ATAPOUR-ABARGHOUEIL BRECKON: REAL-TIME DEPTH IMAGE COMPLETION 1

DepthComp: Real-time Depth Image
Completion Based on Prior Semantic Scene
Segmentation

Amir Atapour-Abarghouei Engineering and Computer Science
amir.atapour-abarghouei@durham.ac.uk Durham University
Toby P. Breckon Durham, UK

toby.breckon@durham.ac.uk

Abstract

We address plausible hole filling in depth images in a computationally lightweight
methodology that leverages recent advances in semantic scene segmentation. Firstly, we
perform such segmentation over a co-registered color image, commonly available from
stereo depth sources, and non-parametrically fill missing depth values based on a multi-
pass basis within each semantically labeled scene object. Within this formulation, we
identify a bounded set of explicit completion cases in a grammar inspired context that
can be performed effectively and efficiently to provide highly plausible localized depth
continuity via a case-specific non-parametric completion approach. Results demonstrate
that this approach has complexity and efficiency comparable to conventional interpola-
tion techniques but with accuracy analogous to contemporary depth filling approaches.
Furthermore, we show it to be capable of fine depth relief completion beyond that of
both contemporary approaches in the field and computationally comparable interpola-
tion strategies.

1 Introduction

Three dimensional scene understanding based on scene depth is becoming ever more appli-
cable to areas such as autonomous driving, interactive entertainment, environment modeling
and alike [15, 28, 32]. However, complete (hole-free) scene depth is not readily obtainable
from conventional capture devices. Missing or invalid depth values are commonplace, re-
sulting in the need for depth filling as a time-consuming special case facet of any subsequent
processing.

Prior work has considered numerous approaches to complete color images successfully
[1, 6, 16, 22, 24, 45]. However, due to the different nature of scene depth from color in-
cluding the absence of granular texture, object separation and the in-scene transferability of
varying depth sub-regions, color image inpainting is less effective within the depth modality.

In this paper, we propose a simple and efficient method for depth image completion that
utilizes a prior semantic segmentation labeling of the accompanying color image [3]. The
depth completion process is performed with reference to object boundaries on a pixel-wise
basis in the depth image with reference to a language of holes, where pixel values are parsed
to identify and fill instances of holes. The key contributions of this paper are:

e Novelty - an efficient and novel non-parametric strategy that preserves relief texture.

e Efficiency and Accuracy - more efficient and accurate than comparators (Section 4).

o Reproducibility - simple and effective algorithm that can be reproduced easily.

(© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 1: Exemplar constrained holes (row-wise), Cases 1-8.

2 Prior Work

Prior work in depth hole filling [2, 8, 9, 10, 35, 46] is not as extensive as color image
completion and inpainting. Whilst many seminal color image completion techniques fall
short when applied to depth maps [6, 16], there are specific depth filling techniques that
leverage classic inpainting approaches, with or without modifications, to fill depth values
[2, 23, 30, 51]. There have also been attempts to fill a target region in one of a set of multi-
view photographs [4], to fill color and depth via depth-assisted texture synthesis [46], and
a myriad of approaches utilizing filters [13, 14, 18, 34, 39, 41], temporal-based methods
[5, 25, 38], reconstruction-based methods [17, 36, 47, 50], and others [2, 29, 35, 37, 40]. We
focus on the most relevant to this work [29, 35, 40].

In a notable work, Liu et al. [35] improve upon the Fast Marching Method-based inpaint-
ing [45] for depth filling. By assuming that the adjacent pixels with similar color values are
likely to have similar depth values as well, they introduce a color term into the weighting
function to increase the contribution of the pixels with the same color.

By contrast, Qi et al. [40] use a fusion-based method integrated with a non-local filtering
strategy. Their framework follows [12], utilizing a scheme similar to the non-local means
scheme [11] to make more accurate depth predictions based on image textures.

Herrera et al. [29] propose depth inpainting guided by color assuming surfaces are con-
tinuous and smooth within their energy function. This smoothness term encourages flat depth
planes in the completion process whilst ignoring the possibility of visible texture or relief in
the filled region and hence limiting plausible completion characteristics.

Overall, prior work is characterized by a continuum from high-complexity with viable
plausibility [2, 29, 35] to that of low complexity with limited plausibility, such as simple
interpolation techniques. We propose a low complexity approach for plausible depth com-
pletion based on a proposed grammar of holes identified and filled on a row-wise basis.

