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Abstract—XAI with natural language processing aims to pro-
duce human-readable explanations as evidence for AI decision-
making, which addresses explainability and transparency. How-
ever, from an HCI perspective, the current approaches only focus
on delivering a single explanation, which fails to account for
the diversity of human thoughts and experiences in language.
This paper thus addresses this gap, by proposing a generative
XAI framework, INTERACTION (explaIn aNd predicT thEn
queRy with contextuAl CondiTional varIational autO-eNcoder).
Our novel framework presents explanation in two steps: (step
one) Explanation and Label Prediction; and (step two) Diverse
Evidence Generation. We conduct intensive experiments with the
Transformer architecture on a benchmark dataset, e-SNLI [1].
Our method achieves competitive or better performance against
state-of-the-art baseline models on explanation generation (up to
4.7% gain in BLEU) and prediction (up to 4.4% gain in accuracy)
in step one; it can also generate multiple diverse explanations in
step two.

Index Terms—generative model, neural network, deep learn-
ing, natural language processing, XAI

I. INTRODUCTION

Traditionally, natural language processing (NLP) applica-
tions are built based on techniques that are inherently more
explainable. Examples of such techniques are often referred
to as ‘white box’ techniques, including rule-based heuristic
systems, decision trees, hidden Markov models, etc. In recent
years, due to the advancement of deep learning, a ‘black box’
technique, deep neural network, has become the dominant
approach [2]. With the advancement of deep neural networks,
their ubiquitousness comes at the expense of less interpretabil-
ity. Hence, concerns have been raised on whether deep neural
networks can make reasonable judgements [3], [4], which
further triggers an interest in explainable artificial intelligence
(XAI) research [5].

With XAI techniques in NLP applications, researchers first
focused on feature-based [6], [7], model-based [8], and ex-
ample-based [9] explanation techniques. However, even for
experts working as data scientists in the industry, interpreting
results from these models was found to be hard and bias-prone
[10]. To reduce human interpretation bias, directly generating
natural language explanations seemed a better medium for pre-
sentation. Rather than based on carefully designed additional
tools, XAI with natural language produced human-readable
explanations as evidence for AI decision-making [11].

The current state-of-the-art approaches, such as those in
[12], [13], are limited by presenting a single explanation only.
However, from an HCI research perspective, it is hard to ac-
count for the diversity of human thoughts and experience [14].
Indeed, natural language allows expressing the same semantic
content in various ‘correct’ (i.e., semantically similar) forms,
subject to cognitive biases, social expectations, and socio-
cultural backgrounds [15].

This paper addresses this gap by, proposing a generative
XAI framework, which presents explanations in two steps:
(step one) Explanation and Label Prediction, and (step two)
Diverse Evidence Generation. In step one, we offer the most
probable explanation and label prediction, similar to other
prior work in literature [12], [13]. In our original step two,
we adopt deep generative models, to generate multiple diverse
explanations via posterior analysis in the latent space. We eval-
uate our method specifically on an natural language inference
(NLI) task [16], which determines whether a ‘hypothesis’ is
true (entailment), false (contradiction), or undetermined (neu-
tral), given a ‘premise’. To perform this, an appropriate dataset
is needed. Current NLI datasets, however, contain annotation
artefacts, which allow the models to make predictions based on
spurious correlations [17]. To address annotation artefacts in
data, Camburu et al. [1] suggest that spurious correlations are
much harder to be captured with natural language explanations
and propose a large-scale benchmark dataset (e-SNLI), which
contains NLI data points and their associated explanations. In
this paper, we present our studies thus on this dataset, with
the Transformer architecture, as further explained in Section
IV and Section V.

Our main contributions include: (i) a novel two-step gen-
erative XAI framework, INTERACTION, which presents
explanations in two steps: (step one) Explanation and Label
Prediction; and (step two) Diverse Evidence Generation; (ii)
the first study on spurious correlation on the e-SNLI dataset
with Transformer architecture; (iii) demonstrating the benefits
of our framework, INTERACTION, against state-of-the-art
baseline models with empirical experiments; and (iv) a solid
deep generative model baseline for future research in the XAI
field.



