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Abstract11

The Colouring problem is to decide if the vertices of a graph can be coloured with at most k12

colours for an integer k, such that no two adjacent vertices are coloured alike. A graph G is H-free13

if G does not contain H as an induced subgraph. It is known that Colouring is NP-complete for14

H-free graphs if H contains a cycle or claw, even for fixed k ≥ 3. We examine to what extent the15

situation may change if in addition the input graph has bounded diameter.16
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1 Introduction21

Graph colouring is one of the best studied concepts in Computer Science and Mathematics.22

This is mainly due to its many practical and theoretical applications and its many natural23

variants and generalizations. Over the years, numerous surveys and books on graph colouring24

were published (see, for example, [1, 4, 18, 21, 26, 28, 31]).25

A (vertex) colouring of a graph G = (V,E) is a mapping c : V → {1, 2, . . .} that assigns26

each vertex u ∈ V a colour c(u) in such a way that c(u) 6= c(v) whenever uv ∈ E. If27

1 ≤ c(u) ≤ k, then c is said to be a k-colouring of G and G is said to be k-colourable. The28

Colouring problem is to decide if a given graph G has a k-colouring for some given integer k.29

If k is fixed, that is, k is not part of the input, we denote the problem by k-Colouring. It30

is well known that even 3-Colouring is NP-complete [23].31

In this paper we aim to increase our understanding of the computational hardness of32

Colouring. One way to do this is to consider inputs from families of graphs to learn33

more about the kind of graph structure that causes the hardness. This led to a highly34

extensive study of Colouring and k-Colouring for many special graph classes. The35

best-known result in this direction is due to Grötschel, Lovász, and Schrijver, who proved36

that Colouring is polynomial-time solvable for perfect graphs [13].37

Perfect graphs form an example of a graph class that is closed under vertex deletion.38

Such graph classes are also called hereditary. Hereditary graph classes are ideally suited39

for a systematic study in the computational complexity of graph problems. Not only do40

they capture a very large collection of many well-studied graph classes, but they are also41

exactly the graph classes that can be characterized by a unique set H of minimal forbidden42

induced subgraphs. When solving an NP-hard problem under input restrictions, it is standard43
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69:2 Colouring H-free Graphs of Bounded Diameter

practice to consider, for example, first the case where H has small size, or where each H ∈ H44

has small size.45

We note that the set H defined above may be infinite. If not, say H = {H1, . . . ,Hp} for46

some positive integer p, then the corresponding hereditary graph class G is said to be finitely47

defined. Formally, a graph G is (H1, . . . ,Hp)-free if for each i ∈ {1, . . . , p}, G is Hi-free,48

where the latter means that G does not contain an induced subgraph isomorphic to Hi.49

We emphasize that the borderline between NP-hardness and tractability is often far50

from clear beforehand and jumps in computational complexity can be extreme. In order to51

illustrate this behaviour of graph problems, we present the following example of a (somewhat52

artificial) graph problem related to vertex colouring.53

Colouring-or-Subgraph
Instance: an n-vertex graph G

Question: is G d
√

log ne-colourable or H-free for some graph H with |V (H)| ≤ d
√

log ne?
54

I Theorem 1. The Colouring-or-Subgraph problem is NP-hard, but constant-time55

solvable for every hereditary graph class not equal to the class of all graphs.56

Proof. We reduce from 3-Colouring, which we recall is NP-complete [23]. Let G be an57

n-vertex graph. Set k = d
√

logne. Add k − 3 pairwise adjacent vertices to G. Make the58

new vertices also adjacent to every vertex of G. Add each possible graph on k vertices as a59

connected component to G. The resulting graph G′ has n+(k−3)+k ·2
k(k−1)

2 < 3n2 vertices.60

By construction, G′ contains every graph on at most k vertices as an induced subgraph.61

Hence, G′ is a yes-instance of Colouring-or-Subgraph if and only if G′ is k-colourable,62

and the latter holds if and only if G is 3-colourable.63

Now let G be a hereditary graph class for which there exist at least one graph H such64

that every graph G ∈ G is H-free. Let ` = |V (H)|. We claim that Colouring-or-65

Subgraph is constant-time solvable for G. Let G ∈ G be an n-vertex graph. If n ≤ 2|`|2 ,66

then G has constant size and the problem is constant-time solvable. If n > 2|`|2 , then67

` = |V (H)| <
√

logn ≤ d
√

logne. Hence G is a yes-instance of Colouring-or-Subgraph,68

as G is H-free and H has less than d
√

logne vertices. J69

In this paper, we consider the problems Colouring and k-Colouring. In order to describe70

known results and our new results we first give some terminology and notation.71

1.1 Terminology and Notation72

The disjoint union of two vertex-disjoint graphs F and G is the graph G + F = (V (F ) ∪73

V (G), E(F ) ∪ E(G)). The disjoint union of s copies of a graph G is denoted sG. A linear74

forest is the disjoint union of paths. The length of a path or a cycle is the number of its edges.75

The distance dist(u, v) between two vertices u, v in a graph G is the length of a shortest76

induced path between them. The diameter of a graph G is the maximum distance over all77

pairs of vertices in G. The girth of a graph G is the length of a shortest induced cycle of78