3 Proposed Method

Our process uniquely leverages recent advances in semantic scene segmentation [3], such
that completion can now be performed with reference to object boundaries within the scene.
Here, focusing on the challenge of outdoor driving scenes, we utilize SegNet [3, 33], a deep
convolutional architecture trained for urban scene segmentation in the context of vehicle
autonomy. However, in general, any such approach that can perform accurate and efficient
object or instance wise scene segmentation can suffice (illustrated in Figure 4).

Our technique is a computationally inexpensive completion approach requiring a maxi-
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1: [ < length of the hole. ’ ype ‘ 2 H ype ‘ 2 ‘
2: ¢ < completion case identifier. Case 1 | 11.19 || Case 7 7.75

3: if cin {1,2,3,4} then Case?2 | 0.32 Case 8 0.33

4 i < index of leftmost pixel in the hole Case 3 | 57.02 || Case 9 1.93

5: elseif cin {5,6,7,8} then Case4 | 1.99 || Case 10 | 2.47

6: i < index of rightmost pixel in the hole Case 5 | 3.44 Case 11 | 10.31
7: assign initial vy (i) according to case ¢ Case 6 | 0.22 Case 12 | 3.03

8: assign slope according to case ¢ -

9: while i is in the hole region do ’ Filled ‘ 98.83 H Unfilled ‘ 1.17 ‘
10: update v(i) according to case ¢ .
. if cin {1,2,3,4} then Table 1: Hole Frequency (KITTI [27]
12: i—i+1. | RMSE | PBMP | Run-time |
13: else if ¢ in {5,6,7,8} then
" il | Ours [ 04012 | 0.0021 | 97.38 ms |

Algorithm 1: Constrained Hole Completion Table 2: Average RMSE, PBMP, & run-
L J time (15 images form Middlebury [31]).

mum of three passes over the image on a row and column-wise basis. Within this context,
a hole is now defined as a sequence of missing depth values constrained to one scene object
within a single row/column of the depth image. To these ends, a depth hole (i.e. missing
region in the image) is now comprised of multiple such constrained holes, all limited to the
completion of a single row/column, with respect to a single adjacent scene object at the hole
boundary. In a sense, we now have a grammar of holes, with each instance parsed based on
row-wise adjacent depth availability for a consistent scene object.

As the image is scanned in raster order, each constrained hole discovered is identified as
one of twelve possible completion cases with reference to both the pattern of missing depth
and the consistency of surrounding segmented pixel labeling (Section 3.2). Whilst each case
may be efficiently implemented in isolation, a common notion of informed re-sampling,
behind the overall solution to all cases, provides underpinning plausible completion in the
general sense. This avoids the simplicity of a brittle rule-based technique whilst taking ad-
vantage of a discrete set of hole occurrences at the local level to aid efficient implementation.

3.1 Semantic Segmentation

Here, we primarily use SegNet [3, 33] to perform the initial segmentation task. The SegNet
architecture consists of encoder and decoder layers and a pixel-wise classification layer in
a deep convolutional neural network (CNN) auto-encoder architecture. The encoder is sim-
ilar to the convolutional layers in VGG16 [44], while the decoder maps the low-resolution
feature maps from the encoder as inputs for subsequent pixel-wise semantic classification.
Although SegNet [3] shows sufficient accuracy for our task, an idealized scene depth com-
pletion method requires absolute labeling accuracy beyond that of SegNet. As we illustrate
(Figure 4), alternative segmentation models (object, instance or otherwise) [7, 19, 21, 43]
can similarly be used, provided they produce limited mis-segmentation artefacts.

