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Abstract— Multi-Agent systems offer a way to control dis-
tributed generation in microgrids, reliability and cost minimi-
sation capabilities can be improved by price forecast method-
ologies that can be deployed without the need of external
control signals. This paper presents and compares two suitable
electricity price forecast methodologies for use in distributed
control of Microgrids’ resources using Multi-Agents: Markov
Chain Monte Carlo simulations with heuristic and numeri-
cal optimisation and price prediction with Non-linear Auto
Regressive Artificial Neural Networks with different internal
architectures. The methods are evaluated using MAPE and
RMSE functions for the UK electricity market data. It was
found that the proposed heuristic model has less error than the
Neural Networks only when the price data contains outliers.

Keywords — AC Microgrid, Artificial Neural Network,

Autoregression, Multi-Agent System, Price Forecast.

I. INTRODUCTION

As the energy generation paradigm shifts from centralised

to distributed, the control systems also shift to reflect

this new nature. Control systems for Distributed Energy

Resources (DER) are divided in levels depending on the

control objectives and control speed.

For the case of the control within the microgrids, the

control is divided in the primary control which directly

regulates voltage and frequency of an individual DER, and the

secondary control which coordinates the power schedule for

the DERs and power flow from and to the grid, by sending the

control references to the primary controllers, a tertiary level

can be used to merge the optimisation of several microgrids

and their interaction with the main grid. Such levels form

a hierarchical framework for coordinating and controlling

several Microgrids at once [1].

While the primary controller is realised by conventional PI

controllers, there are centralised, decentralised and distributed

secondary controllers [1]. Multi-Agent Systems (MAS) have

been applied as an appropriate distributed secondary control

method to coordinate DER units, to minimise power losses

or maximise their economic benefit as they can combine ele-

ments of centralised and decentralised control, benefiting from

separating control tasks in different agents, for asynchronous

and parallel operation [2, 3].
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Compared to larger power plants, the formulation of

the microgrid cost minimisation problem can be simplified

given the scale and dynamics of kilowatts of electric power.

For example, cost minimisation models for grid-connected

microgrids can neglect shutdown cost, minimum up and down

time, and ramping rates, focusing instead on start up cost

and operating cost for DER and the dynamic behaviour of

the State of Charge (SOC) of the batteries [4]. To minimise

costs from the battery, energy arbitrage has been proposed

for the UK, as well as grid balancing for renewables [5]. This

simplified sub problems can be solved by individual agents

in a MAS control for optimal power flows [6].

To maximise the economic benefits of distributed genera-

tion and control, considering the starting cost for the DERs

and limited storage capacity, price prediction is required to

generate a proper power schedule to minimise the supply

cost of cooperative DER owners. In previous MAS control

systems, such as in [7], The MAS control depends on an

external price prediction signal, which creates dependence

of the agents to the source of such signal, to prevent this,

the price prediction must also be distributed. There are two

forecasting methods suitable for distributed online control, as

they have low computation requirements for deployment.

The first family of methods for developing such forecast

models are Auto-Regressive (AR) models, which are a

forecasting tool and have been used to estimate the grid

price from historical data [8]. Price prediction requires some

assumptions based on the observed data: Price is considered

to be normally distributed for a specific hour [9], and a

high correlation exists between an hour price, and the prices

for the same hour for the previous day and seven days ago

as the demand tends to follow these patterns [10]. Monte

Carlo Markov Chain (MCMC) simulations, are used to model

the Probability Density Function (PDF), from which an AR

model can be developed and further optimised with heuristic

solvers [11]. MCMC models have been applied in renewable

generation [11, 12], as well for modelling load uncertainties

in microgrid optimisation [13]. The Metropolis-Hasting [14]

is used for its easy implementation for the MCMC.

The second family of methods are Artificial Neural

Networks (ANN), which are computationally expensive for

training, but not for execution. Examples of ANNs that have

been used for time series forecasting are found in [15–17].



For the case of intra-day price prediction, the entire day

values can be considered as a single vector or wavelet [16]

to model features that the ANN can learn.

The Non-Linear Auto Regressive network (NARNET) is

suitable for distributed control where the control does not

have exogenous data available, in order words, no external

control input, which makes it a good candidate for MAS

application in a microgrid, as it maintains control distribution.