G. The graphs Cr, Pr and Kr denote the cycle, path and complete graph on r vertices,79

respectively.80

A polyad is a tree where exactly one vertex has degree at least 3. We will use several81

special polyads in our paper. The graph K1,r denotes the (r + 1)-vertex star, that is, the82

graph with vertices x, y1, . . . , yr and edges xyi for i = 1, . . . , r. The graph K1,3 is also called83

the claw. The subdivision of an edge uw in a graph removes uw and replaces it with a new84

vertex v and edges uv, vw. We let K`
1,r denote the `-subdivided star, which is the graph85
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obtained from a star K1,r by subdividing one edge of K1,r exactly ` times. The graph Sh,i,j ,86

for 1 ≤ h ≤ i ≤ j, denotes the subdivided claw, which is the tree with one vertex x of degree 387

and exactly three leaves, which are of distance h, i and j from x, respectively. Note that88

S1,1,1 = K1,3. The graph S1,1,2 = K1
1,3 is also known as the chair.89

1.2 Known Results90

The computational complexity of Colouring has been fully classified for H-free graphs:91

if H is an induced subgraph of P1 + P3 or of P4, then Colouring for H-free graphs is92

polynomial-time solvable, and otherwise it is NP-complete [20]. In contrast, the complexity93

classification for k-Colouring restricted to H-free graphs is still incomplete. It is known that94

for every k ≥ 3, k-Colouring for H-free graphs is NP-complete if H contains a cycle [10]95

or an induced claw [16, 22]. However, the remaining case where H is a linear forest has not96

been settled yet even if H consists of a single path. For Pt-free graphs, the cases k ≤ 2, t ≥ 197

(trivial), k ≥ 3, t ≤ 5 [14], k = 3, 6 ≤ t ≤ 7 [2] and k = 4, t = 6 [6] are polynomial-time98

solvable and the cases k = 4, t ≥ 7 [17] and k ≥ 5, t ≥ 6 [17] are NP-complete. The cases99

where k = 3 and t ≥ 8 are still open. For further details, including for linear forests H of more100

than one connected component, see the survey paper [11] or some recent papers [5, 12, 19].101

1.3 Our Focus102

We consider H-free graphs where H contains a cycle or claw. In this case, k-Colouring103

restricted to H-free graphs is NP-compete for every k ≥ 3, as mentioned above. However,104

we re-examine the situation after adding a diameter constraint to our input graphs. If the105

diameter is 1, then G is a complete graph, and Colouring becomes trivial. As such, our106

research question is:107

To what extent does bounding the diameter help making Colouring and k-Colouring108

tractable on H-free graphs?109

We remark that H-free graphs of diameter at most d for some integer d are no longer110

hereditary, which requires some care in the proof of our results. We also note that by111

a straightforward reduction from 3-Colouring one can show that k-Colouring is NP-112

complete for graphs of diameter d for all pairs (k, d) with k ≥ 3 and d ≥ 2 except for two113

cases, namely (k, d) ∈ {(3, 2), (3, 3)}. Mertzios and Spirakis [24] settled the case (k, d) = (3, 3)114

by proving that 3-Colouring is NP-complete even for C3-free graphs of diameter 3. The115

case (k, d) = (3, 2) is still open.116

1.4 Our Results117

We complement the bounded diameter results of Mertzios and Spirakis [24] by presenting a118

set of new results for Colouring and k-Colouring for H-free graphs of bounded diameter119

when H contains a claw or a cycle. Results for the case where H has a cycle usually follow120

from stronger results for graphs of girth at least g for some fixed integer g. In particular,121

Emden-Weinert, Hougardy and Kreuter [10] proved that for all integers k ≥ 3 and g ≥ 3,122

k-Colouring is NP-complete for graphs with girth at least g and with maximum degree at123

most 6k13 (for more results on Colouring for graphs of maximum degree, see [3, 7, 25]).124

First, in Section 3 we research the effect on bounding the diameter of k-Colouring and125

Colouring restricted to polyad-free graphs for various polyads. Our first result, which126

formed together with the result of [24] the starting point of our investigation, is that k-127

Colouring is constant-time solvable for K1,r-free graphs of diameter d for any fixed integers128

MFCS 2019



69:4 Colouring H-free Graphs of Bounded Diameter

Colours Diameter H-free Complexity Theorem
fixed k d K1,r P 9
input k d K1,4 NP-c 10

3 d K1
1,3 P 12(1)

3 2 K2
1,r P 12(2)

3 4 K3
1,4 NP-c 12(3)

4 2 K1
1,3 NP-c 12(4)

3 2 S1,2,2 P 13

Figure 1 Our polynomial-time (P) and NP-complete (NP-c) results for polyad-free graphs.

d ≥ 1, k ≥ 1 and r ≥ 1. We also show that this does not hold for Colouring (when k is129

part of the input). We then extend these results for larger polyads; see also Figure 1.130

Second, in Section 4 we perform a similar study for graphs of bounded diameter and girth.131

We provide new polynomial-time and NP-hardness results for k-Colouring, identifying and132

narrowing the gap between tractability and intractability, in particular for the case where133

k = 3 (see also Figure 2). Section 5 contains some open questions and directions for future134

work.135

XXXXXXXXXXdiameter
girth ≥ 3 ≥ 4 ≥ 5 ≥ 6 ≥ 7 ≥ 8 ≥ 9 ≥ 10 ≥ 11 ≥ 12

≤ 1 P P P P P P P P P P
≤ 2 ? ? P P P P P P P P
≤ 3 NP-c NP-c ? ? P P P P P P
≤ 4 NP-c NP-c NP-c NP-c ? ? P P P P
≤ 5 NP-c NP-c NP-c NP-c ? ? ? ? ? P

Figure 2 The complexity of 3-Colouring for graphs of diameter at most d and girth at least g.