II. RELATED WORK

A. Explainable Artificial Intelligence for Natural Language
Processing

General XAI approaches can be categorised in two main
ways: [18], [19]: 1) Local vs Global, and 2) Self-Explaining vs
Post-Hoc. Our work contributes to explainable artificial intelli-
gence (XAI) from two perspectives: Local and Self-Explaining,
as we provide explanations based on fine-granularity individ-
ual input, and our explanations are directly interpretable.

In terms of explanation techniques and their applications
to NLP there are, in general, five different types [2]: 1)
feature importance, 2) surrogate model, 3) example-driven, 4)
provenance-based, and 5) declarative induction. The first three
are more widely adopted and have already been described
briefly in section I. The provenance-based technique refers
to visualising some or all of the prediction process, such
as in [20], [21]. Our work uses the declarative induction
technique, which tackles the challenging task of providing
human-readable representations as part of the results, such as
in [1], [22]. Our work further extends [1] with a probabilistic
treatment.

B. Supervised Deep Generative Models for Natural Language
Processing

Our work is associated with deep generative models, which
is based on Neural Variational Inference (NVI) [23]–[25]. NVI
is also known as amortised variational inference in the litera-
ture and can be considered as an extension of the mean-field
variational inference [26], [27]. The NVI technique uses data-
driven neural networks instead of more restrictive statistical
inference techniques. NVI allows us to infer unobservable
latent random variables that generate the observed data and
are thus very efficient for data with hidden structures, such as
natural language.

NVI has been successfully applied in various NLP applica-
tions including topic modelling [28], [29], machine translation
[30], [31], text classification [28], conversation generation
[32], [33], and story generation [34]. This paper explores the
potential for XAI with natural language inference explanation
generation with a novel deep generative framework. A very
recent published paper [35] adopts a similar approach as in
this paper, however, the research gap for multiple explanations
generation is not explored or discussed. This paper is thus,
to the best of our knowledge, the first work to address the
concern on the diversity of human languages in XAI within
the natural language inference task.

III. TECHNICAL BACKGROUND

This section provides a brief overview of the Conditional
Variational Autoencoder (CVAE), the Transformer architec-
ture, and a description of the data.

A. Conditional Variational Autoencoder

CVAE [36], [37] is an extended version of the deep gener-
ative latent variable model (LVM) based on the variational
autoencoder (VAE) model [23], [25]. Both models allow

learning rich, nonlinear representations for high-dimensional
inputs. When compared with VAE (performing inferences for
the latent representation z, based on the input x, only), CVAE
performs inference for the latent representation z, based on
both the input x and the output y, together. CVAE can be
considered as a neural network framework based on supervised
Neural Variational Inference.

CVAE generally includes two components: an en-
coder and a decoder. We consider the joint probabil-
ity distribution and its factorisation, in the form of
pθ(y, z|x) = pθ(y|z, x)pθ(z|x) as in [28], [31]–[34]. The
encoder pθ(z|x) takes the observed input x and produces a
corresponding latent vector z as the output with parameter
θ. The decoder pθ(y|z, x) takes the observed input x and
its corresponding latent vector sample z as the total input and
produces an output y with the parameter θ. The latent variable
z in the joint probability pθ(y, z|x) can be marginalised out
by taking samples from p(z).

For CVAE, we optimise the following evidence lower bound
(ELBO) for the log-likelihood during training:

log pθ(y|x) ≥ L(ELBO) = Eqϕ(z)[log pθ(y|z, x)] −DKL[qϕ(z|x, y)||pθ(z|x)]

(1)
The first term of ELBO is the reconstruction loss and

is measured via cross-entropy matching between predicted
versus real targets y. The second term is the Kullback–Leibler
(KL) divergence between two distributions pθ(z|x) and
qϕ(z|x, y). As the true posterior distribution pθ(z|x)
is intractable to compute, a variational family distribution
qϕ(z|x, y) is introduced as its approximation. We consider
that both pθ(z|x) and qϕ(z|x, y) are in the form of
isotropic Gaussian distributions, as N (µθ(x), diag(σ2

θ(x)))
and N (µϕ(x, y), diag(σ2

ϕ(x, y))). Our work takes a similar
assumption, but the key difference lies in the design of our
novel model architectures (section V), together with using the
Transformer model [38] as a building block.

