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Abstract—Automatic detection for threat object items is an
increasing emerging area of future application in X-ray security
imagery. Although modern X-ray security scanners can provide
two or more views, the integration of such object detectors
across the views has not been widely explored with rigour.
Therefore, we investigate the application of geometric constraints
using the epipolar nature of multi-view imagery to improve
object detection performance. Furthermore, we assume that
images come from uncalibrated views, such that a method to
estimate the fundamental matrix using ground truth bounding
box centroids from multiple view object labels is proposed. In
addition, detections are given a confidence probability based on
its similarity with respect to the distribution of the distance
to the epipolar line. This probability is used as confidence
weights for merging duplicated predictions using non-maximum
suppression. Using a standard object detector (YOLOv3), our
technique increases the average precision of detection by 2.8%
on a dataset composed of firearms, laptops, knives and cameras.
These results indicate that the integration of images at different
views significantly improves the detection performance of threat
items of cluttered X-ray security images.

Index Terms—Multi-view, X-ray security imagery, object
detection, epipolar geometry

I. INTRODUCTION

The screening of passenger baggage is an essential task for
airport security to avoid threat items entering secure zones. In
this regard, the efficiency and aptitude of screening operators
is crucial in order to meet the required security standards.
Due to the complex and cluttered nature of X-ray security
screening imagery, operators must be assessed constantly in
order to monitor their performance. Additionally, the ever
increasing use of air travel by the public puts increasing
pressure on security screening efficiencies. The International
Air Transport Association forecasts that the number of air
transport passengers could double with up to 8.7 billion
passengers globally by 2037 [1]. As a result, the introduction
of assistive and automated technologies to aid in the security
screening process is a major interest for security [2].

Automatic object detection is a contemporary problem in
computer vision, which comprises of the joint localisation
and classification of objects of interest within an image with
protected objects. Identified objects are usually presented via
a bounding box or mask. In this context, deep Convolutional
Neural Networks (CNN) have proven to be a reliable
technique for object detection [3]–[7]. One detector which
has shown a good performance in detection of general
objects is R-CNN (regions with CNN features) [8]. The
latest iteration of this approach, Faster R-CNN [3], uses
a two stage process to predict bounding box detections.

Fig. 1. Exemplar of multi-view X-ray security imagery (bottom/side view).

First, a region proposal network predicts a set of bounding
boxes indicating regions that contain objects. Each of these
proposed boxes is given an objectness score, which is the
probability of belonging to a set of object categories. In the
second stage, these boxes are refined and classified using
the architecture described in [9]. Finally, overlapping boxes
are merged using non-maximum suppression (NMS) based
on their objectness and class probabilities. An alternative
competing set of detection architectures can perform joint
detection and classification via a single stage, such as SSD
[4] or the YOLO family of detectors [10]. YOLOv3 [6]
defines a grid over the input image and bounding boxes
are parameterized with respect to a set of anchor boxes
for each grid cell. As in Faster R-CNN, each box is also
assigned objectness and class probability scores with NMS
subsequently applied for post-processing.

CNN architectures for object detection have shown to be
effective for recognizing threat items in X-ray cabin baggage
images [11]–[14]. Different architectures have been tested in
X-ray images for threat identification [15], validating their
use in this domain. Motivated by the limited availability of
X-ray cabin baggage images, transfer learning is used as an
initialization step before training [12], [15]. As a result, in this
work, we use CNN-based architectures for single view object
detection as the basis for extension into multiple view object
detection and inter-object resolution.

Contemporary X-ray scanners used for aviation security
screening provide two or more views of the baggage content
(Figure 1). The geometry of two views of the same scene is
related by epipolar geometry [16]. In epipolar geometry, there
is a map x 7→ l′ that geometrically relates a point x in one
view to a line l′ in the other view, known as the epipolar line,
where the corresponding point x′ lies [16]. Epipolar geometry
is exploited in different stereo-vision and multi-view problems,



