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Abstract—This paper investigates the application of deep
convolutional neural networks with prohibitively small datasets
to the problem of macular edema segmentation. In particular,
we investigate several different heavily regularized architectures.
We find that, contrary to popular belief, neural architectures
within this application setting are able to achieve close to human-
level performance on unseen test images without requiring large
numbers of training examples. Annotating these 3D datasets is
difficult, with multiple criteria required. It takes an experienced
clinician two days to annotate a single 3D image, whereas
our trained model achieves similar performance in less than
a second. We found that an approach which uses targeted
dataset augmentation, alongside architectural simplification with
an emphasis on residual design, has acceptable generalization
performance - despite relying on fewer than 15 training examples.

Index Terms—Machine learning, image processing and com-
puter vision, medicine, segmentation, neural nets

I. INTRODUCTION

The number of adults with diabetes worldwide has increased
from 108 million to 422 million in the period 1980-2014 [1].
The number of affected adults worldwide is expected to rise to
592 million by 2035 [2]. About 25% of people with diabetes
have some form of diabetic retinopathy [3]. This is one of
the leading causes of blindness for working-aged adults in
the United Kingdom [4] [5]. Diabetic macular edema is the
accumulation of extracellular fluid in the retina secondary to
inner retinal blood barrier breakdown associated with diabetes.
It results in retinal thickening in the important central retina
and causes impaired vision. It is the leading cause of decreased
vision caused by diabetic retinopathy [6]. Recent research from
the United Kingdom suggests that, with effective screening,
the number of cases that can be caught and treated early
rises significantly [4] [7]. Automated detection of diabetic
retinopathy has been shown to reduce the burden on screening
services [8].

Optical coherence tomography (OCT) is a non-invasive,
high-resolution imaging technique that uses infrared light to
provide 3D imaging of the retina [9]. OCT is capable of
generating high-resolution, 3D images of the retina [10]. It is
now the de facto standard tool for diagnosing multiple retinal
and macular diseases, including macular edema.

Ophthalmologists currently use OCT scans to analyse the
progression of macular edema both qualitatively and quan-

titatively. Although quantitatively the thickness of the retina
can be measured relatively easily, the extent and location of
intraretinal edema relative to the remaining neuro-retinal tissue
is of key importance in assessing prognosis and monitoring re-
sponse to treatment. This is a complex problem. Quantification
of the intraretinal fluid (IRF) is something that can be done
manually, but it is a slow and error prone process. Classical
image techniques have failed to yield an automated solution
to this problem.

Convolutional neural networks (CNN) are a deep learning
based technique for solving many image-based segmentation
problems. Most CNNs today are applied in areas where a lot
of data is available to train on. In the case of medical images,
there is often a data availability problem. Data is of a much
more highly sensitive nature than is typical for many domains
and has to be anonymized, which is a non-trivial process [11].
The annotation of this data with ground truth (GT) information
is also a difficult, time-consuming task. It takes an experienced
clinician between 30-45 minutes to annotate each slice of the
OCT image due to ambiguity, shadowing, and often there
being no clear edges in intensity to follow. With the typical
scan consisting of up to one hundred individual slices at 30-
120 microns separation, it can take two days for each image
to be annotated. These challenges together limit the amount of
data that can be gathered. The requirement for deep learning
processes to work with small datasets is therefore of great
importance in the field of medical imaging.

The U-Net CNN architecture [12] represented a step for-
ward for the accuracy of deep learning-based biological image
segmentation. It takes as input a 2D medical image and
outputs a segmentation probability map. This represents a
set of probabilities p ∈ [0, 1] of each pixel being a part of
the segmented region. It comprises a series of downsampling
convolutions followed by a series of upsampling mixed with
2D convolutions. The key contribution of U-Net is the addition
of skip-connections which connect the downsampling layers
with their upsampling equivalent. This allows the model to
capture fine details in the result, while the lower layers of
the model will capture the general shape of the segmentation.
The combination of the two approaches has yielded very good
results in a wide range of biomedical image segmentation
problems [13] [14] [15]. The 3D U-Net architecture [16] ex-



tends U-Net for use with 3D images by using 3D convolutions
in place of 2D convolutions. Using 3D images allows for
improved segmentation as context from multiple slices aids
the decision about whether an individual voxel is an object or
not.

The majority of medical imaging deep learning research
has involved developing segmentations for different forms of
cancerous tumors and brain disease. There has been rela-
tively little research done on ophthalmic segmentation using
deep learning [17]. This is starting to change, with recent
research [18] [19], but it still lags behind other areas of medical
imaging.

We have based one of our models on 3D U-Net with
added residual blocks similar to He et al. [20]. We also
present the result of combining the above models with a
Wasserstein Generative Adversarial Network (WGAN) [21],
acting as a regularization approach. Past work on liver seg-
mentation shows improved results from combining U-Net with
WGANs [22].