136

2 Preliminaries137

In this section we complement Section 1.1 by giving some additional terminology and notation.138

We also recall some useful results from the literature.139

Let G = (V,E) be a graph. A vertex u ∈ V is dominating if u is adjacent to every other140

vertex of G. For a set S ⊆ V , the graph G[S] denotes the subgraph of G induced by S. The141

neighbourhood of a vertex u ∈ V is the set N(u) = {v | uv ∈ E} and the degree of u is the size142

of N(u). For a set U ⊆ V , we write N(U) =
⋃
u∈U N(u) \ U . For a set U ⊆ V and a vertex143

u ∈ U , the private neighbourhood of u with respect to U is the set N(u) \ (N(U \ {u}) ∪ U)144

of private neighbours of u with respect to U , which is the set of neighbours of u outside U145

that are not a neighbour of any other vertex of U . If every vertex of G has degree p, then G146

is (p)-regular.147

We will use the aforementioned results of Král’ et al.; Holyer; Leven and Galil; Emden-148

Weinert, Hougardy and Kreuter; and Mertzios and Spirakis.149

I Theorem 2 ([20]). Let H be a graph. If H ⊆i P4 or H ⊆i P1 + P3, then Colouring150

restricted to H-free graphs is polynomial-time solvable, otherwise it is NP-complete.151
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I Theorem 3 ([16, 22]). For every integer k ≥ 3, k-Colouring is NP-complete for claw-free152

graphs.153

I Theorem 4 ([10]). For all integers k ≥ 3 and g ≥ 3, k-Colouring is NP-complete for154

graphs with girth at least g (and with maximum degree at most 6k13).155

I Theorem 5 ([24]). 3-Colouring is NP-complete for C3-free graphs of diameter 3.156

A list assignment of a graph G = (V,E) is a function L that prescribes a list of admissible157

colours L(u) ⊆ {1, 2, . . .} to each u ∈ V . A colouring c respects L if c(u) ∈ L(u) for every158

u ∈ V. If |L(u)| ≤ 2 for each u ∈ V , then L is also called a 2-list assignment. The 2-List159

Colouring problem is to decide if a graph G with a 2-list assignment L has a colouring160

that respects G. Our strategy for obtaining a polynomial-time algorithm for 3-Colouring161

is often to reduce the input to a polynomial number of instances of 2-List Colouring. The162

reason is that we can then apply the following well-known result of Edwards.163

I Theorem 6 ([9]). The 2-List Colouring problem is linear-time solvable.164

We will also use the following result, which includes the Hoffman-Singleton Theorem,165

which provides a description of regular graphs of diameter 2 and girth 5.166

I Theorem 7 ([8, 15, 30]). For every d ≥ 1, every graph of diameter d and girth 2d+ 1 is167

p-regular for some integer p. Moreover, if d = 2, then there are only four such graphs (with168

p = 2, 3, 7, 57, respectively) and if d ≥ 3, then such graphs are cycles (of length 2d+ 1).169

A clique in a graph is a set of pairwise adjacent vertices, and an independent set is a set170

of pairwise non-adjacent vertices. By Ramsey’s Theorem [27], there exists a constant, which171

we denote by R(k, r), such that any graph on at least R(k, r) vertices contains either a clique172

of size k or an independent set of size r.173

3 Polyad-Free Graphs of Bounded Diameter174

In this section we prove, among other things, our results on Colouring and k-Colouring175

for polyad-free graphs of bounded diameter; see also Figure 1. We first make an observation.176

I Lemma 8. If G is a graph of diameter d that is not a tree, then G contains an induced177

cycle of length at most 2d+ 1.178

Proof. As G is not a tree and G is connected, G must contain a cycle C. Suppose that C has179

length at least 2d+ 2. Since G has diameter d, there exists a path of length at most d in G180

between any two vertices u and v at distance d+ 1 in C. The vertices of this path, together181

with the vertices of the path of length d+ 1 between u and v on C, induce a subgraph of G182

that contains an induced cycle C ′ of length at most 2d+ 1. J183

We now state our first result, which forms the starting point of the research in this section.184

I Theorem 9. For all integers d, k, r ≥ 1, k-Colouring is constant-time solvable for185

K1,r-free graphs of diameter d.186

Proof. Let G = (V,E) be a K1,r-free graph of diameter d. We prove that if G has size187

larger than some constant β(k, r), which we determine below, then G is not k-colourable. If188

|V (G)| ≤ β(k, r), we can solve k-Colouring in constant time.189

As G isK1,r-free, Ramsey’s Theorem tells us that the neighbourhood of every vertex u ∈ V190

with degree at least R(k, r) contains a clique of size k. In that case N(u) ∪ {u} is a clique of191

size k + 1. Hence, to be k-colourable, every vertex of G must have degree less than R(k, r),192

so G must have at most β(k, r) = 1 +R(k, r) +R(k, r)2 + . . .+R(k, r)d vertices. J193