such as visual odometry [17], human pose estimation [18]
and 3D reconstruction [19]. Epipolar geometry constraints
are encapsulated in the relation x′ᵀFx = 0, where F is
known as the fundamental matrix. F can be constructed
using the internal parameters of the cameras and its relative
position (calibrated cameras), or estimated if a set of point
correspondences {xi ↔ x′i} is given [16]. When the geometry
is unknown (uncalibrated cameras) and point correspondences
are not provided, the common methodology is to use feature
detectors and descriptors to find matches between the different
image views and then proceed to solve for F via least-squares
minimization of the geometric inter-image feature projection
error [20]. However, the prior work from Kluppel et al. [21]
demonstrates that conventional feature detection and matching
is not suitable for transmission imagery such as X-ray due to
the transparent nature of the object projections which vary with
perspective view. Moreover, prior object detection work using
multiple view X-ray imagery, with consideration for epipolar
constraints, is limited and primarily focuses on 3D bounding
box reconstruction [22], where three views are needed [16].

By contrast, this work addresses the use of the epipolar
geometry as a constraint to improve the performance of
object detection in X-ray security imagery, where perspective
view points are uncalibrated and point correspondences are
unknown. Our approach leverages the centres of ground
truth bounding boxes used for training a contemporary
object detection approach [6] as an approximation of
point correspondences to estimate the fundamental matrix.
Subsequently, the distance of a given bounding box detection
from an epipolar line projected from another view is modelled
as a random variable with a normal distribution. Finally, the
inter-view projection distance of the epipolar line is used to get
a multi-view correspondence probability which is jointly used
with class and objectness probabilities for subsequent NMS
post-processing.

Our key contributions are as follows:
– A novel approach for recovery of the fundamental matrix

from uncalibrated views based on the use of ground truth
object-level annotations, applied to transmission (X-ray)
imagery where conventional feature point matching fails
[21].

– Formulation of a multi-view detection approach that cross
correlates detections from multiple views by considering
the inter-view epipolar constraint as an additional
measure of confidence with NMS post-processing.

– Improved benchmark performance for the detection
of representative threat objects within x-ray security
imagery, based on the correlation of detections across
multiple views, outperforming the prior work of [15].

II. RELATED WORK

The first attempts to use the multi-view geometry as a
constraint within X-ray security imagery are focused on
matching keypoints across the views. One of the earliest works
to use multiple views from X-ray imagery is presented by
Mery [23]. In this work, objects of interest such as razor

blades and pencil tips are segmented using classical feature
descriptors and are matched across different views if they lie
near a region defined by the epipolar geometry. Fundamental
matrix estimation is carried out using point correspondences
generated by feature descriptors. Although this method shows
a recall of 94.3% and a false positive rate of 5.6%, the test data
set is small and samples are not highly cluttered in contrast to
the consideration of operational conditions in the X-ray threat
object detection work of [24]. A later work from Mery et al.
[25] proposes the spatial reconstruction of matched keypoints.
Subsequently, these points are clustered and projected back to
the 2D domain only if they are large enough. The fundamental
matrix is estimated as in [23] and matching keypoints are
obtained through a heuristic process. More recent work from
the same team on multi-view object detection [26] is a
three-step process with deep learning approaches. In the first
step, threat objects are detected using similarity of features
and spatial distribution. Subsequently, reinforcement learning
is used to predict the next view given the object in one source
view. Finally, predictions are constrained using the epipolar
geometry and the process described in [25]. This method
increases the precision of handgun detection from 33% to
84% and the recall from 18% to 66%. Nevertheless, deep CNN
object detectors outperform these approaches using single view
imagery [11], [15], [24].

In the same context of classical techniques for object
detection, Bastan et al. [27] proposed a simple method to
search for objects in a spatial domain from 2D raw features.
They noticed that in an X-ray machine, bounding boxes of the
same object at different views have approximately the same
height and the same y coordinate. They take advantage of this
constraint, but do not fully exploit the fact that these conditions
are an effect of the epipolar geometry (i.e., epipolar lines being
almost vertical).