B. Transformer Architecture

The Transformer architecture, proposed in [38], is the
first neural network architecture entirely built upon the self-
attention mechanism. It has been used as the main build-
ing block for most of the current state-of-the-art models
in NLP, such as BERT [39], GPT3 [40], and BART [41].
The Transformer architecture can be divided into three main
components: an embedding part, an encoder, and a decoder.

The embedding part takes the input x ∈ Rs1×1 in the form
of a sequence with length s1 and uses an input embedding to
create E(x) ∈ Rs1×E , where E is the embedded dimension
size. Due to the permutation-invariant self-attention mecha-
nism, [38] further introduces positional encoding, to encode
sequential order information, as P (x) ∈ Rs1×E . The sum of
positional encoding and input embedding is used as the final
embedding of the input x. In [38], sine and cosine functions
of different frequencies are adopted as positional encoding
methods. Further work on large-scale transformers [39]–[41]



use a learnt positional embedding, which is what we utilise in
this paper. For the encoder and the decoder, we use precisely
the same Transformer architecture as in the original paper
[38]. In our experiments, if an encoder and a decoder are used
simultaneously, they each have a separate embedding part.

C. Data Description

Our training data is in the form of N data quadruplets
{x(p)

n , x
(h)
n , y

(l)
n , y

(e)
n }Nn=1, with each quadruplet consisting of

the premise (denoted by x
(p)
n ), the hypothesis (denoted by

x
(h)
n ) their associated label (denoted by y

(l)
n ), and expla-

nation (denoted by y
(e)
n ). For the nth quadruplet, x

(p)
n =

{w(p)
1 , ..., w

(p)
Lp

}, x(h)
n = {w(h)

1 , ..., w
(h)
Lh

}, y(l)n = {w(l)}, and

y
(e)
n = {w(e)

1 , ..., w
(e)
Le

} denote the set of Lp words from the
premise sentence, Lh words from the hypothesis sentence,
a single word w(l) from the label, and Le words from the
explanation sentence, respectively.

Our validation and testing data are similar to data quadru-
plets as the training data; however, we have three (y(e1)n , y(e2)n

and y
(e3)
n ) instead of one explanation y

(e)
n , all created by

human experts. During training, we update model parameters
based on one explanation y

(e)
n for nth data entry; and during

validation and testing, we perform model selection and infer-
ence based on the mean average loss of the three explanations
(y(e1)n , y

(e2)
n and y

(e3)
n ). In the following, we omit the data

quadruplet index n and use bold characters to represent vector
form representations, as x(p), x(h), y(l), and y(e).

IV. PRELIMINARY EXPERIMENTS

We present two preliminary experiments in this section. We
use the architecture setting similar to the base version of the
Transformer model [38], which is a 6-layer model with 512
hidden units and 8 heads for each encoder-decoder network.
Based on an inspection of token length statistics (Appendix A),
we set the maximum length of 25 for positional encoding. We
adopt the pre-processing technique as in [1]. See Appendix
C for a detailed description of all model complexity in this
paper.

We generally follow the vocabulary processing steps as
in [1] (see detailed pre-processing description in Appendix
A). We report our quantitative assessment results based on 3
random seeds (1000, 2000, and 3000), and report the average
performance with its standard deviation in parenthesis. Re-
garding quantitative assessment, we use automatic evaluation
metrics (Perplexity and BLEU [42]) over the entire test data
points. Regarding qualitative assessment (Correct@100, as in
Table II and Table III), we report results based on the seed
1000. We adopt the criterion as in [1] and evaluate the
Correct@100 score based on the first 100 test examples only1.
For evaluation, the lower the perplexity, the higher the BLEU
score and the higher the Correct@100 score, the better the
model performs.

1The score is related to the correctness for generated explanation based on
the annotations, details described in Appendix B.