We propose that using the above techniques for macular
edema segmentation on a small, carefully augmented dataset
yields results comparable to human performance. While some
prior work has looked at using deep learning on problems
with small training datasets [23] [24], there have been none
which the authors are aware of that specifically look at
biomedical image segmentation. Existing works on macular
edema segmentation using deep learning have used an order of
magnitude more training images than our model [25] [26] [27].

Our contribution can be summarised as an automated ap-
proach to macular edema segmentation based on deep learning
with fewer training images than any known prior work. While
this paper specifically looks at the problem of macular edema
segmentation, we believe that the results should be generaliz-
able to other biomedical image segmentation problems.

II. METHOD

Segmentation involves labelling objects in an image, by
assigning pixels with shared characteristics to corresponding
class labels. In our case, we wish to assign areas of IRF in
an OCT image to white pixels, and non-IRF regions to black
pixels.

This means we have two classes, IRF or non-IRF, which is
an example of binary image segmentation:

S(x, y, z) =

{
1 S(x, y, z) ∈ D
0 S(x, y, z) /∈ D

(1)

where D is the set of voxels which correspond to disease in
the original image, and x, y and z represent the coordinates
of that voxel [28].

Therefore we estimate the probability of each voxel either
being IRF or not, where we minimize the binary cross-entropy:

LBCE = −
n=2∑
i

pi log qi

= −(pi log qi + (1− pi) log(1− qi))
(2)

where pi are the target probabilities, and qi is the output of
our model.

In cases of multiple annotations per image, which we trust
with equal integrity, the target probabilities pi are averaged,
although we do not have any such cases except in our test set.

A. Adaption of U-Net

We investigated and designed a number of models for
comparison:
M1: Original 3D U-Net
M2: Small 3D U-Net
M3: Small residual 3D U-Net
M4: M2 with WGAN
M5: M3 with WGAN
A diagram of model M3 is shown in Fig. 1. Two residual

blocks have been added to each layer. We experimented with
different model depths and found that having three layers gave
the best results, while still fitting in available GPU memory.
Similarly, by experimentation, we found that the best input to
all of our models is a 128 × 128 × 49 image, the output is
similarly a set of 128× 128× 49 probabilities.

The WGAN models M4 and M5 adversarially train the U-
Net against the discriminator network, such as to regularize the
output to look like the same distribution as the annotations.
M1 is a close replica of the original 3D U-Net [16] with

batch normalization. The input to this is a 132 × 132 × 116
image and the output is a set of 44 × 44 × 28 probabilities.
As the input to this model has more slices than our source
images, this model is not very well suited to our dataset.

We optimize our network parameters using the Adam opti-
mization algorithm, which is shown to give state-of-the-art
performance in a number of settings [29]. We considered
stochastic gradient descent (SGD) as it requires less memory,
but found the improvements offered by Adam to outweigh the
additional memory.

B. Data Augmentation in 3D

Data augmentation is the process of expanding the training
dataset by adding transformations to the inputs, artificially
simulating variations that may otherwise occur naturally. It
is important that the generated data is representative of real
world data.

At first, no data augmentation was performed on our dataset.
The model performed poorly on images which were at differ-
ent scales to the training data. To counteract this, we used the
following transforms, all performed in 3D:

• Scaling up of images
• Cropping of images (equivalent to zooming in images)
• Elastic deformation of images

For the first two transforms, a random size is chosen to either
crop or scale to. Random samples are drawn from the uniform
number distribution. For the scaled up case, the randomly
chosen size is limited to between 1x and 4x the original
dimensions of the image. The x:y and x:z aspect ratios of
the 3D image are preserved with scaling. For the cropped
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Fig. 1. Small residual 3D U-Net (M3). This model yielded the best generalization performance in our analysis. This architecture has one fewer layer than
the original 3D U-Net by Çiçek et al. [16] and the input and output sizes have been modified to better suit our data.

augmentation case, a random size is chosen between 1/4 of
the size and the full size of the image, again maintaining
aspect ratios. For areas outside of the boundary of the image,
reflection of the original image is used. Using a combination
of these forms of augmentation, the trained model is able to
cope with data at a variety of resolutions and scales.

Performing elastic deformation augmentation improves gen-
eralization performance by creating new images which are
still biologically realistic [16]. Parameters used for elastic
deformation augmentation are σ = 10 and points = 6.
We uniformly randomly choose between these augmentation
methods and performing no augmentation when creating our
augmented dataset. All of our models were trained on the
result of running this augmentation on each image in our
training set multiple times.