The most recent work on multi-view object detection in
X-ray imagery adds a 3D region of interest pooling layer
to the Faster R-CNN architecture [22]. This work assumes
that the relative position of the viewpoints is known, so
scene reconstruction is possible [16]. This method pools deep
features of each view into a spatial feature tensor to regress
a 3D bounding box. Ground truth 3D bounding boxes are
constructed by wrapping the polyhedron formed from the
intersection of the rays of projection of 2D bounding boxes.
Standard metrics are calculated by re-projecting back the
detected 3D bounding box to the 2D domain. They were able
to increase the average precision for firearm detection from
85.56% to 92.29%.

In this work we use a deep CNN object detector architecture
and filter detections by a constraint imposed to their distance
to the epipolar line, such as [26]. However, unlike [22],
[25], [26], we give greater weights to bounding boxes with
centroids closer to the epipolar line for NMS post-processing.
Furthermore, we assume relative position is not known, so a
method to estimate the fundamental matrix based on object
detection training annotations is proposed.



III. METHOD

The aim of our proposed approach is to exploit the
constraints imposed by the epipolar geometry between
the multiple X-ray views in order to improve detection
performance. Specifically, we are interested in increasing
detection performance whilst reducing false positive detection
by correlating across multiple X-ray views and simultaneously
improving object localization using the geometric distance of
the bounding box to the associated inter-image epipolar lines.
In this way, we deal with uncalibrated image viewpoints such
that object annotations, available from detector training, are
used to estimate the fundamental matrix between these views.
The resulting epipolar constraints between views are used to
form the basis for subsequent multi-view object detection and
filtering.

A. Fundamental Matrix Estimation

The fundamental matrix characterizes the epipolar geometry
between two views. Given two corresponding points {x↔ x′}
in homogeneous coordinates, the fundamental matrix F is a
rank-2, 3×3 matrix that satisfies

x′ᵀFx = 0 . (1)

F can be obtained using the projection matrices of both
cameras and the epipole, which is the point of intersection
of the line joining the centres of the cameras (X-ray
projection viewpoints) with the image plane [16]. When
cameras are uncalibrated or their relative position is not
known, F can be exactly calculated if 8 correspondences
between the viewpoints are known. If these correspondences
are noisy, which is usually the case, then F can be
estimated using different error minimization approaches [28].
One of the simplest methods is the normalized 8-point
algorithm [29] that solves Equation 1 algorithmically using
least squares optimisation with normalised correspondences
and a singularity constraint over F . When combined with
RANSAC sampling, this technique generally results in a good
approximation of F [16].

We consider that two matching points {xi ↔ x′
i} represent

the projection of the same 3D point Xi in their corresponding
image planes. In practical scenarios, the projected point
correspondences are noisy and hence we can write the relation
between each coordinate of the measured point xi to the real
projected point x̄i as

xi = x̄i + ∆x , (2)

where ∆x ∼ N (0, σ2) is the error associated with the
measurement process of each point coordinate.

Under our conditions, where we have a set of uncalibrated
X-ray viewpoints, traditional feature points based matching
will fail [21]. The only available information is the ground
truth bounding boxes of the threat items used for training
the object detection model. Although there are no explicit
correspondences, we can instead use the centroids of the
bounding boxes as approximations of point correspondences.

Fig. 2. Comparison of the centre of a bounding box x with the projection of
the real centre of the object x̄ in the plane defined by the camera C.

As seen in Figure 2, there is a difference between the centre
of the bounding box with the actual projection of the object
centre. This difference is a function of the relative position and
orientation of the object with respect to the camera. Hence,
the centre of a bounding box x̂i is modelled as

x̂i = x̄i + ∆x+ Ψ , (3)

where Ψ is a function Ψ : P2 → R that maps the centre of the
object in the projective space P2 of the image to the distance
of the centroid of the bounding box. Due to the fact that the
position and orientation of the objects are a random event, we
can model Ψ as a random variable with a normal distribution
N (µ, σ′2). Finally, we can write the relation as

x̂i = x̄i + ∆x̂ , (4)

with ∆x̂ ∼ N (µ, σ̂2).
Since ∆x̂ is a function of the object, fundamental matrices

are obtained for each object category.

B. Single View Detection Confidence

Our method aims to use the epipolar geometry as a
constraint for post-processing object detection across multiple
views in order to improve global detection performance.
Subsequently, approaches to detect are agnostic and hence a
standard object detection architecture can be used.