Applications of NARNETs include prediction of number of

EVs in a city and albedo forecasting [18].

The basic architecture of the NARNET can be modified

to add layers in series or in parallel [15]. Parallel networks

require more time to train, however, for the Australian market

they show better results than other architectures [17].

The rest of the paper is organised as follows: Section

II describes the Multi-Agent System used for distributed

microgrid control, section III details the two main forecast

methods, section IV describes the implementation of price

forecast to the microgrid control applied to the test case

described in section V. The results of the forecast are analysed

in section VI and the conclusion is in section VII.

II. MULTI-AGENT SYSTEM

Microgrid control is normally divided in a hierarchy, with

a fast primary control to regulate voltage and frequency of

a DER, and a slower secondary control that commands the

primary control by providing the power references to it.

The secondary control in this case is based on multi-agent

systems that needs to be as distributed and independent as

possible. This prevents single points of failure and maximise

the flexibility and adaptability of the control system, such

that the distributed generation sources can change in number

and power. The primary controller of each resource consists

in a PI control with an inner close loop for voltage references

and a outer loop for power references as described in [19].

Each agent in the system is a small artificial intelligence that

is capable of communicating with other agents, and carries

out a set of specific tasks called behaviours.

A MAS system has been developed for microgrid control

for supply cost minimisation as described in [20], with 3

agents developed for the microgrid control: The Energy

Storage System (ESS) agent, the DER agent and the Grid

agent. The ESS and DER agents generate the power references

for the primary control based on the price signal sent by their

respective grid agent.

An heuristic model was developed for electricity price

forecasting as part of the Grid Agent behaviour with four

months of data [20]. The proposed forecast methodologies are

used to model the price forecast under more diverse scenarios

by increasing the data size to two years.

III. FORECASTING METHODOLOGIES

In this work two main price forecast methodologies are

tested and compared for UK price forecast. The first one

is an AR model built with the MCMC method [20],which

is further optimised with numerical and heuristic solvers,

referred as Weighted Average (WA) in this work. The second

forecast method is based on NARNETs, analysing different

architectures for the hidden layers and number of neurons.

Both methodologies are directly comparable as they only use

past prices for the price forecast.

A. Weighted Average Model

The MCMC method is used to estimate the parameters θf
of a PDF P given a data set δ, in this case, estimate the mean

πx and the standard deviation σx, forming a chain Θ of j
elements. Applying the Metropolis-Hasting algorithm, from

an empirical starting point θ0, and proposed parameters θ′0,

with the same value plus a random small deviation, selecting

the next element as:

Θj+1 =

{

θ′j Z < e(Log10(a))

θj otherwise
(1)

Where Z is a random variable with uniform

distribution,ZNU ,and a is the acceptance ratio:

a =
P (δ/θ′)P (θ′)

P (δ/θ)P (θ)
(2)

Where a is the acceptance, P (δ/θ′) and P (δ/θ) are the

likelihoods of θ′ and θ, given the data δ, P (θ′) and P (θ)
are the priors on θ′ and θ. The priors are the parameters

evaluated in the normal distribution with respect to θ0.

The chain continues to grow until the change in its average

is below a given tolerance or maximum number of iterations,

in this case 10−6 and 4000 to guarantee convergence, then

the estimated parameter is calculated as:

[πx σx]
T = θf =

1

nj

∑

Θj , ∀j ∈ ne (3)

Where ne is the number of elements j in the chain, and

θf is the vector containing the parameters that describe the

PDF of the electricity price of each price.

With the use of the MCMC, and considering the correlation

of the day prices, a simple heuristic AR model is proposed as

follows, putting a weight in each term for model optimisation:

πi = w1pi−24 + w2pi−168 + w3πa + w4πb + w5πc (4)

Where pi−24 is the actual price for the previous day, pi−168

is the actual price for the previous week, πa is the average

price for the same day of the week, πb the average price of the

season, πc is the average price of the entire data, and πi is the

forecast price at hour i. The averages πx are estimated from

the UK data set using the MCMC with Metropolis-Hastings

method with the use of (3). Weights wj are obtained by

solving a least squares regression problem:

min
W

∑

(pi − πi(W ))2, ∀i ∈ m (5a)

s. t. W < 0 (5b)

Where W is a vector containing the weights of (4) for

the hours i in the set m. The problem is constrained to be

semi-definite positive to reflect the positive correlation of
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Fig. 1. Architectures used: a)Single layer, b) Series layers, c) Parallel layers

past prices with current prices and is solved using different

methods: Interior point with the constraint, Quasi-Newton

(QN) method without this constraint, and Genetic Algorithm

for both cases.