3.2 Hole Filling

Depth completion is performed in three images passes: primary row-wise, column-wise and
secondary row-wise. For explanation purposes, we detail the outline of our approach solely
in terms of image rows with the intermediate column-wise pass being purely a rotational
analogue of the same. Each constrained depth hole can be identified as either one of eight
non-parametrically solvable cases (subsequently outlined with a corresponding algorithmic
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| Method | RMSE | PBMP | Run-time | | Method | Example 1 [ Example 2
Linear Inter. | 22.5868 | 0.2601 | 3.05 ms Linear Inter. 6.428 ms 7.643 ms
Cubic Inter. | 22.3810 | 0.2598 | 3.18 ms Cubic Inter. 6.998 ms | 8.109 ms
GIF [35] 7.3281 | 0.2496 | 1.07¢3 ms GIF [35] 14.32¢2 ms | 16.14¢2 ms
SSI[29] 37970 | 0.1893 | 5.92¢3 ms iﬁg?j‘ﬂ éggﬁ " ég‘s‘ffgm’?s
FMM [45] | 18.9501 | 0.2663 | 1.10e3 ms EBI[1] 1905 ms | 51265 ms
EBI[1] 10.5448 | 0.1513 | >1.2¢5 ms FBI [2] 3605 ms | 53625 ms
FBI [2] 0.8372 | 0.0863 | >3.6¢6 ms Ours 10827 ms | 11516 ms
Ours 0.8617 | 0.0917 | 3.83 ms Ours+SegNet [3] || 632.135 ms | 633.091 ms

Table 3: RMSE, PBMP, & run-time (synthetic test Table 4: Comparative run-times over KITTI
image with ground truth depth). dataset examples [27].

solution) or as one of four remaining unresolvable cases. When a case does not conform to a
solvable case in a given pass, it is left to subsequent passes whereby the completion of other
neighborhood pixels may allow subsequent resolution into one of these cases. In cases where
a pixel remains unresolvable after all three passes, we refer to the use of linear or bilinear
interpolation. From Table 1, we see the occurrence of these non-parametrically unresolvable
cases is indeed very limited.

When a hole of a specific length is identified within a row, the information available to
the left and the right of the hole within the same object boundaries is surveyed, and surface
depth pattern is propagated into the hole region. A continuity coefficient (slope) is taken into
account during this propagation to plausibly bridge the depth values on both sides of the hole.
Although all constrained hole cases are essentially processed identically, the availability
of valid depth values and appropriate sampling region govern the categorization of such
row-wise constrained hole occurrences into a number of discrete cases. Of these twelve
such completion cases, many are inherently similar in their characteristics with our detailed
separation on a case-wise basis only aimed at maximizing accuracy and efficiency.

Case 1: where the constrained hole ends at the rightmost boundary of the object, i.e. all
depth values on the right side of the current object are missing, but the number of preceding
depth values to the left of the hole exceeds the length of the hole itself.

v(i)=v(i—1)+(i—1)—v(i—1—1)] x slope (1)
Since such holes extend to the rightmost pixel in the current object, no depth information is
available to the right of the hole, and as such there is no need to account for any in-filling
continuity. Consequently, it suffices to identify the pattern of depth change to the left of
the hole, the length of which is greater than the length of the hole itself, and propagate this
pattern rightward, replicating the texture and relief detail present within the object boundary.
As aresult, slope = 1, and v(i) is initialized to zero with updates as per Eqn. 1 with reference
to Algorithm 1. See the illustration of Eqn. | terms in Figure 1 (Case 1).

Case 2: where the constrained hole ends at the rightmost boundary the object (as per
Case 1) but here, the number of preceding depth values to the left of the hole is exactly the
same as the length of the hole itself.

v(i)=v(i—1)+[(i—1+1)—v(i—1)] x slope (2)
Here we proceed as per Case 1, but with less depth information present to the left of the hole
to identify and propagate any pattern rightward. As a result, slope = 1, and v(i) is initialized
to zero with updates as per Eqn. 2 with reference to Algorithm 1. See the illustration of Eqn.
2 terms in Figure 1 (Case 2).

Case 3: where the constrained hole does not reach the leftmost or rightmost boundary
edges of the scene object, i.e. the hole is contained within the object itself with valid depth
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Method Plastic (1270 x 1110) Baby (1240 x 1110) Bowling (1252 x 1110)

