increases by 12.18% and 14.54% compared to V1C, and to
an optimum NLC solution, respectively. DE is used to subject
the SWCNT/LC to a new training, using the NLC dataset.
Results are near optimal, with Φt = 0.0% and Φe,v = 0.2%.
When no configuration voltages are applied the doubly trained
material is able to classify the NLC verification dataset with
an average of 21.75%. Finally, the verification results when
V1C is reapplied have increased to become 7.85% and 9.28%
which means that the original solution is not fully recovered.
The second training has had an effect on the material state
produced by the first training.
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Fig. 5. Post first training, mapping of ill-classified verification data-points for (a) V1C, x∗V 1C applied (b) V1C, no configuration voltages (c) NLC, x∗V 1C
applied. Second training, (d) NLC, convergence of the objective function and mapping of the ill-classified verification datapoints for (e) NLC, x∗NLC applied.
Finally ill-classified datapoints for (f) V1C, no configuration voltages (g) V1C, x∗V 1C applied and (h) V1C, no configuration voltages
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TABLE III
AVERAGE TRAINING Φt(%) AND VERIFICATION Φe,v (%) ERROR FOR DOUBLE TRAINING EXPERIMENTS ON THE SAME SWCNT/LC SAMPLE.

Once trained material Twice trained material
V1C, Φt V1C, x∗

V 1C V1C, Vj = 0 NLC, x∗
V 1C NLC, Φt NLC, x∗

NLC NLC, Vj = 0 V1C, x∗
V 1C V1C, Vj = 0

0.00 2.00 2.36 14.54 0.00 0.2 21.74 7.85 9.29

Once trained material Twice trained material
NLC, Φt NLC, x∗

NLC NLC, Vj = 0 V1C, x∗
NLC V1C, Φt V1C, x∗

V 1C V1C, Vj = 0 NLC, x∗
NLC NLC, Vj = 0

0.5 1.19 2.35 10.76 0.00 0.00 0.76 3.39 5.78

From experiments where a simple binary diagonally sepa-
rable dataset was used, followed by a more complex binary
dataset with a hyperbolic separation, it can be observed that:
1) The contribution of the material state to the evolved
classifier is not negligible.
2) The material can be retrained for a different, more complex
problem, for which it obtains low error and
3) Important modifications in the material’s state do not
completely destroy original solutions. The untrained material
produces a verification error for V1C, Φe,v= 49.53%, whilst
the doubly trained material’s solution achieves Φe,v = 7.85%.

The second row of Table III presents results for the inverse
experiment, where the hyperbola-separated dataset was used
first, followed by its diagonally separated counterpart. First,
DE is run on an un-configured SWCNT/LC sample, until it
becomes possible to classify the NLC training data.

Verification tests with x∗NLC produce an average of 1.19%
error whilst verification increases to 2.35% when no config-
uration voltages are used. Sending x∗NLC partly solves the
V1C problem, but not well enough for further training to
be redundant. Retraining the SWCNT/LC blend for the less
complex V1C dataset results in 0% training and verification
errors, with an increase of 0.76% when Vj = 0. The last results
presented in Table III show that the NLC verification error has
become 3.39% and 5.78% for x∗NLC and Vj = 0 respectively.

It was observed that training for a simple problem first
helped in finding very good solutions for the more complex
problem. However, after finding a solution for the more
complex problem, the state had change in such a way that
the original solution had been partly destroyed, producing
verification errors higher by 5.85% and 6.93% with and
without configuration voltages respectively.

It was also possible to achieve good solutions for the more
complex problem starting from an un-configured material. The
difference in this case is that the second training had less
effect on the original solution, for which the verification errors
increased by 2.2% and 2.43% with and without configuration
voltages respectively.

VI. CONCLUSION AND FUTURE WORK

This paper reported results on experimental investigations
of an Evolution-in-Materio approach for the classification
problem. The material is a mix of single-walled-carbon-nano-
tubes and liquid crystals. The method used does not follow
conventional computation methods that have been proposed
in the literature such as neural networks and K-nearest neigh-
bours methods. Instead, a piece of material in liquid state is

evolved until it reaches a computing inducing state where the
computation task is a binary classification problem.

A first set of experiments was undertaken to assess the
ability for a differential evolution algorithm to train the
SWCNT/LC material to solve real life binary classification
data. The mammographic mass and bupa liver disorder prob-
lems found on the UCI repository [10] were used. A training
and verification process was followed and produced an evolved
material which was able to classify the two datasets without
any metal-oxide-field-effect-transistors components. Results
obtained were compared to different types of neural network
solutions found in literature [1, 8] as well as human diagnosis
accuracy. In the case of the MMC dataset, the evolved carbon
nanotube-based classifier produced average verification errors
that were higher than both those obtained by human and neural
networks. In contrast, results obtained for the BPC problem
were more comparable with the neural network results.

The interpretation scheme and objective function used in the
implementation were very simple. For example, the difference
between true and false positives, an important parameter in
medical applications, was not used in our problem formula-
tion. The above considerations will be addressed in further
investigations, along with modifying the split of the MMC
dataset to be the same as that used in [1].

It has been observed that the contribution of the material
state to the solution is not negligible. This had not been
observed for simpler problems discussed in earlier papers
[21, 22]. In addition, the material retains a memory of previous
trainings. The problem complexity can be linked with this
memory and the material state’s contribution to a solution.
Experiments indicate that after training for less complicated
problems, the material can be retrained to address more
complex ones. It is observed, however, that the second training
tends to destroy the original solution. On the other hand,
training the material for a complex problem first and then
retraining it for a simpler one, results in a material state which
is able to solve both problems well.

From these observations, we can formulate the following hy-
pothesis; the SWCNT structures produced during DE training
are relatively stable. When a more complex problem is used
first, these structures favour the search for simpler problems,
with little impairment to the original solution. Investigations
using microscopy techniques are needed to confirm our hy-
pothesis. It will be the focus of future work, along with the
application of the retraining process to a larger number of
datasets and to problems which present more differences than
the ones used.

As discussed previously, the electrical and physical charac-



8

teristics of SWCNT-based mixtures are modified when sub-
jected to EiM. These modifications are extremely difficult to
model. A better understanding of the modification mechanism
is crucial for an optimisation of the technique, if it is to become
competitive as an alternative to conventional technology. We
believe that this is an exciting research work on unconventional
and evolvable computing systems.
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