C. Training
The model described in Section II-A was implemented and

trained using our training set. The images were scaled down
to 128×128×49 in order for the model to fit in GPU memory.
In order to evaluate the model quantitatively, we scale up
the image to the original size using trilinear interpolation and
threshold the output probability map at 0.5 to generate a binary
image. An example of this can be seen in the rightmost column
of Fig. 2. For models M2 to M5, a learning rate of 1e−4
was used. For regularization, we experimented with different

values of weight decay for our optimizer and found that 1e−4
consistently resulted in the best performance on our validation
set for models M2 to M4. For model M1, disabling weight
decay and using a learning rate of 1e−5 produced the best
results on our validation set. We trained and evaluated each
model separately three times to assess the consistency of our
results.

III. RESULTS

A. Qualitative Results

The qualitative results of running the trained model are
generally quite close to the ground truth, as seen in Fig. 2.
The 3D Segmentation column of TABLE I and TABLE II
shows what the output segmentation of our model looks like
in 3D across the training, validation and unseen test sets.
Additionally, the Our Prediction and GT columns of TABLE I
and TABLE II correspond to the output segmentation of our
model and the ground truth respectively. In general, the system
performs well at capturing the frequency and general shape of
the edema. Fig. 3 is a heatmap showing the areas of greatest
difference between our model’s output and the clinician’s
annotation. The system tends to make most mistakes in areas
around the edges of edema. This is likely due to the small size
of the training set as well as the training set containing ground
truths from authors with different skill levels and thresholds



OCT scan A1 A2 Our prediction

Fig. 2. A single slice of one of our unseen test OCT images alongside annotations by a clinician (A1) and non-clinician (A2). Comparing the manual
annotations to the output of our model (on the right), it can be seen that our model captures the general structure of the IRF but fails to capture finer details
from the original annotations.

Fig. 3. Heatmap of the example in Fig. 2, visualising the delta between A1’s
annotation and the unthresholded model output. Brighter colours indicate areas
of greater difference between the annotation and our prediction. We can see
that our model tends to make most prediction errors around the edges of
edema.

for delineating small areas of IRF. The model’s reduced input
and output size relative to the true size of the images possibly
means that it misses out on finer features in the input image.

A web-based viewer was developed to make it easier for
clinicians to test and visualise the output of our model.

B. Quantitative Results

As we have only one OCT image with annotations from
different authors, our comparison to human performance is
limited. For this one image, the best model achieves within 4%
of human performance as can be seen in TABLE III. Higher
values are best for these, with M3 achieving the best result
over three runs. M2 has the smallest standard deviation over
three runs.

Performance of the best performing model using a variety of
standard image segmentation metrics is shown in TABLE IV.
For all metrics except absolute volume difference, higher
values are best.

Fig. 4 shows how the Jaccard index improves as the models
are trained, where each epoch is 10 iterations long. Data
points are averaged every 200 epochs. M3 reaches the highest
peak while M2 has the smoothest curve. M4 and M5 both
perform well below the non-GAN models, and these also take
longer to train. M1 reaches the lowest peak performance of all
models. This could be partially explained by the significantly
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Fig. 4. Average Jaccard index over 3 runs on unseen test set as model is
trained (higher is better). M3 achieves the highest peak performance, reaching
within 4% of expert agreement.

lower resolution output compared to the other models tested.
The residual and non-residual models’ average performance is
broadly similar, but the residual model has slightly better peak
performance.

IMPLEMENTATION

The models were implemented using PyTorch [30] and
were trained on 11GB − 24GB NVIDIA Pascal and Turing
architecture GPUs. Each model was trained for 6400 epochs,
which was enough for models to stop substantially improving
test performance as can be seen in Fig. 4.

Inference takes less than 1s per input image using the GPU-
accelerated version of our model. PyTorch was used as it
enables quick prototyping of deep learning models while also
having good performance.

The Jaccard index was primarily used for evaluating the
performance of our algorithm (where Pred is our prediction



TABLE I
3D SEGMENTATION VOLUMES AND 2D CROSS-SECTIONS OF TRAINING

DATASET

2D Cross-Section

3D Segmentation Our Prediction GT

1

2

3

4

5

6

7

8

9

TABLE II
3D SEGMENTATION VOLUMES AND 2D CROSS-SECTIONS OF TRAINING

(10-14), VALIDATION (15 AND 16) AND TEST (17) DATASETS

2D Cross-Section

3D Segmentation Our Prediction GT

10

11

12

13

14

15

16

17



TABLE III
PEAK JACCARD INDEX OF TESTED MODELS AGAINST EXPERT PERFORMANCE ON THE UNSEEN TEST DATASET (MEANS AND STANDARD DEVIATIONS

OVER THREE RUNS)