MFCS 2019



69:6 Colouring H-free Graphs of Bounded Diameter

If k is not part of the input, Theorem 9 no longer holds. This is shown by the following more194

general theorem. In this theorem we assume that H 6⊆i P1 + P3 and H 6⊆i P4, as in those195

cases Colouring is polynomial-time solvable for all H-free graphs due to Theorem 2. Note196

that Theorem 10 covers all remaining cases except the case where H = K1,3.197

I Theorem 10. Let H be a graph with H 6⊆i P1 + P3 and H 6⊆i P4 and d be an integer.198

Then Colouring for H-free graphs of diameter at most d is199

1. NP-complete if H has no dominating vertex u such that H−u ⊆i P1 +P3 or H−u ⊆i P4200

and d ≥ 2;201

2. NP-complete if H 6= K1,3 and H has a dominating vertex u such that H − u ⊆i P1 + P3202

or H − u ⊆i P4 and d ≥ 3.203

Proof. 1. Let H have no dominating vertex u such that H − u ⊆i P1 + P3 or H − u ⊆i P4.204

We define H ′ as H − u if H has a dominating vertex u and as H itself otherwise. By205

construction, H ′ 6⊆i P1 + P3 and H ′ 6⊆i P4. Hence, Colouring is NP-complete for H ′-free206

graphs due to Theorem 2. Let G be an H ′-free graph. Add a dominating vertex to G. The207

new graph G′ has diameter 2 and is H-free. Moreover, G is k-colourable if and only if G′ is208

(k + 1)-colourable.209

2. Let H 6= K1,3 have a dominating vertex u such that H − u ⊆i P1 + P3 or H − u ⊆i P4.210

Then H cannot be a forest, as in that case H would be in {P1, P2, P3,K1,3}. Hence, H has211

an induced cycle Cr for some r ≥ 3. If r = 3, then 3-Colouring is NP-complete for H-free212

graphs of diameter 3, as it is so for C3-free graphs of diameter 3 due to Theorem 5. If r ≥ 4,213

then Colouring is NP-complete even for H-free graphs of diameter 2, as it is so for Cr-free214

graphs of diameter 2 due to 1. J215

It is a natural question whether we can extend Theorem 9 to H-free graphs of diameter d,216

where H is a slightly larger tree than a star. The first interesting case is where H is an217

`-subdivided star K`
1,r for some integer ` ≥ 1 and r ≥ 3. We prove a number of results for218

various values of d,k,`. For one of our proofs and also for the proof of our next result we219

need the following theorem.220

I Theorem 11. 3-Colouring can be solved in polynomial time for C5-free graphs of diameter221

at most 2.222

Proof. If G is bipartite, then G is 3-colourable. If G contains a K4, then G is not 3-colourable.223

We check these properties in polynomial time, and from now on we assume that G is K4-free224

and non-bipartite. The latter implies that G must have an odd induced cycle Cr for some225

odd integer r. As G has diameter 2, we find that r ≤ 5 due to Lemma 8. As G is C5-free, it226

follows that r = 3.227

Let C be a triangle in G. We write N0 = V (C) = {x1, x2, x3}, N1 = N(V (C)) and228

N2 = V (G) \ (N0 ∪ N1). As G has diameter 2, for every i ∈ {1, 2, 3}, it holds that every229

vertex in N2 has a neighbour in N1 that is adjacent to xi.230

We let T consist of all vertices of N2 that have a neighbour in N1 that is adjacent to231

exactly two vertices of N0. We claim that N2 = T . In order to see this, let u ∈ N2. If232

u has a neighbour y ∈ N1 adjacent to every xi, then G contains a K4, a contradiction.233

Hence, u must have three distinct neighbour y1, y2, y3, such that for i ∈ {1, 2, 3}, it holds234

that N(yi) ∩N0 = {xi}. If {y1, y2, y3} is a clique, then G has a K4 on vertices u, y1, y2, y3,235

a contradiction. Hence, we may assume without loss of generality that y1 and y2 are non-236

adjacent. However, then {u, y1, x1, x2, y2} induces a C5 in G, another contradiction. We237

conclude that T = N2.238
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If G has a 3-colouring c, then we may assume without loss of generality that c(xi) = i239

for i ∈ {1, 2, 3}. Hence, our algorithm assigns colours 1, 2, 3 to x1, x2, x3, respectively.240

This reduces the list of admissible colours of the vertices of N1 by at least one colour. In241

particular, vertices in N1 that have two neighbours in N0 can be coloured with only one242

colour. Our algorithm assigns this colour to such vertices. This means that any of their243

neighbours in T = N2 can be coloured with at most two colours. So, after propagation, we244

have obtained either two adjacent vertices that are coloured alike, in which case G is not245

3-colourable, or we have constructed an instance of 2-List Colouring. We can solve such246

an instance in linear time due to Theorem 6. J247

We are now ready to state our results for K`
1,r, where we exclude the cases that are248

tractable in general, namely where d = 1, or k ≤ 2, or r ≤ 2 (the latter case corresponds to249

the case where H = K+
1,2 = P4, so we can use Theorem 2). Note that for k ≥ 4 all interesting250

cases are NP-complete, whereas for k = 3 the situation is less clear.251

x1 x2 x3 x4 x5

y

z

w1 w2

N0

N1

N2

N3

Figure 3 An example of a decomposition of a chair-free graph of diameter 3 into sets N0, . . . , N3

where p = 5 and y ∈ N1 has two “descendants” in N3. To prevent an induced chair, y must be
adjacent to exactly two (adjacent) vertices of N0, and w1 and w2 must be adjacent to each other.