We use the maximum a posteriori (MAP) estimate decoding
for the conditional generation. MAP decoding, whilst not
always the optimal choice, has a reasonably good performance
and is widely adopted and cheap to compute [43]. For the
network optimisation, we use Adam [44] as our optimiser with
default hyperparameters (β1 = 0.9, β2 = 0.999, ϵ = 1e − 8).
We conduct all the experiments with a batch size of 16 and a
learning rate of 1e− 5 for a total of 10 epochs on a machine
with Ubuntu 20.04 operating system and a GTX 2080Ti GPU.

A. Architecture Selection and Spurious Correlation

In the first experiment, we answer two questions: Q(i)
What is a good Transformer model architecture choice for
the e-SNLI text classification task? Q(ii) How easily can a
Transformer model pick up the spurious correlation, when only
a hypothesis sentence is observed?

Hypothesis

Premise Hypothesis Label

Label

( b )

( c )

Hypothesis
Label

Premise

( a )

Fig. 1. Graphical overview of architectures used in section IV-A. (a)
Separate Transformer Encoder; (b) Premise Agnostic Encoder; and (c) Mixture
Transformer Encoder.

TABLE I
ARCHITECTURE SELECTION AND SPURIOUS CORRELATION

EXPERIMENTS.

Model Accuracy (%)
Separate Transformer Encoder 73.97 (0.34)
Mixture Transformer Encoder 78.98 (1.44)
Premise Agnostic Encoder 65.43 (0.72)

To answer Q(i), we experiment on two candidate model
architectures: (1) Separate Transformer Encoder: an architec-
ture with two separate encoders, one each for the premise
and hypothesis sentences, respectively (Fig. 1a). (2) Mixture
Transformer Encoder: an architecture with a mixture encoder
for both premise and hypothesis sentence together (Fig 1c). We
choose these two candidates for the following reasons: the first
candidate architecture is widely adopted in early NLI literature
[45]–[47], where f refers to algorithmic operations (identity,
subtraction, multiplication) as in [48]. The latter candidate
architecture is adopted by the BERT model [39], where f
refers to an affine transformation operation and has achieved
state-of-the-art performance for NLI tasks. To answer Q(ii),
we perform the premise-agnostic prediction experiment on the
Premise Agnostic Encoder model (Fig 1b), where f refers to
an affine transformation operation.

For the above two experiments, results are presented in
Table I. For the Separate Transformer Encoder, we use the
encoder outputs at two separate ’< bos >’ positions for



algorithmic operations (identity, subtraction, and multiplica-
tion). For Mixture Transformer Encoder and Premise Agnostic
Encoder, we use the output at the first ’< bos >’ position.
We apply an affine transformation operation for predicting the
label. The results suggest the Mixture Transformer Encoder
outperforms the Separate Transformer Encoder, in a statisti-
cally significant way (p < .05; Wilcoxon test). The Premise
Agnostic Encoder achieves 82.84% (based on 65.43/78.98)
of the Mixture Transformer Encoder performance, suggesting
that Transformer models tend to capture spurious correlations
very easily for the NLI label prediction task.

B. Premise-Agnostic and Full Generation

In the second experiment, we address two further questions:
Q(iii) Is providing explanations as output reducing the impact
of spurious correlation in a Transformer model, compared to
predicting the label only? Q(iv) How much better are expla-
nations based on premise and hypothesis together, instead of
hypothesis-only?

Premise
( b )
Hypothesis

Hypothesis Explanation
( a )

Explanation

Fig. 2. Graphical overview of architectures used in section IV-B. (a) Agnostic
Generation; (b) Full Generation.

TABLE II
PREMISE AGNOSTIC GENERATION EXPERIMENTS.

Model Perplexity BLEU Correct@100
Agnostic Generation 7.66 (0.03) 25.74 (0.8) 42.87
Full Generation 5.53 (0.05) 33.14 (0.5) 57.45

To answer Q(iii), we follow and extend the ’PremiseAgnos-
tic’ experiment [1]. We use the model architecture shown in
Fig. 2a, and we are interested in evaluating how well the model
can generate an explanation from the premise-agnostic sce-
nario (only premise observed). To answer Q(iv), we implement
the seq2seq framework [49] with the Transformer architecture.
We compare the agnostic generation scenario with the full
generation scenario (both premise and hypothesis observed,
as shown in Fig. 2b).