RMSE | PBMP | Run-time || RMSE | PBMP | Run-time || RMSE | PBMP | Run-time

Linear Inter. || 1.3432 | 0.0229 | 28.036 ms 1.3473 0.0080 26.265 ms 1.4503 | 0.0430 | 21.081 ms
Cubic Inter. 1.2661 | 0.0212 | 30.488 ms 1.3384 0.0079 29.377 ms 1.4460 | 0.0418 | 23.685 ms
GIF [35] 0.7947 | 0.0331 | 31.08¢2 ms || 0.6008 0.0095 25.8¢2 ms 0.9436 | 0.0412 | 48.75¢2 ms
SSI'[29] 1.7573 | 0.0102 | 42.36e3 ms || 2.9638 0.0180 41.2e3 ms 6.4936 | 0.0455 | 71.12¢3 ms
FMM [45] 0.9580 | 0.0435 | 93.93¢l ms || 0.8349 0.0120 79.44el ms || 1.2422 | 0.054 | 11.19¢3 ms
EBI [1] 0.6952 | 0.0032 | >36.e4 ms 0.6755 0.0024 >48e4 ms 0.4857 | 0.0035 | >72e4 ms
FBF [2] 0.8643 | 0.0023 | >10.8¢6 ms || 0.6238 0.0081 >10.8¢6 ms || 0.5918 | 0.0072 | >10.8¢6 ms
Ours 0.6618 | 0.0019 | 106.88 ms 0.3697 | 7.807¢—4 | 99.246 ms 0.4292 | 0.0022 | 91.146 ms

Table 5: Comparing the RMSE (root-mean-square error), PBMP (percentage of bad match-
ing pixels), and mean run-time of the methods over the Middlebury dataset [31]. The stan-
dard deviation of the run-time is negligible.

values to both the left and right. In this case, the pattern of depth change can be sampled
from either side depending on valid depth value availability within the same scene object.
Assuming sufficient depth values exist to the left of the hole (by default, even if sufficient on
the right also), we proceed as follows:

(i) = v(i= 1) +v(i= ) =v(i=1=1) 3) stope = 2D —vi=1)
vo(i) —v(i—1—-1)

v(i)=v(i—1)+[(i—1)—v(i—1—1)] xslope (%)
To predict the missing depth values correctly considering the pattern of texture and relief,
continuity between the valid values to the left and the right side of the hole is taken into
account. The continuity coefficient (slope) is utilized to ensure that the predicted values
plausibly bridge the depth values to the left and right of the hole. The pattern of change in the
valid values is propagated rightward with each value being multiplied by slope, calculated by
dividing the difference between the values surrounding the hole into the difference between
the values surrounding the sample area (Figure 1 (Case 3) and Algorithm 1). The initial
value of vo(7) and slope in Algorithm 1 are respectively calculated based on Eqns. 3 and 4.
Within Algorithm 1, v(i) is updated according to Eqn. 5. See the illustration of Eqns. 3, 4,
and 5 terms in Figure 1 (Case 3).
Case 4: as per Case 3, but such that the number of valid depth values to the left of the
constrained hole is exactly the same as the length of the hole itself.

“4)

NV . o v(i+1) —vo(i)

vo(i)=v(i—1)+v(i—I1+1)—v(i—1) (6 slope = — 2 O\
o()) =v(i—1)+v(i—=I+1)—v(i=1) (6) lope = S T D (7)
v(i)=v(i—1)+[v(i—1+1)—v(i—1)] x slope (3)

The difference between this completion process and that of Case 3 is the same as the dif-
ference between Cases 1 and 2. The completion order and the slope coefficient are applied
similarly to Case 3. The initial value of vy(i) and slope in Algorithm 1 are respectively cal-
culated based on Eqns. 6 and 7. Within Algorithm 1, v(i) is updated according to Eqn. 8.
See the illustration of Eqns. 6, 7, and 8 terms in Figure 1 (Case 4).

Case 5: where the constrained hole does not reach the leftmost or rightmost boundary
of the object (as per Case 3) but the number of valid depth values to the left of the hole is
smaller than the length of the hole itself, while sufficient valid depth values exist to the right
of the hole for completion.

vo(i) = v(i+ 1) +v(i+1) —v(i+1+1) (9 slope = 2D —v(i=D)

v(i+14+1)—wvo(i)
v(i)=v(i+1)+[v(i+1])—v(i+{+1)] x slope (11)

(10)
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Figure 2: Comparison of proposed method against [1, 2, 29, 35, 45] and linear and cubic
interpolation (synthetic test image with available ground truth depth).

Following a symmetric completion process to that of Case 3, the pattern of change in the
valid depth values is propagated leftward as per Algorithm 1. The initial value of vy (i) and
slope in Algorithm 1 are respectively calculated based on Eqns. 9 and 10. Within Algorithm
1, v(i) is updated according to Eqn. 11. See the illustration of Eqns. 9, 10, and 11 terms in
Figure | (Case 5).

