

A Javascript Musical Machine Listening Library
Nick Collins Shelly Knotts

Durham University Durham University

nick.collins@durham.ac.uk knotts.shelly@gmail.com

ABSTRACT
More advanced interactive web browser based computer
music applications are supported through a new javas-
cript library for musical machine listening, MMLL. The
library includes such facilities as beat tracking, pitch
tracking, onset detection, major/minor chord detection,
IFFT resynthesis and a tracking phase vocoder imple-
mentation. The code’s efficiency, technical issues, and
two example applications built upon the library are dis-
cussed.

INTRODUCTION
Web Audio API is a maturing technology for web brows-
er based audio digital signal processing through javascript
coding. Due to the efficiency of javascript engines in re-
cent web browsers, it is an attractive option for new com-
puter music work, not least given the promise of inherent-
ly cross platform capability, with ease of release to musi-
cian end-users (just direct them to a URL!). There remain
some question marks over performance in the case of
simultaneous use of an intensive audio callback and visu-
al rendering or other heavy GUI.1 Nonetheless, perfor-
mance in non-graphics heavy settings is certainly reliable
enough for computer music applications, and the tight
potential coupling of GUI and low level audio DSP a
powerful option.

A few libraries for feature extraction have appeared, in-
cluding jsXtract, a native javascript port of libXtract [1],
and Meyda [2]. These feature extractors provide standard
audio descriptors such as MFCCs or the spectral centroid.
However, they do not currently include the more mid to
high level music analysis associated with such processes
as chord detection or beat tracking. A few isolated exam-
ples of pitch detection algorithms have appeared online,2
visualisations based on feature extraction have been ex-
plored [3],3 and Web Audio API has a built in Analyzer

1 The audio worklets system, which supports separate
threads for audio from other processes, is not yet suffi-
ciently proven at the time of writing to constitute main-
stream Web Audio API practice, but does promise en-
hanced safety of audio code execution, at the expense of
additional overhead in passing data between different
areas of the program.

2 See for instance:
https://webaudiodemos.appspot.com/pitchdetect/index.ht
ml

3 Further, see: https://developer.mozilla.org/en-
US/docs/Web/API/Web_Audio_API/Visualizations_with
_Web_Audio_API

node for FFT analysis. Vamp plugins have been ported to
javascript via transpilation [4]. These implementations
are complementary to the current work, but there is much
audio analysis code available that hasn’t yet been the
subject of porting. We also work here from the ground up
aiming for efficient real-time performance for live music
use cases.

The present paper proceeds by introducing a new javas-
cript library for musical machine listening with a basic
tutorial in its use, considers efficiency and technical con-
cerns, and discusses an example beat tracker driven audio
cutting application amongst other application and end-
user initiatives.

THE CODE LIBRARY
MMLL is a javascript library intended for use in Web
Audio API contexts.4 It provides a variety of higher level
musical listening facilities for computer music, such as
onset detection, pitch tracking, (major-minor) chord de-
tection, beat tracking and auditory modeling. All listening
objects can run live, or can be called in a simulated block
by block way offline (potentially faster than realtime).
The library was developed by the first author as part of
the AHRC funded Musically Intelligent Machines Inter-
acting Creatively (MIMIC) project, and is released under
an MIT license.

MMLL can be deployed just for the machine listening
objects within a user’s own audio callback (e.g., as part of
a ScriptProcessorNode), or via a quick setup frontend that
hides Web Audio API details and has a user write setup
and audio callback functions analogous to Processing's
setup and draw [5].

The latter method is the one explained here, but those
more expert in Web Audio API should find it easy
enough to just take the analyzers for their own work.
Simply linking to the precompiled MMLL.js script file is
enough to deploy the library, though from the home di-
rectory of the library you can compile it afresh via the
shell script provided (The library is just a concatenation
of the js source files, where emscripten transpilation of
some further C source code has already been conducted).

