
Early Dropout Prediction for Programming
Courses supported by Online Judges

Filipe D. Pereira1, Elaine Oliveira2, Alexandra Cristea3, David Fernandes2,
Luciano Silva1, Gene Aguiar1, Ahmed Alamri3, and Mohammad Alshehri3

1 Department of Computer Science, Federal University of Roraima, Roraima, Brazil
{filipe.dwan,luciano.silva,gene.charles}@ufrr.br

2 Computer Institute, Federal University of Amazon, Amazon, Brazil
{elaine,david}@icomp.ufam.edu.br
University, Durham, United Kingdom

{alexandra.i.cristea,ahmed.s.alamri,mohammad.a.alshehri}@durham.ac.uk

Abstract. Many educational institutions have been using online judges
in programming classes, amongst others, to provide faster feedback for
students and to reduce the teacher’s workload. There is some evidence
that online judges also help in reducing dropout. Nevertheless, there
is still a high level of dropout noticeable in introductory programming
classes. In this sense, the objective of this work is to develop and validate
a method for predicting student dropout using data from the first two
weeks of study, to allow for early intervention. Instead of the classical
questionnaire-based method, we opted for a non-subjective, data-driven
approach. However, such approaches are known to suffer from a potential
overload of factors, which may not all be relevant to the prediction task.
As a result, we reached a very promising 80% of accuracy, and performed
explicit extraction of the main factors leading to student dropout.

Keywords: learning analytics, programming online judges, dropout

1 Introduction

As dropout prediction based on data-driven solutions has been studied recently
intensively in MOOCs [5, 14, 2], at first glance, similar approaches seem applica-
ble using data from Programming Online Judges (POJ) [13, 6]. Especially early
prediction has been advocated [4, 5, 10], as it is the only type of prediction that
allows for interventions, for students as well as in supporting teachers. However,
POJ are more challenging than ’simple’ e-learning systems, including MOOCs,
which mainly deliver content, or even online tests and evaluations, usually only
based on multiple choice tests or questionnaires. The main complexity lies in
the ’free’ nature of the student input, in the form of a program. Hence, the data
created is both richer and more complex. The complexity increases when on-
line judges are complemented by IDEs, which allow students to input multiple
programs and receive iterative feedback. Moreover, MOOCs usually have very
high numbers of students (of the orders of thousands or tens of thousands) [12,



2 F.D. Pereira et al.

5], whereas online judges with embedded IDE, as here, have lower numbers [8].
This leads to the data being potentially less reliable, and the prediction more
difficult. Thus, here, we tackle, to the best of our knowledge, for the first time,
the challenging problem of early prediction of dropout using data collected from
Introductory Programming courses supported by IDEs embedded in POJs. To do
so, we defined two research questions: RQ1. How can early dropout prediction
for students on Introductory Programming courses be achieved, for medium-
sized cohorts using IDE embedded in online judges? RQ2. Which early student
behaviours (here, features) are leading indicators of dropout (for the case above)?
(answering to questions such as: why? and how? )

2 Methodology

In our work dropout is interpreted as having an attendance level less than 75%
in the course of Introduction to Programming, since we collected data from the
Federal University of Amazonas. In Brazil there is a law which establishes that
for every University course, students can not pass if their absence is higher than
25%. We collected data from the online judge CodeBench system, which was
developed by one of the authors, used as support for instructors and students in
programming courses. The data were collected from 9 introductory programming
classes. In this paper, only the data from the first two weeks were used as training
data for the prediction task, as we aim at as early prediction as possible.

To construct the predictive model we first collected and defined 20 initial ML
features, starting from the state of the art, from related domains, which could
be applied to Programming Classes with online judges. We also added our own
self-devised features, which were introduced based on knowledge extracted from
discussions with teachers that were using IDEs with online judges. For instance,
we used number of comments ; number of logical lines, time spent programming
(in minutes), and etc. However, after performing Recursive Feature Selection [7],
only 5 of the 20 features (which will be discussed more in depth at the end of
this section) were relevant for the task of predicting dropout, which are: lloc -
number of logical lines for each submitted code [9]; correctness - number of
test cases passed for each problem [3]; correctness with effort: represents the
same as correctness, but in this case we considered correct only student solutions
with more than 50 log lines3; access num - number of student logins between
the beginning and end of a session; keystroke latency - keystroke latency of
the students (in seconds) when typing in the embedded IDE;

Furthermore, because of the unbalanced nature of the dataset, where approx-
imately 79% of the students did not dropout, we applied random undersampling.
For prediction, we employed the ML algorithm C4.5 [11] because besides being
efficient, it provides an easy interpretation of the existing relationships in the
data. The model was optimized using grid search and validated with 10-folds
cross-validation method.
3 number of log lines on attempt to solve problems. To illustrate, each time the student

presses a button in the embedded IDE of the ’online judge’, this event is stored as
a line in a log file (adapted from [1, 3])



Early Dropout Prediction for Programming Courses 3

3 Results and Discussion

Using the method explained in the previous section, the predictive model achieved
80% of accuracy. The model was able to identify students who dropped out and
those who did not, with a similar hit rate, as shown in Table 1.