In this work, YOLOv3 [6] is used because it is a fast
detector that has shown superior performance in prior work on
threat object detection in X-ray images [15]. YOLOv3 defines
a detection probability (confidence) which is calculated as

P (C = c,O) = P (C = c|O)P (O) , (5)

where P (O) is the objectness probability, or the probability of
the object being an occurrence of one of the object class types
considered at training time and P (C = c|O) is the probability
of that object being an instance of category c given that it
is a valid object. This probability is used as a weight value



for NMS post-processing. Within the next section we extend
this probabilistic reasoning via consideration of concurrent
detections in multiple viewpoints of the same (X-ray) scene
that are geometrically correlated by the epipolar constraint
between the views.

C. Multiple View Epipolar Detection Confidence

We are now interested in extending the probability
associated with each detection to take into consideration
concurrent detections from other views. In epipolar geometry,
a point position xi within one view is projected to a line l′,
known as the epipolar line, in the corresponding view using
the fundamental matrix F :

l′ = Fxi . (6)

The distance of a separate point x̂′
i within this secondary view

to the projected epipolar line is

d(x̂′
i, l

′) =
x̂′
i
ᵀl′√

l
′2
1 + l

′2
2

=
1

c
x̂′
i
ᵀl′ , (7)

where l
′2
1 and l

′2
2 are the first two components of the epipolar

line vector and c =
√
l21 + l22. The sign in Equation 7 indicates

the half-plane (defined by l′) the point x̂′
i lies.

Substituting the point coordinates using the relation in
Equation 4 into Equation 7 gives:

d(x̂′
i, l

′) =
1

c
x̄′ᵀ
i l′ +

l1
c

∆x̂i1 +
l2
c

∆x̂i2 . (8)

Assuming that the epipolar line comes from a point with
no error1, the first element of the right side of the previous
equation vanishes as the true correspondence point x̄i lies in l′.
Since the error in both coordinates x̂i1 and x̂i2 have a normal
distribution, we conclude that d ∼ N (µd, σ

2
d).

Next, we obtain the probability of object detection bounding
box B′ in one view belonging to the same object instance
as object detection bounding box B in another view based
on the distance centroid of B′ to the epipolar line defined
by the projection of the centroid of B via the corresponding
fundamental matrix, F (Equation 6). Therefore, if D is the
random variable describing the distance d of the centroid of
B′ to the epipolar line given by (the projection of the centroid)
of B from the corresponding view, the probability p is written
as:

p(d|B;µd, σ
2
d) = P (D > |d| ∪D < −|d|;µd, σ

2
d) , (9)

which is the sum of the tails of the probability distribution of
D. For a normal distribution, the probability is thus given by

p(d|B;µd, σ
2
d) = erfc

(
d− µd√

2σd

)
(10)

where erfc is the complement of the error function. Equation
10 can also be seen as the p-value under the hypothesis that
B′ is a match of B (under the assumption that the occurrence

1We consider only the case where the error comes from the measured point
in the same view and not from the epipolar line. The consideration of errors
in both sources will be explored in future work.

of threat objects is sparse within the imagery, giving rise to a
simplified one-to-one / one-to-few matching problem).

Equation 10 can be used to get an interval of confidence of
valid object detection bounding boxes based on their distance
to the epipolar line. This method is explored by [26] but with a
heuristic decision of the size of the region. Another option is to
combine Equations 5 and 10 to get a new extended confidence
probability based on the original probabilities from the object
detection model and the epipolar constraints between that view
and the view containing B. This new confidence probability,
which we call multi-view epipolar confidence, is expressed as:

P (C = c,O,D = d|B) = P (C = c,O)P (D = d|B)

= P (C = c|O)P (O)p(d|B) ,
(11)

where P (C = c|O) is the class confidence probability given
it is a valid object, P (O) is the objectness confidence and
p(d|B) is given by Equation 10.

