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Abstract— This paper presents a distributed real-time control
scheme based on multi-agent systems for cost optimisation of a
micro-grid using real-time dynamic price estimation. The real-
time prices are forecast using realistic UK energy price data via
a Markov Chain Monte Carlo algorithm. A backup mechanism
for main containers of the agent platform is implemented
to improve fault tolerance of the control system, addressing
the single point of failure problem at the hardware and
software levels. The Multi-Agent system developed in JAVA
and run with Raspberry Pi controls a simulated microgrid
in an OPAL-RT real-time simulator to test the accuracy of
the estimation method, the capacity of the control to realise
power management at minimal supply cost, and uninterrupted
operation in case of container faults.

Keywords — Power Management, Multi-Agent, Dis-
tributed control, AC Microgrid.

I. INTRODUCTION

With recent efforts to move towards the smart grid, with
more distributed energy resources (DER) connected to the
main grid, control systems also have to "reflect" this new
nature. To do this, Multi-Agent Systems (MAS) had emerge
as a flexible control method that can implement features of
centralised and distributed control [1–3], to provide a good
level of efficiency and reliability simultaneously.

MAS allows the distribution of the global optimisation
problem in smaller problems solved by individual artificial
intelligence units known as agents. For example, Energy
storage system (ESS) agents may implement energy arbitrage
to maximise profit from frequency response services for
the UK grid [4], A microgrid’s control is divided in a
hierarchy, each level providing references for the level
below it. Primary control regulates voltage and frequency of
each DER, secondary control regulates power flow within
the microgrid and tertiary control regulates the interaction
between the microgrid and the main grid. MAS focuses on
the secondary and tertiary control [5], mainly dealing with
power and State of charge (SoC) management.

When MAS is applied in more distributed controls, with
different computers forming a communication network, a com-
bination of protocols are required to realise communication
and coordination of the agents and primary control.
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The Transmission Control protocol (TCP) is used to
communicate the "computers" with the primary control
and with each other, requiring the definition of Hypertext
transfer protocol (HTTP) addresses for each container.The
HTTP application is possible through the Message Transport
Protocol (MTP) defined by the Foundation of Intelligent
Physical Agents (FIPA), to allow transmission of agent com-
munication language (ACL) messages over remote platforms.
The remote monitoring agent (RMA), which allows the
visualisation of the GUI, also receives messages from the
Agent Management System (AMS) from a remote platform to
establish a communication for ACL messages across separate
hosts [2, 3].

Distributed microgrid control also implies the lack of
a central unit casting the price signal to the distributed
generators, which creates the need to generate such signal
from price estimations, normally found in literature as a
combination of probability analysis and artificial intelligence.

Markov Chain Monte Carlo (MCMC) methods, as de-
scribed in [6], are a common tool for dynamic price forecast
in distributed generation. MCMC methods are used in this
paper to estimate mean hour price and standard deviation, by
Bayes’ Rule:

P (A/B) =
P (B/A)P (A)

P (B)
(1)

Where P(A/B) is the posterior, P(B/A) is the likelihood,
P(A) is the prior, and P(B) is the evidence.

MCMC methods have been used with distributed generation
to estimate solar generation [7], and in [8] for wind estima-
tions. In [9, 10], a combined approach of machine learning
with maximum likelihood estimation is utilised to predict
day ahead market clearing prices, while in [11] scenarios are
predicted to minimise total supply cost for a microgrid. In
[12] price prediction is used for optimal load control and is
established that there is a high correlation of the hour prices
of one day and next day, and prices of the same week day.

The rest of the paper is organised as follows: Section
II describes the multi-agent system framework used, the
restoration service and the specific agents designed and
their objectives for the secondary control of the microgrid.
Section III details the price estimation method and stop
criterion used by the grid agent. Section IV describes the
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Fig. 1. MAS implementation in simulation for distributed control

test microgrid, supply resources and demand. Section V
shows the accuracy and cost results of applying the MCMC
method, along with connectivity results of restoration service
implemented. Conclusions are presented to summarise the
control framework in section VI.

II. MULTI-AGENT SYSTEM CONTROL FRAMEWORK

A MAS programmed with Java Agent Development (JADE)
framework is used as a secondary control with the objective
of finding optimal power schedule by solving:

min
∑
i

∑
j

fj(Pj(i)),∀j ∈ K ∧ ∀i ∈ N (2a)

s.t. Pjmin ≤ Pj ≤ Pjmax, (2b)
L−G = 0, (2c)
SOCmin ≤ SOC ≤ SOCmax (2d)

Where j is each source in the set K of total number of
sources, i represents each time segment in the set N of total
time segments, fj is the cost function of source j, and Pj(i)
is the power from source j at time i, Pjmin is the minimum
power generation and Pjmax is the maximum generation from
each source. SOC is state of charge of the ESS. SOCmin is
the minimum charge and SOCmax is the maximum charge.