Our results, presented in Table II, suggest that the ag-
nostic generation significantly reduces (p < .05; Wilcoxon
test) the ability to generate correct explanations, with only
72.19% (based on 5.53/7.66) for perplexity, 77.67% (based
on 25.74/33.14) for the BLEU score, and 74.62% (based on
42.87/57.45) for the Correct@100 score (compared to 82.84%
in section IV-A).

V. PROPOSED DEEP GENERATIVE XAI FRAMEWORK

In this section, we explain in detail our novel frame-
work, INTERACTION - (explaIn aNd predicT thEn queRy

with contextuAl CondiTional varIational autO-eNcoder). Our
framework presents explanation in two steps: (step one) Expla-
nation and Label Prediction; and (step two) Diverse Evidence
Generation. We present a workflow diagram for our framework
in Fig. 3, which consists of four components as follows.

A. Neural Encoder

Given a pair of premise x(p) and hypothesis x(h), with their
associated explanation y(e), the encoder network outputs two
sequences of representations:

xh = Encoder([x(p);x(h)])

yh = Encoder([y(e)])
(2)

Here Encoder refers to the Transformer Mixture Encoder,
which is selected based on experiments in section IV-A. xh

is the contextual representations for the premise x(p) and
hypothesis x(h) pair. yh is the contextual representation for
explanation y(e). We share the same encoder network param-
eters for producing xh and yh. xh has the same sequence
length as the sum of premise and hypothesis length. yh has
the same sequence length as the explanation length. [a; b]
refers to the concatenation operation of vectors a and b.

B. Neural Inferer

The neural inferer can be divided into two separate compo-
nents: the prior and the posterior networks. As determined
by the ELBO equation 1, the parameters of the prior are
computed by the prior network, which only takes the inputs:
x(p) and x(h). The posterior parameters are determined from
both inputs and outputs: x(p), x(h) and y(e).

1) Contextual Convolutional Neural Encoder: Before in-
troducing the neural prior and posterior, we first present our
novel approach of dealing with various lengths of output from
the Transformer encoder. We first adopt the 2d-convolution
operations (over the sequence length and hidden dimension)
as in [50] and apply it directly to the encoded outputs xh and
yh. For the convolution operations, we use learnable filters
with size of 1, 2, and 3 to represent ’unigram’, ’bigram’, and
’trigram’ contextual information from the sequences. Then, we
use a max-pooling operation over each filter output, to alleviate
various sequence-length issues and concatenate them as one
single output vector. Finally, we apply an affine transformation
on the output vector and return the original vector dimension,
but with a sequence length of 1. We name the whole set
of operations here contextual convolutional neural encoder
(denoted in short as Concoder).

In contrast, a standard CVAE model uses a fixed position
from the sequence instead, to handle various sequence-length
issues. We implement a standard CVAE with the < bos >
position output as the final output, denoted as CVAE Gener-
ation. We use this as a comparison with our novel solution
(Concoder), denoted as ConCVAE Generation (with results
shown in Table III).



2) Neural Prior: The prior distribution, denoted as:

pθ(z|x) = N (z|µθ(x), diag(σ2
θ(x))) (3)

pθ(z|x) is an isotropic multivariate Gaussian with mean
and variance matrices parameterised by neural networks. With
variable-length sentence as input, we first use a contextual
convolutional neural network, introduced in section V-B1, to
retrieve a fixed output xc. Then, we apply two additional affine
transformations, f1 and f2, to parameterise the mean and
variance matrices for the neural prior. The tanh() function
here introduces additional non-linearity and also contributes
to numerical stability during parameter optimisation. Thus:

xc = Concoder([xh])

µθ = f1([xc])

log σθ = tanh(f2([xc]))

(4)