The typical expectation of a machine listening object is
that we are working at 44.1KHz sampling rate and that a
mono (single channel) input block of samples will be
provided for analysis. The audio callback convenience
function supplied by the library assumes stereo audio
data, but provides both left and right input buffers, in case

4 https://github.com/sicklincoln/MMLL

audio processing is required, and a mixed mono input
buffer (left and right channel average). Output is to sepa-
rate left and right buffers. The machine listening objects
deal themselves with accumulating samples ready for
processing (often via an FFT) and the user normally
doesn't have to worry about that part. However, objects
should cope at other standard sampling rates such as
48KHz, 88.2KHz and 96 KHz, even if performance is
sub-optimal; for example, the onset detector was devel-
oped based on evaluation over a corpus of 44.1KHz sam-
ples, so works best at this home rate.

1.1 A minimal code example

A minimal code example is reproduced below. Note how
the machine listener object is prefixed with MMLL, and
the SetUp function is passed the sampling rate, needed
for initializing the listener. The CallBack is where the
main action happens, as each new block of input samples
is passed in. The input and output arguments hold
MMLLInput and MMLLOutput objects, which make the
channels of input and output audio accessible, as well as a
special input.monoinput which is a single channel ready
for the listener. If a stereo sound file is loaded or two
channel live input requested, the monoinput will be the
average of the left and right channels. The output object
assumes a stereo output for now, exposing the left and
right channel data arrays. The final GUISetup takes care
of the detail of Web Audio API setup, including calling
the Setup function at an appropriate time once the sample
rate is confirmed, and establishing the callback. Buttons
at the bottom of the webpage provide the option to work
with live microphone input, or by loading a sound file;
once audio input is underway, the buttons change to a
single stop button which finishes a session (the two start
options for microphone or audio file are then restored).

var audioblocksize = 256;

//lowest latency possible in Web Audio API

var setup = function SetUp(sampleRate) {

sensorydissonance = new

MMLLSensoryDissonance(sampleRate);

};

var callback =

function CallBack(input,output,n) {

var dissonance =

sensorydissonance.next(input.monoinput);

console.log(dissonance);

for (i = 0; i < n; ++i) {

output.outputL[i] = input.inputL[i];

output.outputR[i] = input.inputR[i];

}

};

var gui = new

MMLLBasicGUISetup(callback,setup,audioblo
cksize,true,true);

1.2 The main machine listening facilities and their
CPU cost

Table 1 lists some of the main machine listening objects
available in MMLL at the time of writing, with some
indicative CPU costs, benchmarked on a five year old
2013 MacBook Pro (2.3GH i7 running Chrome
67.0.3396.87). Measurement in the final column gives
CPU hit on one core; since processing is spread between
the coreaudiod daemon and Chrome itself (labelled
Google Chrome Helper in ActivityMonitor) two numbers
are given. It is clear that the CPU cost is not prohibitive
of running multiple machine listening processes with
further audio synthesis on an older laptop, thus demon-
strating the feasibility of established computer music al-
gorithms for web browsers.

Performance in Firefox is comparable. The library has
shortcut functions to work with either audio file input, or
live microphone. The latter is a little more expensive in
CPU load, due to denormal safety checks.5

Most objects have their origin in the machine listening
facilities available in SuperCollider [6]. Manual ports
from C code to javascript, or transpilation from C to ja-
vascript have both been explored. In fact, the perfor-
mance of MMLL, whilst not as strong as SuperCollider’s
native C compiled scsynth, is reasonable, working at
around double the CPU cost, and in some cases for longer
block sizes, near equivalent.

1.3 Emscripten ports

Much legacy machine listening code exists in C, and it is
possible to convert C code to Javascript via transpilation,
for instance, with emscripten.6 The BeatTrack UGen is an
emscripten port of a SuperCollider UGen written with C
(itself converted from research MATLAB code); the al-
gorithm is due to Matthew Davies [7].

The drawback of transpilation is that the transpiler intro-
duces an overhead in terms of code complexity in javas-
cript, and requirements for careful calls to the transpiled
functions and associated memory access for passing data.