This is done by breaking the objective in simple tasks
that are carried over by individual co-operative agents.
The agents output the power references to the primary
controllers and price estimations for other agents. In this
MAS implementation,the JADE platform is distributed in
separate computers. Each computer, or host, holds a main
container back-up connected in a ring topology for core
services and a container that communicates with the primary
control as shown in Fig. 1.

Every JADE platform contain 3 fundamental agents for
operation: The Agent Management System (AMS) agent that
deals with the creation of agents, Directory Facilitator (DF)
agent that coordinate agent service offers and request, and
the Remote Monitoring (RMA) Agent which deals with the
interface across hosts, which are used in combination with
custom agents that will be described in the next section.

In order to make the control resistant to broken communi-
cation links or unexpected termination of the containers, User
Datagram Protocol (UDP) packet monitoring is implemented.
With this service, a hosts is assumed as the main-container and
the rests as main-container back-ups, pinging the connection
to each other [2]. When the connection is lost for more than
3 seconds, the communication is assumed to be broken and
one of the back-ups launches a copy of the AMS and DF and
assumes the leadership of the platform, in this way, the fault
of any single container will not result in the failure of the
entire secondary control. A network can be represented as a
graph of vertices in a Laplacian matrix L, with elements:

Lij =

{
|Vi| i = j
−1 i 6= j ∧ (vi, vj) ∈ E

(3)

Where Vi is the set of neighbours connected to vertex vi and
E the set of edges connecting 2 vertices, The eigenvalues
of L, which are the roots of its characteristic polynomial, or
L-polynomial [13], are used to evaluate the connectivity of
the MAS. The roots of the L-polynomial are the solutions of:

CG = |L− λI| = 0 (4)

In [13] it is mentioned that the number of roots equal to
zero in the L-polynomial is equal to the number of separate
sub-graphs in the graph, as the L-polynomial is the product
of the L-polynomial of the sub-graphs. For the case of the
L-polynomial CG of the union of disjoint of k graphs CGi



the relationship is described by:

CG =
∏

CGi
,∀i ∈ k (5)

A. Microgrid Agents

1) Distributed energy resource Agent: The DER agent,
searches for the power schedule that will minimise the total
supply cost or maximise profits from trading with the grid.

The affine function is considered for the cost function,
along with the start up cost:

fj(Pj(i)) =

{
BPj(i) + C + s∗ Pj(i) 6= 0
0 Pj(i) = 0

∀i ∈ n ∧ ∀j ∈ k
(6)

Where the start-up cost function s∗ is:

s∗ =

{
s (Pj(i− 1) = 0 ∧ Pj(i) > 0) ∨ Pj(1) > 0
0 otherwise

,

∀i ∈ n ∧ ∀j ∈ k
(7)

Where Pj is the power output, B and C are generator specific
cost parameters and s is the start-up cost, which is accounted
each time its corresponding generator switches on, based on
the value of Pj .

The generator starts at any time where the grid price is
higher than f , however, an extra condition is considered:∑

i

p(i)− fj > 0,∀i ∈ T (8)

Where p is the grid price and T the length of time where the
prices crosses the value of fj . This allows the generators to
schedule based on day-ahead price estimations, and minimise
costs in the long run.

2) Energy Storage System Agent: The objective of the ESS
agent is to maximise the benefits from energy arbitrage with
the grid. In this case the benefit comes from setting the state
of charge in advance such that maximum charge and discharge
are available when grid prices are at a local minimum and
maximum. The algorithm sets the power references to steer
the state of charge to have the required capacity at a particular
time. The main constraint of the ESS is the dynamic behaviour
of the SoC:

SOCi+1 = SOCi − ηP (i),∀i ∈ N (9)

The next SoC depends on the previous one and the power
P (i) sent or received by the ESS at each time i, multiplied
by a constant η, which sets efficiency and capacity.

To realise its objective, the ESS agent looks at the trends
of the current grid price and prices in the future, rating the
prices to identify its trends and adjust the power reference
accordingly.