D. Multi-view Filtering

In single view detection, the output of the model is filtered
by a its objectness and redundant boxes are removed using
NMS [6]. As an extension, we propose a post-processing
algorithm that uses the epipolar constraints described in
previous sections as an extra step before NMS. We refer to
this algorithm as multi-view filtering and the general outline
is presented in Figure 3.

First, single view bounding box predictions Bm = {bmi }
with an objectness confidence probability greater than a
threshold value to are obtained for a view m. For each bmi with
category c, we find a set of bounding boxes Bn

m,i = {bnm,i,j}
in a different view n with a multi-view epipolar confidence,
defined in Equation 11, satisfying

P (C = c,O,D = d|B) > rtc , (12)

where tc is a class confidence threshold and r is the minimum
p-value of bnm,i,j as being a correspondence of bmi . These
boxes are combined using NMS and the resulting bounding
box bnm,i with the greatest multi-view epipolar confidence is
considered as the match of bmi in the view n. If Bn

m,i is empty
for all n 6= m, bmi is disregarded. Finally, for a dataset with
N views, we combine single view predictions and epipolar
filtered predictions into a single set of bounding boxes for
each view m:

Bm = Bm ∪
N⋃

n=1
n 6=m

⋃
bmi ∈Bm

bnm,i . (13)

Redundancies in Bm are removed by NMS using their
multi-view epipolar confidence as weights for box fusion. The
multi-view epipolar confidence of single view predicted boxes
is set equal to their class confidences.

As an alternative, we can filter first the bounding boxes
within the interval of confidence r and then filter them by
their class probabilities (or vice-versa), applying NMS with
class probabilities as weights. This technique is similar to
the work of [26] and we subsequently explore this process in



Fig. 3. Multi-view filtering algorithm. This algorithm uses epipolar constraints as a post-processing step before NMS. 1: Predictions are filtered by objectness,
2: (a) for each bounding box from step 1 in one view, (b) a set of boxes filtered by their epipolar detection confidence are obtained in the second view. If
nothing is found around the epipolar line, then the source bounding box is considered as invalid. 3: valid bounding boxes from step 2a and filtered boxes
from step 2b are combined, 4: NMS is applied using the epipolar detection confidence.

the ablation studies, showing that the our proposed algorithm
yields a better detection performance.

IV. EXPERIMENTAL SETUP

In this section, the details about the dataset and the
implementation of the object detection model are described.

A. Dataset

Our dataset consists of conventional false-coloured X-ray
security imagery from a Smith Detection dual energy scanner
with four views (three below and one at a side). We refer
to samples as the set of all views of the baggage. A total
of 2,528 baggage (10,112 images) were scanned and four
object categories were identified. In total, there are samples
of 1,090 firearms, 594 laptops, 1,184 knives and 166 cameras.
A split of 80% of the samples was used for model training and
fundamental matrix estimation. These objects were manually
annotated with bounding boxes across all views and a local
index was assigned to identify the same object instance across
all views. The dataset includes images with only one object
and more challenging samples with two or more objects.

B. Evaluation Criteria

We evaluate the performance of our method using
MS-COCO detection metrics [30]. The object detection task
is evaluated by the number of objects that are identified.
A prediction is considered a true positive if the area of

intersection over union (IoU) of the ground truth Bgt and the
prediction Bp is greater than some value. The IoU is given by

IoU(Bgt, Bp) =
Area(Bgt ∩Bp)

Area(Bgt ∪Bp)
.

MS-COCO metrics are based on precision and recall over
all categories. Precision is the proportion of true positives
over all predicted positives while recall is the fraction of
correct predictions. Precision increases when IoU increases,
while recall tends to decrease. As the value of the IoU
increases, precision tends to increase while recall decreases.
Average precision (AP) and average recall (AR) are obtained
by averaging these values with different values of IoU.
C. Object Detection Implementation

The YOLOv3 [6] object detection architecture is used for
single view detection using a DarkNet-53 backbone pretrained
on the MS-COCO [30] dataset. Input images are square
padded with a white background and resized to 544 × 544.
The model is trained using Adam optimization [31] with a
learning rate of 0.0001, weight decay of 0.0005, batch size
of 8 and for 50 epochs. The learning rate is reduced by a
factor of 10 after 15 and 30 epochs. Objectness and class
confidence probabilities are set to 0.5, while the minimum
p-value for epipolar filtering is 0.05. The model was trained
using an Nvidia 2080Ti.