Models

Author M1 M2 M3 M4 M5 Expert agreement

A1 0.206 (0.006) 0.545 (0.006) 0.552 (0.011) 0.437 (0.029) 0.441 (0.034) 0.583
A2 0.225 (0.0) 0.521 (0.003) 0.527 (0.012) 0.452 (0.016) 0.467 (0.012) 0.583

TABLE IV
DETAILED STATISTICS OF BEST PERFORMING MODEL M3 (MEANS AND STANDARD DEVIATIONS OVER THREE RUNS)

Author Precision Recall Dice similarity coefficient Absolute volume difference Average precision

A1 0.675 (0.013) 0.751 (0.007) 0.711 (0.01) 13783 (2099.839) 0.511 (0.013)
A2 0.712 (0.006) 0.669 (0.015) 0.69 (0.01) 8731 (2099.839) 0.482 (0.014)

TABLE V
NUMBER OF ANNOTATIONS PER DATASET AND AUTHOR

Author

Dataset A1 A2 A3

Train 8 0 6
Validation 0 0 2
Test 1 1 0

and GT is the ground truth):

J =
|Pred ∩GT |
|Pred ∪GT |

(3)

Also known as Intersection over Union (IoU), this is a
commonly used metric for comparing the similarity of two
sets. In this case, the Jaccard index represents the intersection
of the model’s prediction and the ground truth divided by the
union of the model’s prediction and the ground truth. It was
used as a key metric when evaluating the performance of our
prediction, thresholded at 0.5, as it is a robust indicator of how
close the resultant segmentation is to the ground truth.

The open source software, Scikit-learn, was used to compute
all metrics [31]. The Elasticdeform Python package was used
to perform elastic deformation dataset augmentation [32].

MATERIALS

OCT images were exported from a Heidelberg SPEC-
TRALIS HRA+OCT machine with software version 1.10.4.0.
These images were cropped to remove unnecessary informa-
tion and the fundus image. Annotations were created manually
using a 3D image annotation tool, slice by slice in the z-
dimension, by highlighting the pixels on the OCT scan which
are of IRF. TABLE V shows how (image, annotation) pairs
were divided into training, validation and test sets based on
who authored each ground truth. Due to the many hours it
takes to annotate a single image, our dataset sizes are small.
Also note the imbalance of annotations for each author. A1

is a clinician, A2 and A3 are non-clinician image and data
experts. We use the image with multiple annotations as our
test set in order to be able to compare our model against
expert agreement. All images and ground truths at full size
have dimensions width = 461, height = 381, slices = 49.

IV. CONCLUSIONS AND FUTURE WORK

It is hypothesised that our model performs so well due to its
simplicity. As we are capable of learning a working solution
with fewer layers than the original 3D U-Net, we think that
macular edema segmentation is well suited to a small residual
U-Net architecture.

It takes days to create a single annotated 3D OCT image
by hand. This makes it infeasible for clinicians to manually
create these annotations for every patient. Our solution can
generate a similar quality result automatically in less than
a second. Future clinical research will be able to assess
correlation of these metrics with disease progression and
treatment outcomes.

As it takes so long to create annotations, increasing the
size of the dataset is difficult. We do think, however, that if
more data from expert clinicians were trained on, results would
continue to improve.

The model primarily makes mistakes around the edges of
edema. We believe this is partially due to the fact that the
images are scaled down prior to being input to the model. It
would be useful for the model to work on the full resolution
image. This could be done using techniques similar to those
used to create super-resolution images as described by Dong
et al. [33], or by using GPUs with larger amounts of memory
available.

The imaging device used also provides fundus image output.
An interesting extension of this project would be to use
the fundus output along with the OCT image and see if
that improves the prediction. The fundus image could help
with prediction by utilising features for maculopathy such
as exudates and red lesions (microaneurysms). The role of
vessel width and geometry analysis in maculopathy prediction



could be added to the OCT biomarkers to improve prediction
accuracy for disease progression and response to treatment.
Recent work on deep learning models for diagnosing age-
related macular degeneration (AMD) has shown that combin-
ing OCT and fundus image output can yield improved results
[34].

The use of another medical imaging technique known as
OCT angiography (OCT-A) has shown promise in helping to
diagnose diabetic retinopathy and macular edema [35] [36].
Recent work has suggested combining OCT-A, OCT and
fundus images to improve the accuracy of models to diagnose
AMD [37]. Applying such an approach to the automated
diagnosis of macular edema may help to improve prediction
accuracy.

We have trained and tested images from a single device type
(Heidelberg SPECTRALIS HRA+OCT). In order to create a
real-world diagnostic solution, it would be required to train
and test our model on images from a variety of OCT device
manufacturers. Recent work by De Fauw et al. [18] has shown
that it is possible to train a model on a single OCT device and
refine it to work for another OCT device.
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