3) Grid Agent: The Grid agent (GA) is created as a request
from one of the DER or ESS agent, and registers to the DF to
be paired with that agent. The resulting pairs have increased
autonomy, compared to having a single GA casting the price
signal to all agents. The Grid agent applies the MCMC method
to the data of UK hour prices from 16/05/19 to 26/09/19 in

GBP/MWh, obtained from Nord Pool, to obtain the mean
and standard deviation of the posterior at each hour for a
normal distribution and for each hour of the same weekday,
using an heuristic model considering as starting values the
hour prices of the previous day as follows:

πi =
p0 + µ0 + µ1

3
(10)

Where πi is the MCMC price estimation, p0 is the price at
the same hour of the previous day, µ0 is the mean MCMC
estimation over the entire data of the same hour and µ1 the
mean estimation with the same week day and same hour.

The standard deviation σ2 used for the confidence interval
is calculated as:

σ2 =
σ0 + σ1

2
(11)

Where σ0 is the MCMC estimation using the entire data of
the same hour and σ1 the estimation using the data with the
same hour and same week day.

After obtaining the values from the MCMC, the price
estimations are send to the DER and ESS agent to be assumed
as price signals to realise cost minimisation. The MCMC
method is explained in the next section.

III. PRICE ESTIMATION METHOD

To maximise the benefits of the distributed generation, it
becomes necessary to interact with the grid such that the total
generation cost is minimised. To this, it is necessary to have
the spot electricity price in advance to make proper control
decisions about the microgrid generators.

The price signal that the agents use to minimise generation
costs is estimated using MCMC as described in [6] for the
price of each hour of one day.

The method consists on building a Markov chain of
proposed parameters θ′ to describe the probability density
function of the data given a starting vector θ. With a long
enough chain, its average converges, obtaining the best
approximation of the mean and standard deviation. This
represents the Monte Carlo simulation.

A. Metropolis-Hastings method

This MCMC sub method describes the acceptance ratio
that generates the elements of the Markov chain:.

a =
P (D/θ′)P (θ′)

P (D/θ)P (θ)
(12)

Where a is the acceptance, P (D/θ′) is the likelihood of
the proposed θ′, given the data D, P (θ′) is the prior on θ′,
P (D/θ) is the likelihood of the current θ and P (θ) the prior
on θ.

Given that the likelihood is computed as the product of all
the evaluation of the data under the pdf with the current and
proposed parameters, the computation may underflow, so the
log-likelihood of the acceptance is taken instead. Then the
next element X of the Markov chain is chosen as:

Xi+1 =

{
θ′ Z < e(Log(a))

θ otherwise
(13)
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Fig. 2. Evolution of the average of the markov chain for the price of hour
1, the arrow shows the end of the burn-in stage

Where Z is a random number taken from a uniform
distribution function. After a long enough chain is generated,
the final parameters for the posterior are Monte Carlo
approximated as:

θf =
1

n

∑
Xi,∀i ∈ n (14)

Where n is the number of elements in the chain, and θf
contains the mean hour price and standard deviation.

B. stop criterion

To optimise computational resources, stop criterion are
added to the MCMC method. The stop criteria limits the
relative change of the average value of the Markov chain
after each iteration to a minimum of 1E − 6, stopping when
the following inequality is true:

|Xi −Xi+1|
Xi

< 10−6 (15)

The first stop criterion is an absolute relative difference
between the average of the chain at iteration i, and average
of the chain at iteration i+1 below 1E-6, when the proposed
value is accepted.

The second stop criterion is reaching maximum cycles per
calculated hour price, of 4000 for each model, µ0 and πi.

In Fig. 2 the convergence of the average of the markov
chain is shown for the price estimation of one hour. The
arrow points the end of the burning-in stage, elements in this
stage are discarded for the price estimation.

IV. TEST CASE

The microgrid circuit is based on the model proposed in
[14], with an ESS and 2 dispatchable generators, a Micro
turbine (MT) and a fuel cell (FC) and a varying total demand
between 11.22kW and 61.2 kW during the day and its
distributed in the circuit as shown in Fig. 3. The Agent
platform is deployed using two Raspberry Pi3 model B+ and
a PC over a local area network.

The generators parameters are described by table I and
the Total demand is found in table II. Table III describes the
admittance of the lines.
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TABLE I
DER PARAMETERS

DGU paramter Micro turbine Fuel Cell ESS
Pmin (kW) 6 6 -30
Pmax(kW) 30 50 30

b (pence/kWh) 4.37 2.84 0
c (pence) 85.06 255.18 0

s 9 16 0
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Fig. 4. Comparison of the price estimation for one week.

V. SIMULATION AND RESULTS

A. Price estimation numerical performance

The estimation method is used to generate a price esti-
mation of one week, from the 27/09/2019 to 03/10/2019
showing the estimation and the real prices in Fig. 4. A 95%
confidence interval (CI), corresponding to π1±1.96σ2, shows
the estimation limits in terms of variations from the mean.