V. RESULTS

In this section we review the results of our proposed
methods for fundamental matrix estimation and multi-view



Fig. 4. Results of fundamental matrix estimation per class. The right images for each category show the p-value of the position of candidate bounding box
centroids with respect to the epipolar line defined by the left images in another view.

filtering of predictions. Ablation studies are carried out for
object detection, modifying some parts of the multi-view
filtering algorithm.

A. Fundamental Matrix Estimation

Results for epipolar constraint (line) estimation using the
centre of bounding boxes as correspondences are shown in
Figure 4. Left images show a ground truth bounding box while
right images show the p-value as a function to the distance to
the epipolar line defined by the source images, given by the
Equation 10. Values for µd and σd were obtained by fitting
the distances of corresponding points and epipolar lines to
a normal distribution. It can be seen that some objects such
as knives have a wider dispersion. This can be explained
by the greater variability of the position of knives in the
baggage as compared with bigger objects such as laptops.
Also, the error associated with the measurement process (i.e.,
the bounding box manual annotation) is bigger for smaller
objects. These results validate the use of bounding box centres
as approximations for inter-view correspondences.

B. Object Detection Performance

Object detection using multi-view filtering is compared
against standard single view detection. Table I shows the
performance evaluation using COCO metrics for each class
as well as metrics for all classes (AP100 is not included
as our dataset only has up to three objects per image). SV
refers to single view YOLOv3 detection and MV to detection
processed with multi-view filtering. It is observed that our
method outperforms single view detection with an increase
of 2.2% of the average precision metric using all categories
and IoU values and 2.8% of average precision with a fixed
IoU of 0.5. Moreover, multi-view filtering increases marginally
all average recall metrics. The improvement of the precision
metrics is associated with the elimination of false positives
that do not fulfill the epipolar constraints. An example of

this elimination is shown in Figure 5a, where an incorrectly
identified knife is eliminated after multi-view filtering. Also,
sometimes the object detection model has problems detecting
overlapping objects from a complex scene. Figure 5b shows
a scanned baggage with three overlapping objects where the
network identified several objects instead of a single camera.
It also predicts two firearms overlapping the a laptop in the
lateral view when in the bottom view only one is present.
In this case, the multi-view filtering algorithm successfully
removes all incorrect items that were identified near the camera
and removes the false firearm overlapping the laptop. However,
in a more challenging scenario, such as the scanning from
Figure 5c, some correct detections are removed because they
were not found in the other views.

A further analysis of the results shows that our method is
not optimized to long objects such as laptops or large knives.
This is indicative that the assumptions made for Equation 4
about the nature of Ψ may be invalid and a more detailed
analysis is necessary. The modelling of the relation between
the projected object centre and the centre of a bounding box
in an image plane is left for future work.

C. Ablation Studies
In this section we want to assess experimentally how

our methodological choices perform compared against some
simplifications. We focus in two main parts of our method:
modelling the distance between a bounding box and an
epipolar line as a normal distribution with mean µd (not
necessarily equal to zero) and the use of the multi-view
epipolar confidence in (11) for NMS.

First we validate the choice of modelling our (signed)
distance of the bounding box to the epipolar line with a
biased estimator, i.e., d ∼ N (µd, σ

2
d). To do so, we run a test

assuming that the distance follows a normal distribution with
0 mean. As can be seen in the third row of Table II, using
a unbiased estimation of the distance, multi-view filtering



Fig. 5. Comparison between ground truth, single view and multi-view detection. Object categories are labelled by colour: red for firearms, green for knives,
fuchsia for laptops and black for cameras. (A) Elimination of false positives. (B) Elimination of more complex false positives and correction of class. (C)
Missing of a previous identified class.