Table 1. Results using a balanced database.

Precision Recall Class Situation
0.82 0.76 0 Dropout
0.78 0.84 1 Complete

As our goal is to analyse which early student behaviours (here, features) are
leading indicators of dropout or completion, we retrained the same model that
achieved 80% of accuracy with the entire dataset. The resulting tree can be seen
in Figure 1, where the nodes in orange represent the dropout estimation of the
tree and the blue nodes represent completion. The difference in color tones is
due to the division of the parent node. In other words, the darker the color, the
higher the information gain in the prediction (less entropy).

correctness <= 9.5
samples = 100.0%
value = [0.5, 0.5]
class = dropout

keystroke_latency <= 1.525
samples = 38.8%
value = [0.8, 0.2]
class = dropout

True

correctess_with_effort <= 4.5
samples = 61.2%

value = [0.31, 0.69]
class = non-dropout

False

access_number <= 5.5
samples = 32.9%

value = [0.88, 0.12]
class = dropout

samples = 5.9%
value = [0.4, 0.6]

class = non-dropout

access_number <= 1.5
samples = 24.1%

value = [0.95, 0.05]
class = dropout

samples = 8.8%
value = [0.67, 0.33]

class = dropout

samples = 7.1%
value = [0.83, 0.17]

class = dropout

samples = 17.1%
value = [1.0, 0.0]
class = dropout

samples = 7.1%
value = [0.58, 0.42]

class = dropout

access_number <= 4.5
samples = 54.1%

value = [0.27, 0.73]
class = non-dropout

samples = 6.5%
value = [0.55, 0.45]

class = dropout

access_number <= 15.5
samples = 47.6%

value = [0.23, 0.77]
class = non-dropout

keystroke_latency <= 1.595
samples = 40.6%
value = [0.2, 0.8]

class = non-dropout

samples = 7.1%
value = [0.42, 0.58]
class = non-dropout

samples = 25.3%
value = [0.26, 0.74]
class = non-dropout

samples = 15.3%
value = [0.12, 0.88]
class = non-dropout

Fig. 1. Decision tree created using the entire balanced database.

The decision tree nodes of Figure 1 might contain four fields. At the top of
each internal node, there is a condition that is used for the estimator to make
a decision, which may be true or false, where the upward-tilted arrow indicates
true and the down-tilt arrow indicates false. In all nodes there is a field samples
that shows the percentage of the sub-sample that was received by a child node
after the split, based on the condition of the parent node. Just below the samples
field, we have the field value = [x, y], represented by an ordered pair, where x
contains the percentage of the samples dropout and y brings the value of the
non-dropout sub-sample. Finally, there is a field called class that represents the
decision made based on the previous conditions, that is, whether or not the
student has dropped out.



4 F.D. Pereira et al.

It is noticed that the correctness feature was the most relevant for the
model and therefore it was placed in the root of the tree. Thus, if correctness
is less than or equal to 9.5 and the feature keystroke latency is greater than
1.525, then the student is classified as non-dropout. An analysis of this rule
allows us to understand that students who do well on the problem lists and code
quickly are more likely not to drop out. Another aspect of this is the fact that
students coding fast may indicate that they already had previous programming
experience.

However, when the student has a correctness grade below 9.5, and a
keystroke latency less than or equal to 1.525, as well as a very low number of
accesses to the online judge (access num), the probability of him to dropout is
very high. This can be seen in the leaves at the top of the tree (orange), where
the confidence level of the decision is 83% and 100% (almost without entropy).

On the other hand, if the correcteness is greater than 9.5, the student
has often accessed the online judge and correctness with effort is greater
than 4.5, then the student is classified as non-dropout. Noteworthy is that this
rule shows that dedicated students, who solve the problems list, frequently
access the online judge and have many lines of log in solving the problems
(correctness with effort) in the first two weeks of the course, they usually
complete the course. However, even when a student has solved many problems,
if they generated only a few log lines; if such a student has additionally accessed
the online judge only a few times, then this student is classified as dropout. Ob-
serve that if the students have few log lines on a particular submitted solution,
this may mean that they did not solve the problem from scratch in the IDE.