To evaluate the numerical results, two error functions are
used [15, 16]:



TABLE II
MICROGRID TOTAL DEMAND

Hour kW Hour kW Hour kW Hour kW
1 16.32 7 18.36 13 33.66 19 52.02
2 15.30 8 24.48 14 36.72 20 61.20
3 13.26 9 26.52 15 36.72 21 55.08
4 11.22 10 27.54 16 30.60 22 46.92
5 12.24 11 30.60 17 30.60 23 33.66
6 14.28 12 33.66 18 40.80 24 18.36

TABLE III
LINE ADMITTANCE OF THE TEST MICROGRID

Line Siemens Line Siemens
y1,2 46.3435 - 13.5440i y4,7 46.3435 - 13.5440i
y2,3 9.0275 - 0.2299i y7,8 205.7613 - 205.7613i
y2,4 92.6870 - 27.0881i y7,9 3.3505 - 0.0979i
y4,5 2.4153 - 0.0143i y9,10 205.7613 - 208.7613i
y4,6 17.5886 - 3.6600i y9,11 19.2675 - 2.0134i

MAPE =
100%

Ne

∑∣∣∣∣pi − πipi

∣∣∣∣,∀i ∈ Ne (16)

RMSE =

√
1

Ne

∑
(pi − πi)2,∀i ∈ Ne (17)

Where RMSE is the root mean squared error and MAPE
is the mean absolute percentage error, pi the real price, πi
the estimated price and Ne the number of estimations.

The table IV summarises the accuracy of the method using
the error functions, a comparison is shown between the price
signal µ0 and πi for the average prices and for the prices of
the week 27/09/2019 to 03/10/2019.

B. Costs results

The price π0 estimated by the MCMC was doubled and
tripled to reflect the actual end consumer price, which for
the UK was in average 13 pence per kWh in 2019. This is
done to better study the effect of the estimation compared to
the actual price at the distribution level.

To test the grid price estimation four cases for different
prices are used: case 1a is double the average Friday price,
case 1b is double the price from 27/09/2019, case 2a is triple
the Average Friday price and in case 2b the price is triple
the price from 27/09/2019.

Initially, the price signal was developed by a single grid
agent and sent to all agents, labelled shared estimation.
Secondly the price signal was generated independently in
each generator by its own grid agent, labelled as independent
estimation, in this way, the distributed generators do not rely
on an external signal, however, this produces variations in
each forecast.

TABLE IV
SUMMARY OF ACCURACY

Price Model MAPE RMSE

Average µ0 0.646% 0.299
πi 1.725% 0.824

Week µ0 20.335% 7.214
πi 15.953% 5.765
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Fig. 5. Comparison of the price estimation strategies

TABLE V
AVERAGE EXTRA COST PER DAY IN GBP

Price Date Shared Independent

Double Average Friday 0.373 0.377
27/09/2019 1.347 1.426

Triple Average Friday 0.222 0.329
27/09/2019 3.223 3.287

The cost results are summarised in Fig. 5, where each
bar represents the average cost after 10 runs for each case.
The results are compared with the Ideal case of having the
actual prices in each case, showing the extra cost from the
estimation in table V. Sharing a single price estimation or
using the same data to generate price signals independently
does not have a significant effect on the total cost for the test
microgrid, but allows further distribution of the control.
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C. Restoration service

A fault of the main-container is induced in the system to
test connectivity of the containers after applying the service
restoration, obtaining the L-polynomial of the network from
Fig. 1, before and after a fault of the main-container, it can be
seen that the network remains fully connected. As depicted in
its graph in Fig. 6. Activation of the service is only reflected
in the ACL messages from the AMS, as the creation of the
copy is informed to other back-ups as shown in Fig. 7. Before
the fault the L-polynomial is:

λ6 − 6λ5 + 145λ4 − 92λ3 + 69λ2 − 18λ = 0 (18)
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Which has one root equal to zero. After the fault,the network
reforms to exclude the faulty node, with an L-polynomial of:

−λ5 + 8λ4 − 24λ3 − 10λ2 + 7λ = 0 (19)

which also has only one root equal to zero.

VI. CONCLUSION

A price forecast method was tested for the UK market using
MAS. While there is opportunity to improve the accuracy
of the estimation, the system works in a more distributed
environment, which makes it less dependant on a central
controller. In the same way, the restoration service prevents the
loss of the entire agent platform from the disconnection of the
main container. Finally, with a good convergence algorithm,
its possible to distribute the control with independent price
estimations, with minimal cost variations.
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