Case 6: as per Case 5, but such that the number of valid depth values to the right of the
constrained hole is exactly the same as the length of the hole itself.

vo(i) —v(i—1

vo(i) = v(i+ 1) +v(i+1—1)—v(i+1) (12) slope = M (13)

v(i)=v(i+ 1)+ [v(i+I—1)—v(i+1)] x slope (14)
Following a symmetric completion process to that of Case 4, the pattern of change in the
valid depth values is propagated leftward as per Algorithm 1. The initial value of vy (i)
and slope in Algorithm 1 are respectively calculated based on Eqns. 12 and 13. Within
Algorithm 1, v(i) is updated according to Eqn. 14. See the illustration of Eqns. 12, 13, and
14 terms in Figure 1 (Case 6).

Case 7: where the constrained hole starts at the leftmost boundary edge of the scene
object (symmetric to that of Case 1). Conversely, the number of valid values on the right of
the hole is greater than the length of the hole itself.

v(i) =v(i+1)+[v(i+1)—v(i+I+1)] x slope (15)
Following a symmetric completion process to that of Case 1, the pattern of change in the
valid depth values is propagated leftward as per Algorithm 1. Since no continuity is required,
slope = 1. The initial value of v(i) is zero, and this value is updated iteratively based on Eqn.
15. See the illustration of Eqn. 15 terms in Figure 1 (Case 7).

Case 8: as per Case 7, but such that the number of valid depth values to the right of the

constrained hole is exactly the same as the length of the hole itself.
v(i)=v(i+1)+[v(i+I—1)—v(i+1)] x slope (16)

The difference between this completion process and that of Case 7 is the same as the dif-

ference between Cases 1 and 2. The depth completion order and the slope coefficient are
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___

Figure 3: Exemplar results on the KITTI dataset [27]. S denotes the segmented images [3]
and D the original (unfilled) disparity maps. Results are compared with [1, 2, 29, 35, 45].
Results of cubic and linear interpolations are omitted due to space.

Figure 4: Comparison of the proposed method using different initial segmentation tech-
niques on the KITTI dataset [27]. Original color and disparity image (top-left), results with
manual labels (top-right), results with SegNet [3] (bottom-left) and results with mean-shift
[26] (bottom-right).

applied similarly to Case 7. Since no continuity is required, slope = 1. In Algorithm 1, the
initial value of v(i) is zero , and this value is updated iteratively based on Eqn. 16. See the
illustration of Eqn. 16 terms in Figure 1 (Case 8).

Case 9: where the constrained hole extends to the rightmost pixel within the object
(similar to Cases 1 and 2), but we cannot employ a non-parametric approach (as per Cases
1 and 2) because the number of valid depth values to the left of the hole is smaller than the
length of the hole itself. As a result, there is not enough information to accurately fill these
holes. Instances of these cases are left unfilled if identified during the scan in progress. In
subsequent scans, many of these unresolvable (Case 9) patterns are broken due to the use
of alternating row-wise and column-wise scan passes (resulting in an alternative resolvable
case instance). For Case 9 instances that are not resolved after all three image passes, simple
(cubic) interpolation is used (in an insignificant number of cases, Table 1).

Case 10: where the constrained hole extends to the leftmost pixel within the scene object
(similar to Cases 7 and 8), but again we cannot employ a non-parametric approach (as per
Cases 7 and 8) because the number of valid depth values to the right of the hole is smaller
than the length of the hole itself. As a result, there is again not enough information to
accurately fill these holes, and we proceed as per Case 9.

Case 11: where the constrained hole is located in the middle of an object but with insuf-
ficient valid depth values to the left and right side to facilitate non-parametric filling. Again,
there is not enough information to accurately fill these holes, and we proceed as per Case 9.