I Theorem 12. Let d, k, `, r be four integers with d ≥ 2, k ≥ 3, ` ≥ 1 and r ≥ 3. Then252

k-Colouring for K`
1,r-free graphs of diameter at most d is:253

1. polynomial-time solvable if d ≥ 2, k = 3, ` = 1 and r = 3254

2. polynomial-time solvable if d = 2, k = 3, ` = 2 and r ≥ 3255

3. NP-complete if d ≥ 4, k = 3, ` ≥ 3 and r ≥ 4256

4. NP-complete if d ≥ 2, k ≥ 4, ` ≥ 1 and r ≥ 3.257

Proof. 1. Recall that K1
1,3 is the chair S1,1,2. Let G be a chair-free graph of diameter d.258

If G is a tree, then G is even 2-colourable. We check in O(n4) time if G has a K4. If so,259

then G is not 3-colourable. From now on we assume that G is not a tree and that G is260

K4-free. As G is not a tree and G is connected, G contains an induced cycle of length at261

most 2d+ 1 by Lemma 8. We can find a largest induced cycle C of length at most 2d+ 1262

in O(n2d+1) time. Let |V (C)| = p. We write N0 = V (C) = {x1, x2, . . . , xp} and for i ≥ 1,263

Ni = N(Ni−1) \Ni−2. So the sets Ni partition V (G), and the distance of a vertex u ∈ Ni to264

N0 is i.265

MFCS 2019



69:8 Colouring H-free Graphs of Bounded Diameter

Case 1. 4 ≤ p ≤ 2d+ 1.266

This case is illustrated in Figure 3. We consider every possible 3-colouring of C. Let c267

be such a 3-colouring. Every vertex with two differently coloured neighbours can only be268

coloured with one remaining colour. We assign this unique colour to such a vertex and apply269

this rule as long as possible. This takes polynomial time. The remaining vertices have a list270

of admissible colours that either consists of two or three colours, and vertices in the latter271

case belong to V (G) \ (N0 ∪N1) (as N(N0) = N1).272

If N2 = ∅, then V (G) = N0 ∪N1. Then, we obtained an instance of 2-List Colouring,273

which we can solve in linear time due to Theorem 6. Now assume that N2 6= ∅. Let z ∈ N2.274

Then z has a neighbour y ∈ N1, which in turn has a neighbour x ∈ N0. If y is adjacent to275

neither neighbour of x on N0, then z, y, x and these two neighbours induce a chair in G,276

a contradiction. Hence, y must be adjacent to at least one neighbour of x on N0, meaning277

that y must have received a colour by our algorithm. Consequently, z must have a list of278

admissible colours of size at most 2.279

From the above we deduce that every vertex in N2 has only two available colours in its list.280

We now consider the vertices of N3. Let z′ ∈ N3. Then z′ has a neighbour z ∈ N2, which in281

turn has a neighbour y ∈ N1, which in turn has a neighbour x ∈ N0, say x = x1. If y has282

two non-adjacent neighbours in N0, then z′, z, y and these two non-adjacent neighbours of y283

induce a chair in G, a contradiction. Combined with the fact deduced above, we conclude284

that y must have exactly two neighbours in N0 and these two neighbours must be adjacent,285

say x2 is the other neighbour of y in N0.286

Suppose x1 and x2 are both adjacent to a vertex y′ ∈ N1 \{y} that is adjacent to a vertex287

in N2 that has a neighbour in N3. Then, just as in the case of vertex y, the two vertices288

x1 and x2 are the only two neighbours of y′ in N0. If y and y′ are not adjacent, this means289

that x2, x3, x4, y, y
′ induce a chair in G, a contradiction. Hence y and y′ must be adjacent.290

However, then x1, x2, y, y
′ form a K4, a contradiction. This means that every pair of adjacent291

vertices of N0 can have at most one common neighbour in N1 that is adjacent to a vertex in292

N2 with a neighbour in N3. We already deduced that every vertex of N1 with a “descendant”293

in N3 has exactly two neighbours in N0, which are adjacent. Hence, we conclude that the294

number of such vertices of N1 is at most p.295

We now observe that for i ≥ 2, every vertex in Ni has at most two neighbours in Ni+1.296

This can be seen as follows. If v ∈ Ni has two non-adjacent neighbours w1, w2 in Ni+1, then297

we pick a neighbour u of v in Ni−1, which has a neighbour t in Ni−2. Then v, u, t, w1, w2298

induce a chair in G, a contradiction. Hence , the neighbourhood of every vertex in Ni in299

Ni+1 is a clique, which must have size at most 2 due to the K4-freeness of G. As the number300

of vertices in N1 with a “descendant” in N3 is at most p, this means that there are at most301

2i−1p vertices in Ni with a neighbour in Ni+1. Therefore the total number of vertices not302

belonging to any of the sets N0, N1 or N2 is at most
∑d
i=3 2i−1p.303

This means the total number of vertices not belonging to N1 or N2 is at most β(d) =304 ∑d
i=3 2i−1p+ p ≤