The FFT library chosen was KissFFT,7 offering a permis-
sive license compatible with the MIT licensing of
MMLL, alongside competitive performance (the code

5 This is often an issue on Mac for unregulated audio in-
put; without the checks, audio can abruptly cut out for an
out of range signal, or increase processing cost for very
small floating point values
6 http://kripken.github.io/emscripten-site/
7 https://github.com/j-funk/kissfft-js

uses emscripten to port from a C original). Whilst the
rival javascript emscripten port of FFTW has been shown
to be superior in testing,8 the GNU GPL license restricts
usage, for only a small relative gain in performance.

Table 1 List of relative performance of some machine
listening algorithms within MMLL

8 https://github.com/j-funk/js-dsp-test/

Algorithm Explanation CPU cost
(one instance)

% coreaudio/

chrome

Control case: random
noise + sample

https://webaudioapi.com/samples/script-processor/ (Random noise added to
sample)

6/2

Control case: Pitch

detector

https://webaudiodemos.appspot.com/pitchdetect/index.html 5/15

Control case: tuner https://developer.microsoft.com/en-us/microsoft-
edge/testdrive/demos/webaudiotuner/

6/6

FFT Basic short time Fourier transform 5/4

IFFT resynthesis Overlap add resynthesis via IFFT after FFT and frequency band filter 6/4

Onset detector Algorithm by the first author, MIREX 2005 [8] 5/6

Beat tracker Longer time window decision, stable but slower reacting to change [7] 5/7

Fast reacting beat tracker Less stable, fast reacting, based on a variation of Scheirer’s algorithm [9]
where the comb filters are leaky integrators

5/6

Chord detection/key
detection

Discriminates major and minor chord forms, by proximity to template chro-
ma profiles [10]. Will also attempt to discriminate key if given longer decay
times.

5/7

Sensory dissonance After Sethares [11] 5/8

Gammatone auditory
filterbank

88 filters spaced according to the frequencies of the 88 piano keys (in stand-
ard 12TET)

5/24

Gammatone filter Single filter at 1000Hz, 200Hz bandwidth 5/2

Haircell model Basic compressive nonlinear haircell model based on accumulation of
transmitter (integrate and fire).

5/3

Tracking phase vocoder After [12], sinusoidal oscillator bank resynthesis allowing f0 change without
affecting duration

10/10

Constant Q pitch

detector

After Brown and Puckette [13] 12/13

YIN autocorrelation
pitch detector

After [14]. Block by block caching of difference function calculations is
used to improve efficiency (otherwise runs at around 10/75 CPU cost)

10/20

EXAMPLE APPLICATIONS
BBCut is an example application created using MMLL
which rests upon beat tracking, allowing the triggering of
rhythmic stutters locked to the beat, as well as a comb
filter delay effect.9 It uses code converted from a C lan-
guage original (originally available as an iPhone app),
manually ported to javascript. The screenshot reveals the
main interface; the ‘Open Microphone’ and ‘Open Audio
File’ buttons are automatically added programmatically
by the javascript library’s helper shortcut functions. The
sliders and buttons control the available cuts, via auto-
matic or manual triggering, and an additional comb filter
delay.

Figure 1 Excerpt screenshot of BBCut showing the
main controls

Figure 2 Screenshot of Rhythm Remixer

Rhythm Remixer is another example application which
uses MMLL’s onset detector. The interface shows a step
sequencer, and provides controls allowing the user to set
a tempo and threshold for detecting onsets. The user can

9 https://dev.codecircle.gold.ac.uk/code/5ed346fe-f7d5-
b7ce-87a4-df6e352dbb4a

choose a part to record, and a remixing algorithm. When
recording is activated the user can tap a rhythm into the
step sequencer using the computer microphone. Accom-
panying parts are generated using the selected remixing
algorithm.

USER REPORTS
Though the library has just been released on github, and
this conference paper will form part of a strategy to more
widely disseminate the software, early live performance
experiments have taken place within a research project
team.

Live premieres for many of the machine listeners are at
the time of writing planned for an algorave [15] at the
Sheffield AlgoMech festival in May 2019. The second
author will play supported by the library where hypnotic
noisy loops are transformed via musical machine listen-
ing data. The first author will deploy variations on the
BBCut application in section 3 alongside gammatone
filterbank vocoding, and further web audio API apps,
across many browser tabs.