3) Neural Posterior: During training, the latent variable
will be sampled from the posterior distribution:

qϕ(z|x, y) = N (z|µϕ(x, y), diag(σ2
ϕ(x, y))) (5)

qϕ(z|x, y) is also an isotropic multivariate Gaussian with
mean and variance matrices parameterised by neural networks.
However, the parameters are inferred based on both inputs
and outputs. We use the same Concoder network to handle
the various lengths of inputs and outputs (x(p), x(h), and
y(e)). As for the neural prior, we apply two additional affine
transformations, f3 and f4, to parameterise the mean and
variance matrices. Thus:

yc = Concoder([yh])

µϕ = f3([xc; yc])

log σϕ = tanh(f4([xc; yc]))

(6)

C. Neural Decoder

The decoder models the probability of the explanation y(e)

in an auto-regressive manner, given the predicted label yp, the
encoded premise and hypothesis pair xh, and the latent vector
z. We obtain the explanation sequence via:

y(e) = Decoder([z;x(h)]) (7)

Here, Decoder refers to the Transformer decoder. Given
an explanation with a total sequence length of T , at time step
j (j < T ), it produces the jth word with a softmax selection
from the vocabulary based on all the past j − 1 words.

D. Neural Predictor

In our novel INTERACTION framework, the label can be
predicted based on one of the three options: (i) M1 Model:
predicted based on the premise and hypothesis only, (ii) M2
Model: predicted based on the explanation only, and (iii)
M3 Model: predicted based on the premise, hypothesis, and
explanation all together. With the Transformer architecture,
we first concatenate the vector outputs of the information at
each first ’< bos >’ position into a single vector for each
model. Then we apply an affine transformation operation f to

Explanation Generation            

Premise Hypothesis Explanation

STEP ONE: Explanation Generation
and Label Prediction

M1

Label Prediction                        

M2 M3

Query For  
More

Explanation 
           

Accept
Explanation

and
Prediction 

Human
Intervention 

Accept
Explanation
Examples 

STEP TWO: Diverse Evidence
Generation

Fig. 3. Graphical overview of our framework, INTERACTION, introduced
in section V.

the concatenated vector. We jointly train the neural predictor
together with the generative model ConCVAE. We compare the
performance of these three models in our experiments (Table
III).

VI. EXPERIMENTS

In this section, to evaluate our proposed framework IN-
TERACTION, we conduct experiments comparing with our
baseline models.

A. Baseline Models

We define two types of baseline models: generative model
and predictive model. We consider the following works as
baseline models:

• seq2seq (generative model, our implementation): a
sequence-to-sequence learning framework developed by
[49]. We implement it with the Transformer architecture
and present the results as Full Generation in Table III.

• CVAE (generative model, our implementation): a strong
probabilistic conditional generation framework intro-
duced by [36], [37]. We implement it with the Trans-
former architecture and present the results as CVAE
Generation in Table III.

• Transformer (predictive model, our implementation): a
very strong baseline model for NLI task developed by
[38]. We present the results as Mixture Transformer
Encoder in Table III.

B. Experiment Setup

To evaluate the explanation generative model of our IN-
TERACTION framework, we implement our novel ConCVAE



TABLE III
XAI WITH NATURAL LANGUAGE PROCESSING RESULTS ( ‘−−’ REFERS TO RESULTS NOT APPLICABLE).

Model Label Accuracy Perplexity BLEU Correct@100
Premise Agnostic Encoder (lower bound) 65.43 (0.72) −− −− −−
Mixture Transformer Encoder (predictive model baseline) 78.98 (1.44) −− −− −−
Full Generation (generative model baseline, non-probabilistic) −− 5.53 (0.05) 33.14 (0.50) 57.45
CVAE Generation (generative model baseline, probabilistic) −− 7.58 (0.27) 25.70 (1.04) 43.04
ConCVAE Generation (our model, probabilistic) −− 5.69 (0.03) 32.74 (0.09) 55.27
INTERACTION M1 (our model) 83.42 (0.31) 6.73(0.16) 30.46(0.33) 47.04
INTERACTION M2 (our model) 73.73(1.54) 5.75 (0.01) 32.68(0.64) 52.29
INTERACTION M3 (our model) 79.85(0.35) 5.93(0.02) 32.70 (0.28) 58.06

TABLE IV
SELECTED DIVERSE EVIDENCE GENERATION EXAMPLES.