∑d
i=3 2i−1(2d+ 1) + 2d+ 1. Let Tc be this set. We consider every possible305

3-colouring of G[Tc]. As we already deduced that the vertices in N1 ∪N2 have a list of size306

at most 2, for each case we obtain an instance of 2-List Colouring, which we can solve in307

linear time due to Theorem 6. As the total number of instances we need to consider is at308

most 3p × 3β(d) ≤ 32d+1 × 3β(d), our algorithm runs in polynomial time.309

Case 2. p = 3.310

As p was the size of a largest induced cycle of length at most 2d+ 1 and 2d+ 1 ≥ 5, we find311

that G is C4-free. As G is K4-free, each vertex of N1 is adjacent to at most two vertices of312

N0. If a vertex x ∈ N0 has two independent private neighbours u and v in N1 with respect313
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to N0, then every neighbour w of u in N2 must also be a neighbour of v and vice versa, since314

G is chair-free. However, this is not possible, as x, u, w, v induce a C4. We conclude that315

u and v must be adjacent. Therefore, as G is K4-free, every vertex of N0 has at most two316

private neighbours in N1, with respect to N0, that have a neighbour in N2.317

By the same arguments as above we deduce that every two vertices of N0 have at most318

one common neighbour in N1 that is adjacent to a vertex in N2. Combined with the above,319

we find that there at most 6 + 3 = 9 vertices in N1 that have a neighbour in N2. If a vertex320

in N1 has two independent neighbours in N2, then G contains an induced chair, which is321

not possible. Hence the neighbourhood of a vertex in N1 in N2 is a clique, which has size322

at most 2 due to the K4-freeness of G. We conclude that |N2| ≤ 9 × 2 = 18. Similarly,323

every vertex in Ni for i ≥ 3 has at most two neighbours in Ni+1. Therefore the number of324

vertices in Ni for i ≥ 3 is at most 18× 2i−2. This means that the total number of vertices325

outside N0 ∪N1 ∪N2 is at most β(d) =
∑d
i=3 18× 2i−2. Let T be this set. We consider every326

possible 3-colouring of G[T ] and every possible 3-colouring of C. For each case we obtain an327

instance of 2-List Colouring, which we can solve in linear time due to Theorem 6. As the328

total number of instances we need to consider is at most 3d × 3β(d), our algorithm runs in329

polynomial time.330

2. Let G be a K2
1,r-free graph of diameter at most 2. We first check in O(n4) time if G is331

K4-free. If not, then G is not 3-colourable. We then check in O(n5) time if G has an induced332

C5. If G is C5-free, then we use Theorem 11. From now on, suppose that G is K4-free and333

that G contains an induced cycle C of length 5, say on vertices x1, . . . , x5 in that order. We334

write N0 = V (C) = {x1, . . . , x5}, N1 = N(V (C)) and N2 = V (G) \ (N0 ∪N1).335

Let N ′2 be the set of vertices in N2 that are adjacent to some vertex in N1 that is a336

private neighbour of some vertex in N0 with respect to N0. As G is K4-free, the private337

neighbourhood P (xi) of each vertex xi ∈ N0 with respect to N0 does not contain a clique of338

size 3. Moreover, if P (xi) contains an independent set I of size r − 1 for some i ∈ {1, . . . , 5},339

then I ∪ {xi, xi+1, xi+2, xi+3} induces a K2
1,r, which is not possible. Now let v ∈ P (xi)340

for some i ∈ {1, . . . 5}, say i = 1. As G is K4-free, the set N(v) ∩ N2 does not contain a341

clique of size 3. Moreover, if N(v) ∩N2 contains an independent set I ′ of size r − 1, then342

I ′ ∪ {v, x1, x2, x3, } induces a K2
1,r, which is not possible. Hence, |N(v) ∩N2| ≤ R(3, r − 1)343

by Ramsey’s Theorem. We conclude that |N ′2| ≤ 5R(3, r − 1)2.344

We now consider all possible 3-colourings of C. Let c be such a 3-colouring. We assume345

without loss of generality that c(x1) = c(x3) = 1, c(x2) = c(x4) = 2 and c(x5) = 3. Moreover,346

every vertex that has two differently coloured neighbours can only be coloured with one347

remaining colour. We assign this unique colour to such a vertex and apply this rule as long348

as possible. This takes polynomial time. The remaining vertices have a list of admissible349

colours that either consists of two or three colours, and vertices in the latter case must belong350

to N2 (as N(N0) = N1).351

Let Tc be the set of vertices in N2 that still have a list of size 3. We will prove that352

Tc ⊆ N ′2. Let u ∈ Tc. As G has diameter 2, we find that u has a neighbour v adjacent to x5.353

Then v cannot be adjacent to any of x1, . . . , x4, as otherwise v would have a unique colour354

and u would not be in Tc. Hence, v is a private neighbour of x5 with respect to N0. We355

conclude that all vertices in Tc belong to N ′2, which implies that |Tc| ≤ |N ′2| ≤ 5R(3, r − 1)2.356

We now consider every possible 3-colouring of G[Tc]. Then all uncoloured vertices have a357

list of size at most 2. In other words, we created an instance of 2-List Colouring, which358

we solve in linear time using Theorem 6. As the number of 3-colourings of C is at most 35
359

and for each 3-colouring c of C the number of 3-colourings of G[Tc] is at most 35R(3,r−1)2 ,360

the total running time of our algorithm is polynomial.361
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3. We consider the standard reduction from the NP-complete problem NAE 3-SAT [29],362

where each variable appears in at most three clauses and each literal appears in at most two.363