CONCLUSIONS
A machine listening library has been released for javas-
cript that makes available some musical audio analysis
processes ready for web browser computer music. There
still remain many machine listening facilities in Super-
Collider which can be ported from UGen C source code,
as well as plenty of algorithms across the computer music
and music information retrieval literature to implement
directly in javascript or transpile via emscripten. Future
planned additions to the library include the following
SuperCollider UGens:

• PolyPitch: multiple f0 tracking UGen

• SMS: spectral modeling synthesis implementa-
tions

• Median Separation: percussive/tonal source sep-
aration algorithm

Further work would explore automatic drum detection,
matching pursuit and concatenative synthesis, alongside
integration with machine learning code.

Having completed the javascript porting of many estab-
lished computer music algorithms, we are confident that
web audio API provides a reasonably efficient, powerful-
ly cross-platform and easily deployable project base for
future computer music.

Acknowledgments

This work was funded under Arts and Humanities Re-
search Council grant AH/R002657/1

REFERENCES
[1] Jillings, Nicholas, Jamie Bullock, and Ryan Stables

(2016) “JS-Xtract: A realtime audio feature
extraction library for the web.” In the International
Society for Music Information Retrieval Conference

[2] Rawlinson, H., N. Segal, and J. Fiala (2015)
“Meyda: An audio feature extraction library for the
Web Audio API.” In Proceedings of the 1st Web
Audio Conference.

[3] Roma, Gerard, Anna Xambó, Owen Green, and
Pierre Alexandre Tremblay (2018) “A Javascript
Library for Flexible Visualization of Audio
Descriptors.” Proceedings of the 4th Web Audio
Conference, Berlin.

[4] Thompson, Lucas, Chris Cannam, and Mark Sandler
(2017) “Piper: Audio Feature Extraction in Browser
and Mobile Applications.” Proceedings of the 3rd
Web Audio Conference, London.

[5] Reas, Casey, and Ben Fry (2007) Processing: a
programming handbook for visual designers and
artists. Cambridge, MA: MIT Press, 2007.

[6] Wilson, Scott, David Cottle, and Nick Collins.
(2011) The SuperCollider Book. Cambridge, MA:
The MIT Press

[7] Davies, M. E. P. and Plumbley, M. D. (2005) “Beat
Tracking With A Two State Model.” Proceedings of
the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP 2005),
Philadelphia, USA, March 19-23

[8] Collins, N. (2005) “A change discrimination onset
detector with peak scoring peak picker and time
domain correction.” Proc. 1st Annu. Music Inf.
Retrieval Evaluation eXchange (MIREX).

[9] Scheirer, Eric D. (1998) “Tempo and beat analysis
of acoustic musical signals.” Journal of the
Acoustical Society of America 103(1): 588-601.

[10] Gomez, Emilia (2006) Tonal Description of Music
Audio Signals. Doctoral dissertation, Department of
Information and Communication Technologies,
Universitat Pompeu Fabra

[11] Sethares, William A. (1998) “Consonance-Based
Spectral Mappings.” Computer Music Journal 22(1):
56-72

[12] McAulay, R. and Quatieri, T. (1986) Speech
analysis/synthesis based on a sinusoidal
representation. IEEE Transactions on Acoustics,
Speech, and Signal Processing 34(4): 744-754

[13] Brown, J. C. and Puckette, M. S. (1993) A High-
Resolution Fundamental Frequency Determination
Based on Phase Changes of the Fourier Transform.
Journal of the Acoustical Society of America 94(2):
662-7

[14] De Cheveigné, A. and Kawahara, H. (2002) “YIN, a
fundamental frequency estimator for speech and
music.” The Journal of the Acoustical Society of
America 111(4): 1917-1930

[15] Collins, Nick, and Alex McLean. (2014) “Algorave:
Live performance of algorithmic electronic dance
music.” In Proceedings of New Interfaces for
Musical Expression, London