Test Data Number 29
Premise a couple walk hand in hand down a street .
Hypothesis the couple is married .
Explanation just because the couple is hand in hand does n’t mean they are married .
Generated Explanation 1 not all couple walking down street are married .
Generated Explanation 2 not all couple in hand is married .
Generated Explanation 3 not all couples are married .
Test Data Number 50
Premise a little boy in a gray and white striped sweater and tan pants is playing on a piece of playground equipment .
Hypothesis the boy is sitting on the school bus on his way home .
Explanation the boy is either playing on a piece of playground equipment or sitting on the school bus on his way home .
Generated Explanation 1 the boy can not be playing on a playground and sitting on his way home at the same time .
Generated Explanation 2 the boy can not be playing on a playground and sitting on his way home simultaneously .
Generated Explanation 3 the boy can not be playing on a playground and sitting on the bus at the same time .
Test Data Number 64
Premise people jump over a mountain crevasse on a rope .
Hypothesis people are jumping outside .
Explanation the jumping over the mountain crevasse must be outside .
Generated Explanation 1 people jump over a mountain so they must be outside .
Generated Explanation 2 a mountain is outside .
Test Data Number 77
Premise a man in a black shirt is looking at a bike in a workshop .
Hypothesis a man is deciding which bike to buy
Explanation just because the man is looking at a bike does n’t mean he is deciding which bike to buy .
Generated Explanation 1 just because a man is looking at a bike in a workshop does n’t mean he is deciding to buy .
Generated Explanation 2 just because a man is looking at a bike in a workshop does n’t mean he is deciding what to buy .

model and use the MAP decoding over the latent variable dur-
ing both training and testing to generate a single explanation.
For label prediction task, we implement the INTERACTION
M1, M2, and M3 models (as in section V-D), and compare
their performance with our predictive and generative base-
line models. Regarding network architectures, vocabulary, and
training, we use the same experimental setting as in section
IV.

C. Diverse Evidence Generation via Interpolation

We present a study on the generation of diverse evidence
to support explanation, as in step two from Figure 3. To
generate multiple explanations, we perform posterior analysis
over the latent space. We choose to linearly interpolate the
isotropic multivariate Gaussians over its 95.44% region (left
and right of 2σ from µ). This interpolation produces 5 samples
calculated based on the µ − 2σ, µ − σ, µ, µ + σ, and
µ + 2σ coordinates. Examples of interpolation results from
the ConCVAE Generation experiment are presented in Table
IV and we only show the examples which are different.

VII. RESULTS AND DISCUSSIONS

A. Explanation Generation Only

The main results are presented in Table III. For the explana-
tion generation evaluation, we first compare a deep generative
model (CVAE Generation) with a standard neural network
model (Full Generation). The results suggest that the Full
Generation model performs better, as the perplexity is reduced

by (7.58 − 5.53 = 2.05), the BLEU score increases by
(33.14−25.70 = 7.4%), and the Correct@100 score increases
(57.45 − 43.04 = 14.4). All the results here are statistically
significant (p < .05) based on the Wilcoxon signed-rank test.
However, deep generative models, such as CVAE Generation,
allow generating multiple explanations via a posterior analysis
over the latent space, as shown in section VI-C. With our
novel contextual deep generative model ConCVAE, we achieve
competitive performance with the Full Generation model,
evidenced in both quantitative (perplexity, BLEU score) and
qualitative (Correct @100) results.

B. Explanation Generation and Label Prediction

We implement three variants of our INTERACTION
framework (M1, M2 and M3) to perform generation and
prediction simultaneously. Regarding label prediction, results
suggest that generating a valid explanation from the premise
and hypothesis sentence-pair allows the encoder to better
understand the semantics of the words and hence further
enhances the accuracy of prediction. This leads to a boost
in prediction performance (83.42% for M1 and 79.85% for
M3), compared to the Mixture Transformer Encoder (78.98%),
with the same number of parameters. However, with M1, a
significant improvement in classification accuracy results in
the worst generation quality (based on Correct@100) among
all three models. Additionally, as shown in M2 model, the
label prediction accuracy is the worst when using expla-
nation only. This could potentially be explained since only



52.29% of the explanations are considered as correct (based
on Correct@100).