The QN algorithm is based on gradient descent methods.

At the start of the QN algorithm, a starting point x0 and

a H0 as any symmetric positive definite matrix are chosen.

With these, a direction dk is calculated:

dk = −H−

k 1 · ∇f(xk) (6)

An αk is selected such that:

f(xk + αkdk) < f(xk) (7)

With the resulting αk and dk, the next iteration is calcu-

lated:

xk+1 = xk + αkdk (8)

The difference from the Newton method is that the Hessian

matrix update in its algorithm is estimated from its previous

values instead of calculated analytically:

Hk+1 = Hk +
qkq

T
k

qTk sk
−

Hksks
T
kH

T
k

sTkHksk
(9)

Where:

sk = xk+1 − xk (10)

qk = ∇f(xk+1)−∇f(xk) (11)

The method finalises when the following is true for a given

tolerance ǫ, otherwise, the algorithm repeats with the next

iteration k + 1:

|∇f(xk)| < ǫ (12)

B. Non-linear Auto-Regressive Neural Network

The key difference between the NARNET and a conven-

tional ANN is the use of the delay and feedback, to use the n
value of a time series to obtain the n+1 value. The NARNET

uses a combination of functions represented as blocks to form

the network architecture. The three architectures analysed in

this work are shown in Fig. 1. The main difference between

the different architectures is the number and connection of the

hidden layers inside the network. In all cases, the NARNET

models a time dependant variable as a function of its past

values, following the general equation [21]:

Y (t) = f(Y (t− 1), ..., Y (t− d)) (13)

Where d is the number of delays in the net, Y is vector

of prices y for a time t, and f is the non linear model

approximated by the ANN. The first block in a NARNET is

the update of the delay vector D that contains the prices of

each past day as its elements:

D(t) = [yt−1,1 · · · yt−1,24 · · · yt−d,1 · · · yt−d,24]
T (14)

Where yt,k are the prices at hour k for a day t. As the

NARNET operates, the values shift positions to the next

time step, eliminating the oldest information first, while the

vector D is completed with the network’s feedback loop. The

transfer function for each hidden layer is described by the

logistic sigmoid function[22]:

σ(ω1D) =
1

(1 + e−ω1D)
(15)

Where ω1 is the matrix of weights, with a number of rows

equal to the number of neurons in the layer. The open loop

transfer function of a NARNET with a single hidden layer

is:

f(Y (t)) = ω2σ(ω1D(t) +B1) +B2 (16)

IV. IMPLEMENTATION

Regardless of the price forecast method, its execution needs

to be compatible with the rest of the MAS control system,

in that sense, the method has to be run from an agent and

within 10 milliseconds, which is the set time an agent has to

complete one cycle of their behaviours. To achieve this with

the NARNET, the equivalent transfer function is obtained

and applied as shown in Fig. 2.

The transfer function is programmed into the Grid agent,

replacing the previous transfer function and the weights

obtained from the training of the NARNET are transferred

as CVS files to be read by the Grid agent, along with the

Raspberry Pi Network

Historical 

Data
NARNET model

Cost 

minimisation

Primary controllerDER/ESS

Raspberry Pi

MAS Platform / Secondary Control

OPAL-RT real-time simulator

Microgrid

Grid Agent DER/ESS Agent

Fig. 2. Block diagram of the microgrid control system
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historical price data, to improve the simpler forecast method

in [20], without affecting the response time of the system.

The MAS platform is realised in a network of one PC

that connects to an OPAL-RT real-time simulator and two

Raspberry Pi, each of them have an agent container, as well

as a ring with the main container and the back-ups for further

distribution of the control, as described in [20], where it

was shown that the fault tolerance mechanism allows the

microgrid control to remain operational even in the event of

a computer being lost from the network.