Given a CNF formula φ, we construct the graph G as follows:364

Add a vertex vxi
for each literal xi.365

Add an edge between each literal and its negation.366

Add a vertex z adjacent to every literal vertex.367

For each clause Ci add a triangle Ti with vertices ci1 , ci2 , ci3 .368

Fix an arbitrary order of the literals of Ci, xi1 , xi2 , xi3 and add an edge xijcij .369

Given a 3-colouring of G, assume z is assigned colour 1. Then each literal vertex is370

assigned either colour 2 or colour 3. If, for some clause Ci, the vertices xi1 , xi2 and xi,3 are371

all assigned the same colour, then Ti cannot be coloured. Therefore, if we set literals whose372

vertices are coloured with colour 2 to be true and those coloured with colour 3 to be false,373

each clause must contain at least one true literal and at least one false literal.374

If φ is satisfiable then we can colour vertex z with colour 1, each true literal with colour 2375

and each false literal with colour 3. Then, since each clause has at least one true literal and376

at least one false literal, each triangle has neighbours in two different colours. This implies377

that each triangle is 3-colourable. Therefore G is 3-colourable if and only if φ is satisfiable.378

We next show that G has diameter at most 4. First note that any literal vertex is adjacent379

to z and any clause vertex is adjacent to some literal vertex so any vertex is at distance at380

most 2 from z. Therefore any two vertices are at distance at most 4.381

Finally we show that G is K3
1,4-free. Any literal vertex has degree at most 4 since it382

appears in at most two clauses. However it has at most 3 independent neighbours since its383

negation is adjacent to z. Each clause vertex has at most 3 neighbours so the only vertex384

with four independent neighbours is d. The longest induced path including z has length385

at most 4 since any such path contains at most one literal and at most two vertices of any386

triangle. Therefore G is K3
1,4-free.387

4. This follows from Theorem 3. Let k∗ ≥ 3. We take a claw-free graph G and add a388

dominating vertex to it. The new graph G′ has diameter at most 2 and is K1
1,3-free. Let389

k = k∗ + 1 ≥ 4. Then G is k∗-colourable if and only if G′ is k-colourable. J390

Subdividing two edges of the claw yields another interesting case, namely whereH = S1,2,2.391

For k ≥ 4, Theorem 12 tells us that k-Colouring is NP-complete for S1,2,2-free graphs of392

diameter 2. For k = 3, we could only prove polynomial-time solvability if d = 2.393

I Theorem 13. 3-Colouring can be solved in polynomial time for S1,2,2-free graphs of394

diameter at most 2.395

Proof. Let G be an S1,2,2-free graph of diameter at most 2. We first check in O(n5)396

time if G has an induced C5. If G is C5-free, then we use Theorem 11. Suppose G397

contains an induced cycle C of length 5, say on vertices x1, . . . , x5 in that order. We write398

N0 = V (C) = {x1, . . . , x5}, N1 = N(V (C)) and N2 = V (G)\(N0∪N1). As G has diameter 2,399

for every i ∈ {1, 2, 3}, every vertex in N2 has a neighbour in N1 that is adjacent to xi.400

We let T consist of all vertices of N2 that have a neighbour in N1 that is adjacent to two401

adjacent vertices of N0. So the colour of any vertex of T will be fixed in any 3-colouring after402

colouring the five vertices of N0. We claim that N2 = T . In order to see this, let u ∈ N2. As403

G has diameter 2, we find that u must have a neighbour v ∈ N1 adjacent to a vertex of N0,404

say x1. Then v is not adjacent to x5 or x2. If v is not adjacent to x3 either, then the vertices405

x1, x5, x2, x3, v, u induce a S1,2,2 with center x1, a contradiction. So v must be adjacent to406
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x3, meaning v is not adjacent to x4. However, now x3, x2, x4, x5, v, u induce a S1,2,2 with407

center x3, another contradiction.408

We now “guess” the 3-colouring of C by considering all 35 possibilities if necessary. We409

then proceed as in the proof of Theorem 11. That is, we observe that every vertex of N1410

can only be coloured with two possible colours and that after propagation, every uncoloured411

vertex of N2 can only be coloured with two possible colours as well (as T = N2). Then it412

remains to solve an instance of 2-List Colouring, which takes linear time by Theorem 6. As413

we need to do this at most 35 times, the total running time of our algorithm is polynomial. J414

4 Graphs of Bounded Diameter and Girth415

In this section we will examine the trade-offs for k-Colouring between diameter and girth.416

Recall that Mertzios and Sprirakis [24] proved that 3-Colouring is NP-complete for graphs417

of diameter 3 and girth 4 (Theorem 5). We extend their result in our next theorem, partially418

displayed in Figure 2. This theorem shows that there is still a large gap for which we do not419

know the computational complexity of 3-Colouring for graphs of diameter d and girth g.420

I Theorem 14. Let d, g, k be three integers with d ≥ 2, g ≥ 3 and k ≥ 3. Then k-Colouring421

for graphs of diameter at most d and girth at least g is422

1. polynomial-time solvable if g ≥ 2d+ 1423

2. NP-complete if d = 3 and g ≤ 4 and k = 3424

3. NP-complete if 4p ≤ d ≤ 4p+ 3 and g ≤ 4p+ 2 for some integer p ≥ 1 and k = 3.425

v1 v2 v3 v4

v1,1 v2,1 v3,1 v4,1

v1,2,4v1,2,3 v2,2,4

Figure 4 An example of a graph G′, constructed in the proof of Theorem 14(3), for p = 1.