Case 12: where the constrained hole spans over the entire length of the scene object, (i.e.
no depth is available for an object known to be present in the scene from the semantically
segmented color image) making it the most challenging case of all. For instances of this case
not resolved within the three scan passes (row-wise, column-wise, secondary row-wise),
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Ours

Ours

Figure 5: Exemplar results on the Middlebury dataset [31]. RGB denotes the original
color images and D the original (unfilled) depth maps. Results are compared with
[1, 2,29, 35, 45] and linear and cubic interpolation methods.

a clear ambiguity exists as there is no valid depth information available for the object at
all. As Table 1 illustrates, this is an incredibly rare occurrence in practice, and the hole
is best left uncompleted rather than using invalid or implausible values (as per other work,
[1, 2, 13, 14, 18, 22, 29, 34, 35, 37, 39, 40, 41, 45, 47, 50, 51]). Table 1 illustrates the
typical occurrence frequency of the cases (1-12) on the KITTI dataset [27] (using [49] for
depth estimation). As seen in Table 1, less than 2% of hole occurrences cannot be completed
using our three-pass approach (row-wise, column-wise, secondary row-wise) through the
resolution outlined. This includes the challenging Case 12, which cannot be accurately filled
due to the lack of surrounding valid depth values. Although our three pass processing of
these 12 cases noticeably uses no explicit inter-row/column support regions (from adjacent
row/columns) as may be ordinarily expected, this is in fact implicit in our formulation based
on the use of the prior region-based scene segmentation (as illustrated in Section 4), which
inherently provides semantically defined support regions.
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4 Experimental Results

With the asymptotic runtime of O(n) for n image pixels, the proposed method is compara-
ble to simple interpolation methods in complexity but with accuracy exceeding that of more
complex methods [1, 2, 29, 35, 45]. The approach is first tested using a synthetically gener-
ated depth image (Figure 2). This image contains steep curves and sharp peaks to simulate
exaggerated texture to evaluate the performance in presence of surface relief within the im-
age (under a single scene object assumption, with no need for prior segmentation). Here,
Gaussian noise (mean = 0, variance = 0.0001) is added to the depth image to avoid com-
pletely smooth surfaces, and a topological color scale is used to guide methods that require
additional color image input ([29, 35]), and to aid visualization of the final result.

The superiority of the proposed method is clearly seen in Figure 2. Additionally, the
root-mean-square error (RMSE) and the percentage of bad pixels produced by the proposed
method are far smaller than comparators, as seen in Table 3.

Figure 3 demonstrates the results of the proposed method in comparison with others
when applied to examples from the KITTI dataset [27] (resolution, 1242 x 375). Depth is
calculated using [49] with significant disparity speckles filtered out and SegNet [3] is used
to perform the initial semantic scene understanding. The proposed method results in sharper
images with no additional artefacts (Figure 3) and performs more efficiently than comparator
approaches (see Table 4).

As previously discussed, the initial segmentation step can indeed be performed using
any technique with the efficacy of results depending on the accuracy of this segmentation.
Figure 4 compares the results of our approach obtained through the use varying segmentation
methods. When a manually labeled image is used (ground truth, [48]), the results are more
accurate than when SegNet [3] or mean-shift [20, 21, 26] segmentation is employed.

We also utilize the Middlebury dataset [31] to provide additional qualitative and quan-
titative evaluation. Figure 5 demonstrates that the proposed method generates more plau-
sible results without invalid outliers, blurring, jagging or other artefacts than comparator
approaches. Table 5 provides quantitative evaluation of the proposed approach against the
same comparator set. As shown in Table 5, the method is faster (real time, excluding segmen-
tation) and has a smaller root-mean-square error and fewer bad pixels [42] than comparators.
Experiments were performed on a 2.30GHz CPU using 8GB of memory (Tables 3, 5 and 4).

5 Conclusion

In this paper, the problem of depth image completion is addressed with efficiency, and atten-
tion to surface (relief) detail accuracy, with reference to a prior object-wise scene labeling.
This first step requires an accurate semantic segmentation over an accompanying color im-
age, which is commonly available from contemporary sensing arrangements, to facilitate
depth completion on an object-wise basis. Missing depth values are subsequently filled via a
three-pass non-parametrically driven approach, using a grammar of twelve discrete comple-
tion case occurrences. Our evaluation demonstrates that while the efficiency of the proposed
method is comparable to simple interpolation methods, the plausibility and statistical rele-
vance of the depth filled results compete against the accuracy of contemporary depth-filling
approaches in the field. Fine depth surface detail and relief texture is preserved within a
highly efficient framework driven by recent and ongoing advances in scene labeling.
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