V. TEST CASE

The UK price data used is from Noord Pool, for each

hour over the period from the 29-12-2017 to 27-02-2020.

During this time, price has sunk and spiked several times,

and the monthly averages have decreased as seen in Fig.

3. The methods are tested for four data scenarios: a) the

entire data set, b) the entire data set without the 20 most

significant outlier days, c) weekdays only and d) weekdays

only without the outliers. Each scenario was run 10 times

for each configuration of the tested methods. For the case

of the WA, the forecast is optimised with each solver. For

the NARNET the forecast is tested with varying number of

neurons in the hidden layers between 5 or 10 and the amount

of delay in each of the architectures shown in Fig. 1 for one

week of delay and two weeks.

The forecasts obtained are evaluated calculating the Mean

Absolute Percentage Error (MAPE) and the Root Mean

Squared Error (RMSE). Two evaluations functions are re-

quired to better dimension the accuracy of the methods, as

the data contains values close to zero [16, 23]:

MAPE =
∑ |pi − πi|

pi
, ∀i ∈ m (17)

RMSE =
√

∑

(pi − πi)2, ∀i ∈ m (18)

Where pi is the hour real price and πi is the hour price

from (4).
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VI. PRECISION ANALYSIS

After running each case 10 times for each set of parameters,

the total MAPE and RMSE is calculated. The results obtained

are plotted in Fig. 4. The results of each set of parameters

show that the NARNET can outperform the WA when the

outliers are not included. When the entire dataset is taken into

account, the MAPE increases in two orders of magnitude.

To focus on the best solutions, a zoom is done to Fig. 4,

marked as a red rectangle in Fig. 4 and the solvers re coloured

as seen in Fig. 5. It can be seen that in terms of individual runs,

the best solution is provided by the single layer with 5 neurons

with a week of delay for the NARNET, and the QN solver

for the WA method. The best WA solutions have weights

W = [0.490.320.1800] and W = [0.480.340.960.03− 0.82]
for the constraint and unconstrained case. Several trials of

the training are needed to achieve the best results for the

NARNET, as the RMSE and MAPE output depends on the

division of the data in 70% for training, 15 % for testing and

15 % validation sub sets, which are chosen at random.

The errors over the data set for each of these two best cases

without the outliers and weekends for each method are shown

in the Fig. 6 and Fig. 7. The individual errors are shown as

blue circles deviating from the actual price in orange. While

they show a similar level of correlation between the target and

output, the WA deviates more at the higher prices, increasing

the final RMSE and MAPE scores. In both cases the error

increases for the lower values, however, this may be caused

by the prices in the data set that tend to zero.

The summary of error distributions is shown in Fig. 8,

which compares the QN solver for the WA and the NARNET

using all the data and without the outliers. It can be seen

that for both methods and data sets the errors have a normal

distribution, and the difference in score depends on the number

and deviation of large errors shown as blue circles.

Finally, Table I shows the average MAPE and RMSE of the

combined results of the different parameters of each method

and the best individual score. It can be seen that in general,

the WA method is better as it has less variations in each

run compared to the NARNET, but the latter has the best
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individual score, with the neural network with a single layer

of 5 neurons and one week of delay achieving a MAPE of

8.67 % and a RMSE of 5.88 GBP/KWh.

VII. CONCLUSION

Two main methodologies were tested for price forecast of

the UK’s electricity market. It was found that the NARNET

achieves the highest accuracy if the outliers are removed from

the data, while the WA method is better otherwise.

For the case of the UK price data from 29/12/2017 to

27/02/2020, the NARNETs with one hidden layer and with

2 hidden layers in series with one week of delay achieved

the best MAPE score at 8.67 %, with 5.37 GBP/kWh and

5.88 GBP/KWh RMSE respectively.

The WA solution shows that the previous day has the

highest weight if each weight must be positive, the season is

the most significant term without this constraint.
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The transfer function of the single layer NARNET was

replicated in an agent and implemented as part of the MAS

control for the secondary control of the microgrid, to improve

the price forecast’s accuracy to minimise supply cost.
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