426

Proof. 1. This case follows from Theorem 7. 2. This case is Theorem 5 (proven in [24]).427

3. We reduce 3-Colouring for graphs of girth at least 8p − 3, which is NP-complete by428

Theorem 4, to 3-Colouring for graphs of diameter at most 4p and girth at least 4p + 2.429

Construct the graph G′ as follows (see Figure 4 for an example):430

label the vertices of G v1 to vn;431

for each vertex of G, add a new neighbour vi,1;432

for every two vertices vi and vj such that dist(vi, vj) > l = 2p− 1 add new vertices to433

form the path vi,1vi,2,j ...vi,p+1,jvj,p,i...vj,1.434
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First we show that G′ has diameter at most 4p. For any two vertices vi and vj of G435

either dist(vi, vj) ≤ l or we have the path vi,1vi,2,j ...vi,p+1,jvj,p,i...vj,1 and dist(vi, vj) ≤436

2p + 2. Similarly, dist(vi, vj,1) ≤ 2p + 1 and dist(vi,1, vj,1) ≤ 2p + 1. Now consider two437

vertices va,r,b and vc,q,d for 2 ≤ r ≤ p + 1, 2 ≤ q ≤ p + 1. If dist(va, vc) ≤ l then438

dist(va,r,b, vc,q,d) ≤ r + q + l ≤ (p + 1) + (p + 1) + (2p − 1) ≤ 4p + 1. Otherwise we439

have the path va,r,b..va,1va,2,c...va,p+1,cvc,p,a...vc,1vc,2,d...vc,q,d. This gives dist(va,r,b, vc,q,d) ≤440

(r − 1) + p + p + (q − 1) ≤ 4p. In fact, if dist(va,r,b, vc,q,d) = 4p + 1, then we must have441

r = q = p+ 1 and dist(va, vc) = dist(va, vd) = dist(vb, vc) = dist(vb, vd) = 2p−1. In this case442

we have two paths of length at most 4p− 2 between va and vb, one containing vc and the443

other containing vd. These paths must be distinct since the existence of the vertex vc,p+1,d444

implies that dist(vc, vd) > 2p− 1. Therefore we have a cycle in G of length at most 8p− 4445

which contradicts the assumption that G has girth at least 8p − 3. This implies that the446

diameter of G′ is at most 4p.447

Since G has girth at least 8p− 3, every cycle in G′ of length less than 4p+ 2 must contain448

at least one vertex of V (G′)\V (G). Since all the vertices of V (G′)\V (G) except the vertices449

vi,1 have degree 2, any such cycle C must contain the path vi,1..vi,p+1,j ...vj for some vi, vj at450

distance greater than l. This path has length 2p+ 1. If C contains vi,2,m for some m different451

from j then it contains the path vi,2,m...vm,1 and has length at least 4p+ 2. Similarly, this is452

the case if C contains vj,2,m for m different from i. Otherwise C contains vi and vj which453

are at distance at least l and has length at least (2p+ 1) + 2 + (2p− 1) = 4p+ 2.454

Finally, we show that G is 3-colourable if and only if G′ is 3-colourable. The latter holds455

if and only if the subgraph G′′ of G′ induced by V (G) ∪ {vi,1 | 1 ≤ i ≤ n} is 3-colourable,456

since every other vertex of G′ has degree 2. The graph G is 3-colourable if and only if G′′ is457

3-colourable, since G is an induced subgraph of G′′ and each vertex of V (G′′) \ V (G) has458

degree 1. Therefore, G is 3-colourable if and only if G′ is 3-colourable. J459

5 Conclusions460

We proved a number of new results for Colouring and k-Colouring for polyad-free461

graphs of bounded diameter and for graphs of bounded diameter and girth. In particular462

we identified and narrowed a number of complexity gaps. This leads us to some natural463

open problems. Our first two open problems follow from Theorem 10. The third open464

problem comes from Theorem 12; note that K2
1,3 = S1,1,3. Our fourth open problem stems465

from Theorem 13. Recall that determining the complexity of 3-Colouring for graphs of466

diameter 2 is still wide open. This question is covered by the fifth open problem.467

B Open Problem 1. Does there exist an integer d such that Colouring is NP-complete for468

K1,3-free graphs of diameter d?469

B Open Problem 2. What is the complexity of Colouring for C3-free graphs of diameter 2,470

or equivalently, graphs of diameter 2 and girth 4?471

B Open Problem 3. What are the complexities of 3-Colouring for K1
1,4-free graphs of472

diameter 3 and for K2
1,3-free graphs of diameter 3?473

B Open Problem 4. Do there exist integers d, h, i, j such that 3-Colouring is NP-complete474

for Sh,i,j-free graphs of diameter d?475

B Open Problem 5. What is the complexity of the open cases in Figure 2 and in particular476

of 3-Colouring for graphs of diameter 2 and for graphs of diameter 2 and girth 4?477
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