4 Conclusion

In our view, these rules are very interesting as they could be presented as warn-
ings to the students, perhaps as pop-up messages when they are programming in
the IDE of the online judge. It might be helpful for students to know in advance
that some programming behaviours might lead to dropping out. For example,
knowing in advance that it is important to solve all the programming problems
from the lists of problems, but is also important to undertake effort doing it
by themselves, without many ”copy and paste” actions, could lead the student
to a more conscientious attitude, as well as being enpowered and in charge or
their learning. Another point is that students who have lower keystroke latency
(code slowly) could be hesitating or procrastinating and some recommendation
about this issue could be important to make the students reflect about their be-
haviour. However, in general, the interventions could help students to improve
upon identified weaknesses in their programming skills, by recommending them,
for example, to revisit specific parts of the material, post their doubts on the
forums, and talk to the teacher/tutor. From the perspective of the instructors,
some information could be displayed to them, such as a list (group) of students
who have a high probability to dropout or not. With this information in hand,
the instructors could do some interventions.



Early Dropout Prediction for Programming Courses 5

References

1. Ahadi, A., Lister, R., Haapala, H., Vihavainen, A.: Exploring machine learning
methods to automatically identify students in need of assistance. Icer’15 pp. 121–
130 (2015)

2. Alamri, A., Alshehri, M., Cristea, A., Pereira, F.D., Oliveira, Elaine, S.L., Stewart,
C.: Predicting moocs dropout using only two easily obtainable features from the
first weeks activities. In: International Conference on Intelligent Tutoring Systems
(ITS2019). Springer. (2019)

3. Castro-Wunsch, K., Ahadi, A., Petersen, A.: Evaluating neural networks as a
method for identifying students in need of assistance. In: Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education. pp. 111–
116. ACM (2017)

4. Chen, W., Brinton, C.G., Cao, D., Mason-singh, A., Lu, C., Chiang, M.: Early
detection prediction of learning outcomes in online short-courses via learning be-
haviors. IEEE Transactions on Learning Technologies (2018)

5. Cristea, A.I., Alamri, A., Kayama, M., Stewart, C., Alsheri, M., Shi, L.: Earliest
predictor of dropout in moocs: A longitudinal study of futurelearn courses. In:
27th International Conference on Information Systems Development (ISD2018).
Association for Information Systems, Lund, Sweden (2018)

6. Dwan, F., Oliveira, E., Fernandes, D.: Predição de zona de aprendizagem de alunos
de introdução à programação em ambientes de correção automática de código.
In: Brazilian Symposium on Computers in Education (Simpósio Brasileiro de In-
formática na Educação-SBIE). vol. 28, p. 1507 (2017)

7. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classi-
fication using support vector machines. Machine learning journal 46(2), 389–422
(2002)

8. Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Börstler, J., Edwards, S.H.,
Isohanni, E., Korhonen, A., Petersen, A., Rivers, K., et al.: Educational data min-
ing and learning analytics in programming: Literature review and case studies.
In: Proceedings of the 2015 ITiCSE on Working Group Reports. pp. 41–63. ACM
(2015)

9. Otero, J., Junco, L., Suarez, R., Palacios, A., Couso, I., Sanchez, L.: Finding in-
formative code metrics under uncertainty for predicting the pass rate of online
courses 373, 42–56 (2016)

10. Pereira, F.D., Oliveira, E., Fernandes, D., Cristea, A.: Early performance prediction
for cs1 course students using a combination of machine learning and an evolutionary
algorithm. In: The 19th IEEE International Conference on Advanced Learning
Technologies (ICALT 2019) (2019)

11. Quinlan, J.R.: C4. 5: Programming for machine learning. Morgan Kauffmann 38,
48 (1993)

12. Vivian, R., Falkner, K., Falkner, N.: Addressing the challenges of a new digital
technologies curriculum: Moocs as a scalable solution for teacher professional de-
velopment (2014)

13. Wasik, S., Antczak, M., Laskowski, A., Sternal, T., et al.: A survey on online judge
systems and their applications. ACM Computing Surveys (CSUR) 51(1), 3 (2018)

14. Whitehill, J., Mohan, K., Seaton, D., Rosen, Y., Tingley, D.: Delving deeper into
mooc student dropout prediction. arXiv preprint arXiv:1702.06404 (2017)