Regarding explanation generation, we observe that the M3
model achieves competitive results for the quantitative assess-
ment (perplexity and BLEU) as the Full Generation model.
Additionally, it achieves the best performance in qualitative
assessment (Correct@100) amongst all models. The results
from Table III suggest that label prediction and explanation
generation can complement each other and hence enhance
the importance of XAI with natural languages in practice.
When choosing amongst these three models: for the prediction
performance,the M1 model fits the best; however, for the
generation performance, the M3 model is preferable.

C. Diversity of Explanation

The main contribution in this paper is to build a model
(INTERACTION) capable of providing multiple explana-
tions, reflecting the diversity in natural languages. The mo-
tivation is that a natural language usually works in a way
such that humans often provide more than one explanation
for their actions, and hence may find systems that reply
’monosyllabically’, or too briefly, potentially frustrating, or
even non-informative [15], [51]. Still, our approach raises
other questions, e.g., do humans have enough time to read
multiple explanations? How do they pick the best or most
faithful one? In a recent paper [52], the authors propose first
to generate multiple paraphrases and then select the most
faithful one. In our paper (Fig. 3), we alternatively select
the most faithful one based on MAP decoding in step one
(the maximum likelihood for data), then provide multiple
explanations in step two. The richness and diversity of the
generation of multiple explanations can be observed in Table
IV (e.g., for test data number 29 and 64). In practice, the
MAP decoding might not offer the best results; however, it is
a faithful response from the model, given the context of using
a ‘data-driven’ approach with deep learning.

VIII. CONCLUSION

Here, we have presented INTERACTION, a novel deep
generative XAI framework, with explanations in two steps: (1)
Explanation and Label Prediction; and (2) Diverse Evidence
Generation. INTERACTION is the first study which, to the
best of our knowledge, addresses the concern on the diversity
of human languages in XAI, within the natural language
processing task. INTERACTION achieves competitive or bet-
ter performance against state-of-the-art baseline models on
both generation (4.7% improvement in BLEU) and prediction
(4.4% improvement in accuracy) tasks. We observe that label
prediction and explanation generation can complement each
other, which further confirms the benefits of XAI with natural
languages research in practice.
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APPENDIX A
DATASET STATISTICS

TABLE V
TOKEN LENGTH STATISTICS FOR THE E-SNLI DATASET, ALL NUMBERS

ROUND TO INTEGER.

Model Mean Median Standard Deviation Min Max
Premise 17 15 7 4 84
Hypothesis 11 10 4 3 64
Explanation 16 15 7 2 189

APPENDIX B
QUALITATIVE EVALUATION

We calculate the qualitative assessment score, Correct@100,
as suggested in [1]: we manually grade the correctness of first
100 test examples, each with a score between 0 (incorrect) and
1 (correct) and give partial scores of k/n if only k out of n
required arguments were mentioned. The require arguments
are publicly available on GitHub2 and we take the mean
average of three annotations as the final score.

APPENDIX C
MODEL COMPLEXITY

We present the model complexity in Table VI, with separate
counts for prediction, generation and total network compo-
nents, the one with the ‘−−’ mark is denoted as not applicable.

TABLE VI
NUMBER OF PARAMETERS FOR EACH MODEL, WITH SEPARATE COUNTS

FOR PREDICTION AND GENERATION COMPONENT.

Model Prediction Generation Total
Separate Transformer Encoder 48.6M – 48.6M
Mixture Transformer Encoder 24.3M – 24.3M
Premise Agnostic Encoder 24.3M – 24.3M
Agnostic Generation – 63.6M 63.6M
Full Generation – 63.6M 63.6M
CVAE Generation – 65.9M 65.9M
ConTrCVAE Generation – 68.3M 68.3M
INTERACTION M1 24.3M 68.3M 68.3M
INTERACTION M2 24.3M 68.3M 68.3M
INTERACTION M3 24.3M 68.3M 68.3M

2https://github.com/OanaMariaCamburu/e-SNLI/tree/master/dataset