TABLE I
MULTI-VIEW OBJECT DETECTION RESULTS

Category Method AP AP0.5 AP0.75 APS APM APL AR1 AR10 ARS ARM ARL

Firearm SV 0.670 0.983 0.816 - 0.681 0.630 0.743 0.747 - 0.744 0.776
MV 0.691 0.988 0.848 - 0.702 0.679 0.746 0.749 - 0.747 0.775

Laptop SV 0.705 0.972 0.886 - - 0.705 0.770 0.772 - - 0.772
MV 0.697 0.973 0.872 - - 0.697 0.764 0.766 - - 0.766

Knife SV 0.320 0.726 0.236 0.083 0.349 0.175 0.440 0.447 0.112 0.464 0.263
MV 0.382 0.800 0.322 0.125 0.412 0.138 0.455 0.463 0.154 0.478 0.287

Camera SV 0.530 0.848 0.621 - 0.700 0.530 0.605 0.605 - 0.700 0.605
MV 0.546 0.881 0.633 - 0.700 0.546 0.603 0.603 - 0.700 0.602

All SV 0.557 0.882 0.640 0.083 0.577 0.510 0.640 0.643 0.112 0.636 0.604
MV 0.579 0.910 0.669 0.125 0.605 0.515 0.642 0.645 0.154 0.641 0.608

performs worse in all metrics. The reason behind using a
biased estimator for the distance is that the mean µd serves as
a correction of the unknown distance Ψ of the centres of the
bounding box with the actual projection of the object centre
in the image plane. Subsequently, if we do not induce this
bias, the multi-view filtering algorithm looks for matches in a
region further away from the actual match.

Secondly, we compare our filtering algorithm by multi-view
epipolar confidence with class confidence filtering bounded
by a region of confidence. In this case, instead of using the
relation in Equation 12 for filtering and performing NMS, we
test a model that only looks in the second view for bounding
boxes in an interval and then uses the class confidence as
weights for NMS, as in single view detection. This method
is partially explored by [26], but choosing the interval of
confidence heuristically. The results are shown in the first
and second rows of Table II, with both biased and unbiased
estimators of the distance. Again, this method performs poorly

against the superior performance offered by our approach. This
is explained noting that the use of the multi-view epipolar
confidence defined in Equation 11 gives a greater weight to
bounding box detections that are closer to the epipolar line,
resulting in higher quality bounding boxes after NMS.

VI. CONCLUSION

In this work we have developed a new multi-view detection
approach using epipolar constraints as an additional confidence
probability for NMS. The distance of bounding box centroids
from corresponding epipolar lines is modelled as a random
variable with a normal distribution and non-zero mean. The
p-value of the distance with respect to that distribution is used
as a new confidence probability for NMS post-processing.
Furthermore, a novel method is proposed that estimates the
fundamental matrix by making use of ground truth object
annotations available from object detector model training.

We show that using bounding box centroids as point
correspondences across views allows for high-quality



TABLE II
ABLATION STUDIES

Method AP AP0.5 AP0.75 APS APM APL AR1 AR10 ARS ARM ARL

MV class confidence, d ∼ N (0, σ2
d) 0.577 0.904 0.671 0.085 0.601 0.514 0.641 0.643 0.107 0.636 0.604

MV class confidence, d ∼ N (µd, σ
2
d) 0.577 0.904 0.669 0.094 0.601 0.515 0.641 0.643 0.110 0.637 0.607

MV epipolar confidence, d ∼ N (0, σ2
d) 0.576 0.909 0.666 0.099 0.569 0.512 0.640 0.644 0.132 0.606 0.606

MV epipolar confidence, d ∼ N (µd, σ
2
d) 0.579 0.910 0.669 0.125 0.605 0.515 0.642 0.645 0.154 0.641 0.608

estimation of the fundamental matrix. Our approach increases
the average precision of the MS-COCO metric by 2.2% and
by 2.8% when using a fixed intersection over union of 0.5.
Additionally, we find that our proposed method outperforms
the approach of simply constraining the bounding boxes
to lie in a region around the epipolar line. These results
show that the use of epipolar constraints for multi-view
object detection is a key contribution for decreasing false
positives and improving detection performance in the context
of cluttered X-ray security imagery.

Future work will investigate the use of epipolar constraints
on different contexts and more complex models for the
estimation of the fundamental matrix using object annotations.
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